三角函数图像的变换

合集下载

三角函数的变换与性质

三角函数的变换与性质

三角函数的变换与性质三角函数在数学中起着重要的作用,它们与三角学和几何学密切相关。

本文将探讨三角函数的变换与性质,包括平移、缩放和反射等变换,以及周期性、奇偶性和对称性等性质。

1. 平移变换三角函数的平移变换指的是在横轴或纵轴方向上对函数图像进行平移操作。

对于y = sin(x)来说,平移变换可以表示为y = sin(x - a)或y = sin(x + a),其中a表示平移的量。

当a大于0时,图像向右平移;当a小于0时,图像向左平移。

同样地,对于y = cos(x)和y = tan(x)等函数,也可以用相似的方式进行平移变换。

平移变换可以帮助我们理解函数图像的移动规律,对解决实际问题中的几何和物理相关问题具有重要意义。

2. 缩放变换三角函数的缩放变换是指改变函数图像在横轴或纵轴方向上的尺度。

对于y = sin(x)来说,缩放变换可以表示为y = a*sin(x)或y = sin(ax),其中a表示缩放的比例。

当a大于1时,函数的振幅增大,图像变窄;当a小于1时,函数的振幅减小,图像变宽。

类似地,对于y = cos(x)和y = tan(x)等函数,缩放变换也可以用类似的方式进行。

缩放变换可以帮助我们研究函数图像的形状和变化,对数学建模和图像处理等领域有着广泛应用。

3. 反射变换三角函数的反射变换是指改变函数图像关于横轴或纵轴的对称性。

对于y = sin(x)来说,反射变换可以表示为y = -sin(x)或y = sin(-x),其中负号表示对称性的改变。

经过纵轴反射后,图像关于纵轴对称;经过横轴反射后,图像关于横轴对称。

对于y = cos(x)和y = tan(x)等函数,也可以通过反射变换来改变图像的对称性。

反射变换有助于我们研究三角函数图像的特征和性质,对对称几何和信号处理等领域有一定的应用价值。

4. 周期性三角函数具有明显的周期性特征,即函数在一定区间内的值重复出现。

对于y = sin(x)来说,它的周期为2π,即在每个2π的区间内,函数的值会重复。

三角函数的图像变换

三角函数的图像变换

三角函数的图像变换三角函数是数学中重要的一类函数,包括正弦函数、余弦函数、正切函数等。

它们在图像上呈现出规律性的波动变化,而通过对这些函数进行图像的平移、缩放、翻转等操作,可以得到各种不同形态的函数图像。

本文将介绍三角函数的图像变换过程,并探讨不同变换对函数图像的影响。

正弦函数的图像变换正弦函数 $y = \\sin(x)$ 是一种周期性函数,其图像在 $[-\\pi, \\pi]$ 区间内呈现出波浪状的变化。

对正弦函数进行图像变换可以通过调整函数中的关键参数来实现。

平移平移是一种简单的图像变换操作,可以沿着横轴和纵轴分别对函数图像进行移动。

对于正弦函数 $y=\\sin(x)$ 来说,平移操作可以表示为 $y = \\sin(x - a)$,其中a为平移距离。

当a>0时,函数图像向右平移;当a<0时,函数图像向左平移。

缩放缩放是改变函数图像振幅的一种常见操作。

对于正弦函数$y=\\sin(x)$,可以通过调整函数中的系数来实现振幅的变化。

例如,当 $y=2\\sin(x)$ 时,函数图像的振幅将变为原来的两倍;当 $y=\\frac{1}{2}\\sin(x)$ 时,函数图像的振幅将缩小为原来的一半。

翻转翻转是改变函数图像对称性的一种操作。

对于正弦函数$y=\\sin(x)$,可以通过在函数中引入负号来实现翻转操作。

例如,当 $y=-\\sin(x)$ 时,函数图像将在a轴进行翻转。

余弦函数的图像变换余弦函数 $y = \\cos(x)$ 也是一种周期性函数,其图像在$[0, 2\\pi]$ 区间内呈现出波浪状的变化。

对余弦函数进行图像变换同样可以通过平移、缩放、翻转等操作来实现。

平移对于余弦函数 $y=\\cos(x)$,平移操作的表达式为 $y =\\cos(x - a)$,其中a为平移距离。

与正弦函数类似,当a> 0时,函数图像向右平移;当a<0时,函数图像向左平移。

三角函数的像变换与平移

三角函数的像变换与平移

三角函数的像变换与平移三角函数是数学中非常重要的概念之一,在三角函数中,像变换与平移是两个重要的概念。

它们描述了函数图像在坐标系中的移动和变形过程。

本文将重点介绍三角函数的像变换与平移。

1. 像变换(Image Transformation)像变换是指通过特定的变换规则,改变函数图像的形状、位置或尺寸等性质。

对于三角函数而言,常见的像变换包括拉伸、压缩、翻转和反转等。

1.1 拉伸(Stretch)拉伸是指改变函数图像在横轴和纵轴方向上的尺寸,使其变得更长或更短。

对于正弦函数(sin)和余弦函数(cos)而言,拉伸可以分别沿横轴和纵轴方向进行。

例如,当正弦函数的图像被沿横轴方向拉伸时,函数的周期将变得更长,波峰和波谷之间的距离增加;而当余弦函数的图像被沿纵轴方向拉伸时,函数的振幅(波峰或波谷与横轴的距离)增加。

