方程思想及应用
方程思想在小学数学教学中的应用
方程思想在小学数学教学中的应用一、引导学生树立符号思维在小学数学教学中渗透方程思想的第一步是引导学生树立符号思维,即要求学生明确数学符号的意义和应用情况。
这不仅是小学数学教材知识点编排要求,更是符合学生思维发展过程的教学方式。
利用数学符号表示未知数,对小学生来说是一个全新的内容且具有一定的抽象性,所以小学数学教师一方面要用贴近生活、直观性强的例子帮助学生理解数学符号的意义和树立符号思维;另一方面要关注数学教学的趣味性,防止学生因为觉得教学内容枯燥乏味、不好理解而发生走神、开小差的情况。
首先,小学数学教师可以通过列举贴近现实生活的例子,帮助学生理解符号的意义,例如,教师可以利用幻灯片为学生呈现红十字符号、麦当劳黄“M”符号等,并要求学生说出符号代表的意义,以此让学生理解符号的作用就是代指某些事物,在数学世界中,人们常用英文字母来代指某些量或非确定性数值。
其次,教师可以利用学过的旧知识帮助学生进一步理解数学符号的意义,例如,教师利用正方形、长方形和三角形的面积计算公式,帮助学生理解用数学符号代指非确定性数值。
在此过程中,教师可以提供加法交换律公式帮助学生理解:利用英文字母表示非确定性数值是惯例,但理论上任意图形、字母都可以用于指代非确定数值,且没有硬性规定某一个字母只能用来固定表示某一个量,此举是为了防止学生在做题时出现混淆。
最后,教师还可以通过游戏帮助学生了解符号能用来表示未知数的作用,例如,教师以填空题为例,将填空题“若一个长方形的长为3cm,宽为2cm,则该长方形的面积为cm”中的横线改为字母x,则填空题变成了“若一个长方形的长为3cm,宽为2cm,则该长方形的面积为xcm”,以此让学生体会字符在表示未知数上的作用。
二、帮助学生掌握利用符号表述数学规律的能力具备利用符号表述数学规律的能力是学生能根据题干内容写出对应方程的前提,所以小学数学教师要通过充足的训练帮助学生学会并有效巩固这一能力。
为了提升学生的学习兴趣和帮助学生掌握利用符号表述数学规律的能力,小学数学教师可以利用“数青蛙”这一传统游戏并创新游戏方式,帮助学生在游戏中不知不觉掌握利用符号表述数学规律的能力。
函数和方程的思想方法总结
函数和方程的思想方法总结函数和方程是数学中两个非常重要的概念,它们在不同的数学领域和学科中具有广泛的应用。
在解决实际问题、研究数学定理和推导数学公式时,函数和方程的思想方法非常有用。
下面我将总结函数和方程的思想方法,并举例说明它们的应用。
一、函数的思想方法:1. 函数是一种映射关系,将自变量映射为因变量。
在研究函数时,我们常常关注函数的定义域、值域、图像和性质等特征。
例如,对于一个电商平台的销售额函数,我们可以通过输入商品价格来计算销售额。
我们可以研究函数的增减性、最大值和最小值等,以优化销售策略。
2. 函数具有一些重要的性质,如奇偶性、周期性和可导性等。
这些性质可以帮助我们进一步研究函数的特点和行为。
例如,对于一个正弦函数,它是一个周期函数,周期为2π。
我们可以利用这个性质来分析正弦函数的周期性变化和极值点。
3. 函数的组合和复合是函数思想方法的重要工具。
通过将多个函数进行组合或复合,我们可以得到新的函数,从而解决更加复杂的问题。
例如,对于一个物体在空中自由落体运动的高度函数和速度函数,我们可以通过将这两个函数进行复合,得到物体的位置函数和加速度函数,进一步分析物体的运动规律。
二、方程的思想方法:1. 方程是含有未知数的等式,通过求解方程,我们可以确定未知数的值。
解方程是数学中的一个重要问题,有很多不同的解法和技巧。
例如,对于一个一元一次方程,我们可以通过移项、消元和代入等方法求解。
对于一个一元二次方程,我们可以通过配方法、因式分解和求根公式等方法求解。
2. 方程的应用非常广泛,它可以用来描述和解决各种实际问题。
在解决实际问题时,我们常常将问题抽象成一个方程,然后通过求解方程来得到问题的解。
例如,对于一个汽车行驶的问题,我们可以根据汽车的速度、时间和距离的关系建立一个方程,然后求解这个方程来得到汽车行驶的时间或速度。
3. 方程的解有可能是多个,也有可能是无解。
我们在解方程时,需要考虑方程的解集和解的存在性等问题。
浅谈方程思想在初中数学中的应用
浅谈方程思想在初中数学中的应用方程思想在初中数学中的应用方程是初中数学中重要的思想之一。
它是通过符号和运算符来表示变量之间关系的数学语言。
方程思想在初中数学中应用广泛,为学生提供了解决实际问题的重要工具,本文将从方程的定义、形式及应用等方面展开讨论。
一、方程的定义方程是指将变量与常数之间用符号连接成式子,通过等号将式子分为左右两边的数学表达式。
方程中的变量通常用字母表示,可以是未知数或变化的数。
例如,x+y=5就是一个方程,其中x和y为变量,5为常数,"+"和"="为运算符号。
方程的基本特征是等式关系,即左右两边的值相等。
方程中存在未知数或变量,我们需要通过运算和变换来求解未知数的值,以满足等式关系。
因此,方程思想可以帮助我们解决各种数学问题。
二、方程的形式1. 一元一次方程一元一次方程是指方程中只有一个未知数,且未知数的最高次幂为1的方程。
一元一次方程的一般形式为ax+b=c,其中a、b、c为已知数,x为未知数。
解一元一次方程的方法是消元法,通过加减乘除等运算将未知数移至等式左边并将已知数移到等式右边,直到未知数的系数为1。
例如,在方程2x+3=7中,我们可以通过将3移到等式右边再将2除以得到x=2,从而求出未知数x的值。
2. 一元二次方程一元二次方程是指方程中只有一个未知数,且未知数的最高次幂为2的方程。
一元二次方程的一般形式为ax^2+bx+c=0,其中a、b、c为已知数,x为未知数。
解一元二次方程的方法有因式分解法、配方法、公式法、解关于二次项系数的方程等方法,具体方法可以根据题目情况选择。
例如,在方程x^2-3x+2=0中,我们可以通过因式分解得到(x-1)(x-2)=0,从而求出未知数x的值为1或2。
三、方程思想的应用1. 解代数方程代数方程是指根据实际问题所建立的含有未知数和已知数关系的方程。
代数方程可以帮助我们解决各种实际问题,例如长方形、三角形、平面和立体图形的边和面积等问题。
方程的思想
方程的思想:就是分析数学问题中变量间的关系,建立方程或方程组,通过解方程或方程组去分析、转化问题,使问题获得解决。
数学教学不仅是数学知识的教学,更重要的是数学思想方法的教学。
列方程解应用题的思路比较简单、思维难度小,可以使一些应用题化难为易(如鸡兔同笼问题),有明显的优越性,这对提高学生应用数学基础知识,解决简单的实际问题的能力,有积极作用。
列方程解应用题是代数知识的一个重要而具体的应用,是解答应用问题的一种基本的数学模式。
总之,方程的思想就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析,转化问题,使问题获得解决。
数形结合: 数形结合既是一个重要的数学思想,也是一种常用的解题策略。
一方面,许多数量关系的抽象概念和解析式,若赋予几何意义,往往变得非常直观形象;另一方面,一些图形的属性又可通过数量关系的研究,使得图形的性质更丰富、更精准、更深刻。
这种“数”与“形”的相互转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可大大开拓我们的解题思路。
可以这样说,数形结合不仅是探求思路的“慧眼”,而且是深化思维的有力“杠杆”。
由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识。
因此,数形结合的思想的使用往往偏重于由“数”到“形”的转化。
数学是研究现实世界空间形式和数量关系的科学,因而数学研究总是围绕着数与形进行的。
“数”就是方程、函数、不等式及表达式,代数中的一切内容;“形”就是图形、图象、曲线等。
