一次函数图象与旋转变换作业
第19章一次函数——几何变换 专项练习 2022—2023学年人教版数学八年级下册
![第19章一次函数——几何变换 专项练习 2022—2023学年人教版数学八年级下册](https://img.taocdn.com/s3/m/6caa1f97f021dd36a32d7375a417866fb84ac0e6.png)
一次函数典型例题——几何变换◆一次函数的基本性质1.已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9的交点在y轴上;(3)k为何值时,图象平行于y=﹣2x的图象;(4)k为何值时,y随x增大而减小.2.已知一次函数y=(3m﹣7)x+m﹣1(1)当m为何值时,函数图象经过原点?(2)若图象不经过三象限,求m的取值范围.(3)不论m取何值,直线恒过一定点P,求定点P坐标.3.已知y=y1+y2,y1与x﹣2成正比例,y2﹣3与x成正比例,当x=1时,y=4;x=2时,y=7.求y与x的函数解析式.◆图形的平移、旋转、对称4.如图,直线y=2x﹣2与x轴、y轴分别相交于点A、点B.(1)求点A、点B的坐标.(2)将直线AB向上平移3个单位得直线l,若C为直线l上一点,且S△AOC=3,求点C的坐标.5.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.6.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点C,在第一象限内将线段CA沿同一直线CG向下翻折得到线段CD,点D与点A对应且CD∥x轴,过点D作DE⊥x轴于E点,与GC交于F点.求点F的坐标.7.如图,一次函数y=(m+1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)则m=,点A的坐标为(,).(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=4OA,求直线BP的解析式;(3)将一次函数y=(m+1)x+4的图象绕点B顺时针旋转45°,求旋转后的对应的函数表达式.8.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.9.直线y=2x+2与x轴,y轴分别交于A,B两点,将直线AB绕点O按逆时针方向旋转90度得到直线CD,(1)求直线CD的解析式;(2)若将直线AB绕原点按顺时针方向旋转90度得到直线EF,求直线EF的解析式.◆交点问题求范围10.在平面直角坐标系xOy中,直线y=2x+4与x轴,y轴分别交于点A,B,将直线AB向右平移6个单位长度,得到直线CD,点A平移后的对应点为点D,点B平移后的对应点为点C.(1)求点C的坐标;(2)求直线CD的表达式;(3)若点B关于原点的对称点为点E,设过点E的直线y=kx+b,与四边形ABCD有公共点,结合函数图象,求k的取值范围.11.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动.(1)若点B的坐标是(1,﹣2),把直线AB向上平移m个单位后,与直线y=2x﹣4的交点在第一象限,求m 的取值范围;(2)当线段AB最短时,求点B的坐标.12.在平面直角坐标系xOy中,点A(﹣1,m)是直线y=﹣x+2上一点,点A向右平移4个单位长度得到点B.(1)求点A,B的坐标;(2)若直线l:y=kx﹣2(k≠0)与线段AB有公共点,结合函数的图象,求k的取值范围.练习1.如图,已知直线l:y=2x+4交x轴于A,交y轴于B.(1)直接写出直线l向右平移2个单位得到的直线l1的解析式;(2)直接写出直线l关于y=﹣x对称的直线l2的解析式;(3)点P在直线l上,若S△OAP=2S△OBP,求P点坐标.2.如图:一次函数y=x+2交y轴于A,交y=3x﹣6于B,y=3x﹣6交x轴于C,直线BC顺时针旋转45°得到直线CD.(1)求点B的坐标;(2)求四边形ABCO的面积;(3)求直线CD的解析式.3.如图,在直角坐标系中放入一个矩形纸片ABCO,BC=10,将纸片翻折后,点B恰好落在x轴上,记为B',折痕为CE,已知OC:OB'=4:3.(1)求点B'的坐标;(2)求折痕CE所在直线的解析式.4.若一次函数y=(6﹣3m)x+(2n﹣4)不经过第三象限,求m、n的取值范围.5.已知直线l1:y=2x+3与x轴、y轴的交点分别为A、B两点,将直线l1向下平移1个长度单位后得到直线l2,直线l2与x轴交于点C,与y轴交于点D,(1)求△AOB的面积;(2)直线l2的表达式;(3)求△CBD的面积.6.如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AB∥x轴,点A的坐标为(5,3),已知直线l:y=x﹣2(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.一次函数典型例题——几何变换(解析)◆一次函数的基本性质1.已知一次函数y=(k﹣2)x﹣3k2+12.(1)k为何值时,图象经过原点;(2)k为何值时,图象与直线y=﹣2x+9的交点在y轴上;(3)k为何值时,图象平行于y=﹣2x的图象;(4)k为何值时,y随x增大而减小.【解答】解:(1)∵一次函数y=(k﹣2)x﹣3k2+12的图象经过原点,∴﹣3k2+12=0,∴,∴k=﹣2;(2)∵直线y=﹣2x+9求出此直线与y轴的交点坐标为(0,9),∴﹣3k2+12=9,∴k=1或k=﹣1;(3)∵一次函数的图象平行于y=﹣2x的图象,∴k﹣2=﹣2,∴k=0;(4)∵一次函数为减函数,∴k﹣2<0,∴k<2.2.已知一次函数y=(3m﹣7)x+m﹣1(1)当m为何值时,函数图象经过原点?(2)若图象不经过三象限,求m的取值范围.(3)不论m取何值,直线恒过一定点P,求定点P坐标.【解答】解:(1)∵函数的图象经过原点,∴m﹣1=0,解得:m=1;(2)∵图象不经过三象限,∴3m﹣7<0,m﹣1≥0,解得:1≤m<;(3)∵不论m取何值,直线恒过一定点P,∴当x=﹣时,y=﹣1=,即不论m取何值,直线恒过一定点P,定点P坐标为:(﹣,).3.已知y=y1+y2,y1与x﹣2成正比例,y2﹣3与x成正比例,当x=1时,y=4;x=2时,y=7.求y与x的函数解析式.【解答】解:∵y1与kx﹣2成正比例,y2﹣3与x成正比例,∴y1=k1(x﹣2),y2﹣3=k2x,∴y=k1(x﹣2)+k2x+3,把x=1时,y=4;x=2时,y=7代入上式解得,解得:,则y与x的解析式为y=3x+1.◆图形的平移、旋转、对称4.如图,直线y=2x﹣2与x轴、y轴分别相交于点A、点B.(1)求点A、点B的坐标.(2)将直线AB向上平移3个单位得直线l,若C为直线l上一点,且S△AOC=3,求点C的坐标.【解答】解:(1)当y=0,则2x﹣2=0,解得x=1;当x=0时,y=﹣2,∴点A的坐标为(1,0),点B的坐标为(0,﹣2);(2)将直线AB向上平移3个单位得直线l:y=2x+1,设C的坐标为(m,2m+1),∵S△AOC=3,∴|2m+1|=3,∴2m+1=±6,解得m=或﹣,∴C(,6)或(﹣,﹣6).5.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.【解答】解:(1)令x=0得:y=4,∴B(0,4).∴OB=4,令y=0得:0=﹣x+4,解得:x=3,∴A(3,0).∴OA=3.在Rt△OAB中,AB==5.(2)∵AC=AB=5,∴OC=OA+AC=3+5=8,∴C(8,0).设OD=x,则CD=DB=x+4.在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,∴D(0,﹣6).(3)存在,理由如下:∵S△P AB=S△OCD,∴S△P AB=××6×8=12.∵点P在y轴上,S△P AB=12,∴BP•OA=12,即×3BP=12,解得:BP=8,∴P点的坐标为(0,12)或(0,﹣4).6.如图,直线y=﹣x+4与x轴交于点A,与y轴交于点C,在第一象限内将线段CA沿同一直线CG向下翻折得到线段CD,点D与点A对应且CD∥x轴,过点D作DE⊥x轴于E点,与GC交于F点.求点F的坐标.【解答】解:连接AF,直线y=﹣x+4与x轴交于点A,与y轴交于点C,令x=0,则y=4;令y=0,则x=3,∴A(3,0),C(0,4),∴OA=3,OC=4,∴AC==5,∵CD∥x轴,点D、点A关于直线CF对称,∴CD=CA=5.∠DCF=∠ACF=∠FGA,∴∠CAF=∠D=90°设EF=x,则DF=AF,DF=4﹣x,AE=2,∴(4﹣x)2﹣x2=4.解得x=.∴点F坐标为(5,).7.如图,一次函数y=(m+1)x+4的图象与x轴的负半轴相交于点A,与y轴相交于点B,且△OAB面积为4.(1)则m=1,点A的坐标为(﹣2,0).(2)过点B作直线BP与x轴的正半轴相交于点P,且OP=4OA,求直线BP的解析式;(3)将一次函数y=(m+1)x+4的图象绕点B顺时针旋转45°,求旋转后的对应的函数表达式.【解答】解:(1)由一次函数y=(m+1)x+4,令x=0,则y=4,∴B(0,4),∴OB=4,∵S△OAB=4,∴×OA×OB=4,解得OA=2,∴A(﹣2,0),把点A(﹣2,0)代入y=(m+1)x+4,得m=1,故答案为:1;﹣2,0;(2)∵OP=4OA,OA=2,∴P(8,0),设直线BP的解析式为y=kx+b,将(8,0),(0,4)代入得,解得k=﹣,b=4,∴直线BP的解析式为y=﹣x+4;(3)设直线AB绕点B顺时针旋转45°得到直线BE,如图,过点A作AF⊥AB交BE于点F,作FH⊥x轴于H.则∠AHF=∠BOA=90°,AF=BA,∠F AH=∠ABO,∴△AOB≌△FHA(AAS),∴FH=AO=2,AH=BO=4,∴HO=6,∴F(﹣6,2),设直线BE的解析式为y=mx+n,则把点F和点B的坐标代入,可得,解得,∴直线BE的解析式为y=x+4.8.如图,一次函数y=2x+b的图象经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=1;(2)将该直线绕点A顺时针旋转45°至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.【解答】解:(1)∵一次函数y=2x+b的图象经过点M(1,3),∴3=2+b,解得b=1,(2)∵一次函数y=2x+1的图象与x轴,y轴分别交于A,B两点.∴A(﹣,0),B(0,1),∴OA=,OB=1,作CD⊥y轴于D,∵∠BAC=45°,BC⊥AB,∴∠ACB=45°,∴AB=BC,∵∠ABO+∠BAO=90°=∠ABO+∠CBD,∴∠BAO=∠CBD,在△AOB和△BDC中,,∴△AOB≌△BDC(AAS),∴BD=OA=,CD=OB=1,∴OD=OB﹣BD=,∴C(1,),设直线l的解析式为y=mx+n,把A(﹣,0),C(1,)代入得,解得,∴直线l的解析式为y=x+.9.直线y=2x+2与x轴,y轴分别交于A,B两点,将直线AB绕点O按逆时针方向旋转90度得到直线CD,(1)求直线CD的解析式;(2)若将直线AB绕原点按顺时针方向旋转90度得到直线EF,求直线EF的解析式.【解答】解:∵直线y=2x+2与x轴,y轴分别交于A,B两点,当x=0时,y=2;当y=0时,x=﹣1;∴A(﹣1,0),B(0,2).(1)∵直线AB绕点O按逆时针方向旋转90度得到直线CD,∴直线CD与x轴,y轴的交点坐标(﹣2,0),(0,﹣1),设直线CD的解析式是y=k1x+b1,则,解得.故直线CD的解析式是y=﹣x﹣1;(2)∵将直线AB绕原点按顺时针方向旋转90度得到直线EF,∴直线EF与x轴,y轴的交点坐标(2,0),(0,1),设直线EF的解析式是y=k2x+b2,则,解得.故直线EF的解析式是y=﹣x+1.◆交点问题求范围10.在平面直角坐标系xOy中,直线y=2x+4与x轴,y轴分别交于点A,B,将直线AB向右平移6个单位长度,得到直线CD,点A平移后的对应点为点D,点B平移后的对应点为点C.(1)求点C的坐标;(2)求直线CD的表达式;(3)若点B关于原点的对称点为点E,设过点E的直线y=kx+b,与四边形ABCD有公共点,结合函数图象,求k的取值范围.【解答】解:(1)直线y=2x+4与x轴,y轴分别交于点A,B,令x=0,则y=4,令y=0,则x=﹣2,∴B(0,4),A(﹣2,0),将直线AB向右平移6个单位长度,点B平移后的对应点为点C为(6,4);(2)∵A(﹣2,0),∴D(4,0),解得:k=2,b=﹣8,∴直线CD的表达式为y=2x﹣8.把C(6,4),D(4,0)代入y=kx+b中得,(3)∵点B(0,4)关于原点的对称点为点E(0,﹣4),∴设过点E的直线y=kx﹣4,把D(4,0)代入y=kx﹣4中得4k﹣4=0,∴k=1,把A(﹣2,0)代入y=kx﹣4中,∴k=﹣2∴k≥1或k≤﹣2.11.如图,点A的坐标为(﹣1,0),点B在直线y=2x﹣4上运动.(1)若点B的坐标是(1,﹣2),把直线AB向上平移m个单位后,与直线y=2x﹣4的交点在第一象限,求m 的取值范围;(2)当线段AB最短时,求点B的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b.∵点A的坐标为(﹣1,0),点B的坐标是(1,﹣2),∴,解得,∴直线AB的解析式为y=﹣x﹣1,把直线AB向上平移m个单位后得y=﹣x+m﹣1.由,解得,即交点为(,).由题意,得,解得m>3;(2)AB最短时有AB⊥CD,设此时直线AB的解析式为y=﹣x+n,将A(﹣1,0)代入,得0=﹣×(﹣1)+n,解得n=﹣.即直线AB的解析式为y=﹣x﹣.由,解得,所以B点坐标为(,﹣).12.在平面直角坐标系xOy中,点A(﹣1,m)是直线y=﹣x+2上一点,点A向右平移4个单位长度得到点B.(1)求点A,B的坐标;(2)若直线l:y=kx﹣2(k≠0)与线段AB有公共点,结合函数的图象,求k的取值范围.【解答】解:(1)∵点A(﹣1,m)是直线y=﹣x+2上一点,∴m=1+2=3.∴点A的坐标为(﹣1,3).∴点(﹣1,3)向右平移4个单位长度得到点B的坐标为(3,3).(2)当直线l:y=kx﹣2过点A(﹣1,3)时,得3=﹣k﹣2,解得k=﹣5.当直线l:y=kx﹣2过点B(3,3)时,得3=3k﹣2,解得k=.如图,若直线l:y=kx﹣2(k≠0)与线段AB有公共点,则b的取值范围是k≤﹣5或k≥.练习1.如图,已知直线l:y=2x+4交x轴于A,交y轴于B.