1.2 压缩(Compression)压缩是指改变函数图像在横轴和纵轴方向上的尺寸,使其变得更短或更窄。

与拉伸相反,压缩使函数的周期变短,波峰和波谷之间的距离缩小;同时,压缩会使函数的振幅减小。

1.3 翻转(Reflection)翻转是指将函数图像相对于横轴或纵轴进行对称变换,以改变图像的朝向。

对于正弦函数和余弦函数而言,翻转可以使波形上下颠倒或左右翻转。

1.4 反转(Inversion)反转是指将函数图像的正负进行翻转,使得原本正值的部分变为负值,负值的部分变为正值。

对于正弦函数和余弦函数而言,反转会使波形关于横轴或纵轴进行对称。

2. 平移(Translation)平移是指将函数图像在坐标系中沿横轴或纵轴方向上移动,以改变图像的位置。

对于正弦函数和余弦函数而言,平移可以使波形向左或向右平移一定的距离,或者向上或向下平移。

2.1 横向平移(Horizontal Translation)横向平移是指将函数图像沿横轴方向上移动,通常用参数h表示平移的距离。

当h为正值时,函数图像向右平移;当h为负值时,函数图像向左平移。

三角函数图像变换方法

 三角函数图像变换方法

三角函数图像变换方法是数学和工程领域中非常重要的概念,其应用范围广泛,包括但不限于信号处理、图像处理、机械振动分析等领域。

下面将详细介绍三角函数图像变换的原理、方法和应用。

一、三角函数图像变换的基本原理三角函数图像变换的核心是通过调整三角函数的参数(如振幅、频率、相位等),从而改变其图像的形状和位置。

具体来说,可以通过以下几种方式来实现三角函数图像的变换:1. 振幅变换:通过改变三角函数的振幅参数,可以改变图像在垂直方向上的大小。

振幅增加时,图像的高度增加;振幅减小时,图像的高度减小。

2. 频率变换:通过改变三角函数的频率参数,可以改变图像在水平方向上的周期性。

频率增加时,图像的周期减小,图像变得更密集;频率减小时,图像的周期增加,图像变得更稀疏。

3. 相位变换:通过改变三角函数的相位参数,可以改变图像在水平方向上的平移。

相位增加时,图像向右平移;相位减小时,图像向左平移。

二、三角函数图像变换的常见方法1. 振幅变换法:通过直接调整三角函数的振幅参数,实现图像在垂直方向上的大小变化。

例如,将正弦函数y=sin(x)的振幅扩大2倍,得到y=2sin(x)的图像,其高度变为原来的2倍。

2. 频率变换法:通过调整三角函数的频率参数,实现图像在水平方向上的周期性变化。

例如,将正弦函数y=sin(x)的频率增加2倍,得到y=sin(2x)的图像,其周期变为原来的1/2。

3. 相位变换法:通过调整三角函数的相位参数,实现图像在水平方向上的平移。

例如,将正弦函数y=sin(x)的相位增加π/2,得到y=sin(x+π/2)的图像,其向右平移π/2个单位。

此外,还可以结合使用上述方法,实现更复杂的图像变换。

例如,可以同时调整振幅、频率和相位参数,得到不同形状和位置的三角函数图像。

三、三角函数图像变换的应用三角函数图像变换在各个领域有着广泛的应用。

以下是一些典型的应用示例:1. 信号处理:在信号处理中,三角函数图像变换常用于分析信号的频率成分和相位关系。

三角函数图像的变换教案

三角函数图像的变换教案

三角函数图像的变换教案一、教学目标:1. 理解三角函数图像的基本特征。

2. 学会通过变换的方式,求解三角函数图像的变换后的图像。

3. 能够运用三角函数图像的变换,解决实际问题。

二、教学内容:1. 三角函数图像的基本特征。

2. 三角函数图像的平移变换。

3. 三角函数图像的缩放变换。

4. 三角函数图像的轴对称变换。

5. 三角函数图像的旋转变换。

三、教学重点与难点:1. 教学重点:三角函数图像的基本特征,三角函数图像的变换规律。

2. 教学难点:三角函数图像的变换后的图像的求解,实际问题的解决。

四、教学方法:1. 采用讲授法,讲解三角函数图像的基本特征,变换规律。

2. 采用案例分析法,分析实际问题,引导学生运用三角函数图像的变换解决实际问题。

3. 采用小组讨论法,引导学生相互交流,共同探讨三角函数图像的变换规律。

五、教学过程:1. 导入:通过复习三角函数图像的基本特征,引导学生进入本节课的学习。

2. 讲解:讲解三角函数图像的平移变换、缩放变换、轴对称变换、旋转变换等规律。

3. 案例分析:分析实际问题,引导学生运用三角函数图像的变换解决实际问题。