数形结合的本质是数量关系决定了几何图形的性质,几何图形的性质反映了数量关系。
数形结合就是抓住数与形之间的内在联系,以“形”直观地表达数,以“数”精确地研究形。
华罗庚曾说:“数缺形时少直觉,形缺数时难入微。
”通过深入的观察、联想,由形思数,由数想形,利用图形的直观诱发直觉。
化归与转化:在教学研究中,使一种对象在一定条件下转化为另一种研究对象的数学思想称为转化思想。
第7讲-方程与函数思想在初中数学中的应用
第7讲:函数与方程思想【写在前面】方程是研究数量关系的重要工具,在处理生活中实际问题时,根据已知与未知量之间的联系及相等关系建立方程或方程组,从而使问题获得解决的思想方法称为方程思想.而函数的思想是用运动、变化的观点,研究具体问题中的数量关系,再用函数的形式把变量之间的关系表示出来.函数与方程思想在中学数学中有着广泛的应用,也是中考必考的内容. 【典型例题】【例1】 如图:在△ABC 中,BA=BC=20 cm ,AC=30 cm ,点P 从点A 出发,沿AB 以每秒4 cm 的速度向点B 运动;同时Q 点从C 点出发,沿CA 以每秒3 cm 的速度向点A 运动.设运动的时间为x 秒.(1)当x 为何值时,PQ ∥BC? (2)△APQ 能否与△CQB 相似?(3)若能.求出AP 的长;若不能.请说明理由.【解】(1)根据题意AP=4xcm ,AQ=A C -QC=(30-30x)cm ,若PQ ∥BC ,则AP AQAB AC=. 则43032030x x -=,解得103x =.所以当103x =s 时,PQ ∥BC . (2)因为∠A=∠C ,所以当AP AQ CQ CB =或AP AQCB CQ=时,△APQ 能与△CQB 棚以. ①当AP AQCQ CB=时,4303320x x x -=,解得109x =. ②当AP AQCB CQ=时,4303203x x x -=,解得x 1=5,x 2=-10(舍去).所以AP=4x=20. 所以当409AP =cm 或20 cm 时,△APQ 与△CQB 相似. 【解题反思】由相似三角形的对应边成比例,可列出分式方程,从而求解;在已知一个角对应相等的前提下考虑两个三角形相似时,有两种情况,不可遗漏.【例2】某企业投资100万元引进一条农产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万元,该生产线投产后,从第1年到第x 年的维修、保养费用累计为y(万元),且y=a x 2+bx ,若第1年的维修、保养费为2万元,第2年的维修、保养费为4万元. (1)求y 的解析式; (2)投产后,这个企业在第几年就能收回投资? 【解】 (1)由题意,把x=1时,y=2和x=2时,y=2+4=6,代入y=a x 2+bx ,得2426a b a b +=⎧⎨+=⎩,解得11a b =⎧⎨=⎩,所以y=x 2+x (2)设y ′=33x -100-x 2-x ,则y ′=-x 2+32x -100=-(x -16) 2+156.由于当1≤x ≤16时,y ′随x 的增大而增大,且当x=1、2、3时,y ′的值均小于0,当x=4时,y ′=-12 2+156>0,已知投产后该企业在第4年就能收回成本. 【解题反思】用函数思想解决实际问题,要关注自变量与函数之间的关系,注意:本题中的y 是从第1年到第x 年的维修、保养费用总和.【例3】某村响应党中央“减轻农民负担,提高农民生活水平”的号召,该村实行合作医疗制度,村委会规定:(一)每位村民年初交纳合作医疗基金a 元;(二)村民个人当年治疗花费的医疗费(以医院的收据为准),年底按下列办法处理.设一位村民当年治疗花费的医疗费用为x 元,他个人实际承担的医疗费用(包括医疗费中个人承担的部分和缴纳的合作医疗基金)为y 元.(1)当0≤x ≤b 时,y=________;当b<x ≤5000时,y=_______(用含a 、b 、c 、x 的代数式表示) (2)下表是该村3位村民2008年治疗花费的医疗费和个人实际承担的费用,根据表格中的数据,求a 、b 、c 的值;写出y 与x 之间的函数关系式;并计算村民个人一年最多承担医疗费为多少元.(3)下表是小强同学一家2006年治疗花费的医疗费用:请你帮助小强计算参加合作医疗保险后村集体为他们家所承担的费用.【解】(1)a a+(x-b)c%(2)假设b≤40,则()()()4030(1)9050(2)15080(3) a b ca b ca b c+-=⎧⎪+-=⎨⎪+-=⎩②-①得,c=40,③-②得,c=50,结果矛盾,∴b>40,这样①不成立,应为a=30,代入②和③中,解得c=50,b=50.∴当0≤x≤50时,y=30;当50<x≤5000时,y=30+(x-50)50%=0.5x+5;当x>5000时,y=2505,∴村民个人一年最多承担医疗费为2505元;(3)全家医药费合计200+100+10+30+20=360,个人应该承担的药费之和(0.5×200+5)+(0.5×100+5)+30+30+30=250,集体为他们家承担的药费360-250=110(元).【解题反思】本题的关键是确定a的范围,这里采用了反证法来说明b>40.【综合训练】1.如果关于x的方程3211axx x=-+-无解,则a的值为__________.2.如图,已知矩形ABCD中,E是AD上一点,F是AB上一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32 cm,求AE的长.3.如图,△ABC中,AC=4,AB=5,D是线段AC上一点(点D不与点A重合,可与点C重合),E是线段AB上一点,且∠ADE=∠B.设AD=x,BE=y.(1)写出y与x之间的函数关系式;(2)写出y的取值范围.4.如图,某农场要用总长24 m的木栏建一个长方形的养鸡场,鸡场的一边靠墙(墙长12m),且中间隔有一道木栏,设鸡场的宽AB为xm,面积为S m2;(1)求S关于x的函数关系式;(2)若鸡场的面积为45 m2,试求出鸡场的宽AB的长;(3)鸡场的面积能否达到50 m2?若能,请给出设计方案;若不能,请说明理由.5.某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数关系如图所示,结合图象回答下列问题:(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需多少分钟?(2)求加油过程中,运输飞机的余油量Q1(吨)与时间t(分钟)的函数关系式;(3)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?说明理由.6.近几年我省高速公路的建设有了较大的发展,有力的促进了我省的经济建设,正在修建中的某段高速公路要招标,现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成,需费用120万元;若甲队单独做20天后,剩下的工程由乙队做,还需40天才能完成,这样需要费用110万元.问:(1)甲、乙两队单独完成此项工程,各需多少天?(2)甲、乙两队单独完成此项工程,各需要费用多少万元?7.已知,关于x的一元二次方程mx2-(3m+2)x+2m+2=0(m>0).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1、x2(其中x1<x2),若y是关于m的函数,且y=x2-2x1,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当m满足什么条件时,y≤-m+3?8.