(1)直接写出直线l向右平移2个单位得到的直线l1的解析式y=2x;(2)直接写出直线l关于y=﹣x对称的直线l2的解析式y=x+2;(3)点P在直线l上,若S△OAP=2S△OBP,求P点坐标.【解答】解:(1)直线l:y=2x+4向右平移2个单位得到的直线l2的解析式为:y=2(x﹣2)+4,即y=2x,(2)∵(0,4),(﹣2,0)在直线ly=2x+4上,这两点关于y=﹣x的对称点为(﹣4,0),(0,2),设直线l1的解析式为y=kx+b,∴,解得,∴直线l1的解析式为:y=x+2,故答案为y=x+2;(3)∵直线l:y=2x+4交x轴于A,交y轴于B.∴A(﹣2,0),B(0,4),∴OA=2,OB=4,设P的坐标为(x,2x+4),∵S△OAP=2S△OBP,∴OA•|2x+4|=2×OB•|x|,即|2x+4|=4|x|,解得x=﹣或2,∴P(﹣,)或(2,8).2.如图:一次函数y=x+2交y轴于A,交y=3x﹣6于B,y=3x﹣6交x轴于C,直线BC顺时针旋转45°得到直线CD.(1)求点B的坐标;(2)求四边形ABCO的面积;(3)求直线CD的解析式.【解答】解:(1)由,解得,∴B(3,3).(2)由题意A(0,2),C(2,0),∴S四边形ABCO=S△OCB+S△AOB=×2×3+×2×3=6.(3)如图,将线段BC绕点B逆时针旋转90得到C′.∵△BCC′是等腰直角三角形,∠BCD=45°,∴点C′在直线CD上,∵B(3,3),C(2,0),∴C′(6,2),设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x﹣1.3.如图,在直角坐标系中放入一个矩形纸片ABCO,BC=10,将纸片翻折后,点B恰好落在x轴上,记为B',折痕为CE,已知OC:OB'=4:3.(1)求点B'的坐标;(2)求折痕CE所在直线的解析式.【解答】解:(1)∵四边形OABC是矩形,∴∠AOC=90°,∵OC:OB'=4:3,∴B′C:OB′=5:3,∵B′C=BC=10,∴OB′=6,∴B′点的坐标为:(6,0);(2)将纸片翻折后,点B恰好落在x轴上的B′点,CE为折痕,∴△CBE≌△CB′E,故BE=B′E,CB′=CB=OA,由OB′=6,OC:OB'=4:3,∴OC=8,设AE=a,则EB′=EB=8﹣a,AB′=AO﹣OB′=10﹣6=4,由勾股定理,得a2+42=(8﹣a)2,解得a=3,∴点E的坐标为(10,3),点C的坐标为(0,8),设直线CE的解析式为y=kx+b,根据题意,得,解得,∴CE所在直线的解析式为y=﹣x+8.4.若一次函数y=(6﹣3m)x+(2n﹣4)不经过第三象限,求m、n的取值范围.【解答】解:∵y=(6﹣3m)x+(2n﹣4)不经过第三象限,∴6﹣3m<0,2n﹣4≥0,故m>2,n≥2.5.已知直线l1:y=2x+3与x轴、y轴的交点分别为A、B两点,将直线l1向下平移1个长度单位后得到直线l2,直线l2与x轴交于点C,与y轴交于点D,(1)求△AOB的面积;(2)直线l2的表达式;(3)求△CBD的面积.【解答】解:(1)在y=2x+3中,令x=0,得y=3;令y=0,得x=,所以A、B的坐标分别为:A(,0),B(0,3),∴S△ABC=×|3|×=;(2)把l1:y=2x+3向下平移1个长度单位后得l2:y=2x+2;(3)直线l2:y=2x+2与x轴、y轴的交点C、D的坐标分别为:C(﹣1,0)、D(0,2),∴S△CBD=×|1|×|3﹣2|=.216.如图,在平面直角坐标系中,边长为2的正方形ABCD 在第一象限内,AB ∥x 轴,点A 的坐标为(5,3),已知直线l :y =x ﹣2(1)将直线l 向上平移m 个单位,使平移后的直线恰好经过点A ,求m 的值(2)在(1)的条件下,平移后的直线与正方形的边长BC 交于点E ,求△ABE 的面积.【解答】解:(1)设平移后的直线方程为y =x +b ,把点A 的坐标为(5,3)代入,得3=×5+b ,解得 b =.则平移后的直线方程为:y =x +.则﹣2+m =,解得 m =;(2)∵正方形ABCD 的边长为2,且点A 的坐标为(5,3),∴B (3,3).把x =3代入y =x +,得y =×3+=2,即E (3,2).∴BE =3﹣2=1,∴△ABE 的面积=×2×1=1.22。
专题24一次函数图象与几何变换之平移、旋转与对称(原卷版)
![专题24一次函数图象与几何变换之平移、旋转与对称(原卷版)](https://img.taocdn.com/s3/m/1aefbf837e192279168884868762caaedc33ba1e.png)
专题24 一次函数图象与几何变换之平移、旋转与对称(原卷版)类型一 平移1.(2022秋•南京期末)将一次函数y =﹣2x +3的图象沿y 轴向上平移2个单位长度,则平移后的图象所对应的函数表达式为( )A .y =﹣2x +1B .y =﹣2x ﹣5C .y =﹣2x +5D .y =﹣2x +72.(2022秋•埇桥区期中)将直线y =x +1向上平移5个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法错误的是( )A .函数图象经过第一、二、三象限B .函数图象与x 轴的交点在x 轴的正半轴C .点(﹣2,4)在函数图象上D .y 随x 的增大而增大3.(2019•雅安)如图,在平面直角坐标系中,直线l 1:y =√33x +1与直线l 2:y =√3x 交于点A 1,过A 1作x 轴的垂线,垂足为B 1,过B 1作l 2的平行线交l 1于A 2,过A 2作x 轴的垂线,垂足为B 2,过B 2作l 2的平行线交l 1于A 3,过A 3作x 轴的垂线,垂足为B 3…按此规律,则点A n 的纵坐标为( )A .(32)nB .(12)n +1C .(32)n ﹣1+12D .3n −124.(2022•南京模拟)如图1,在平面直角坐标系中,平行四边形ABCD 在第一象限,且BC ∥x 轴.直线y =x 从原点O 出发沿x 轴正方向平移.在平移过程中,直线被平行四边形ABCD 截得的线段长度m 与直线在x 轴上平移的距离t 的函数图象如图2所示,那么平行四边形ABCD 的面积为( )A .5B .5√2C .10D .10√25.(2021秋•白银期末)已知点P(1,2)关于x轴的对称点为P',且P'在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为.6.(2008秋•宿迁期末)已知直线l1:y=kx+b与直线y=2x平行,且与坐标轴围成的三角形的面积为4.(1)求直线l1的解析式;(2)直线l1经过怎样平移可以经过原点;(3)求直线l1关于y轴对称的直线的解析式.类型二旋转7.(2022•碑林区二模)把一次函数y=x+1的图象绕点(2,0)顺时针旋转180°所得直线的表达式为()A.y=﹣x+2B.y=﹣x+3C.y=x﹣4D.y=x﹣58.(2022•安阳县一模)将y=x的函数图象绕点(1,1)顺时针旋转90°以后得到的函数图象是()A.B.C.D.9.(2021秋•华容区期末)已知一次函数y=3x+12的图象与x轴、y轴分别相交于A、B两点,将直线AB 绕点A顺时针旋转90°,则点B的对应点B'的坐标为()A.(8,﹣4)B.(﹣16,4)C.(12,8)D.(﹣12,16)10.(2021秋•三元区期末)如图,在平面直角坐标系xOy中,直线y=−43x+4分别与x轴,y轴交于点A,B,将直线AB绕点A顺时针旋转90°后,所得直线与y轴的交点坐标为()A.(0,﹣4)B.(0,−94)C.(0,−43)D.(0,−34)11.(2022秋•虹口区校级月考)平面直角坐标系中有一直线l1:y=﹣2x+5,先将其向右平移3个单位得到l2,再将l2作关于x轴的对称图形l3,最后将l3绕l3与y轴的交点逆时针旋转90°得到l4,则直线l4的解析式为()A.y=−12x−11B.y=−12x−2C.y=12x+1D.y=12x−812.(2022•秦淮区校级模拟)将函数y=﹣2x+4的图象绕图象上一点P旋转n°(45<n<90),若旋转后的图象经过点(3,5),则点P的横坐标不可能是()A.﹣1B.0C.1D.213.(2022•敖汉旗一模)如图一次函数y=x+√3的图象与x轴、y轴分别交于点A、B,把直线AB绕点B 顺时针旋转30°交x轴于点C.则线段AC的长为.14.(2022春•顺德区校级月考)如图,已知点A:(2,﹣5)在直线l1:y=2x+b上,l1和l2:y=kx﹣1的图象交于点B,且点B的横坐标为8,将直线l1绕点A逆时针旋转45°与直线l2,相交于点Q,则点Q 的坐标为.15.(2022秋•渠县期末)【建立模型】课本第7页介绍:美国总统伽菲尔德利用图1验证了勾股定理,直线l过等腰直角三角形ABC的直角顶点C:过点A作AD⊥l于点D,过点B作BE⊥l于点E研究图形,不难发现:△MDC≌△CEB.(无需证明):【模型运用】(1)如图2,在平面直角坐标系中,等腰Rt△ACB,∠ACB=90°,AC=BC,点C的坐标为(0,﹣2),A点的坐标为(4,0),求B点坐标;(2)如图3,在平面直角坐标系中,直线l1:y=2x+4分别与y轴,x轴交于点A,B,将直线l1绕点A 顺时针或逆时针旋转45°得到l2,请任选一种情况求l2的函数表达式;(3)如图4,在平面直角坐标系,点B(6,4),过点B作AB⊥y轴于点A,作BC⊥x轴于点C,P为线段BC上的一个动点,点Q(a,2a﹣4)位于第一象限.问点A,P,Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出a的值;若不能,请说明理由.类型三对称16.(2021秋•藤县期末)直线y=2x+3与直线l关于x轴对称,则直线l的解析式为()A.y=2x+3B.y=2x﹣3C.y=﹣2x+3D.y=﹣2x﹣317.已知,点A(m+1,1),B(3,n﹣2)关于x轴对称,则一次函数y=mnx﹣n的图象大致是图中的()A.B.C.D.18.(2021秋•新郑市期末)在平面直角坐标系中,已知点A(﹣2,m)在第三象限,若点A关于x轴的对称点B在直线y=﹣x+1上,则m的值为()A.3B.1C.﹣1D.﹣319.(2022秋•苏州期末)如图,直线y=−23x+4交x轴,y轴于点A,B,点P在第一象限内,且纵坐标为4.若点P关于直线AB的对称点P'恰好落在x轴的正半轴上,则点P'的横坐标为()A.313B.35C.53D.13320.(2021春•莒南县期末)若直线L1经过点(0,4),L2经过点(3,2),且L1与L2关于x轴对称,则L1与L2的交点坐标为.21.已知直线l1的解析式为y=2x﹣6,直线l2与直线l1关于y轴对称,则直线l2的解析式为.22.(2022•南通一模)已知一次函数y=2x+3,则该函数图象关于直线y=x对称的函数解析式为.23.(2022秋•望花区校级期末)如图,在平面直角坐标系中,直线y=34x+6交x轴于点A、交y轴于点B,C点与A点关于y轴对称,动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.当△PQB为等腰三角形时,点P的坐标是.24.(2022秋•沙坪坝区期末)如图,正比例函数y1=x与一次函数y2=ax−53(a≠0)交于点A(﹣1,m).(1)求出一次函数y2的解析式,并在图中画出一次函数y2的图象;(2)点C与点B(4,2)关于y1函数图象对称,过点B作直线BD∥x轴,交一次函数y2的图象于点D,求△CBD的面积.25.(2022秋•临川区校级期末)在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G 的[l1,l2]伴随图形.例如:点P(2,1)的[x轴,y轴]伴随图形是点P'(﹣2,﹣1).(1)点Q(﹣3,﹣2)的[x轴,y轴]伴随图形点Q'的坐标为;(2)已知A(t,1),B(t﹣3,1),C(t,3),直线m经过点(1,1).①当t=﹣1,且直线m与y轴平行时,点A的[x轴,m]伴随图形点A'的坐标为;②当直线m经过原点时,若△ABC的[x轴,m]伴随图形上只存在两个与x轴的距离为0.5的点,直接写出t的取值范围.。
人教版八年级数学下册第十九章一次函数解析式与图像变换专题
![人教版八年级数学下册第十九章一次函数解析式与图像变换专题](https://img.taocdn.com/s3/m/820d169331126edb6f1a10a3.png)
一次函数的解析式与图象变换题型一:复杂条件下求解析式例题精讲【引例】 如图,一次函数图象经过点A ,且与正比例函数y x =-的图象交于点B ,则该一次函数的表达式为( ).A .2y x =-+B .2y x =+C .2y x =-D .2y x =--【解析】 由题意可知()02A ,,()11B -, 设该一次函数解析式为y kx b =+,将A B 、点坐标代入,解得12k b ==,,所以选B典题精练【例1】 阅读下面材料:小伟遇到这样一个问题:如图1,C 为线段BD 上一点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC ,已知AB =6,DE =1,BD =8,高CB =x ,试求使AC +CE 的值最小的x 值. 小伟是这样思考的:当点C 在AE 、BD 交点处时,AC +CE 的值最小,他先后尝试了各种方法,发现建立平面直角坐标系,通过函数的方法可以解决这个问题。