4. 练习:布置练习题,让学生巩固所学内容。

5. 总结:总结本节课所学内容,强调重点与难点。

6. 作业布置:布置作业,巩固所学知识。

教学反思:在教学过程中,要注意引导学生掌握三角函数图像的基本特征,变换规律。

要关注学生的学习情况,及时解答学生的疑问,提高学生的学习效果。

在解决实际问题时,要引导学生运用所学知识,培养学生的实际问题解决能力。

六、教学评估:1. 课堂讲解评估:观察学生对三角函数图像变换的理解程度,以及能否正确描述平移、缩放、轴对称和旋转变换的法则。

2. 练习题评估:通过学生完成的练习题,检查他们是否能够独立应用变换规则解决问题。

3. 小组讨论评估:评估学生在小组讨论中的参与程度,以及他们能否与同伴有效沟通和分享想法。

七、教学资源:1. 教学PPT:提供清晰的三角函数图像和变换规则的示例。

三角函数的图像变换

三角函数的图像变换

cosθ = 邻边/斜边,在单位圆中表示为x坐标。
正切函数(tangent)
三角函数的周期性
tanθ = 对边/邻边,表示为正弦与余弦之比。
正弦、余弦函数周期为2π,正切函数周期为 π。
三角函数在各象限表现
第一象限
所有三角函数值均为正。
第三象限
正弦、余弦函数值为负,正切函数值为正。
第二象限
正弦函数值为正,余弦、正切函数值为负。
伸缩变换对正弦函数影响
横向伸缩
改变正弦函数图像的周期长度。缩小周期使得函数图像更加紧密,扩大周期则 使得函数图像更加稀疏。
纵向伸缩
改变正弦函数图像的振幅大小。增大振幅使得函数图像波动范围更大,减小振 幅则使得函数图像波动范围更小。
周期性与相位调整方法
周期性调整
通过改变正弦函数的周期来调整图像的疏密程度。可以通过调整函数中的系数来 实现周期的变化。
相位调整
通过改变正弦函数的相位来调整图像出现的位置。可以通过在函数中添加常数项 来实现相位的调整。同时,利用三角函数的和差化积公式,也可以实现相位的调 整。
03 余弦函数图像变换分析
余弦函数基本图像特征
波形图像
余弦函数图像呈现周期性波动,具有典型的波形 特征。
振幅和周期
余弦函数的振幅和周期是确定其图像形状和尺寸 的关键参数。
拓展:其他类型周期函数图像变换
锯齿波和方波
除了正弦波和余弦波外,还有其 他类型的周期函数如锯齿波和方 波等,它们的图像变换同样具有 实际应用价值。
周期函数的合成与分解
通过三角函数的线性组合可以合 成其他类型的周期函数;反之, 其他类型的周期函数也可以通过 傅里叶级数展开成三角函数的线 性组合。

三角函数图像的变换与特征

三角函数图像的变换与特征

三角函数图像的变换与特征三角函数图像的变换是数学中一个重要的概念,它描述了三角函数图像相对于原始函数图像的位置、形状和特征的变化。

在本文中,我们将探讨三角函数的变换和它们的特征。

一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动的操作。

对于三角函数而言,平移的规律如下:1. 正弦函数(Sine Function)的平移:a. 沿横轴平移:f(x) = sin(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。

b. 沿纵轴平移:f(x) = a + sin(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。

2. 余弦函数(Cosine Function)的平移:a. 沿横轴平移:f(x) = cos(x - a),其中a为平移的距离,若a > 0,则向右平移;若a < 0,则向左平移。

b. 沿纵轴平移:f(x) = a + cos(x),其中a为平移的距离,若a > 0,则向上平移;若a < 0,则向下平移。

二、伸缩变换伸缩是指对函数图像进行拉伸或压缩的操作。

对于三角函数而言,伸缩的规律如下:1. 正弦函数的伸缩:a. 沿横轴伸缩:f(x) = sin(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。

b. 沿纵轴伸缩:f(x) = a * sin(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。

2. 余弦函数的伸缩:a. 沿横轴伸缩:f(x) = cos(kx),其中k为伸缩的系数,若k > 1,则图像水平方向收缩;若0 < k < 1,则图像水平方向拉伸。