已知:△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,若关于x 的方程x 2-2(b+c)x+2bc+a 2=0有两个相等的实数根,且△ABC 的面积为8,a = (1)试判断△ABC 的形状并求b 、c 的长;(2)若点P 为线段AB 边上的一个动点,PQ ∥AC 交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得点B 与线段MN 不在线段PQ 的同侧,设正方形PQMN 与△ABC 的公共部分的面积为S ,BP 的长为x .①试写出S 与x 之间的函数关系式; ②当P 点运动到何处时,S 的值为3.9.(02镇江)已知抛物线y=a x 2+bx+c 经过A(-1,0),B(3,0),C(0,3)三点. (1)求此抛物线的解析式和顶点M 的坐标,并在给定的直角坐标系中画出这条抛物线. (2)若点(x 0,y 0)在抛物线上,且0≤x 0≤4,试写出y 0的取值范围.(3)设平行于y 轴的直线x=t 交线段BM 于点P(点P 能与点M 重合,不能与点B 重合),交x 轴于点Q ,四边形AQPC 的面积为S .①求S 关于t 的函数关系式以及自变量t 的取值范围.②求S 取得最大值时,点P 的坐标.③设四边形OBMC 的面积为S ′,判断是否存在点P ,使得S=S ′. 若存在,求出点P 的坐标,若不存在,请说明理由.10.已知动点P(2m -1,-2m+3)和反比例函数ky x=(k<0). (1)若对一切实数m ,动点P 始终在一条直线l 上,试求l 的解析式.(2)设O 为坐标原点,直线l 与x 轴相交于点M ,与y 轴相交于点N ,与反比例函数的图象相交于A ,B 两点(点A 在第四象限).①证明:△OAM ≌△OBN ;②如果△AOB 的面积为6,求反比例函数解析式.【参考答案】1.2和3 2.6cm 3.(1)455y x =-+ (2)955y ≤< 4.(1)S=x(24-3x)=-3x 2+24x(x ≥4); (2)-3x 2+24x=45,解得:x 1=3(舍去),x 2=5,∴鸡场的宽AB 的长为5米.(3)-3x 2+24x=50,3x 2-24x+50=0,△=242-4×3×50<0∴此方程无实数解,∴鸡场的面积不能达到50米2.5.(1)由图象知,加油飞机的加油油箱中装载了30吨的油,全部加给运输飞机需10分钟. (2)设Q 1=kt+b ,则406910b k b =⎧⎨=+⎩, 2.940k b =⎧∴⎨=⎩,∴Q=2.9t+40(0≤t ≤10).(3)根据图象可知运输飞机的耗油量为每分钟0.1吨,∴10小时的耗油量为10×60×0.1=60(吨)<69(吨),∴油料够用.6.(1)30 120 (2)135 607.(1)△=(3m+2) 2-4×m ×(2m+2)=m 2+4m+4=(m+2) 2m>0,∴ (m+2) 2>0,即A>0,∴方程有两个不相等的实数根.(2)x 1=1,222x m =+,∴ 2122y x x m=-=. (3)在直角坐标系中的第一象限内分别画出2y m=和y=-m+3的图象,观察图象得: 当1≤m ≤2时,y ≤-m+3.8.(1)△ABC 是等腰直角三角形,b=c=4;(2)①当0<x ≤2时,S=x 2;当2<x ≤4时,S=-x 2+4x 3. 9.(1)y=-x 2+2x+3,M(1,4),图略. (2)-5≤y 0≤4 (3)①29322t S t =-++(1≤t<3) ②9342⎛⎫ ⎪⎝⎭, ③不存在.15'2S =,若S=S ′, 则29315222t t -++=,整理得29602t t -+=.812404∆=-<,∴此方程没有实数根,∴不存在点P ,使得S=S ′.10.(1)设l :y=k ′x+b ,当m=0时,P 1 (-1,3),当m=1时,P 2(1,1),带入l :y=k ′x+b 得,3'1'k b k b =-+⎧⎨=+⎩,解得'12k b =-⎧⎨=⎩,∴l :y=-x+2,经检验满足条件.(2)①解方程组2k y xy x ⎧=⎪⎨⎪=-+⎩,得x 2-2x+k=0,解得1A x =1B x =1A y =1B y =OA =OB =.∴OA=OB ,∴∠OAB=∠OBA ;M(2,0),N(0,2),∴OM=ON ,∴∠OMN=∠ONM=45°,∴∠ONB=∠OMA=135°,∴△OA M ≌△OBN . ②26AOBMONAPMSSS=+=,又12222MO NS=⨯⨯=,2AOMS∴=,代入得:(1122⨯-⨯3=,∴k=-8,∴反比例函数的解析式为8y x=-.。
方程函数思想在初中数学中的应用
方程函数思想在初中数学中的应用方程函数是数学中的重要思想和工具,具有广泛的应用。
在初中数学教学中,方程函数思想被广泛运用于各个章节和知识点,如代数基础、线性方程与不等式、二次函数、比例与相似等。
本文将就方程函数思想在初中数学中的应用进行详细介绍。
一、代数基础在初中数学教学中,方程函数思想首先运用在代数基础中。
对于代数表达式的简化与展开,通过数学符号和运算来描述实际问题,并通过方程函数的思想解决这些问题。
例如:1.简化与展开代数式:通过方程函数思想,我们可以简化和展开各种代数式,使其更加简明和易于理解。
比如,将多项式进行因式分解、将代数式进行化简等。
这些操作都涉及到方程函数的思想和运算。
2.代数方程的建立与求解:通过将实际问题转化为代数方程,再通过方程函数的求解方法解决问题。
例如,小明的年龄是小红年龄的三倍减去2,用方程函数表示就是3x-2=5,解得x=2,即小明的年龄是2岁。
二、线性方程与不等式线性方程和不等式是初中数学中的重要内容,方程函数思想也被广泛应用于相关的知识点。
1.线性方程的解:通过方程函数的思想,我们可以解线性方程,找到方程的解集。
例如,2x+3=7,通过方程函数解得x=2,即方程的解集是{x=2}。
2.线性不等式的解集:通过方程函数的思想,我们可以解线性不等式,找到不等式的解集。
例如,3x-2>4,通过方程函数解得x>2,即不等式的解集是x的全部大于2的实数。
三、二次函数在二次函数的学习中,方程函数思想发挥了重要作用。
1. 求解二次方程:二次方程是形如ax^2+bx+c=0的方程。
通过方程函数的思想,我们可以解二次方程,找到方程的解集。
例如,x^2-5x+6=0,通过方程函数解得x=2或x=3,即方程的解集是{x=2, x=3}。
2.二次函数图像与性质:通过方程函数的思想,我们可以求解二次函数的图像、顶点、对称轴等性质。
例如,y=x^2-4x+3,通过方程函数解得函数的顶点坐标是(2,-1),它的对称轴是x=2,函数的图像是开口向上的抛物线。
方程思想及应用
方程思想及应用————————————————————————————————作者:————————————————————————————————日期:目录摘要 (2)Abstract (3)引言 (3)1.方程思想的涵义 (4)1.1方程................................................................... 错误!未定义书签。
1.2方程思想 (5)1.3方程思想的步骤 (5)1.4方程思想的两个重要方面 (5)1.5方程思想是一种源于解决应用问题的思想 (6)2.方程思想的应用 (6)2.1方程思想数学学科中的应用 (9)2.2方程思想在物理学科中的应用 (9)2.3方程思想在配平化学方程式中的应用 (12)3.方程思想的学习和教学 (13)3.1方程思想的学习 (14)3.2方程思想的教学 (14)参考文献 (17)方程思想的应用与教学摘要:方程思想是一种重要的数学思想,是指在分析问题的数量关系时,将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式。
重点就是化未知为已知的思想,关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
它在多门学科中都有广泛的应用,因此我们要让学生逐步掌握这种数学思想方法,就必须在数学教学中逐步进行有目的的引导和培养。