他的方法是:建立如图2所示的平面直角坐标系,依据已知条件求出直线AE 的解析式,进而求出C 点坐标,找到x 的值.请你回答:小伟求出的x 的值等于___________,并说明原因图 1图 2ABCDE【解析】 当以B 为原点,BD 所在直线为x 轴建立平面直角坐标系后,A (0,6)、D (8,0)、E (8,1-)利用待定系数法解得:AE :768y x =-+∴C (487,0),∴487x =【例2】 一次函数y mx n =+(0m ≠),当25x -≤≤时,对应的y 值为07y ≤≤,求一次函数的解析式.【解析】 若0m >,所以当2x =-时,0y =;当5x =时,7y =;解得1m =,2n =,2y x =+;若0m <,所以当2x =-时,7y =;当5x =时,0y =;解得1m =-,5n =,5y x =-+题型二:一次函数图象的变换思路导航一.一次函数y kx b =+()0k ≠图象的平移、对称和旋转变换平移对称旋转 关于x 轴关于y 轴 关于垂直于坐标轴的直线 旋转图象上的两个点,由旋转后的两点坐标确定解析式方法⑴k 值不变,平移图象上的一个点; ⑵k 值不变,“上加下减,左加右减”⑴对称图象上的两个点;⑵k b 、均变为相反数⑴对称图象上的两个点;⑵k 变为相反数,b 不变对称图象上的两个点,由对称后的两点坐标确定解析式()0y kx b k =+≠1k =过()10,点 过()10-,点 大致图象等等等举例1y x =-+,2y x =-等2233y x y x =-+=-,等 11122y x y x =+=--,等重要性质⑴与y x =或y x =-平行 ⑵与x y ,轴的夹角为45︒,并与坐标轴围成等腰直角三角形k b ,互为相反数 即0k b +=k b =例题精讲【引例】 将直线310y x =--先向上平移4个单位,再向右平移5个单位后得到的直线的解析式为________.【解析】 方法1:k 值不变,平移一个点直线310y x =--与y 轴的交点为()010-,,将此点向上平移4个单位,再向右平移5个单位得到点()56-,,设平移后的直线解析式为y kx b =+, ∵两直线平行,∴3k =-将点()56-,代入3y x b =-+中,解得9b =, ∴平移后解析式为39y x =-+ 方法2:“左加右减,上加下减”平移后的直线为()35104y x =---+,整理后为39y x =-+.典题精练【例3】 已知直线21y x =-.⑴ 求它关于x 轴对称的直线的解析式;⑵ 将直线21y x =-向左平移3个单位,求平移后的直线解析式; ⑶ 将直线21y x =-绕原点顺时针旋转90°,求旋转后的直线解析式.【解析】 图象与x 、y 轴的交点分别为()10012A B ⎛⎫- ⎪⎝⎭,、, ⑴ ∵关于x 轴对称,∴点A 不变,将点B 关于x 轴对称得到点()101B ,, ∴对称后的解析式为21y x =-+⑵ ∵平移∴k 值不变,将点B 向左平移3个单位得到点()231B --,, ∴平移后解析式为25y x =+⑶ 将A 、B 两点分别绕原点顺时针旋转90°得到1'02A ⎛⎫- ⎪⎝⎭,,()'10B -, 直线''A B 即为旋转后的直线,解析式为1122y x =--【例4】 已知一次函数y kx b =+,y 随x 增大而增大,它的图象经过点()10,并且与x 轴的夹角为45°,⑴ 确定这个一次函数的解析式;⑵ 假设已知中的一次函数的图象沿x 轴平移两个单位,求平移以后的直线及直线与y 轴的交点坐标. (海淀期末)【解析】 由一次函数的图象经过()10,且它与x 轴的夹角为45°可知,它与y 轴的交点为()01,或()01-,,因为y 随x 增大而增大,所以只取()01-,.⑴一次函数的解析式为1=-.y x⑵因为图象沿x轴平移两个单位,但是没有说明方向,故分情况讨论有两类:即向正方向或向负方向平移.可求得平移后的函数为1=+,3y x=-.与y轴交点坐y x标分别为()-,.0301,,()题型三:一次函数与“将军饮马”问题思路导航【引例】 已知直线12y x b =+经过点A (4,3),与y 轴交于点B .⑴ 求B 点坐标;⑵ 若点C 是x 轴上一动点,当AC BC +的值最小时,求C 点坐标. (海淀期末)【解析】 ⑴ 将点()43A ,代入解析式中,解得1b = ∴()01B ,⑵ 点B 关于x 轴的对称点'B 的坐标为()01-,, 设直线'AB 的解析式为y kx b =+,依题意得341k b b =+⎧⎨-=⎩ 解得11k b =⎧⎨=-⎩∴直线'AB 的解析式为1y x =-,与x 轴的交点即为C 点,坐标为()10,.【例5】 ⑴ 在直角坐标系中,有点()63A -,,()25B -,,()0C m ,,()0D n ,,当四边形ABCD的周长最短时,求直线CD 的解析式及m n ,的值;⑵ 在直角坐标系中,有点()15A --,,()11B ,,点P 在x 轴上且使得PA PB -最大,求P 点坐标.【解析】 ⑴ 如图1,将点A B 、分别关于x 轴,y 轴对称到()()'63'25A B --,、,,直线''A B 与y x 、轴的交点即为C D 、点,求得直线''A B 的解析式为3y x =+,所以33m n ==-,DCA' (-6,-3)B' (2,5)B (-2,5)A (-6,3)Oyx图1⑵ 如图2,将A 点关于x 轴对称得到点()'15A -,,作直线'A B 与x 轴的交点即为点P ,由直线'A B 的解析式23y x =-+可求得点()1.50P ,例题精讲典题精练图2PA'(-1,5)B (1,1)A (-1,-5)Oyx图2【教师备选】在直角坐标系中,有点()01A ,,()53B ,,点M 、N 在x 轴上且1MN =,当四边形AMNB 周长最短时,求点M N 、的坐标;【解析】 如图3,将点A 向右平移1个单位至()'11A ,,再将'A 关于x 轴对称到点()''11A -,,连接''A B 与x 轴的交点即为N 点,将N 点向左平移一个单位得到点M ,由直线''A B 的解析式2y x =-可求得()20N ,,()10M , yxO NM B (5,3)A'' (1,-1)A' (1,1)(0,1)A图3【例6】 如图,直线1l :y kx b =+平行于直线1y x =-,且与直线2l :12y mx =+相交于点(1,0)P -.⑴ 求直线1l 、2l 的解析式;⑵ 直线1l 与y 轴交于点A .一动点C 从点A 出发,先沿平行于x 轴的方向运动,到达直线2l 上的点1B 处后,改为垂直于x 轴的方向运动,到达直线1l 上的点1A 处后,再沿平行于x 轴的方向运动,到达直线2l 上的点2B 处后,又改为垂直于x 轴的方向运动,到达直线1l 上的点2A 处后,仍沿平行于x 轴的方向运动,……照此规律运动,动点C 依次经过点1B ,1A ,2B ,2A ,3B ,3A ,…,n B ,n A ,… ①求点1B ,2B ,1A ,2A 的坐标;②请你通过归纳得出点n A 、n B 的坐标;并求当动点C 到达n A 处时,运动的总路径的长.(2013年东城期末)真题赏析【解析】 ⑴ 1:1l y x =+,211:22l y x =+ ⑵ ①()111B ,,()232B ,,()112A ,,()234A , ②()212n n n A -,,()1212n n n B --,运动的总路径长为1212122n n n +-+-=-【分析】本题既考查到求函数解析式,又涉及平移,并且与找规律进行结合,综合性比较强,并且训练了由已知点的坐标求线段长问题,这部分的训练是函数问题的重要组成部分,后期学习函数与几何题目的综合练习时会进一步深入探索.思维拓展训练训练1. 点()P x y ,在第一象限,且8x y +=,点A 的坐标为()60,,设OPA △的面积为S . ⑴ 用含x 的解析式表示S ,写出x 的取值范围,画出函数S 的图象.⑵ 当点P 的横坐标为5时,OPA △的面积为多少? ⑶ OPA △的面积能大于24吗?为什么?【解析】 ⑴ ∵8x y += ∴8y x =-()16382432S y x x ==-=-××∴()24308S x x =-<< ⑵ 9⑶ 不能,若24S >,则24324x ->,解得0x <,不符合题意.训练2. 如果一条直线l 经过不同三点()()()A a b B b a C a b b a --,,,,,,那么直线l 经过( )A. 第二、四象限B. 第一、二、三象限C. 第二、三、四象限D. 第一、三、四象限【解析】 设直线l 的解析式为y kx t =+,因点A ,B 在直线l 上,∴b ka t a kb t =+⎧⎨=+⎩,∵a b ≠,解得1k =-,故直线l 的解析式为:y x t =-+,又∵点C 在直线l 上,∴()b a a b t -=--+,得0t =,即直线l 的解析式为y x =-∴直线l 经过二、四象限.选A .训练3. 已知直线12y x b =+与x 轴、y 轴交于A 和B ,4AOB S △≤,则b 的取值范围是_________.【解析】 直线12y x b =+与x 轴、y 轴的交点坐标分别为A (2b -,0)、B (0,b ),由4AOB S △≤可知,1242b b -≤,24b ≤,22b -≤≤.但当0b =时,A 、B 重合不能构成三角形,故0b ≠. 综上所述,22b -≤≤且0b ≠.训练4. 已知:如图,直线y =+与x 轴、y 轴分别交于点A 和点B ,D 是y 轴上的一点,若将△DAB 沿直线DA 折叠,点B 恰好落在x 轴正半轴上的点C 处,求直线CD 的解析式. (石景山一模)【解析】 根据题意,得:(2,0)A,B在Rt AOB △中,4AB =, 由题意可知,,AB AC BD CD ==∴6OC OA AB =+=设OD t =,则CD BD t ==+在Rt △DOC 中,222OC OD CD +=即(2226t t +=+解得t =∴(6,0)C,(0,D -设直线CD的解析式为:y kx =-∴06k =-k =所以直线CD 的解析式为y =-题型一 复杂条件下求解析式 巩固练习【练习1】 已知一次函数y kx b =+,当31x -≤≤时,对应的y 值为19y ≤≤,求kb 的值. 【解析】 若0k >,当3x =-时,1y =;当1x =时,9y =;解得2k =,7b =,14kb =;若0k <,当3x =-时,9y =;当1x =时,1y =;解得2k =-,3b =,6kb =-.【练习2】 正比例函数的图象与一次函数的图象交于点()34,,两图象与y 轴围成的三角形的面积为152,求这两个函数的解析式. 【解析】 正比例函数解析式为43y x =,一次函数解析式为153y x =-+或35y x =-题型二 一次函数图象的变换 巩固练习【练习3】 如图,将直线OA 向上平移1个单位,得到一个一次函数的图象1l ,⑴ 直线1l 的解析式是 .⑵ 将直线1l 沿x 轴平移2个单位得到直线2l ,则2l 的解析式为 .⑶ 将直线1l 关于y 轴对称得到直线3l ,则3l 的解析式为 . (上海市中考题改编)【解析】 ⑴ 直线OA 解析式为:2y x =,∴平移后为21y x =+⑵ 分两种情况讨论:①向左平移2个单位得到25y x =+;②向右平移2个单位得到23y x =-∴2l 解析式为:25y x =+或23y x =-⑶ 3l 解析式为:21y x =-+.【练习4】 某一次函数的图象与直线6y x =-交于点()5A m ,,且与直线23y x =-无交点,求此函数的关系式.【解析】 将()5A m ,代入6y x =-中求得1m = 设所求解析式为y kx b =+,与直线23y x =-无交点即与其平行,2k = 过()51A ,,代入求得解析式为29y x =-题型三 一次函数与“将军饮马”问题 巩固练习【练习5】 ⑴ 如图⑴,点C 的坐标为(3,y ),使ABC △的周长最短,求y 的值. 复习巩固yxO3214321A⑵ 如图⑵,在x 轴上有一点C ,在y 轴上有一点D ,使AD CD BC ++值最小,求直线CD 的解析式及点C D 、坐标.(2)B (3,1)A (1,3)(1)B (2,0)A (0,3)xyOOy x【解析】 ⑴ 如图⑶,作B 关于直线3x =的对称点()'40B ,,连接'AB 与直线3x =的交点即为点C ,可求直线'AB 解析式为334y x =-+,当3x =时,34y =⑵ 如图⑷, 将点A B 、分别关于y 轴、x 轴对称到点''A B 、,连接''A B 与x 轴、y 轴的交点即为点C D 、,直线CD 解析式为2y x =-+,()()2002C D ,,, DCA'(-1,3)B'(3,-1)CB'(4,0)xy OOyx A (0,3)B (2,0)(3)A (1,3)B (3,1)(4)。
函数图像变换练习题
![函数图像变换练习题](https://img.taocdn.com/s3/m/ffb77c996e1aff00bed5b9f3f90f76c661374cb6.png)
函数图像变换练习题函数图像变换练习题函数图像变换是数学中的重要概念,它帮助我们理解函数的性质和变化规律。
通过对函数图像进行变换,我们可以观察到函数在平移、伸缩和翻转等操作后的形态变化。
在这篇文章中,我们将通过一些练习题来加深对函数图像变换的理解。
1. 平移变换平移变换是指将函数图像沿着坐标轴的方向进行平移。
具体而言,平移变换可以分为水平平移和垂直平移两种情况。
练习题1:考虑函数f(x) = x^2,将其沿x轴方向平移3个单位,请画出平移后的函数图像。
解答:对于函数f(x) = x^2,进行水平平移3个单位后的函数可以表示为f(x-3) = (x-3)^2。
通过计算可知,平移后的函数图像与原函数相比,在x轴上整体向右平移了3个单位。
2. 伸缩变换伸缩变换是指将函数图像沿着坐标轴的方向进行拉伸或压缩。
具体而言,伸缩变换可以分为水平伸缩和垂直伸缩两种情况。
练习题2:考虑函数f(x) = x^2,将其在x轴方向进行压缩,使得函数图像变为原来的一半宽度,请画出压缩后的函数图像。
解答:对于函数f(x) = x^2,进行在x轴方向的压缩后的函数可以表示为f(2x) = (2x)^2。
通过计算可知,压缩后的函数图像与原函数相比,在x轴上整体变窄了一半。
3. 翻转变换翻转变换是指将函数图像沿着坐标轴进行翻转。
具体而言,翻转变换可以分为水平翻转和垂直翻转两种情况。
练习题3:考虑函数f(x) = x^2,将其进行水平翻转,请画出翻转后的函数图像。
解答:对于函数f(x) = x^2,进行水平翻转后的函数可以表示为f(-x) = (-x)^2。
通过计算可知,翻转后的函数图像与原函数相比,在y轴上对称翻转。
通过以上练习题,我们可以看到函数图像在不同的变换下发生了形态上的变化。
这些变换可以帮助我们更好地理解函数的性质和变化规律。
在实际应用中,函数图像变换也被广泛应用于物理、工程和经济等领域。
除了上述的平移、伸缩和翻转变换,函数图像还可以进行其他的变换,如旋转和剪切等。
(完整版)一次函数的图像和性质练习题(可编辑修改word版)
![(完整版)一次函数的图像和性质练习题(可编辑修改word版)](https://img.taocdn.com/s3/m/fe7f82c7168884868662d620.png)
一次函数的图像和性质练习题一、填空题1.正比例函数y=kx(k≠0)一定经过点,经过(1,),一次函数y=kx+b(k≠0)经过(0,)点,( ,0) 点.2.直线y =-2x + 6 与x 轴的交点坐标是,与 y 轴的交点坐标是。
与坐标轴围成的三角形的面积是。