b. 沿纵轴伸缩:f(x) = a * cos(x),其中a为伸缩的系数,若a > 1,则图像垂直方向收缩;若0 < a < 1,则图像垂直方向拉伸。

三角函数的图像及其变换

三角函数的图像及其变换

振幅变换
振幅变换
通过将三角函数中的系数乘以一 个常数,可以改变函数图像的形 状和大小。例如,将正弦函数 y=sin(x)变为y=2sin(x),图像的 高度变为原来的两倍。
总结词
振幅变换可以改变函数图像的大 小和形状,但不影响位置。
详细描述
振幅变换通常通过乘以一个常数来实 现。例如,对于正弦函数y=sin(x),乘 以2得到y=2sin(x),图像的高度变为 原来的两倍。同样地,对于余弦函数 y=cos(x),乘以2得到y=2cos(x),图 像的高度也变为原来的两倍。
与复数的联系
三角函数与复数之间有着密切的联系。例如,复数的三角形式就是由三角函数来表示的,这使得复数 的一些性质和运算可以通过三角函数来理解和实现。
此外,在复分析中,三角函数也起着重要的作用,如在求解某些复数域上的微分方程时,经常需要用 到三角函数。
谢谢
THANKS
应用
正切函数在解决实际问题和数学 问题中也有应用,例如在几何学 和三角学中的角度和长度计算。
02 三角函数的图像
CHAPTER
正弦函数的图像
01
正弦函数图像是周期函数,其基本周期为$2pi$,在$[0, 2pi]$ 区间内呈现波形。
02
正弦函数图像在$x$轴上的交点是$(frac{pi}{2} + kpi, 0)$,其
周期变换
总结词
详细描述
通过改变三角函数的周期,可以改变
函数图像的形状和位置。例如,将正 弦函数和余弦函数的周期从2π变为4π, 图像将变为原来的两倍长,但形状和
周期变换可以改变函数图像的长度, 但不影响形状和位置。
位置保持不变。
周期变换通常通过乘以一个常数来实现。例 如,将函数y=sin(x)变为y=sin(2x),周期 从2π变为π,图像长度减半。同样地,对于 余弦函数,将y=cos(x)变为y=cos(2x),周 期从2π变为π,图像长度也减半。

三角函数图像的变换

三角函数图像的变换

三角函数图像的变换一.x y sin =图像的三种变换:①函数x y sin =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. ②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 二.函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.三.练习1.已知简谐运动()2sin()()32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T =_________;初相ϕ=__________.2.三角方程2sin(2π-x )=1的解集为_______________________. 3.函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为______________________.{2,}3x x k k Z ππ=±∈ )48sin(4π+π-=x y第3题4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象向右平移__________个单位.5.为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数2sin y x =,x R ∈的图像上所有的点①向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);②向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变);③向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变); ④向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变).其中,正确的序号有_____③______. 6.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象向右平移__3π__个单位长度.7.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f =ω=______;ϕ=__________.8.下列函数: ①sin 6y x π⎛⎫=+⎪⎝⎭; ②sin 26y x π⎛⎫=-⎪⎝⎭; ③cos 43y x π⎛⎫=-⎪⎝⎭; ④cos 26y x π⎛⎫=-⎪⎝⎭. 其中函数图象的一部分如右图所示的序号有_____④_____. 9.函数y =sin(2x +3π)的图象关于点_______________对称. 10.求下列函数的单调减区间: (1)⎪⎭⎫⎝⎛+=62cos 2πx y (2)⎪⎭⎫ ⎝⎛+-=32sin 2πx y 11. 函数tan()2y x π=-(44x ππ-≤≤且0)x ≠的值域是___________________12. 7.如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π.(1)求θ和ω的值;π6第8题(2)已知点π2A⎛⎫⎪⎝⎭,,点P是该函数图象上一点,点00()Q x y,是PA当y=ππ2x⎡⎤∈⎢⎥⎣⎦,时,求x的值.13.设函数)(),()2sin()(xfyxxf=<<-+=ϕπϕ图像的一条对称轴是直线8π=x.(Ⅰ)求ϕ;(Ⅱ)求函数)(xfy=的单调增区间;(Ⅲ)画出函数)(xfy=在区间],0[π上的图像第7题。