关键词:方程思想;应用;教学The Equation of the Application of the Thought and teachingAbstract:Equation thinking is a kind of important mathematical ideas, which means in its analysis of the question of the quantitative relationships, the issue of the known and unknown quantities of the quantitative relationships between the amount established by the appropriate setting element equation or equation group, and then solve the equation (group) so that the problems can be resolved by such a way of thinking. Focus on the translation of the unknown to the known, and the key is to use a known conditions or formula, theorem, known conclusions structure equations (group). It has a wide range of applications in several disciplines, and therefore we want to have the students gradually master this mathematical thinking, it must be in Math Teaching, step-by-step with the aim of the boot and training.Key Words: Equation thinking; Adhibition; Teaching引言数学家笛卡尔曾设想一个解决所有问题的通用方法:第一步:将任何问题转化为数学问题;第二步:将任何数学问题转化为代数问题;第三步:将任何代数问题化归为单个方程的求解;第四步:讨论方程(组)的问题,得到解之后再对解解释。
高中数学基本数学思想:函数与方程思想在数列中的应用
高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。
以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。
函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
方程思想的解题中的应用
方程思想的解题中的应用数学思想是数学的灵魂,任何数学问题的解决都是数学思想作用的结果,因此正确理解和掌握数学思想是数学学习的关键。
今天所说的方程思想就是一种十分重要的数学思想。
方程模型是研究现实世界数量关系的最基本的数学模型,它可以使人们从数量关系的角度来认识事物。
下面笔者就从以下几个角度阐述方程思想在解题中的运用。
一、通过构造方程,解决与定义、性质、规律相关的问题数学中的很多定义、性质、规律等理论性知识本身就直接或间接地体现着方程关系,如,单项式与同类二次根式的定义、各种类型的方程的定义、非负数的性质、平方根的特点等等。
若遇到此类问题,可以运用其所隐含的数学关系,通过建立方程加以解决。
二、通过几何定理体现的数量关系,将与几何图形相关的问题转化为方程问题解决几何中的许多定理都反映了图形数量上的相等关系,例如勾股定理、相交弦定理、切割线定理等等。
在很多情况下,若能根据这些定理反映数量关系,合理设出未知数并建立方程,可以使复杂几何问题的解答变得相对简单。
三、通过寻找等量关系,用方程思想解决实际问题例,《中华人民共和国道路交通安全法实施条例》中规定:超速行驶属违法行为。
为确保行车安全,一段高速公路全程限速110千米/时(即任一时刻的车速都不能超过110千米/时)。
以下是张师傅和李师傅行驶完这段全程为400千米的高速公路时的对话片断。
张:“你的车速太快了,平均每小时比我多跑20千米,少用我1小时就跑完了全程,还是慢点。
”李:“虽然我的时速快,但最大时速也不超过我平均时速的10%,可没有超速违法啊。
”李师傅超速违法吗?为什么?分析:此题是一道判断说理题,解题的关键是求出李师傅的平均速度,而实际上在张师傅和李师傅的对话中隐藏着一个等量关系,即李师傅所用的时间-张师傅所用的时间=1小时。
于是可设出未知数,列方程解决。
说明:运用方程思想解答应用题的关键是寻找等量关系,在实际问题中等量关系是多样化的,需要我们认真审题,打开思路,深入挖掘。
方程思想在初中数学中应用
课 改 前 沿都市家教 156笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。
我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的;不等式问题也与方程密切相关的。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)或不等式(组)来使问题获解的思维方式。
有时,还实现函数与方程的互相转化。
这种思想在代数、几何中有着广泛的应用。
一、方程思想在代数中的应用1.方程思想与整式的结合【典例分析】若最简根式343b a b −+23226ab b b −+a,b.分析:利用同类二次根式的定义可以得到根指数相等和被开方数相等的信息。
从而列出一个关于a 、b 的二元一次方程组解得a 、b 。
2.方程思想与勾股定理的结合【典例分析】小宇手里有一张直角三角形纸片ABC ,他无意中将直角边AC 折叠了一下,恰好使AC 落在斜边AB 上,且C 点与E 点重合,(如图)小宇经过测量得知两直角边AC =6cm,BC =8cm,他想用所学知识求出CD 的长,你能帮他吗?B 分析:此题以△BED 为直角三角形作为隐含条件,先由勾股定理求得AB=10cm,设CD=x cm,则DE=x cm,在Rt △BED 中,借助勾股定理建立方程。
∵BD=(8-x )cm,BE=4cm,∴,解得x =3,即CD=3cm。
3.方程思想与函数的结合方程与函数本身就有必然的联系,函数本身就可以看成一个方程,因此方程与函数有着相同的思路和解题方法,都是通过建立相等关系,求出未知数的值,因此函数问题的关键就是找出相等关系,建立变量之间的等量关系求解,要求对变量所涉及的相关知识要比较熟练,这是轻松求解函数问题的必要基础。
【典例分析】如图,A、B 分别是x 轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA 交y 轴于点C(0,2),直线PB 交y 轴于点D,△AOP 的面积为6;求△COP 的面积;求点A 的坐标及p 的值;△BOP 与△DOP 的面积相等,求直线BD 的函数解析式。
方程思想思维方式在教学实践中的探索与应用
方程思想思维方式在教学实践中的探索与应用1. 引言1.1 引言内容方程思想是数学中重要的概念之一,它代表了一种对问题进行分析和解决的思维方式。
在教育教学实践中,方程思想的运用具有非常重要的意义,可以帮助学生更好地理解数学知识,提高解决问题的能力,培养逻辑思维和创新能力,提高学生的学习成绩和综合素质。
通过对方程思维在教学中的重要性的探讨,可以更深入地了解其在教学实践中的作用和意义。
方程思维在教学实践中的具体应用是指将方程思想融入教学内容和教学方法中,通过实际的案例分析和教学实践,让学生在解决问题过程中通过构建方程式进行思考和分析,从而提高解决问题的能力。