3.若一次函数y =mx - (4m - 4) 的图象过原点,则m 的值为.4.如果函数y=x-b的图象经过点P(0,1),则它经过x轴上的点的坐标为.5.一次函数y =-x + 3 的图象经过点(,5)和(2,)6.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)y 随x 的增大而减小.请你写出一个满足上述条件的函数7.在同一坐标系内函数y=2x 与y=2x+6 的图象的位置关系是.8.若直线y=2x+6 与直线y=mx+5 平行,则m= .9.在同一坐标系内函数y=a x+b与y=3x+2平行,则a,b的取值范围是.10.将直线 y= -2x 向上平移 3 个单位得到的直线解析式是,将直线 y= -2x 向下移 3 个单得到的直线解析式是.将直线 y= -2x+3 向下移 2 个单得到的直线解析式是.11.直线y =kx +b 经过一、二、三象限,则k 0,b 0,经过二、三、四象限,则有k 0,b 0,经过一、二、四象限,则有k 0,b 0.12.一次函数y = (k - 2)x + 4 -k 的图象经过一、三、四象限,则k 的取值范围是.13.如果直线y = 3x +b 与y 轴交点的纵坐标为-2 ,那么这条直线一定不经过第象限.14.已知点A(-4,a),B(-2,b)都在一次函数y=1 x+k(k为常数)的图像上,则a与b的大小关2系是a b(填”<””=”或”>”)15.一次函数 y=kx+b 的图象如图所示,看图填空:(1)当x=0时,y=;当x=时,y=0.(2)k= ,b= .(3)当x=5 时,y= ;当y=30 时,x= .二、选择题1.已知函数y = (m + 3)x - 2 ,要使函数值y 随自变量x 的增大而减小,则m 的取值范围是()A.m ≥-3 B.m >-3 C.m ≤-3 D.m <-322. 已知直线 y = kx + b ,经过点 A (x 1,y 1 ) 和点 B (x 2,y 2 ) ,若k < 0 ,且 x 1 < x 2 ,则 y 1 与 y 2 的大小关系是()A. y 1 > y 2B. y 1 < y 2 C. y 1 = y 2D.不能确定3. 若直线 y = mx - 2m - 3 经过第二、三、四象限,则m 的取值范围是()A. m < 32B. - 3< m < 02 C. m > 32 D. m > 04. 一次函数 y = 3x -1 的图象不经过()A.第一象限B.第二象限 C.第三象限 D.第四象限5.如果点 P (a ,b )关于 x 轴的对称点 p ,在第三象限,那么直线 y =a x +b 的图像不经过 ( ) A.第一象限B.第二象限C.第三象限D.第四象限6.若一次函数 y =k x +b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( )A.第一象限B.第二象限C.第三象限D.第四象限7. 下列图象中不可能是一次函数 y = mx - (m - 3) 的图象的是()A.B .C.D.8. 两个一次函数 y 1 =ax + b 与 y 2 = bx + a ,它们在同一直角坐标系中的图象可能是()1xA.B .三、解答题1x2C.D.1.已知一次函数 y =(3-k )x -2k +18,(1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与 y 轴的交点在 x 轴的上方; (4) k 为何值时,它的图像平行于直线 y =-x ; (5) k 为何值时,y 随 x 的增大而减小.2. 设一次函数 y = kx + b (k ≠ 0) ,当 x = 2 时, y = -3 ,当 x = -1 时, y = 4 。
【中考专项】2023年中考数学转向练习之选择题04 几何变换之旋转问题
![【中考专项】2023年中考数学转向练习之选择题04 几何变换之旋转问题](https://img.taocdn.com/s3/m/b2139fae85868762caaedd3383c4bb4cf7ecb7c0.png)
【选择题】必考重点04 几何变换之旋转问题几何变换中的旋转问题,江苏省各地考查频率较高且考查难度较高,综合性较强,通常有线段的旋转、三角形及四边形的旋转问题,在解决此类问题时,要牢牢把握旋转的性质,即旋转前后的图形全等,对应角相等,对应边相等,结合几何图形本身的性质,找到旋转过程中变化的量和不变的量,运用三角形全等或相似的有关知识,求解有关角、线段及面积问题。
0,2,点B是x轴正半轴上的一点,将线段AB绕点A 【2022·江苏苏州·中考母题】如图,点A的坐标为()m,则m的值为()按逆时针方向旋转60°得到线段AC.若点C的坐标为(),3A B C D.3【考点分析】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含m的代数式表示相关线段的长度.【思路分析】过C作CD⊥x轴于D,CE⊥y轴于E,根据将线段AB绕点A按逆时针方向旋转60°得到线段AC,可得△ABC是等边三角形,又A(0,2),C(m,3),即得AC BC AB==,可得=,即可解得BD OB mm =. 【2022·江苏扬州·中考母题】如图,在ABC ∆中,AB AC <,将ABC 以点A 为中心逆时针旋转得到ADE ,点D 在BC 边上,DE 交AC 于点F .下列结论:①AFE DFC △△;②DA 平分BDE ∠;③CDF BAD ∠=∠,其中所有正确结论的序号是( )A .①②B .②③C .①③D .①②③ 【考点分析】本题考查了性质的性质,等边对等角,相似三角形的性质判定与性质,全等三角形的性质,掌握以上知识是解题的关键.【思路分析】根据旋转的性质可得对应角相等,对应边相等,进而逐项分析判断即可求解.【2020·江苏宿迁·中考母题】如图,在平面直角坐标系中,Q 是直线y=﹣12x+2上的一个动点,将Q 绕点P(1,0)顺时针旋转90°,得到点Q ',连接OQ ',则OQ '的最小值为( )A B C D 【考点分析】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.【思路分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.1.(2022·江苏·九年级专题练习)如图将△ABC 绕点C 逆时针旋转得到△A ’B ’C ,点B 恰好落在A ’B ’上,若∠A =25°,∠BCA ’=45°,则∠A ’CA = ( )A.30°B.35°C.40°D.45°2.(2022·江苏泰州·九年级专题练习)在正方形ABCD中,AB=8,若点E在对角线AC上运动,将线段DE绕点D逆时针旋转90°得到线段DF,连接EF、CF.点P在CD上,且CP=3PD.给出以下几个结论①222=+,②EF=,③线段PF的最小值是CFE的面积最大是16.其中EF AE CE正确的是()A.①②④B.②③④C.①②③D.①③④3.(2022·江苏苏州·一模)如图,直角三角形ACB中,两条直角边AC=8,BC=6,将△ACB绕着AC中点M旋转一定角度,得到△DFE,点F正好落在AB边上,DE和AB交于点G,则AG的长为()A.1.4B.1.8C.1.2D.1.64.(2022·江苏徐州·二模)如图,△ABC中,∠ABC=45°,BC=8,tan∠ACB=3,AD⊥BC于D,若将△ADC绕点D逆时针方向旋转得到△FDE,当点E恰好落在AC上,连接AF.则AF的长为()A B C .D .45.(2022·江苏盐城·一模)如图,在AOB 中,2AO =,3BO AB ==.将AOB 绕点O 逆时针方向旋转90°,得到A OB ''△,连接AA '.则线段AA '的长为( )A.2 B .3 C .D .6.(2022·江苏·宜兴外国语学校一模)如图,在矩形ABCD 中,AB =3,BC =4,P 是对角线AC 上的动点,连接DP ,将直线DP 绕点P 顺时针旋转使∠DPE =∠DAC ,且过D 作DE ⊥PE ,连接CE ,则CE 最小值为( )A .65B .3625C .3225D .857.(2022·江苏扬州·模拟)如图,将矩形ABCD 绕点B 按顺时针方向旋转一定角度得到矩形A B C D ''''.此时点A 的对应点A '恰好落在对角线AC 的中点处.若AB =3,则点B 与点D 之间的距离为( )A.3B.6C.D.8.(2022·江苏·九年级专题练习)如图所示,已知ABC是等边三角形,点D是BC边上一个动点(点D不与,B C重合),将ADC绕点A顺时针旋转一定角度后得到AFB△,过点F作BC的平行线交AC于点E,②为等边三角形;③四边形BCEF为平行四边形;连接DF,下列四个结论中:①旋转角为60︒;ADF=④.其中正确的结论有()BF AEA.1B.2C.3D.49.(2022·江苏南京·模拟)如图,在Rt ABC中,∠ACB=90°,BC=2,∠BAC=30°,将ABC绕顶点C逆时针旋转得到△A'B'C',M是BC的中点,P是A'B'的中点,连接PM,则线段PM的最大值是()A.4B.2C.3D.10.(2022·江苏苏州·二模)如图,将ABC绕点A顺时针旋转角α,得到ADE,若点E恰好在CB的延长线上,则BED∠等于()A .2αB .23αC .αD .180α︒-11.(2022·江苏·阳山中学一模)如图,在△ABC 中,∠BAC =45°,AC =8,动点E 从点A 出发沿射线AB 运动,连接CE ,将CE 绕点C 顺时针旋转45°得到CF ,连接AF ,则△AFC 的面积变化情况是( ).A .先变大再变小B .先变小再变大C .逐渐变大D .不变12.(2022·江苏·南通市启秀中学九年级阶段练习)如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A .4B .C .6D .13.(2022·江苏·九年级专题练习)如图1,在Rt ABC 中,AC BC =,90C ∠=︒,点D 为AB 边的中点,90EDF ∠=︒,将EDF ∠绕点D 旋转,它的两边分别交AC 、CB 所在直线于点E 、F ,有以下4个结论:①CE BF =;②180DEC DFC ∠+∠=︒;③222EF DE =;④如图2,当点E 、F 落在AC 、CB 的延长线上时,12DEF CEF ABC S S S -=△△△,在旋转的过程中上述结论一定成立的是( )A .①②B .②③C .①②③D .①③④14.(2022·江苏扬州·三模)如图,已知正方形ABCD 的边长为4,点E 是AB 边上一动点,连接ED ,将ED 绕点E 顺时针旋转90°到EF ,连接DF ,CF ,则DF +CF 的最小值是( )A .B .C .D .15.(2022·江苏南京·一模)在平面直角坐标系中,点A 的坐标是()2,3-,将点A 绕点C 顺时针旋转90°得到点B .若点B 的坐标是()5,1-,则点C 的坐标是( )A .()0.5, 2.5--B .()0.25,2--C .()0, 1.75-D .()0, 2.75-16.(2022·江苏南京·模拟)如图,在Rt ABC 中,AB =AC =10,∠BAC =90°,等腰直角三角形ADE 绕点A 旋转,∠DAE =90°,AD =AE =4,连接DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,连接MP 、PN 、MN.①PMN 为等腰直角三角形;②MN ≤PMV 面积的最大值是494;④PMN 周长的最小值为6+ )A.4个B.3个C.2个D.1个17.(2022·江苏无锡·一模)如图,已知直线AB与y轴交于点(0,A,与x轴的负半轴交于点B,且∠ABO=60°,在x轴正半轴上有一点C,点C坐标为()1,0,将线段AC绕点A逆时针旋转120°,得线段AD,连接BD.则BD的长度为()A.B.4C D.15 218.(2022·江苏·无锡市积余实验学校一模)如图1,在Rt△ABC中,90A∠=︒,AB AC=,点D,E分别在边AB,AC上,AD AE=,连接DC,点M、P、N分别为DE、DC、BC的中点.将△ADE绕点A在平面内自由旋转(如图2),若4=AD,10AB=,则△PMN面积的最大值是()A.494B.18C.492D.25219.(2022·江苏·无锡市天一实验学校一模)如图,扇形OAB中,90AOB∠=︒,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则ADAC的值为()A B C D 20.(2022·江苏·苏州市平江中学校二模)如图,在BAC 中,90BAC ∠=︒,2AB AC =,将BAC 绕点A 顺时针旋转至DAE △,点D 刚好落在BC 直线上,则BDE 的面积为( )A .24BD B .22BC C .4BC BD ⋅ D .22AB 21.(2022·江苏·淮安市浦东实验中学九年级开学考试)如图,直线1y x =+与x 轴、y 轴分别相交于点A 、B ,过点B 作BC AB ⊥,使2BC BA =.将 ABC ∆绕点O 顺时针旋转,每次旋转90︒.则第2022次旋转结束时,点C 的对应点C '落在反比例函数k y x=的图象上,则k 的值为( )A .4-B .4C .6-D .622.(2022·江苏无锡·九年级期末)如图,在Rt △ABC 中,90BAC ∠=︒,6AB AC ==,点D 、E 分别是AB 、AC 的中点.将△ADE 绕点A 顺时针旋转60°,射线BD 与射线CE 交于点P ,在这个旋转过程中有下列结论:①△AEC ≌△ADB ;②CP 存在最大值为3+BP 存在最小值为3;④点P 运动的路.其中,正确的( )A .①②③B .①②④C .①③④D .②③④23.(2022·江苏无锡·模拟)如图,在正方形ABCD 中,6AB =,点H 为BC 中点,点E 绕着点C 旋转,且4CE =,在DC 的右侧作正方形DEFG ,则线段FH 的最小值是( )A .9-B .8- C .9-D .10-24.(2022·江苏·常州市金坛区水北中学二模)如图,在矩形ABCD 中,5AB =,BC =P 在线段BC 上运动(含B 、C 两点),连接AP ,以点A 为中心,将线段AP 逆时针旋转60°到AQ ,连接DQ ,则线段DQ 的最小值为( )A .52B .CD .325.(2022·江苏南京·模拟)如图,在ABC ∆中,5,AB AC BC ===,D 为边AC 上一动点(C 点除外),把线段BD 绕着点D 沿着顺时针的方向旋转90°至DE ,连接CE ,则CDE ∆面积的最大值为( )A .16B .8C .32D .10【选择题】必考重点04 几何变换之旋转问题几何变换中的旋转问题,江苏省各地考查频率较高且考查难度较高,综合性较强,通常有线段的旋转、三角形及四边形的旋转问题,在解决此类问题时,要牢牢把握旋转的性质,即旋转前后的图形全等,对应角相等,对应边相等,结合几何图形本身的性质,找到旋转过程中变化的量和不变的量,运用三角形全等或相似的有关知识,求解有关角、线段及面积问题。