三角函数图形的变换

三角函数图形的变换

三角函数图形的变换1、正弦与余弦函数图象的变换2、由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。

途径一:先平移变换再周期变换(伸缩变换):先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。

途径二:先周期变换(伸缩变换)再平移变换:先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。

作y =sin x (长度为2π的某闭区间)的图象 得y =sin(x +φ) 的图象得y =sin ωx 的图象 得y =sin(ωx +φ) 的图象 得y =sin(ωx +φ) 的图象 得y =Asin(ωx +φ)的图象,先在一个周期闭区间上再扩充到R 上沿x 轴平 移|φ|个单位 横坐标 伸长或缩短 横坐标伸 长或缩短沿x 轴平 移|ωϕ|个单位 纵坐标伸 长或缩短纵坐标伸 长或缩短【经典例题】图像变换一:左右平移1、把函数R x x y ∈=,sin 图像上所有的点向左平移4π个单位,所得函数的解析式为 _________2、把函数R x x y ∈=,cos 图像上所有的点向右平移5π个单位,所得函数的解析式为 _________图像变换二:纵向伸缩3、对于函数R x x y ∈=,s i n 3的图像是将R x x y ∈=,sin 的图像上所有点的______(“横”或”纵”)坐标______(伸长或缩短)为原来的______而得到的图像。

三角函数像的变换与性质

三角函数像的变换与性质

三角函数像的变换与性质三角函数的变换与性质是数学中一个重要的概念。

在本文中,我们将探讨三角函数的变换及其性质,从而帮助读者更好地理解和应用这一概念。

一、三角函数的基本定义在开始讨论三角函数的变换与性质之前,我们先来回顾一下三角函数的基本定义。

在直角三角形中,正弦函数(sine)和余弦函数(cosine)分别是一个角的对边和斜边、邻边和斜边的比值;而正切函数(tangent)是一个角的对边和邻边的比值。

这些定义可以用以下方程表示:sin(θ) = opposite/hypotenusecos(θ) = adjacent/hypotenusetan(θ) = opposite/adjacent其中,θ代表角度。

二、三角函数的变换在数学中,我们经常会遇到需要对三角函数进行变换的情况。

下面是三种常见的三角函数变换形式。

1. 平移变换平移变换是指通过改变三角函数的参数,将函数的图像向左或向右平移。

例如,对于正弦函数sin(x),我们可以通过将参数x替换为x+h(其中h为一个常数)来实现平移变换,即sin(x+h)。

这样一来,函数的图像向左平移h个单位。

类似地,cos(x)和tan(x)也可以进行平移变换。

2. 垂直伸缩变换垂直伸缩变换是指通过改变函数的幅度来改变函数的图像。

具体而言,我们可以将三角函数的参数乘以一个常数a来实现垂直伸缩变换。

例如,对于正弦函数sin(x),如果将参数x替换为ax,则函数的图像会在纵向上收缩为原来的1/a倍。

同理,cos(x)和tan(x)也可以进行垂直伸缩变换。

3. 水平伸缩变换水平伸缩变换是指通过改变函数的参数来改变函数图像的宽度。

具体而言,我们可以把三角函数的参数替换为bx来实现水平伸缩变换。

例如,对于正弦函数sin(x),如果将参数x替换为bx,则函数的图像在横向上会收缩为原来的1/b倍。

cos(x)和tan(x)也可以应用水平伸缩变换。

三、三角函数的性质除了变换之外,三角函数还具有一些固有的性质,下面将介绍其中几个重要的性质。

高中数学:131《三角函数图像的变换》课件必修

高中数学:131《三角函数图像的变换》课件必修
这些操作包括平移、伸缩、翻折和旋转等,可以单独或组合使用。
变换的目的是为了更好地理解三角函数的性质,解决实际问题,以及进行图像处理 等。
变换的种类和特点
01
02
03
04
平移变换
将图像沿x轴或y轴方向移动 ,保持图像形状不变。
伸缩变换
通过改变x轴和y轴的比例来 改变图像的大小,可以横向或
纵向伸缩。
翻折变换
利用伸缩变换的性质求解函数的极值
例如,利用正弦函数的伸缩性质,可以求解y=sin(3x)在x=π/9处的极小值为1。
利用对称变换的性质求解函数的对称轴或对称中心
例如,利用正弦函数的对称性质,可以求解y=sin(x)的对称轴为x=kπ+π/2,k∈Z。
变换在实际问题中的应用
物理学中的应用
三角函数图像的综合变换在物理学中有广泛的应用,如振 动和波动现象、交流电等。通过变换可以更好地理解物理 现象和解决实际问题。
x轴缩短为原来的1/2,则图像的 周期变为原来的2倍。
01
03
02 04
总结词:影响相位
详细描述:沿x轴伸缩不仅改变 了图像的周期,还会影响函数的 相位。例如,将x轴缩短为原来 的1/2,相当于将相位滞后了π。
沿y轴伸缩
总结词:改变振幅
详细描述:沿y轴伸缩是 指保持x轴不变,通过改 变y轴的长度来改变整个 图像的振幅。例如,将y 轴放大为原来的2倍,则 图像的振幅变为原来的2 倍。
翻折变换
旋转变换
$y = -f(-x)$ 或 $y = f(x)$,前者表示沿x 轴翻折,后者表示沿y轴翻折。
$x = xcostheta - ysintheta$ 和 $y = xsintheta + ycostheta$,其中$theta$为 旋转角度。