在教学实践中,方程思维也会遇到各种挑战,如学生对数学知识的理解不到位,解题思路不清晰等。
针对这些挑战,我们需要采取有效的解决方法,如设置巩固性练习,引导学生建立正确的解题思维,提高学生的问题解决能力。
通过对方程思维在教学实践中的探索与应用进行案例分析,可以更具体地了解其实际效果和意义,为进一步推广方程思维的教学方式提供参考。
未来,我们可以将方程思维进一步融入数学教学中,探索更多创新的教学方法和手段,为学生提供更好的数学学习体验,促进学生全面发展。
【引言内容】2. 正文2.1 方程思想在教学中的重要性方程思想在教学中扮演着重要的角色,它不仅是数学学科的基础,更是培养学生逻辑思维能力和问题解决能力的利器。
通过学习方程思想,学生可以掌握抽象化和符号化的思维方式,能够将问题进行数学建模,并通过代数运算找到问题的解。
这种思维方式有助于培养学生的逻辑思维能力,锻炼学生的解决问题的能力,同时也能帮助学生理解抽象的数学概念,提高数学学科的学习质量。
方程思想在教学中还有助于激发学生的学习兴趣和提高学习动力。
通过解决实际问题的过程中,学生能够体会到数学知识的实用性和重要性,从而增加对数学学科的兴趣。
方程思维也有助于培养学生的自主学习能力和团队合作精神,通过合作解决复杂的方程问题,学生们能够相互学习、探讨,共同进步。
方程思想及应用
目录摘要 (2)Abstract (3)引言 (3)1.方程思想的涵义 (4)1.1方程.............................................................................. 错误!未定义书签。
1.2方程思想 (5)1.3方程思想的步骤 (5)1.4方程思想的两个重要方面 (5)1.5方程思想是一种源于解决应用问题的思想 (6)2.方程思想的应用 (6)2.1方程思想数学学科中的应用 (9)2.2方程思想在物理学科中的应用 (9)2.3方程思想在配平化学方程式中的应用 (12)3.方程思想的学习和教学 (13)3.1方程思想的学习 (13)3.2方程思想的教学 (14)参考文献 (17)方程思想的应用与教学摘要:方程思想是一种重要的数学思想,是指在分析问题的数量关系时,将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式。
重点就是化未知为已知的思想,关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
它在多门学科中都有广泛的应用,因此我们要让学生逐步掌握这种数学思想方法,就必须在数学教学中逐步进行有目的的引导和培养。
关键词:方程思想;应用;教学The Equation of the Application of the Thought and teachingAbstract:Equation thinking is a kind of important mathematical ideas, which means in its analysis of the question of the quantitative relationships, the issue of the known and unknown quantities of the quantitative relationships between the amount established by the appropriate setting element equation or equation group, and then solve the equation (group) so that the problems can be resolved by such a way of thinking. Focus on the translation of the unknown to the known, and the key is to use a known conditions or formula, theorem, known conclusions structure equations (group). It has a wide range of applications in several disciplines, and therefore we want to have the students gradually master this mathematical thinking, it must be in Math Teaching, step-by-step with the aim of the boot and training.Key Words: Equation thinking; Adhibition; Teaching引言数学家笛卡尔曾设想一个解决所有问题的通用方法:第一步:将任何问题转化为数学问题;第二步:将任何数学问题转化为代数问题;第三步:将任何代数问题化归为单个方程的求解;第四步:讨论方程(组)的问题,得到解之后再对解解释。
方程思想在初中数学教学中的应用
方程思想在初中数学教学中的应用摘要:在数学教学中,教师不仅仅要教授学生做对题目,更重要的是要教会学生数学思想方法。
方程是初中数学教学中的重要内容,教师在教学中要立足教材挖掘内容,启发学生对思想方法的转化,通过问题让学生体验思想,在实践中巩固所学的知识,以此将函数与方程思想渗透于数学教学中,提高学生的解题能力以及学习效率。
关键词:方程思想数学教学应用研究一、方程思想的应用意义方程思想是指从问题中的未知量入手,探求未知量和已知量之间的数量关系,运用数学语言,将问题中的条件转化为数学模型,适当设元建立相应个数的方程(组),实现问题与方程的相互联系,进而达到解决问题的目的。
教师在教学中要有意识地渗透方程思想,让学生学会初步应用。
方程思想既是解决现实生活中数量关系和变化规律的重要思维方式,也是初中数学教学的核心内容之一。
但有些教师在教学中却采取“知识点—典型题—解题方法”的教学模式,反复操练各种题型,这种题海战术式的解题训练有时虽然可以提高形式推导的能力,但容易束缚学生思维。
新课程理念下的数学教学强调要重视数学思想方法的渗透,构建良好认知结构,培养和发展学生的数学思维能力。
方程思想是学生学习数学知识和解决数学问题的一种重要思想,在初中数学教学中,不断提升学生的函数与方程思想,对于培养学生数学知识学习能力与解决问题的能力具有积极的意义。
因此,要有目的、有意识地将函数与方程思想渗透到课堂教学中,提升学生运用函数与方程思想解决问题的能力,让函数与方程思想贯穿于学生整个数学学习过程中,以指导学生更好地学习数学。
二、方程思想在初中数学教学中的应用1.立足教材,挖掘函数与方程思想的教学内容当前的初中数学课程内容中,函数与方程则占据了很大部分,是整个初中数学教学中的核心与重点。
因此,教师要想将函数与方程思想有效地渗透到初中数学教学中,首先就需要从初中数学教材出发,认真研读教材,挖掘函数与方程相关的内容,并在这些内容的教学中向学生渗透。
初中数学——方程思想解题实例
例 2 (2012 南京)若反比例函数 y= k 与一次函数 y=x+2 的图象没有交点,则 k 的值可以 x
是( )
A.-2
B.-1
C.1
D.2
解析:函数图象交点问题都可以通过联立方程组(也就是利用两个函数值相等)来解决,此题联立方程后 会得到一个一元二次方程,没有交点就意味着此方程无解,也就是判别式小于 0.
∴AB=CD,∠B=∠C. 若四边形 ABQP 是等腰梯形.则 AB=PQ,∠B=∠PQB, ∴CD=PQ,∠C=∠PQB ∴CD∥PQ ∴四边形 PQCD 为平行四边形 ∴PD=CQ . 而 PD=AD-AP=10-t×1=10-t;CQ=t×3=3t,则 10-t=3t, 解得 t=2.5.