部编数学八年级下册专题36一次函数中的旋转(解析版)含答案
![部编数学八年级下册专题36一次函数中的旋转(解析版)含答案](https://img.taocdn.com/s3/m/bb4a55e264ce0508763231126edb6f1aff0071d9.png)
专题36 一次函数中的旋转1.一次函数2y kx =+的图象绕着原点逆时针旋转90°后,经过点()1,3--,则k 的值为( )A .13B .13-C .1-D .12.若把一次函数y =kx +b 的图象先绕着原点旋转180°,再向右平移2个单位长度后,恰好经过点A (4,0)和点B (0,﹣2),则原一次函数的表达式为( )A .y =﹣12x ﹣1B .y =﹣12x +1C .y =12x +1D .y =12x ﹣13.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B (0,4),则直线l的表达式是()A.y=2x+2B.y=2x-2C.y=-2x+2D.y=-2x-2【答案】B【分析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【详解】解:设直线AB的解析式为y=mx+n.∵A(−2,0),B(0,4),∴204m nn-+ìí=î=204m nn-ìíî+==,解得24mn=ìí=î,∴直线AB的解析式为y=2x+4.将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+4,即y=2x+2,再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,所以直线l的表达式是y=2x−2.故选B.【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.4.如图,在平面直角坐标系xOy中,点A坐标为(﹣2,3),将OA顺时针旋转90°得到OB,则直线AB的解析式为_____.5.如图,点A (﹣1,m )在直线y =2x +3上,连结OA ,∠AOB =90°,点B 在直线y =﹣x +b 上,OA =OB ,则b =________.【答案】2【分析】先把点A 坐标代入直线y =2x +3,得出m 的值,然后得出点B 的坐标,再代入直线y =-x +b 解答即可.【详解】解:把A (-1,m )代入直线y =2x +3,可得:m =-2+3=1,因为∠AOB =90°,OA =OB ,所以线段OA 绕点O 顺时针旋转90°,得线段OB ,所以点B 的坐标为(1,1),把点B 代入直线y =-x +b ,可得:1=-1+b ,∴b =2,故答案为:2.【点睛】此题考查一次函数图象上点的坐标特征,旋转中的坐标变换.关键是根据题意,利用旋转中的坐标变换规律求点的坐标.6.直线22y x =+绕坐标原点逆时针旋转90°后得到的直线解析式为____________________.7.如图,在平面直角坐标系中,()30A ,,()01B ,,线段AC 由线段AB 绕点A 顺时针旋转90°而得,则AC 所在直线的解析式是______.【答案】39y x =-##93y x=-+【分析】过点C 作CD x ^轴于点D ,易知()AAS ACD BAO ≌△△,从而求得点C 坐标,待定系数法即可求得直线AC 的解析式.【详解】解:∵()30A ,,()01B ,,∴31OA OB ==,,过点C 作CD x ^轴于点D ,则90AOB CDA Ð=Ð=°,∵90BAC Ð=°,∴90BAO ACD CAD Ð=Ð=°-Ð,∵BA AC =,∴()AAS ACD BAO ≌△△,∴1AD OB ==,3CD OA ==,∴()43C ,,设直线AC 的解析式为y kx b =+,将点A ,点C 坐标代入得:0334k b k b=+ìí=+î,解得:39k b =ìí=-î,∴直线AC 的解析式为39y x =-,故答案为:39y x =-.【点睛】本题是几何图形旋转的性质与待定系数法求一次函数解析式的综合题,利用全等三角形求得C 的坐标是解题的关键.8.如图,在平面直角坐标系中,一次函数y =-2x +4的图像与x 轴、y 轴分别交于点A 、B ,将直线AB 绕点B 顺时针旋转45°,交x 轴于点C ,则直线BC 的函数表达式为_______.【答案】34y x =+##y =4+3x【分析】先求出点A 、B 的坐标,过点A 作AF ⊥AB ,交直线BC 于点F ,过点F 作EF ⊥x 轴,垂足为E ,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F 的坐标,再利用待定系数法,即可求出答案.【详解】解:∵一次函数y =-2x +4的图像与x 轴、y 轴分别交于点A 、B 两点,∴令0x =,则4y =;令0y =,则2x =,∴点A 为(2,0),点B 为(0,4),∴2OA =,4OB =;过点A 作AF ⊥AB ,交直线BC 于点F ,过点F 作EF ⊥x 轴,垂足为E ,如图,∴90AEF AOB Ð=Ð=°,∴90FAE BAE ABO BAE Ð+Ð=°=Ð+Ð,∴FAE ABO Ð=Ð,∵=45ABE а,∴△ABF 是等腰直角三角形,∴AF =AB ,∴△ABO ≌△FAE (AAS ),∴AO =FE ,BO =AE ,∴2FE =,4AE =,∴422OE =-=,∴点F 的坐标为(2-,2-);设直线BC 为y ax b =+,则224a b b -+=-ìí=î,解得:34a b =ìí=î,∴直线BC 的函数表达式为34y x =+;故答案为:34y x =+;【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.9.如图,在平面直角坐标系中,一次函数22y x =-的图像分别交,x y 轴于点A ,B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式为____________.10.如图,在平面直角坐标系中,一次函数y=2x+4的图象分别与x轴,y轴相交于A,B两点.将直线AB绕点A逆时针旋转45°后,与y轴交于点C,则点C的坐标为______.∵∠CAD =45°,∴△CAD 是等腰直角三角形,∴AD =CD ,设OC m =在Rt △AOC 中,AO =∴2224AC AO OC =+=在等腰直角三角形ADC 11.如图,在平面直角坐标系中,一次函数21y x =-的图像分别交x ,y 轴于点A ,B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式是_______.12.如图,在平面直角坐标系中,一次函数22y x =--的图像分别交x ,y 轴于点A ,B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式是______.【答案】y =3x -2【分析】根据已知条件得到A (-1,0),B (0,-2),求得OA =1,OB =2,过A 作AF ⊥AB 交BC 于F ,过F 作FE ⊥x 轴于E ,得到AB =AF ,根据全等三角形的性质得到AE =OB =2,EF =OA =1,求得F (1,1),设直线BC 的函数表达式为:y =kx +b ,解方程组于是得到结论.【详解】解:∵一次函数y =-2x -2的图象分别交x 、y 轴于点A 、B ,∴令x =0,得y =-2,令y =0,则x =-1,∴A (-1,0),B (0,-2),∴OA =1,OB =2,过A 作AF ⊥AB 交BC 于F ,过F 作FE ⊥x 轴于E ,∵∠ABC =45°,∴△ABF 是等腰直角三角形,∴AB =AF ,∵∠OAB +∠ABO =∠OAB +∠EAF =90°,∴∠ABO =∠EAF ,在△ABO 和△FAE 中,ABO EAF AOB AEF AB AF Ð=ÐìïÐ=Ðíï=î,∴△ABO ≌△FAE (AAS ),∴AE =OB =2,EF =OA =1,∴F (1,1),设直线BC 的函数表达式为:y =kx +b ,∴12k b b +=ìí=-î,解得32k b =ìí=-î,∴直线BC 的函数表达式为:y =3x -2,故答案为:y =3x -2.【点睛】本题考查了一次函数图象与几何变换,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出辅助线是解题的关键.13.如图,一次函数y x =+x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为______.由旋转的性质得:30ABC Ð=°122AD AB \==,2BD AB =设(0)OC m m =>,则AC OC =14.将直线y x =绕原点旋转90°,得直线l(1)画出直线l ;(2)求l 的解析式.【答案】(1)见解析(2)y x=-【分析】(1)如图,在y x =上取点()1,1,A 把A 绕原点顺时针旋转90°可得()1,1,B - 则直线OB 即为直线l ;(2)先确定直线l 是正比例函数,把()1,1B -代入直线l 的解析式,然后根据待定系数法求解即可.【详解】(1)解:如图,在y x =上取点()1,1,A 把A 绕原点顺时针旋转90°可得()1,1,B -再作直线OB ,则直线OB 为将直线y x =绕原点旋转90°的直线l .(2)解:点O 绕原点O 顺时针旋转90°得到的点是它的本身,把()1,1B -代入解析式:∴1,k =-所以直线解析式是y x =-.【点睛】本题考查一次函数图象与几何变换的知识,难度适中,掌握“点(),a b 绕原点顺时针旋转90°以后的点的坐标是(),b a -”是解本题的关键.15.(1)写出点(2,4)A -绕坐标原点逆时针旋转90°后所得对应点坐标是 ;(2)写出直线2y x =-绕坐标原点逆时针旋转90°后所得直线解析式是 ;(3)求直线22y x =--绕坐标原点逆时针旋转90°后所得直线解析式.【答案】(1)(4,2)--;(2)0.5y x =;(3)0.51y x =-【分析】(1)根据旋转的性质可直接得到旋转后的坐标;(2)根据点(2,4)A -是直线2y x =-上的一点,求出点(2,4)A -旋转后的点坐标,再根据待定系数法即可求得答案;(3)根据22y x =--过两点(1,0)-,(0,2)-,计算出点(1,0)-,(0,2)-旋转后的点坐标,再根据待定系数法求出函数的解析式.【详解】解:(1)如图所示,根据旋转的性质可得1B O BO =,1A O AO =,11AB A B =,∴点(2,4)A -绕坐标原点逆时针旋转90°后所得对应点坐标是(4,2)--;(2)∵点(2,4)A -是直线2y x =-上的一点,绕坐标原点逆时针旋转90°后所得对应点坐标是(4,2)--,设直线2y x =-绕坐标原点逆时针旋转90°后所得直线解析式为y kx =,将点(4,2)--代入,得()24k -=´-,得0.5k =,(3)∵直线22y x =--上过两点(1,0)-,(0,2)-,将其绕坐标原点逆时针旋转90°,得到对应点的坐标为(0,1)-,(2,0),设过这两点的直线解析式为y kx b =+,则120b k b =-ìí+=î,解得0.51k b =ìí=-î ,∴旋转后的直线解析式为:0.51y x =-.【点睛】本题考查一次函数的解析式,解题的关键是根据题意得到直线上的点,再通过待定系数法求出解析式.16.规定:在平面直角坐标系内,某直线1l 绕原点O 顺时针旋转90°,得到的直线2l 称为1l 的“旋转垂线”.(1)求出直线2y x =-+的“旋转垂线”的解析式;(2)若直线1110()y k x k =+¹的“旋转垂线”为直线2y k x b =+.求证:121k k ×=-.17.(1)点(1,2)绕坐标原点逆时针旋转90°得到的点的坐标是 (2)直线22y x =-绕坐标原点逆时针旋转90°得到的直线解析式是 (3)求直线2y x =+关于原点对称的直线的解析式.由AOC OBD D @D 可得,DO =\点B 的坐标为(2,1)-,故答案为:(2,1)-;(2)如图,当0x =时,=2y -;当0y =时,2x =∴直线22y x =-与坐标轴交于绕坐标原点逆时针旋转90°后分别得到设CD 解析式为y kx b =+,则当0x =时,2y =;当0y =时,2x =-∴直线2y x =+与坐标轴交于(0,2)A ,(2,0)B -,关于原点对称的点分别为(0,2)C -,(2,0)D ,设CD 解析式为y kx b =+,则202b k b-=ìí=+î,解得12k b =ìí=-î,\直线CD 解析式为2y x =-.【点睛】本题考查了坐标系中点的旋转,直线的旋转问题,解题的关键是需要结合图形,根据点的旋转规律找直线旋转的解析式.18.如图,在平面直角坐标系xOy 中,直线y =kx +b 与x 轴交于点A (1,0),与y 轴交于点B (0,2).(1)求直线AB 的表达式;(2)将△OAB 绕点O 逆时针旋转90°后,点A 落到点C 处,点B 落到点D 处,线段AB 上横坐标为34的点E 在线段CD 上对应点为点F ,求点F 的坐标.19.在平面直角坐标系中,直线l :443y x =-+分别交x 轴、y 轴于点A 、B 将△AOB 绕点O 顺时针旋转90°后得到A OB ¢¢△ .(1)求直线A B ¢¢的解析式;(2)若直线A B ¢¢与直线l 相交于点C ,求A BC ¢△的面积.20.(1)如图1,等腰直角三角形ABC 的直角顶点在直线l 上. 过点A 作AD l ^交于点D , 过点B 作BE l ^交于点E , 求证:ADC CEB @V V ;(2)如图2,在平面直角坐标系中,直线124l y x =+:分别与y 轴,x 轴交于点A ,B , 将直线1l 绕点A 顺时针旋转45°得到2l , 求2l 的函数表达式;(3)如图3,在平面直角坐标系,点()6,4B , 过点B 作AB y ^交于点A , 过点B 作BC x ^交于点C , P 为线段BC 上的一个动点,点(),24Q a a -位于第一象限. 问点,,A P Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出a 的值; 若不能, 请说明理由.【详解】解:(1)由题意可知AC CB =, 90ADC CEB Ð=Ð=°ABC Q V 为等腰直角三角形90ACB \Ð=°∴90ACD BCE Ð+Ð=°90ACD CAD Ð+Ð=°Q ,CAD BCE \Ð=Ð在ADC CEB 和V V 中90CAD BCE ADC CEB AC CB Ð=ÐìïÐ=Ð=°íï=îADCCEB \@V V ()AAS .