三角函数图像变换总结

三角函数图像变换总结

三角函数图像变换总结三角函数是高中数学中非常重要的一个概念,它在几何、物理、工程等领域中有着广泛的应用。

在学习三角函数时,我们经常会接触到三角函数的图像变换。

图像变换是指通过对原始函数的一系列操作,得到一个新的函数的过程。

一、平移变换平移变换是指将函数的图像沿着横轴或纵轴方向平移一定的距离。

当我们将函数沿着横轴平移时,可以通过将自变量加上一个常数来实现。

例如,若将函数f(x)沿着横轴向右平移a个单位,则新函数为f(x-a)。

同样,当我们将函数沿着纵轴平移时,可以通过将因变量加上一个常数来实现。

二、伸缩变换伸缩变换是指通过改变函数的自变量或因变量的取值范围来改变函数的图像形状。

当我们将函数的自变量进行伸缩时,可以通过改变自变量的比例系数来实现。

例如,若将函数f(x)的自变量x进行伸缩,新函数为f(kx),其中k是一个正常数。

当k 大于1时,函数图像会水平压缩;当0<k<1时,函数图像会水平拉伸。

同样,我们可以将函数的因变量进行伸缩,通过改变因变量的比例系数来实现。

三、翻折变换翻折变换是指通过改变函数的自变量或因变量的正负号来改变函数的图像形状。

当我们将函数的自变量进行翻折时,可以通过将自变量取相反数来实现。

例如,若将函数f(x)的自变量进行翻折,新函数为f(-x)。

同样,我们可以将函数的因变量进行翻折,通过将因变量取相反数来实现。

四、迭加变换迭加变换是指将多个变换效果叠加在一起,从而得到一个新的函数的图像。

例如,我们可以将平移、伸缩和翻折等变换操作应用于原始函数,得到一个经过多次变换的新函数的图像。

通过迭加变换,我们可以获得更加丰富多样的函数图像。

总结起来,三角函数的图像变换是通过对函数的自变量和因变量进行平移、伸缩、翻折等操作来改变函数的图像形状。

通过合理地应用这些图像变换,我们可以更好地理解和应用三角函数,并在解决实际问题时提供便利。

因此,掌握三角函数的图像变换是非常重要的数学技能之一,也是我们在数学学习中需要重点关注和掌握的内容之一。

三角函数图像变换总结

三角函数图像变换总结

三角函数图像变换总结三角函数是数学中的重要内容,它在数学、物理、工程等领域都有着广泛的应用。

三角函数的图像变换是三角函数研究中的一个重要内容,通过对三角函数图像的变换,可以更直观地理解三角函数的性质和特点。

本文将对三角函数图像的平移、垂直伸缩和水平伸缩等变换进行总结,希望能够帮助读者更好地理解三角函数图像的变换规律。

1. 平移变换。

平移是指将函数图像沿着坐标轴的方向进行平移。

对于三角函数图像而言,平移包括水平平移和垂直平移两种情况。

水平平移是指将函数图像沿着横坐标轴的方向进行平移,而垂直平移则是指将函数图像沿着纵坐标轴的方向进行平移。

对于三角函数y=sin(x)而言,将其图像沿着横坐标轴平移a个单位,则新的函数图像为y=sin(x-a);将其图像沿着纵坐标轴平移b个单位,则新的函数图像为y=sin(x)+b。

同样的规律也适用于三角函数y=cos(x)和y=tan(x)的图像平移变换。

2. 垂直伸缩变换。

垂直伸缩是指将函数图像沿着纵坐标轴的方向进行伸缩。

对于三角函数图像而言,垂直伸缩可以分为垂直方向的拉伸和压缩两种情况。

对于三角函数y=sin(x)而言,将其图像沿着纵坐标轴方向进行拉伸k倍,则新的函数图像为y=ksin(x);将其图像沿着纵坐标轴方向进行压缩k倍,则新的函数图像为y=(1/k)sin(x)。

同样的规律也适用于三角函数y=cos(x)和y=tan(x)的图像垂直伸缩变换。

3. 水平伸缩变换。

水平伸缩是指将函数图像沿着横坐标轴的方向进行伸缩。

对于三角函数图像而言,水平伸缩可以分为水平方向的拉伸和压缩两种情况。

对于三角函数y=sin(x)而言,将其图像沿着横坐标轴方向进行拉伸k倍,则新的函数图像为y=sin(kx);将其图像沿着横坐标轴方向进行压缩k倍,则新的函数图像为y=sin(x/k)。