前思后想:做此类运动题时要先在图上画出符合题意的大致图象,然后设出未知量,根据 题意寻找等量关系,第(2)问可这样思考:先逆向假设四边形 ABQP 能成为等腰梯形,则 PD=CQ,建立相关的等式,若能解出符合题意的值,则存在,然后再顺向写出过程
前思后想:等腰三角形中求某个角的度数时,通常都可以根据“三角形内角 和、三角形外角的性质、等腰三角形的性质”,找出相应的等量关系,通过列 方程解决此类问题。
课堂练习: 1.等腰三角形一腰上的高与另一腰的夹角为 30°,则顶角的度数为_______. 2.等腰三角形两角的度数之比为 4:1,其内角的度数分别为_______. 3. 如图,在△ABC 中,AB=AC,点 D 在 AC 上,且 BD=BC=AD,则∠A=_______. 4. 如图,点 O 是等边△ABC 内一点,连接 OA、OB、OC,将△BOC 绕点 C 按顺时针
知识梳理方程思想是指从分析问题的数量关系入手适当设定未知数把所研究的数学问题中已知和未知量之间的数量关系转化为方程或方程组的数学模型从而使问题得到解决的思维方法方程思想的独特优势是使问题简单化方便解题我们在初中阶段陆续学习了一元一次方程二元一次方程组分式方程一元二次方程感受到了方程思想在解决实际问题中的魅力
方程思想的应用
方程思想的应用1 定义方程方程是数学中的一种结构,是一种数学式,表达由未知量构成的有关关系。
一般来说,方程可以以等式的形式表达,左边的表达式称为“方程的左端”,右边的表达式称为“方程的右端”。
一般来说,方程有两个或多个变量,这些变量之间应该是结构上相等的。
2 方程的应用方程在日常生活和复杂应用中都具有重要的意义。
在日常生活中,方程往往用于表达一些量与量之间的关系,例如体积与体积的关系,还有财务计算的方程等。
在工程学校的学习中,方程也得到广泛使用,用于解决一些数学模型,如力学模型,电子模型,气体传输模型等等。
3 线性方程和非线性方程方程通常分为两类:线性方程和非线性方程。
线性方程是指其变量之间是线性相关的方程,这种方程中有一对或多对变量之间是线性关系,而非线性方程则是其变量之间不是线性相关的方程。
一般来说,线性方程的解往往比较容易,而非线性方程的解非常复杂,往往需要利用若干数学工具来完成。
4 方程的特殊问题方程也存在一些特殊的问题,例如方程没有实根,或者方程没有唯一解,这些问题也是需要充分考虑到的。
这些特殊的问题往往需要在理论和实践中共同探讨解决,以求系统的解决方案,以完成解方程的任务。
5 方程的数学思想方程本质上是一种数学思想,是一种利用数学结构来解决问题的思想。
根据它可以更好地理解、建立和解决实际问题。
方程的重要性不仅在于解决问题,而且还可以将问题抽象化,这一抽象方面的重要性往往被其他数学问题所忽视,但它也是方程解决问题的基础。
6 方程的总结方程是数学中的一种重要结构,是表达变量之间的关系的重要数学有机体。
方程在日常生活和工程应用中都发挥着重要作用,例如在财务计算中,以及工程学校的数学建模中都有着广泛的应用。
在方程的解题过程中,除了解决问题,还需要更深入的理解,以便更好地利用方程的数学思想解决问题。
方程思想在初中几何题中的应用
教法研究离是20,求AB、CD的长解:设BD=x,则AB=3x,CD=4x2解:设∠AOE=x,∠BOF=y,则∠DOE=3x,∠COF=3yAED.求∠EDC的度数.解:设∠EDC=xDBF相等的角?请说明理由.解:(1)∵BE平分∠ABC交,BD平分∠EBC2019年21期┆99教法研究代数式表示出来,可以简化计算过程。
例5:如图,⊙O为△ABC的内切圆,切点分别为D,解:连结OE,OD,OF.四、落实“八项规定精神”,持续推进廉政建设。
中央“八项规定”的出台,公司党委一直严格执行其精神,以整治形式主义、官僚主义为基础,坚定推进公司党风廉政建设。
每到重大节日,公司党委书记都要集中对各级党员干部集体谈话,各分管领导、部门负责人都要对所属人员进行集中谈话,公司纪委也将对每个关键岗位人员发送廉洁提醒短信进行警示,并要求开展专项监督检查节日后,将对发现的问题进行查处。
同时,在每个季度,对主管及中层管理人员,每月都要进行自查自评,看有没有违纪违规情况发生。
即使自己自评没有,但一旦发现,就将从重处罚。
在涉及收受红包礼金、公款吃喝、违规接待、红白喜事上都予以了重点监管,确保这些环节中不出现违规不守纪律事件。
五、努力提升监督执纪能力,强化纪检队伍建设作为反腐倡廉的首要部门,纪委、纪检人员担子不轻,压力巨大。
随着企业的发展,腐败可能会出新的变化,或许更加隐秘,更加难于查到。
这就需要我们的纪检队伍中专、兼职人员,不仅要有极高的政治素养,还要有更多的专业知专门拟定了具体的措施。
首先,必须强化纪检监察人员的政治思想建设,对执纪违纪的情况坚决查处,失职失责的坚决问责,严防、严控“灯下黑”现象发生;其次对纪检监察工作不断提出新要求,通过各种学习、培训、轮训、考试,以案例教学,努力提升他们的政治素养和办案能力,努力打造一支忠诚、干净、担当的纪检监察队伍,为企业发展作出重要贡献。
参考文献:[1]刘征文.强化反腐倡廉建设培育廉洁企业文化[J].现代国企研究,2018(20):237.[2]谢鑫建.反腐风暴契机下大学生廉洁教育体系的构建与强化[J].高教学刊,2015(23):247-248.[3]宋婷.传承核电企业廉洁文化强化反腐倡廉思想教育机制[J].东方企业文化,2015(06):23-24.(作者单位:中国五冶集团有限公司第四工程分公司)100┆好日子。
数学的方程思想
数学的方程思想一、方程思想的特点:初中阶段的方程和方程组,有一元一次方程、一元二次方程、二元(三元)一次方程组和分式方程,方程和方程组是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。
很多数学问题,包括一些实际应用问题,特别是几何题的计算问题,就需要用方程或方程组的知识来解决。
近几年中考题以考察学生解决问题的能力为主,这种方程思想就显得尤其重要了。
在解决问题时,把某一个未知量或几个未知量用字母来表示,根据已知的条件或有关的性质、定理或公式,建立起未知量和已知量之间的等量关系,列出方程或方程组,通过解方程或方程组,来达到解决问题的目的,这种方法就是方程思想。
初中数学学习期间,不但要掌握所有的知识点,更要多多地了解常用的数学思想,这不但对我们解决问题有帮助,更有利于培养我们的思维能力,提高我们解决问题的能力。
具有了方程思想,我们就能够很好地求得问题中的未知元素或未知量,这对解决和计算有关的数学问题,特别是综合题,是非常需要的。
二、方程思想的方法:纵观初中阶段的所有列方程或方程组解应用题,所用方法和步骤都一样,通过“①审题,②用字母表示未知数,③根据等量关系布列方程或方程组,④解方程或方程组,求未知数的值,⑤检验、答题”这五个步骤来完成。
审题是关键,在审题过程中,要带着问题去分析题意,找出题目中的已知量、未知量以及它们之间的等量关系尤其重要。
而设未知数也不可小视,应选择那些具有代表性的未知量,权且称之为“牛鼻子”,以达到“牵一发而动全身”的目的。
未知数选择的准,其它有关的代数式并可用这个字母表示,对列方程或方程组起着简便的作用。
再补充一句:“未知数设的多,相对来说方程好列但难解;未知数设的少,相对来讲方程难列但列出的方程好解。
”在应用方程思想解决问题时,还要注意和不等式、函数相联系,这对于解决综合性问题很有帮助。