(2)由题意意可知点A 坐标为()04,,点B 坐标为()20-, 过点B 作1BC l ^交2l 于点C , 过点C 作CE x ^轴交x 轴于点E ,由(1)的证明可知BEC AOB @V V24CE BO BE AO \====,\点C 坐标为()62-,设2l y kx b=+:2l Q 过点()()0462A C -,,,\ 426b k b =ìí=-+î,解得 134k b ì=ïíï=î,2143l y x \=+:.(3)如图:作线段AP 的中垂线记为3l ,由等腰三角形的性质可知,若点Q 存在,则一定在3l 上.①当点Q 在AB 下方时过点Q 作EF y ^轴交于点E , 则EF BC ^交于点F ,由(2)的证明不难得出,AEQ QFPV V ≌AE QF \=, 即()4246a a --=-解得2a =, 则点()20Q ,与点Q 位于第一象限相矛盾,故2a =舍去②当点Q 在AB 上方时过点Q 分别作MN y ^轴交于点M , 则MN CB ^的延长线交于点N ,由(2)的证明不难得出,QMA PNQV V ≌MA NQ \=, 即()2446a a --=- 解得143a =, 则点141633Q æöç÷èø,符合题意.综上,143a =.【点睛】本题主要考查了一次函数综合题、全等三角形的判定、全等三角形的性质、用待定系数法求函数解析式等知识点,利用全等三角形的性质得出关于a 的方程是解题关键.21.在平面直角坐标系中,一次函数21y x =-的图像分别交x 、y 轴于点A 、B ,将直线AB 绕点B 顺时针方向旋转45°,交x 轴于点C .(1)求直线BC 的函数表达式;(2)若将直线AB 绕点B 逆时针方向旋转45°,请直接写出此时直线BC 的函数表达式.∵=45ABC а,90BAD Ð=°【点睛】本题考查了一次函数图象与几何变换,待定系数法求函数解析式,全等三角形的判定和性质,正确作出辅助线是解决问题的关键.22.如图,一次函数2y x b =+的图像经过点(1,3)M ,且与x 轴,y 轴分别交于,A B 两点.(1)填空:b = ;(2)将该直线绕点A 顺时针旋转45o 至直线l ,过点B 作BC AB ^交直线l 于点C ,求点C 的坐标及直线l 的函数表达式.∵∠BDC=90°,∴∠CBD+∠BCD=∠CBD+∠ABD=90°∴∠BCD=∠ABD,同理,∠CBD=∠BAO,23.如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x轴、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C.(1)点A坐标是( , )、点B坐标是( , );(2)求直线BC的函数表达式;(3)点M是射线BA上的点,在平面内是否存在点N,使得以M、N、B、C为顶点的四边形是菱形,如果存在,请求出点N的坐标;如果不存在,请说明理由.∵=45ABC а,∴ABF △是等腰直角三角形,∴AB AF =.∵OAB ABO OAB EAF Ð+Ð=Ð+Ð∴BM CN ∥,BC CN =.∵直线BM 为21y x =-,∴设直线CN 的函数表达式为2y x =∵直线BC 的函数表达式为:13y x =∴30C (,),∴60c +=,解得6c =-,∴BC CM =,设21M m m -(,).∵BC CM =,01B -(,),∴22BC CM =,∴222213321m m +=-+-()(),解得2m =或0(不合题意,舍去)24.如图,一次函数y x =+x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30°交x 轴于点C ,则线段AC 长为( )A B .C .2D【点睛】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.。
初中数学一次函数的图像专项练习30题(有答案)ok
![初中数学一次函数的图像专项练习30题(有答案)ok](https://img.taocdn.com/s3/m/774212060a4e767f5acfa1c7aa00b52acfc79c71.png)
一次函数的图像专项演习30题(有答案)【1 】1.函数y=ax+b与y=bx+a的图象在统一坐标系内的大致地位准确的是()A.B.C.D.2.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③当x>2时,y2>y1,个中准确的个数是()A.0B.1C.2D.33.一次函数y=kx+b,y随x的增大而减小,且kb>0,则在直角坐标系内它的大致图象是()A.B.C.D.4.下列函数图象不成能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.5.如图所示,假如k•b<0,且k<0,那么函数y=kx+b的图象大致是()A.B.C.D.6.如图,直线l1:y=x+1与直线l2:y=﹣x ﹣把平面直角坐标系分成四个部分,则点(,)在()A.第一部分B.第二部分C.第三部分D.第四部分7.已知正比例函数y=﹣kx和一次函数y=kx﹣2(x为自变量),它们在统一坐标系内的图象大致是()A .B .C .D.8.函数y=2x+3的图象是()A.过点(0,3),(0,﹣)的直线B.过点(1,5),(0,﹣)的直线C.过点(﹣1,﹣1),(﹣,0)的直线D.过点(0,3),(﹣,0)的直线9.下列图象中,与关系式y=﹣x﹣1暗示的是统一个一次函数的图象是()A.B.C.D.10.函数kx﹣y=2中,y随x的增大而减小,则它的图象是下图中的()A.B .C.D.11.已知直线y1=k1x+b1,y2=k2x+b2,知足b1<b2,且k1k2<0,两直线的图象是()A .B.C.D.12.如图所示,暗示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab≠0)的图象是()A.B.C.D.13.连降6天大雨,某水库的蓄水量随时光的增长而直线上升.若该水库的蓄水量V (万米3)与降雨的时光t(天)的关系如图所示,则下列说法准确的是()A.降雨后,蓄水量天天削减5万米3 B.降雨后,蓄水量天天增长5万米3C.降雨开端时,蓄水量为20万米3 D.降雨第6天,蓄水量增长40万米314.拖沓机开端行驶时,油箱中有油4升,假如每小时耗油0.5升,那么油箱中余油y (升)与它工作的时光t(时)之间的函数关系的图象是()A .B .C.D.15.已知正比例函数y=kx的图象经由第一.三象限,则y=kx ﹣k的大致图象可能是下图的()A.B .C.D.16.一次函数y=kx+b的图象如图所示,当x_________时,y>2.17.一次函数的图象如图所示,依据图象可知,当x_________时,有y<0.18.如图,直线l是一次函数y=kx+b的图象,当x_________时,y>0.19.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x=3时,y1=y2;④当x>3时,y1<y2中,准确的断定是_________.20.如图,已知函数y1=ax+b和y2=kx的图象交于点P,则依据图象可得,当x_________时,y1>y2.21.已知一次函数y=kx+b的图象如图所示,当y<0时,x的取值规模是_________.22.在平面直角坐标系中画出函数的图象.(1)在图象上标出横坐标为﹣4的点A,并写出它的坐标;(2)在图象上标出和y轴的距离是2个单位长度的点,并写出它的坐标.23.作函数y=2x﹣4的图象,并依据图象答复下列问题.(1)当﹣2≤x≤4,求函数y的取值规模.(2)当x取何值时,y<0?y=0?y>0?24.如图是一次函数y=﹣x+5图象的一部分,应用图象答复下列问题:(1)求自变量的取值规模.(2)在(1)在前提下,y是否有最小值?假如有就求出最小值;假如没有,请解释来由.25.已知函数y1=﹣x+和y2=2x﹣1.(1)在统一个平面直角坐标系中画出这两个函数的图象;(2)依据图象,写出它们的交点坐标;(3)依据图象,试解释当x取什么值时,y1>y2?26.作出函数y=3﹣3x的图象,并依据图象答复下列问题:(1)y的值随x的增大而_________;(2)图象与x轴的交点坐标是_________;与y轴的交点坐标是_________; (3)当x_________时,y≥0;(4)函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是若干?27.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)断定点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.28.已知函数y=﹣2x﹣6.(1)求当x=﹣4时,y的值,当y=﹣2时,x的值.(2)画出函数图象.(3)假如y的取值规模﹣4≤y≤2,求x的取值规模.29.已知一次函数的图象经由点A(﹣3,0),B(﹣1,1)两点.(1)画出图象;(2)x为何值时,y>0,y=0,y<0?30.已知一次函数y=﹣2x+2,(1)在所给的平面直角坐标系中画出它的图象;(2)依据图象答复问题:①图象与x轴的交点坐标是_________,与y轴的交点坐标是_________;②当x_________时,y>0.参考答案:1.分四种情形:①当a>0,b>0时,y=ax+b的图象经由第一.二.三象限,y=bx+a的图象经由第一.二.三象限,无选项相符;②当a>0,b<0时,y=ax+b的图象经由第一.三.四象限;y=bx+a的图象经由第一.二.四象限,C选项相符;③当a<0,b>0时,y=ax+b的图象经由第一.二.四象限;y=bx+a的图象经由第一.三.四象限,无选项相符;④当a<0,b<0时,y=ax+b的图象经由第二.三.四象限;y=bx+a的图象经由第二.三.四象限,无选项相符.故选C2.由一次函数y1=kx+b与y2=x+a的图象可知k<0,a<0,当x>2时,y2>y1,①③准确.故选C 3.∵一次函数y=kx+b,y随x的增大而减小,∴k<0,又∵kb>0,∴b<0,∴函数的图象经由第二.三.四象限.故选C4.依据图象知:A.a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B.a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不成能;C.a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D.a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B5.∵k•b<0,且k<0,∴b>0,k<0,∴函数y=kx+b的图象经由第一.二.四象限,故选D6.由题意可得,解得,故点(,)应在交点的上方,即第二部分.故选B.7.分两种情形:(1)当k>0时,正比例函数y=﹣kx的图象过原点.第一.三象限,一次函数y=kx﹣2的图象经由第一.三.四象限,选项A相符;(2)当k<0时,正比例函数y=﹣kx的图象过原点.第二.四象限,一次函数y=kx﹣2的图象经由第二.三.四象限,无选项相符.故选A.8.A.把x=0代入函数关系式得2×0+3=3,故函数图象过点(0,3),不过(0,﹣),故错误;B.由A知函数图象不过点(0,﹣),故错误;C.把x=﹣1代入函数关系式得,2×(﹣1)+3=1,故(﹣1,﹣1)不在函数图象上,故错误;D.分离令x=0,y=0,此函数成立,故准确.故选D9.函数y=﹣x﹣1是一次函数,其图象是一条直线.当x=0时,y=﹣1,所以直线与y轴的交点坐标是(0,﹣1);当y=0时,x=﹣1,所以直线与x轴的交点坐标是(﹣1,0).由两点肯定一条直线,衔接这两点就可得到y=﹣x﹣1的图象.故选D10.整顿为y=kx﹣2∵y随x的增大而减小∴k<0又因为图象过2,4,3象限故选D.11.k1k2<0,则k1与k2异号,因而两个函数一个y随x的增大而增大,另一个y随x的增大而减小,因而A是错误的;b1<b2,则y1与y轴的交点在y2与y轴的交点的下边,因而B.C都是错误的.故选D.12.①当ab>0,正比例函数y=abx过第一.三象限;a与b同号,同正时y=ax+b过第一.二.三象限,故D错误;同负时过第二.三.四象限,故B错误;②当ab<0时,正比例函数y=abx过第二.四象限;a与b异号,a>0,b<0时y=ax+b过第一.三.四象限,故C错误;a<0,b >0时过第一.二.四象限.故选A13.A.依据图象知,水库的蓄水量因该跟着降雨的时光的增长而增多;故本选项错误;B.本图象的直线,所以天天的降雨量是相等的,所以,蓄水库天天的增长的水的量是(40﹣10)÷6=5;故本选项准确;C.依据图见知,降雨开端时,蓄水量为10万米3,故本选项错误;D.依据图见知,降雨第6天,蓄水量增长了40万米3﹣30万米3=10万米3,故本选项错误;故选B14.依据题意列出关系式为:y=40﹣5t,斟酌现实情形:拖沓机开端工作时,油箱中有油4升,即开端时,函数图象与y轴交于点(0,40),假如每小时耗油0.5升,且8小时,耗完油,故函数图象为一条线段.故选D15.∵正比例函数y=kx的图象经由第一.三象限,∴k>0,∴﹣k<0,∴y=kx﹣k的大致图象经由一.三.四象限,故选:B.16.由图形可知,该函数过点(0,2),(3,0),故斜率k==,所以解析式为y=,令y>2,即>2,解之得:x<017.依据题意,请求y<0时,x的规模,即:x+3<0,解可得:x<﹣2,故答案为x<﹣218.依据题意,不雅察图象,可得直线l过点(2,0),且y随x的增大而增大,剖析可得,当x>2时,有y>019.依据图示及数据可知:①一次函数y1=kx+b的图象经由第二.四象限,则k<0准确;②y2=x+a的图象经与y轴交与负半轴,则a>0错误;③一次函数y1=kx+b与y2=x+a的图象交点的横坐标是3,所以当x=3时,y1=y2准确;④当x>3时,y1<y2准确;故准确的断定是①,③,④20.依据图示可知点P的坐标是(﹣4,2),所以y1>y2即直线1在直线2的上方,则x<﹣4.21.依据图象和数据可知,当y<0即图象在x轴下侧,x<1.故答案为x<122.函数与坐标轴的交点的坐标为(0,3),(6,0).(1)点A的坐标(﹣4,5);(2)和y轴的距离是2个单位长度的点的坐标M(2,2),N(﹣2,4)23.当x=0时,y=﹣4;当y=0时,2x﹣4=0,解得x=2,∴函数图象与两坐标轴的交点为(0,﹣4)(2,0).图象如下:(1)x=﹣2时,y=2×(﹣2)﹣4=﹣8,x=4时,y=2×4﹣4=4,∵k=2>0,∴y随x的增大而增大,∴﹣8≤y≤4;(2)x<2时,y<0;x=2时,y=0;x>2时,y>0.24.(1)由图象可看出当y=2.5时,x=5,是以x的取值规模应当是0<x≤5(y轴上的点是空心圆,是以x≠0); 25.(1)如图所示:(2)由(1)中两函数图象可知,其交点坐标为(1,1);(3)由(1)中两函数图象可知,当x>1时,y1>y2.26.如图.(1)因为一次项系数是﹣3<0,所以y的值随x的增大而减小;(2)当y=0时,x=1,所以图象与x轴的交点坐标是(1,0);当x=0时,y=3,所以图象与y轴的交点坐标是(0,3);(3)由图象知,在A点左边,图象在x轴上方,函数值大于0.所以x≤1时,y≥0.(4)∵OA=1,OB=3,∴函数y=3﹣3x的图象与坐标轴所围成的三角形的面积是S△AOB=×1×3=.27.(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)(,0),描点即可,如图所示;(2)将A.B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发明﹣2.5×2﹣1=﹣6≠﹣4,是以A点不在函数y=2x﹣1的图象上,然后用同样的办法剖断B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,是以x≤.28.(1)当x=﹣4时,y=2;当y=﹣2时,x=﹣2;(2)由(1)可知函数图象过(﹣4,2).(﹣2,﹣2),由此可画出函数的图象,如下图所示:(3)∵y=﹣2x﹣6,﹣4≤y≤2∴﹣4≤﹣2x﹣6≤22≤﹣2x≤8﹣4≤x≤﹣129.(1)图象如图:(2)不雅察图象可得,当x>﹣3时,y>0;当x=﹣3时,y=0;当x<﹣3时,y<0.30.(1)列表:x 0 1y 2 0描点,连线(如图)…(也可以写成过点(0,2)和(1,0)画直线)(2)①(1,0); (0,2)②<1。