同样的规律也适用于三角函数y=cos(x)和y=tan(x)的图像水平伸缩变换。

通过以上对三角函数图像变换的总结,我们可以发现三角函数图像的变换规律其实并不复杂。

三角函数图像的变换

三角函数图像的变换

三角函数图像的变换三角函数是一类重要的基础函数,包括正弦函数、余弦函数、正切函数等。

在数学中,我们经常遇到需要对三角函数进行图像变换的情况,比如平移、伸缩、翻转等。

本文将介绍三角函数图像的常见变换以及它们对函数图像的影响。

一、平移变换平移是指将函数图像沿着横轴或纵轴方向移动一段距离。

以正弦函数为例,设原函数为y=sin(x),将它沿横轴向右平移a个单位,新函数为y=sin(x-a)。

当a取正值时,函数图像向右平移;当a取负值时,函数图像向左平移。

平移变换后的图像与原图像形状相同,只是位置不同。

二、伸缩变换伸缩是指将函数图像进行横向或纵向的比例拉伸或压缩。

以正弦函数为例,设原函数为y=sin(x),将它沿横轴方向进行压缩b倍,新函数为y=sin(bx)。

当b大于1时,函数图像横向压缩;当0<b<1时,函数图像横向拉伸。

同样,沿纵轴方向进行伸缩也可得到相应的函数图像变换。

三、翻转变换翻转是指将函数图像沿着横轴或纵轴进行翻转,也称为镜像变换。

以正弦函数为例,设原函数为y=sin(x),将它沿横轴进行翻转,新函数为y=-sin(x)。

同样地,纵向翻转可得到相应的函数图像变换。

四、混合变换除了单一的平移、伸缩和翻转变换,我们还可以通过组合这些变换来得到更复杂的函数图像变换。

比如,可以将平移、伸缩和翻转变换相结合,得到更丰富多样的变换效果。

以上是对三角函数图像常见变换的简要介绍,下面我们将进一步讨论这些变换对函数图像的具体影响。

1.平移变换的影响:平移变换只改变了函数图像的位置,不改变其形状。

假设原函数图像位于坐标系上方,若平移后函数图像向右移动,则新函数图像将出现在原来的右侧;若平移后函数图像向左移动,则新函数图像将出现在原来的左侧。

平移变换对函数图像的垂直位置没有影响。

2.伸缩变换的影响:横向伸缩会拉伸或压缩函数图像。

当b大于1时,函数图像在x轴方向上被压缩,变得更加陡峭;当0<b<1时,函数图像在x轴方向上被拉伸,变得更加平缓。

三角函数的图像的变换口诀解读

三角函数的图像的变换口诀解读

三角函数的图像的变换口诀解读变T 数倒系数议,变A 伸压 y 无疑, 变φ 要把系数提,正φ 左进负右移.周期变换是通过改变x 的系数来实现的,即周期T 的变化只与ω有关而与φ无关.这是因为ωπ2=T,故要使周期扩大或缩小m (m >0) 倍,则须用xm1去代原式中的x (纵坐标不变),故有“变T 数倒系数议”之说.相位φ变换实质上就是将函数的图像向左或向右平移.当先作周期变换后作相位变换时,须提出系数ω,这是因为周期变化时改变了x 的值,此时其初相位(非0初相)同时也改变相应得到改变,且改变的倍数相同.当先作相位变换后作周期变换,由于此时x 的系数为1,系数提不提无影响,为了统一记忆我们也视为提出系数“1”.因而有“变φ要把系数提”之说.三角函数图像的周期﹑振幅﹑相位等变换的问题是历年高考中常考查的内容.对此类命题的求解,无论三种变换怎样摆设,先要弄清哪是原函数的图像,哪是新函数的图像,再据本歌诀所述,很快就可得到解决.例1 为了得到 y =)62sin(π-x 的图像,可以将函数 y = cos2x 的图像 (2004年高考) ( )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D) 向左平移3π个单位长度解法1 ∵ y = cos2x =)4(2sin )22sin(ππ+=+x x , 而 y =]3)4[(2sin )62sin(πππ-+=-x x ,由此可得 只须将函数y = cos2x 的图像向右平移3π个单位长度即可.故选(B).解法2 ∵ y =)62sin(π-x )622cos(ππx +-=,即y )3(2cos π-=x , 而已知的函数为y = cos2x ,由此可得,须将函数y = cos2x 的图像向右平3π个单位即可.故选(B).点评 由于当ωϕ-=x 时, 相位0=+ϕωx .因而,我们可称此时的相位为零相位.由此可见,在作相位变换时,其平移的数值与方向是由两个0相位对应的x 值的差来决定的.对于本题而言,由于两个0相位对应的x 的值分别为12π与4π-,故所作的平移就是要将已知函数的0相位对应的点)0 ,4(π-移到点)0 12(,π处.易知要平移的数值是:3)4(12πππ=--,方向是向右的.显然这一方法就是“五点作图法”中的第一零点判断法.例2 已知函数 f (x ) =)5sin(2π+x (x ∈R ) 的图像为C, 函数 y =)52sin(π-x (x ∈R ) 的图像为C 1, 为了得到C 1,只需把C 上所有的点先向右平移 ,再将 . ( )(A)52π个单位,横、纵坐标都缩短到原来的21(B)52π个单位,横、纵坐标都伸长到原来的2倍(C)5π个单位,横、纵坐标都缩短到原来的21 (D)5π个单位,横、纵坐标都伸长到原来的2倍解 ∵ 要求的变换是先作平移变换,后作周期变换,再作振幅变换.故将函数y =)5sin(2π+x 的图像向右平移52π个单位, 得到)5sin(2)525sin(2πππ-=-+=x x y的图像.再将此图像的横坐标缩小到原来的一半,得到y =2)52sin(π-x 的图像.最后将其纵坐标缩小到原来的一半,即可得到y =)52sin(π-x 的图像.故选(A).点评 本题要求先作相位变换,后作周期变换,再作振幅变换,且原函数中x 的系数为“1”,明确这一点是非常重要的.。