三、例题精讲:P30米l1、(08江西中考题)甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,乙同学说:“我俩所用的全部时间的和为50秒,捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?解法一:设乙同学的速度为米/秒,则甲同学的速度为米/秒,根据题意,得,解得.经检验,是方程的解,且符合题意.甲同学所用的时间为:(秒),乙同学所用的时间为:(秒).∵26>24,乙同学获胜.解法二:设甲同学所用的时间为秒,乙同学所用的时间为秒,根据题意,得解得经检验,是方程组的解,且符合题意.∵x>y,乙同学获胜.2、(08湖北中考题)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品?解:设改进操作方法后每天生产件产品,则改进前每天生产件产品.依题意有.整理得.解得或.当=5时,,舍去..答:改进操作方法后每天生产60件产品.他不知道他家乡离北京有多远,问列车员得知单程铁道部门共设计了28种不同的车票,你知道这次列车中间共停几站吗?解:设单程共有x个车站,由题意得:x(x-1)=28,解一元二次方程得:x=-7或8,经检验,x=-7不符合题意,应舍去,∴x=8。
浅谈方程思想在初中数学中的应用
浅谈方程思想在初中数学中的应用
方程思想是数学中一个重要的思维方式,它在初中数学中的应
用非常广泛,包括以下几个方面:
1. 解决实际问题。
在初中数学中,很多实际问题都可以转化为方程来求解。
例如,求两个数的平均数是某个值,可以用方程表达出来,然后解出这个
方程得到答案。
通过这种方式,方程思想可以帮助学生学会把实际
问题抽象化,从而更好地理解和解决问题。
2. 建立数学模型。
方程思想可以帮助学生建立数学模型,将实际问题抽象化为一
个或多个方程,从而进行数学求解。
例如,求两个数的和是某个值,可以建立方程来求解。
通过这种方式,方程思想可以帮助学生把问
题形式化,从而更好地理解和掌握数学知识。
3. 培养逻辑思维能力。
通过解方程的过程,学生需要运用逻辑思维能力进行推理,例如:如何把方程变形、化简;如何用等式的性质进行变形等等。
这
样不仅能够提高学生的逻辑思维能力,还能够培养学生解决问题的
能力。
总之,方程思想在初中数学中是一个非常重要的思维方式,它
不仅能够帮助学生解决实际问题,还能够培养学生的逻辑思维能力
和解决问题的能力。
勾股定理及方程思想的综合应用
典型问题分析与解决策略
典型问题一
已知直角三角形两条直角边,求 斜边。
解决策略
直接应用勾股定理,建立方程并 求解。
典型问题二
已知直角三角形一条直角边和斜 边,求另一条直角边。
解决策略
验证三边是否满足勾股定理条件 。
典型问题三
判断一个三角形是否为直角三角 形。
解决策略
通过勾股定理建立方程,并化简 求解。
XX
PART 02
方程思想在勾股定理中应 用
REPORTING
方程建模与求解过程
勾股定理描述
求解过程
在直角三角形中,直角边的平方和等 于斜边的平方,即$a^2 + b^2 = c^2$。
通过代入已知数值,解三角形两条边时,可建立 方程求解第三边。例如,已知直角边 $a$和$b$,求斜边$c$,则方程为 $a^2 + b^2 = c^2$。
• 方程思想在复杂问题中的应用:对于更复杂的数学问题,如多元函数、微分方 程等,方程思想仍然具有重要的应用价值。通过建立适当的方程或方程组,可 以将复杂问题转化为相对简单的求解问题。
• 勾股定理与方程思想的跨学科应用:除了在数学领域中的应用外,勾股定理和 方程思想还可以在其他学科中找到广泛的应用。例如,在物理学中,勾股定理 可以用于计算物体的位移、速度等;在化学中,方程思想可以用于解决化学反 应中的平衡问题;在经济学中,方程思想可以用于分析市场供需关系等。因此 ,掌握勾股定理和方程思想对于提高跨学科解决问题的能力具有重要意义。
结合勾股定理和方程思想,可以建立化学反应中物质质量、 物质的量和反应速率等物理量之间的关系式,进而进行化学 计算。
经济问题中价格、数量和总收入关系分析
价格与数量关系
方程思想思维方式在教学实践中的探索与应用
方程思想思维方式在教学实践中的探索与应用“方程思想”是一种解决问题的思维方式,它通过建立和解决方程来分析和解决各种实际问题。
在教学实践中,方程思想能够培养学生的逻辑思维、数学运算和问题解决能力,提高他们的综合素质和学习能力。
下面将结合实际教学实践,探讨方程思想在教学中的应用。
方程思想可以帮助学生理解和运用数学知识。
数学是一门抽象的学科,很多学生在学习过程中难以理解其中的概念和运算规则。
通过方程思想,将问题转化为代数方程式,让学生从具体的实例中提取问题的本质,并通过数学符号和变量的运算,解决与问题相关的数学运算。
在解决关于线性方程组的问题时,学生常常难以理解其中的平行和相交等概念。
通过引入平面坐标系和方程思想,将问题转化为线性方程组,并通过解方程组来求解问题,可以帮助学生更好地理解和运用线性方程组的概念和解法。
在解决关于速度的问题时,学生需要将速度、时间和距离之间的关系建立为一个方程,并通过方程推导出未知量。
这个过程需要学生分析问题的条件和要求,确定未知量,并运用数学知识进行推导和计算。
这样的思维方式可以培养学生的逻辑思维和问题解决能力,使他们能够独立思考和解决各种问题。
方程思想可以帮助学生理解实际问题和建立数学模型。
实际问题往往是复杂的,通过方程思想,可以将问题简化为数学模型,从而更好地理解和分析问题。
在解决关于比例问题时,学生常常难以理解比例和比例关系的概念。
通过方程思想,我们可以将比例问题建立为一个等比例方程,通过解方程求解比例关系。
这样的思维方式可以帮助学生理解比例问题的本质,建立数学模型,并通过数学运算解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录摘要 (2)Abstract (3)引言 (3)1.方程思想的涵义 (4)1.1方程.............................................................................. 错误!未定义书签。
1.2方程思想 (5)1.3方程思想的步骤 (5)1.4方程思想的两个重要方面 (5)1.5方程思想是一种源于解决应用问题的思想 (6)2.方程思想的应用 (6)2.1方程思想数学学科中的应用 (9)2.2方程思想在物理学科中的应用 (9)2.3方程思想在配平化学方程式中的应用 (12)3.方程思想的学习和教学 (13)3.1方程思想的学习 (13)3.2方程思想的教学 (14)参考文献 (17)方程思想的应用与教学摘要:方程思想是一种重要的数学思想,是指在分析问题的数量关系时,将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式。
重点就是化未知为已知的思想,关键是利用已知条件或公式、定理中的已知结论构造方程(组)。
它在多门学科中都有广泛的应用,因此我们要让学生逐步掌握这种数学思想方法,就必须在数学教学中逐步进行有目的的引导和培养。
关键词:方程思想;应用;教学The Equation of the Application of the Thought and teachingAbstract:Equation thinking is a kind of important mathematical ideas, which means in its analysis of the question of the quantitative relationships, the issue of the known and unknown quantities of the quantitative relationships between the amount established by the appropriate setting element equation or equation group, and then solve the equation (group) so that the problems can be resolved by such a way of thinking. Focus on the translation of the unknown to the known, and the key is to use a known conditions or formula, theorem, known conclusions structure equations (group). It has a wide range of applications in several disciplines, and therefore we want to have the students gradually master this mathematical thinking, it must be in Math Teaching, step-by-step with the aim of the boot and training.Key Words: Equation thinking; Adhibition; Teaching引言数学家笛卡尔曾设想一个解决所有问题的通用方法:第一步:将任何问题转化为数学问题;第二步:将任何数学问题转化为代数问题;第三步:将任何代数问题化归为单个方程的求解;第四步:讨论方程(组)的问题,得到解之后再对解解释。