一次函数中的折叠、翻折、对称问题专题(专项练习)
![一次函数中的折叠、翻折、对称问题专题(专项练习)](https://img.taocdn.com/s3/m/71daebe4b8f3f90f76c66137ee06eff9aff8495a.png)
一次函数中的折叠、翻折、对称问题专题(专项练习)1.如图,一次函数y kx b =+的图象经过点()0,2-和()2,0,该图象记作直线l .某同学为观察k ,b 对函数图象的影响,将这个一次函数中的k 与b 交换位置后得到一个新的函数,新函数图象记作直线l '.(1) 求直线l 的解析式;(2) 若直线3x =与直线l ,l '分别相交于点A ,B ,求AB 的长;(3) 若直线x m =与直线l ,l '及x 轴有三个不同的交点,当其中两点关于第三点对称时,直接写出m 的值.2.一次函数y 3+2的图象与x 轴、y 轴分别交于点A 、B ,以AB 为边在第二象限内作等边△ABC .(1)求C 点的坐标;(2)在第二象限内有一点M (m ,2),使ABM ABC S S =,求M 点的坐标;(3)将△ABC 沿着直线AB 翻折,点C 落在点E 处;再将△ABE 绕点E 顺时针方向旋转15°,点B 落在点F 处,过点F 作FG ⊥y 轴于G .求△EFG 的面积.3.一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴分别相交于点A (﹣8,0)和点B (0,6).点C 在线段AO 上.如图,将△CBO 沿BC 折叠后,点O 恰好落在AB 边上点D 处.(1)求一次函数的解析式;(2)求AC 的长;(3)点P 为x 轴上一点.且以A ,B ,P 为顶点的三角形是等腰三角形,请直接写出P 点坐标.4.如图,一次函数y=-23x+b 的图象与x 轴、y 轴分别交于点A 、B ,线段AB 的中点为D (3,2).将△AOB 沿直线CD 折叠,使点A 与点B 重合,直线CD 与x 轴交于点C .(1)求此一次函数的解析式;(2)求点C 的坐标;(3)在坐标平面内存在点P (除点C 外),使得以A 、D 、P 为顶点的三角形与△ACD 全等,请直接写出点P 的坐标.5.如图1.在平面直角坐标系中,一次函数323y x =-+x 轴,y 轴分别交于点A 和点C ,过点A 作AB x ⊥轴,垂足为点A ;过点C 作CB y ⊥轴,垂足为点C ,两条垂线相交于点B .(1)线段AC 的长为______,ACO ∠=______度.(2)将图2中的ABC 折叠,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图②,求线段AD 的长;(3)点M 是直线AC 上一个动点(不与点A 、点C 重合).过点M 的另一条直线MN 与y 轴相交于点N .是否存在点M ,使AOC 与MCN △全等?若存在,请求出点M 的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,一次函数3124y x =+的图像分别交x ,y 轴于点A 和B ,与经过点3,02C ⎛⎫ ⎪⎝⎭,()0,3D -的直线交于点E . (1) 求直线CD 的函数解析式及点E 的坐标;(2) 点P 是线段DE 上的动点,连接BP .① 当BP 分BDE △面积为1:2时,请直接写出点P 的坐标;② 将BPE 沿着直线BP 折叠,点E 对应点E ',当点E '落在坐标轴上时,直接写出点P 的坐标.7.平面直角坐标系中,矩形OABC的顶点O、A、C的坐标分别为O(0,0)、A(a,0)、C(0,b),且a、b满足2816210-+++-=;b b a b(1) 矩形的顶点B的坐标是(,);(2) 若D是OC中点,沿AD折叠矩形OABC使O点落在E处,折痕为DA,连CE并延长交AB于F,求直线CE的解析式;(3) 在(2)的条件下,平面内是否存在一点P,使得△OFP是以OF为直角边的等腰直角三角形.若存在,请写出点P的坐标;若不存在,请说明理由.=-+交y轴于点A,交x轴于点B,点C为8.如图,在平面直角坐标系中,直线y x m线段OB的中点,作点C关于直线AB的对称点F,连接BF和OF,OF交AC于点E,交AB于点M.(1) 求点F的坐标.(用m表示)(2) 求证:OF AC⊥.。
函数图象的平移,旋转,翻折问题
![函数图象的平移,旋转,翻折问题](https://img.taocdn.com/s3/m/a7b83d7d6f1aff00bfd51e55.png)
函数图象中的旋转,平移,翻折问题1 (2017荆州)将直线y=x+b沿y轴向下平移3个单位长度,点A (-1,2 )关于y轴的对称点落在平移后的直线上, 则占的值为__________2(2017广安)已知点P(1,2)关于x轴的对称点为P',且P在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为_____________________3 (2016湖州)已知点P在一次函数y=kx+b (k, b为常数,且k v 0, b > 0)的图象上,将点再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上,k的值是 ____________________ ;4 (2017孝感)如图,将直线y x沿y轴向下平移后的直线恰好经过点 A 2, 4 ,且与y轴交于点B,在x轴上存在一点P使得PA PB的值最小,则点P的坐标为5 (2017随州)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移k长度得到点A,过点A作y轴的平行线交反比例函数y 的图象于点B ,x(1)求反比例函数的解析式;(2)若P(X1,yJ、Q(x2,y2)是该反比例函数图象上的两点,且洛x2时,指出点P、Q各位于哪个象限?并简要说明理由.6 (2016聊城)如图,在直角坐标系中,直线y= -与反比例函数对称的A, B两点,已知A点的纵坐标是3.(1)求反比例函数的表达式;(2)将直线y= - -「-x向上平移后与反比例函数在第二象限内交于点求平移后的直线的函数表达式.7 (2017连云港)如图,在平面直角坐标系xOy中,过点A(-2,0)的直线交y轴正半轴于点B ,将直线AB绕着点O 顺时针旋转90°后,分别与x轴y轴交于点D、C.(1)若OB =4,求直线AB 的函数关系式;⑵连接BD ,若△ ABD 的面积是5,求点B 的运动路径长22x4 1先向左平移4个单位长度,再向上平移 2个单位长度,平移后所得抛物线的解析式为(10 (2016滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点选择 180°得到抛物线 y=x 2+5x+6,则原抛物线的解析式是() A / £、2】1 f/£、2】A . y=-( X -二)B . y=-( x+H C. y= -( x -刁--D. y= -(x ^)11 (2016眉山)若抛物线y=x - 2x+3不动,将平面直角坐标系 xOy 先沿水平方向向右平移一个单位,再沿铅直方向 向上平移三个单位,则原抛物线图象的解析式应变为()2 2 2 2 A. y= (x - 2) +3 B . y= (x - 2) +5 C . y=x - 1 D . y=x +41 212 (2017盐城)如图,将函数 y= (x-2 ) +1的图象沿y 轴向上平移得到一条新函数的图象,其 2中点A (1,m ),B (4,n )平移后的对应点分别为点 A'、B'.若曲线段AB 扫过的面积为9 (图中的阴影部分),则新图象的函数表达式是( )13 (2017天津)已知抛物线 y x 2 4x 3与x 轴相交于点 AB (点A 在点B 左侧),顶点为M •平移该抛物线,使点M 平移后的对应点 M'落在x 轴上,点B 平移后的对应点 B'落在y 轴上,则平移后的抛物线解析式为()Q Q Q Q A . y x 2x 1 B . y x 2x 1 C. y x 2x 1 D . y x 2x 114 (2017丽水)将函数y x 的图象用下列方法平移后,所得的图象不经过点A (1, 4)的方法是( )A .向左平移1个单位 B.向右平移3个单位 C .向上平移3个单位 D.向下平移1个单位 15已知二次函数y x 2 bx 1( 1 b 1),当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动,下列关于抛物线的移动方向的描述中,正确的是() A. 先往左上方移动,再往右下方移动B.先往左下方移动,再往左上方移动 B. 先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动8( 2017 襄阳) 将抛物线 2 A . y 2xB . c2 c y 2x3 c. y 2 x D. y 2x8 9 (2017 常德) 将抛物线2 2x 向右平移3个单位,再向下平移 5个单位, 得到的抛物线的表达式为 A. y 2(x 3)2 52 B. y 2(x 3) 5 C . y 2(x 3)2 5 D. y 2(x 3)2216已知抛物线C: y x 3x 10,将抛物线C平移得到抛物线C .若两条抛物线C、C关于直线x=1对称,则下列平移方法中,正确的是( )A.将抛物线C 向右平移5个单位B.将抛物线C 向右平移3个单位2C. 将抛物线C 向右平移5个单位D. 将抛物线C 向右平移6个单位17已知二次函数的图像过点(0, 3),图像向左平移 2个单位后的对称轴是 y 轴,向下平移1个单位后与x 轴只有 一个交点,则此二次函数的解析式为 _____________________________ 。
一次函数的平移、轴对称、旋转
![一次函数的平移、轴对称、旋转](https://img.taocdn.com/s3/m/71639460453610661ed9f495.png)
5.11专题训练:一次函数的平移、轴对称、旋转一、填空题1、将直线y =2x 向右平移1个单位后所得图象对应的函数解析式为 .2、把直线y= - 32 x -2向 平移 个单位,得到直线y= - 32(x+4)3、直线y=kx+b 经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则其解析式 .4、过点(2,1)的一次函数的图象与y =-2x +3平行,则这个函数的解析式为______ ____.5、把直线y =7x -8向上平移10个单位得到的图象解析式为___________.6、在同一直角坐标系中,把直线y=-2x 向 平移 单位,就得到了y=-2x+3的图像.二解答题: 1、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,求直线AB 的解析式。
2、已知直线21l l ⊥垂直,直线 1l 的一次函数解析为y=2x-1,求经过点A (1,2)的直线,求直线2l 的函数解析式。
3、求图象经过点(2,-1),①且与直线y=2x+1平行的一次函数的表达式. ②且与直线y=2x+1关于X 轴对称的一次函数的表达式. ③且与直线y=2x+1关于Y 轴对称的一次函数的表达式.xyOBA2y x =-xy B APM 04、如图直线y=34x+8与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点P 处,求直线AM 的解析式.5、已知一条直线与y 轴交于点A (0,-4),与x 轴交于点B (-3,0). (1)在直角坐标系中画出这条直线; (2)求这条直线的解析式;(3)若点C 与点A 关于x 轴对称,求△ABC 的面积与周长.6.。
一次函数图象与几何变换-初中数学习题集含答案
![一次函数图象与几何变换-初中数学习题集含答案](https://img.taocdn.com/s3/m/b65185cdc5da50e2524d7fde.png)
2.(2017 春•西城区校级期中)将函数 y 3x 的图象沿 y 轴下平移 2 个单位长度得到的函数表达式为 (
)
A. y 3x 2
B. y 3x 2
C. y 3x 2
D. y 3x 2
3.(2017 春•西城区校级期中)把函数 y 3x 2 的图象沿着 y 轴向下平移 5 个单位,得到的函数关系式是 ( )
第 3 页(共 11 页)
故选: A . 【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
3.(2017 春•西城区校级期中)把函数 y 3x 2 的图象沿着 y 轴向下平移 5 个单位,得到的函数关系式是 ( )
A. y 3x 3
B. y 3x 3
一次函数图象与几何变换(北京习题集)(教师版)
一.选择题(共 4 小题) 1.(2017 春•石景山区期末)把直线 y 5x 3 向上平移 m 个单位后,与直线 y 2x 4 的交点在第一象限,则 m 的
取值范围是 ( )
A. m 4
B. m 1
C.1 m 7
D. 3 m 4
第 2 页(共 11 页)
一次函数图象与几何变换(北京习题集)(教师版)
一.选择题(共 4 小题)
参考答案与试题解析
1.(2017 春•石景山区期末)把直线 y 5x 3 向上平移 m 个单位后,与直线 y 2x 4 的交点在第一象限,则 m 的
取值范围是 ( )
A. m 4
B. m 1
A. y 3x 3
B. y 3x 3
C. y 2x 2
D. y 3x 5
4.(2016 春•东城区期中)将直线 y x 2 向下平移 5 个单位长,得到的图象的解析式是 ( )
一次函数图像的平移对称旋转问题
![一次函数图像的平移对称旋转问题](https://img.taocdn.com/s3/m/31fba5ffdd3383c4bb4cd2ee.png)
一次函数图象的平移变换问题的探究求一次函数图象平移后的解析式是一类重要题型,在各省市中考试题频繁亮相.在一次函数y kx b =+中常数k 决定着直线的倾斜程度:直线111y k x b =+与直线222y k x b =+平行⇔12k k =.一、一次函数平移的三种方式:⑴上下平移:在这种平移中,横坐标不变,改变的是纵坐标也就是函数值y .平移规律是上加下减.⑵左右平移:在这种平移中,纵坐标不变,改变的是横坐标也就是自变量x .平移规律是左加右减.⑶沿某条直线平移:这类题目稍有难度.“沿”的含义是一次函数图象在平移的过程中与沿着的那条直线的夹角不变.解题时抓住平移前后关键点坐标的变化. 二、典型例题:(1)点(0,1)向下平移2个单位后的坐标是 ___,直线21y x =+向下平移2个单位后的解析式是所谓平移变换就是在平面内,.经过平移后的图形与原来的图形相比大小、形状不变,只是位置发生了变化.简单的点P (x ,y )平移规律如下:(1)将点P (x ,y )向左平移a 个单位,得到P 1(x -a ,y ) (2)将点P (x ,y )向右平移a 个单位,得到P 2(x+a ,y ) (3)将点P (x ,y )向下平移a 个单位,得到P 3(x ,y -a )(4)将点P (x ,y )向上平移a 个单位,得到P 4(x ,y+a )反之也成立.下面我们来探索直线的平移问题.【引例1】探究一次函数l :y=32x 与1l :y=32x+2,2l :y=32x -2的关系. .【拓广】:一般地,一次函数y=kx+b 的图象是由正比例函数y=kx 的图象沿y 轴向上(b>0)或向下(b<0)平移b 个单位长度得到的一条直线.【应用】:例1、(08上海市)在图2中,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .2lx练习1. 直线y=2x+1向上平移4个单位得到直线 2. 直线y=-3x+5向下平移6个单位得到直线 3. 过点(2,-3)且平行于直线y=2x 的直线是____ _____。
一次函数的旋转!练习题与解析
![一次函数的旋转!练习题与解析](https://img.taocdn.com/s3/m/a937c2dca32d7375a5178005.png)
一次函数的旋转!练习题与解析初中数学:一次函数旋转的相关练习题。
有参考答案和解析。
①已知点A(2,1)绕点(-1,1)顺时针旋转90°得到点C,点B(-1,2)绕点(-1,1)顺时针旋转90°得到点D,求直线CD的解析式。
答案:y=3x+1解析:先求出点C与点D的坐标,然后可以求出直线CD的解析式。
如图,点A(2,1)绕点(-1,1)顺时针旋转90°,所以点C坐标是(-1,-2)点B(-1,2)绕点(-1,1)顺时针旋转90°,所以点D坐标是(0,1)设直线CD的解析式是y=kx+b,把点C(-1,-3)与点D(0,1)代入,解得k=3,b=1。
所以直线CD的解析式是y=3x+1。
②已知一次函数y=2x+4,求它绕点(0,1)顺时针旋转90°后所得直线的解析式。
答案:y=-0.5x+2.5解析:旋转90°后所得直线与原直线垂直。
设旋转后的解析式是y=kx+b。
根据两直线垂直斜率乘积等于-1,则2k=-1,解得k=-0.5找一点(0,4) 绕点(0,1)顺时针旋转90°后的位置为(3,1)代入y=-0.5x+b,解得b=2.5,所以解析式是y=-0.5x+2.5※也可以找两个点,然后通过旋转后的两个点确定直线。
③已知一次函数y=0.5x+2 求绕点A(a,0)逆时针旋转180°后经过点B(3,0),求a的值。
答案:-0.5解析:旋转180°后与原直线平行,即斜率相等,经过点B(3,0),可以求出新直线的解析式,两直线关于点A对称。
如图,易知直线y=0.5x+1与x的交点是C(-4,0)。
可知点A是点B与点C的中点。
可以直接计算a=(-4+3)÷2=-0.5④已知点A(0,4),B(-1,0),C(2,0),过点C作CD垂直于AB交y轴于点P,求点P的坐标。
答案:(0,0.5)解析:根据点A与点B坐标,求得直线AB的解析式:y=4x+4所以直线CD的斜率是-1/4,设CD的解析式是y=-1/4x+b把C(2,0)代入,解得b=0.5,所以点P的坐标是(0,0.5)。
旋转平移一次函数测试题
![旋转平移一次函数测试题](https://img.taocdn.com/s3/m/048f8f83bceb19e8b8f6ba5a.png)
(分钟)图2(图1)月考检测题 姓名 学号一、选择题(每题3分,共30分)1、一个图形无论经过平移变换,还是经过旋转变换,下列说法都能正确的是( ) (1)对应线段平行; (2)对应线段相等;(3)对应角相等; (4)图形的形状和大小都没有发生变化。
A 、(1)、(2)、(3)B 、(2)、(3)、(4)C 、(1)、(2)、(4)D 、(1)、(3)、(4) 2、如图是一个旋转对称图形,要使它旋转后能与自身重合,至少应将它绕中心点旋转( )度。
A 、30B 、 60C 、120D 、 180 3、下列图形中既是轴对称图形,又是中心对称图形的是( ) A 、平行四边形 B 、等边三角形 C 、正方形 D 、直角三角形3.下列函数中,y 是x 的正比例函数的是( )A .y=2x-1B .y=3xC .y=2x 2D .y=-2x+1 5、已知函数y=21--x x 自变量x 的取值范围是( ) A 、x ≥1 B 、x ≥2 C 、x ≥1且x ≠2 D 、x ≥1或x ≠2 6、某天小明骑自行车上学,途中因自行车发生故障, 修车耽误了一段时间后继续骑行,按时赶到了学校. 图2描述了他上学的情景,下列说法中错误..的是 ( ) A 、修车时间为15分钟 B 、学校离家的距离为2000米 C 、到达学校时共用时间20分钟 D 、自行车发生故障时离家距离为1000 7、已知点()()2,,1,21x x 都在直线b x y +-=21上,则21,x x 的大小关系是( ) A 、21x x = B 、21x x < C 、21x x > D 、不能比较 8、弹簧的长度y cm 与所挂物体的质量x (kg ) 的关系是一次函数,图像如右图所示, 则弹簧不挂物体时的长度是( )(A) cm 9 (B) cm 5.10 (C) cm 11 (D) cm 109、如果一次函数当自变量x 的取值范围是31<<-x 时,函数值y 的范围是62<<-y ,那么此函数的解析式是( )A 、 x y 2=B 、 42+-=x yC 、 422--==x y x y 或D 、 422+-==x y x y 或 10、如图1,在矩形MNPQ 中,动点R 从点N 出发, 沿N →P →Q →M 方向运动至点M 处停止.设 点R 运动的路程为x ,MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则当9x =时,点R 应运动到( )A .N 处B .P 处C .Q 处D .M 处二、填空题。
八下数学专项培优练习题旋转与一次函数
![八下数学专项培优练习题旋转与一次函数](https://img.taocdn.com/s3/m/ffb035005e0e7cd184254b35eefdc8d376ee14e9.png)
名师堂八下加强班第二讲 旋转及一次函数姓名:1. (20142014••山东烟台,山东烟台,第第10题3分)如图,将△ABC 绕点P 顺时针旋转90°得到△A ′B ′C ′,则点P 的坐标是(的坐标是( )A .(1,1)B . (1,2)C . (1,3)D .(1,4)2.(2014•遵义10.(3分))如图,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B,则C ′B 的长为(的长为( )A . 2﹣B .C . ﹣1 D . 13. (2014•江苏苏州江苏苏州,,第10题3分)分)如图,如图,如图,△△AOB 为等腰三角形,为等腰三角形,顶点顶点A 的坐标(2,),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A ′O ′B ′,点A 的对应点A ′在x 轴上,则点O ′的坐标为(′的坐标为( )A . (,)B . (,)C . (,)D . (,4) 4. (2014•江苏徐州江苏徐州,,第15题3分)在平面直角坐标系中,将点A (4,2)绕原点逆时针方向旋转90°后,其对应点A ʹ的坐标为的坐标为 .5. (2014•四川巴中,第18题3分)如图,直线y =x +4与x 轴、y 轴分别交于A 、B 两点,把△A 0B 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是的坐标是 .6. (2014山东济南,第20题,3分)如图,将边长为12的正方形ABCD 是沿其对角线AC A D C B A DA ’B ’C C ’ 第20题图题图剪开,再把ABC D 沿着AD 方向平移,得到C B A ¢¢¢D ,当两个三角形重叠的面积为32时,它移动的距离A A ¢等于________. 7. (2014•山东聊城,第7题,3分)如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上.若PM=2.5cm ,PN=3cm ,MN=4cm ,则线段QR 的长为(的长为()A .4.5 B .5.5 C .6.5 D . 7 8.(2014•四川南充,第16题,3分)如图,有一矩形纸片ABCD ,AB =8,AD =17,将此矩形纸片折叠,使顶点A 落在BC 边的A ′处,折痕所在直线同时经过边AB 、AD (包括端点),设BA ′=x ,则x 的取值范围是的取值范围是 .9. (2014年贵州黔东南16.(4分))在如图所示的平面直角坐标系中,点P 是直线y=x 上的动点,A (1,0),B (2,0)是x 轴上的两点,则P A+PB 的最小值为的最小值为 .1010、如图,已知、如图,已知ABC D 是等边三角形. (1)如图(1),点E 在线段AB 上,点D 在射线CB 上,且ED=EC.将BCE D 绕点C 顺时针旋转60°至ACF D ,连接EF.EF.猜想线段猜想线段AB,DB,AF 之间的数量关系之间的数量关系; ;(2)点E 在线段BA 的延长线上,其它条件与(1)中一致,请在图(2)的基础上将图形补充完整,并猜想线段AB,DB,AF 之间的数量关系的数量关系; ;(3)请选择()请选择(11)或()或(22)中的一个猜想进行证明)中的一个猜想进行证明. .A B C FA B C D E第21题图(1) 第21题图(2) 、11、已知:在Rt△ABC中,BC=AC,P为△ABC内一点,且P A=3,PB=1,PC=2。
八年级数学下册19一次函数一次函数图象和几何变换变式训练试题
![八年级数学下册19一次函数一次函数图象和几何变换变式训练试题](https://img.taocdn.com/s3/m/5974c8d585254b35eefdc8d376eeaeaad1f3162f.png)
卜人入州八九几市潮王学校
变式训练-一次函数
图象和几何变换
一、单项选择题(一共6题,一共18分)
1.在平面直角坐标系中,将直线y=-2x+1的图象向左平移2个单位,再向上平移一个单位,得到的直线的解析式是〔〕A.y=-2x+6B.y=-2x-4C.y=-2x+4D.y=-2x-2
2.直线y=2x+3关于y轴对称的直线的解析式为〔〕A.y=-2x+3B.y=3x+2C.y=2x-3D.y=-2x-3
3.一次函数y=2x+3的图象沿y轴向下平移2个单位,那么所得图象的函数解析式是〔〕A.y=2xB.y=2x-3C.y=2x+2D.y=2x+1
4.假设直线y=kx+b与直线y=2x+2关于x轴对称,那么k,b的值分别是〔〕A.-2,-2B.-2,2C.2,-2D.2,2
5.如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为〔〕
A.y=x﹣2
B.y=﹣x+2
C.y=﹣x﹣2
D.y=﹣2x﹣1
5.在直角坐标系中有两条直线l1、l2,直线l1所对应的函数关系式为y=x-2,假设将坐标纸折叠,使
l1与l2重合,此时点〔-1,0〕与点〔0,-1〕也重合,那么直线l2所对应的函数关系式为〔〕
A.y=x-2
B.y=x+2
C.y=-x-2
D.y=-x+2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与变换作业
1.把直线y=2x-3向左平移2个单位长度,再向下平移3个单位长度得到的直线为.
2.把直线y=2x-3沿x轴翻折后的直线表达式为;
把直线y=-2x+3沿y轴翻折后的直线表达式为;
3.若把直线y=x-2沿直线x=1翻折,求翻折后的直线解析式.
y=-与x轴所夹锐角是多少度?
4.求直线2
5.直线y=2x绕点O逆时针旋转90°后直线表达式为。
6.直线y=-2x+1绕点O逆时针旋转90°后,求旋转后的直线表达式.
7.已知:直线y=x+3与x轴交于点A.
(1)此直线绕点A顺时针旋转15°,求旋转后的直线表达式.
(2)此直线绕点A逆时针旋转15°,求旋转后的直线表达式.
=x轴交于点P.
8.直线y x
(1)此直线绕点P顺时针旋转15°,求旋转后的直线表达式. (2)此直线绕点P顺时针旋转30°,求旋转后的直线表达式.。