通用方法中所体现的方程观点就是笛卡尔模式。
这就是所谓的“万能方法”——方程思想。
方程的思想,是对于一个问题用方程解决的应用,也是对方程概念本质的认识,是分析数学问题中变量间的等量关系,构建方程或方程组,或利用方程的性质去分析、转换、解决问题。
要善用方程和方程组观点来观察处理问题。
方程思想是动中求静,研究运动中的等量关系。
当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。
在中学,方程知识贯穿于初一到高三各年级教材当中,涉及方程的有关概念、方程的解法、方程根与系数的关系、方程的化简和讨论及方程的应用。
学生特别是要学会从对问题的数量关系的分析入手,运用数学语言和数量关系转化为方程,从而使问题得以解决。
1.方程思想的涵义1.1方程方程是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,是含有未知数的等式(通常设未知数为x),通常在两者之间有一等号“=”。
方程不用按逆向思维思考,可直接列出等式并含有未知数。
它具有多种形式,如一元一次方程、二元一次方程等。
广泛应用于数学、物理等理科的运算。
1.2方程思想方程思想是分析实际问题中的数量关系,然后运用数学的符号化语言将这种数量关系抽象为方程模型,通过解方程或方程组,使问题得以解决的一种数学思想方法。
方程的思想,是对于一个问题用方程解决的应用,也是对方程概念本质的认识,是分析数学问题中变量间的等量关系,构建方程或方程组,或利用方程的性质去分析、转换、解决问题。
要善用方程和方程组观点来观察处理问题。
方程思想是动中求静,研究运动中的等量关系。
当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。
1.3方程思想的步骤方程思想在解决应用题时,就像万能钥匙是关键所在,特别在初一刚接触用方程在解决应用题时,大部分同学都感觉无所适从,不知所措,其实,解决应用题规律也有一定步骤,如下:分析实际问题建立方程模型解方程解问题1.4方程思想的两个重要方面在了解了方程思想的步骤后,还要有必要了解一下方程思想的两个重要方面。
第一,建模思想:用符号将相互等价的两件事情联结,等号的左右两边等价。
第二,化归思想:高次化归为低次;在具体化归过程中有加减消元化归和代入消元化归两种方式。
1.5方程思想是一种源于解决应用问题的思想方程这个名词,最早见于我国古代算书《九章算术》,书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章.我国古代数学家刘徽注释《九章算术》说,“程,课程也.二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程.”这里所谓“如物数程之”,是指有几个未知数就必须列出几个等式.一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程,故方程思想是一种源于解决应用问题的思想。
具体表现为:首先,问题中的数量关系可用等式“直观”表示。
其次,实际问题归结为解方程。
最后,方程的解法理论:未知量与已知量地位同等,可以参加运算;方程是用不同的方式表示同一个量的条件等式;方程根据平衡原理,进行同解变形。
2.方程思想的应用在中学,方程知识贯穿于初一到高三各年级教材当中,涉及方程的有关概念、方程的解法、方程根与系数的关系、方程的化简和讨论及方程的应用。
学生特别是要学会从对问题的数量关系的分析入手,运用数学语言和数量关系转化为方程,从而使问题得以解决。
2.1方程思想数学学科中的应用方程思想是中学数学最常用的思想方法之一,随处可见。
2.1.1方程思想在应用题问题中的应用今有鸡兔同笼,上有35头,下有94足,问:鸡兔各几何?解:设有x只鸡头,y只兔头,根据题意得:解得:12;23==yx35 2494 x yx y+=⎧⎨+=⎩答:鸡有23只,兔有12只。
2.1.2方程思想在解等腰三角形问题时的应用初二时,我们学习了有关等腰三角形的定理与规律及在实际生活中的应用,下面是方程思想在解等腰三角形问题时的应用的例子。
例:如图,在△ABC 中,AB=AC,点D 在AC 边上,且BD=BC=AD 求∠A 的大小 解:因为AB=AC ,故∠ABC=∠C.又因BD=BC,故∠BDC=∠C.而BD=AD,故∠A=∠ABD.如果设∠A=0x ,则∠ABC=0x DC=∠A+∠ABD= 20x .所以∠C=∠BDC=20x∠ABC=∠C =20x在△ABC 中,∠A+∠ABC+∠C=0180, 则 22180x x x ++=,解得x =36.2.1.3方程思想在求函数值域时的应用函数问题常以与其他知识点相结合的综合题形式出现,而函数的值域问题却是联系各种知识点的纽带。
求函数值域的方法很多,其中,利用方程思想来求函数值域是一种常用的方法。
例:求函数 的值域。
222 (2)(1)00(2)-4(1)340-10-2yx y x y y y y y y y y x y +-+-=≠∆=--=-+≥≤≤==-≤≤解:变形得,此方程有实数解;当时,有即当时,有,故2.1.4方程思想在相似三角形中的应用只要你掌握了方程思想的精髓,有关相似三角形的求边长问题便可迎刃而解。
例:如图,在△ABC 中,DE ∥BC,DE=2,BC=4,AD=3,求AB 长 解:因为DE ∥BC 所以△ADE ∽△ABC ,所以 即 CB 2211x y x x +=++DE AD BC AB =23=3AB 339=22AB ⨯=2.1.5方程思想在空间向量中的应用例:点A (1,0,0),B(0,1,0), C (0,0,1),求平面ABC 的法向量( 1 0 0 ( 0 1 0 ( 0 0 1 (-1 , 1 , 0 )A B C AB ABC n x y z ==解:由,,),,,),,,),知);设平面的一个法向量为(,,,则:即即 所以平面ABC 的一个法向量可以是(1,1,1);x y z ==。
2.1.6方程思想在立体几何中的应用 例:如图所示,在矩形ABCD 中,已知AB=1,BC=a,(a>0),PA ⊥平面ABCD ,且PA=1,问BC 边上是否存在点Q,使得PQ ⊥QD ,并说明理由;QD AQ AQ,从而有AD QD :理知根据三垂线定理的逆定平面ABCD,PA QD,连接AQ,因为在点Q,使得PQ 解析:假设BC边上存 222+=⊥⊥⊥ 设x CQ =,则x a BQ -=,于是22)(1x a AQ -+=,21x CQ +=2222222222)(a a ax x x x a AD =++-=++-=,即012=+-ax x ,其判别式0x y x z -+=⎧⎨-+=⎩00n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩)2)(2(+-=∆a a 。
当2>a 即0>∆时,方程有两解,即QD PQ Q BC ⊥,使得边上不存在点 ;当;, 02QD PQ Q BC a ⊥=∆=使得边上存在一个点时,方程有一解,即即当。