三角函数的像变换规律总结

三角函数的像变换规律总结

三角函数的像变换规律总结三角函数是数学中的重要概念,它们在数学和物理等领域中有广泛的应用。

像变换规律是描述三角函数在图像上的移动、拉伸和反转等变化规律。

在本文中,我们将总结常见的三角函数的像变换规律。

一、正弦函数的像变换规律正弦函数是最常见的三角函数之一,其一般式为y =A*sin(Bx+C)+D,其中A、B、C、D为常数参数。

1. 水平方向平移:当C改变时,函数图像在水平方向上发生平移。

当C>0时,向左平移;当C<0时,向右平移。

平移的距离等于C的绝对值除以B。

2. 垂直方向平移:当D改变时,函数图像在垂直方向上发生平移。

当D>0时,向上平移;当D<0时,向下平移。

平移的距离等于D。

3. 垂直方向拉伸或压缩:当A改变时,函数图像在垂直方向上发生拉伸或压缩。

当|A|>1时,发生纵向拉伸;当|A|<1时,发生纵向压缩。

拉伸或压缩的程度与|A|的大小有关。

二、余弦函数的像变换规律余弦函数也是常见的三角函数之一,其一般式为y =A*cos(Bx+C)+D,其中A、B、C、D为常数参数。

1. 水平方向平移:与正弦函数类似,余弦函数在改变C时在水平方向上发生平移。

当C>0时,向左平移;当C<0时,向右平移。

平移的距离等于C的绝对值除以B。

2. 垂直方向平移:与正弦函数类似,余弦函数在改变D时在垂直方向上发生平移。

当D>0时,向上平移;当D<0时,向下平移。

平移的距离等于D。

3. 垂直方向拉伸或压缩:与正弦函数类似,余弦函数在改变A时在垂直方向上发生拉伸或压缩。

当|A|>1时,发生纵向拉伸;当|A|<1时,发生纵向压缩。

拉伸或压缩的程度与|A|的大小有关。

三、正切函数的像变换规律正切函数是另一个常见的三角函数,其一般式为y =A*tan(Bx+C)+D,其中A、B、C、D为常数参数。

由于正切函数在某些点上无定义,因此在图像上会有一些特殊的性质。

三角函数图像变换顺序详解(全面)

三角函数图像变换顺序详解(全面)

《图象变换的顺序寻根》题根研究一、图象变换的四种类型从函数y = f (x)到函数y = A f()+m,其间经过4种变换:1。

纵向平移——m 变换2。

纵向伸缩——A变换3.横向平移——变换4.横向伸缩-—变换一般说来,这4种变换谁先谁后都没关系,都能达到目标,只是在不同的变换顺序中,“变换量”可不尽相同,解题的“风险性"也不一样。

以下以y = sin x到y = A sin ()+m为例,讨论4种变换的顺序问题。

【例1】函数的图象可由y = sin x的图象经过怎样的平移和伸缩变换而得到?【解法1】第1步,横向平移:将y = sin x向右平移,得第2步,横向伸缩:将的横坐标缩短倍,得第3步:纵向伸缩:将的纵坐标扩大3倍,得第4步:纵向平移:将向上平移1,得【解法2】第1步,横向伸缩:将y = sin x的横坐标缩短倍,得y = sin 2x第2步,横向平移:将y = sin 2x向右平移,得第3步,纵向平移:将向上平移,得第4步,纵向伸缩:将的纵坐标扩大3倍,得【说明】解法1的“变换量"(如右移)与参数值()对应,而解法2中有的变换量(如右移)与参数值()不对应,因此解法1的“可靠性"大,而解法2的“风险性”大.【质疑】对以上变换,提出如下疑问:(1)在两种不同的变换顺序中,为什么“伸缩量”不变,而“平移量”有变?(2)在横向平移和纵向平移中,为什么它们增减方向相反——如当〈0时对应右移(增方向),而m < 0时对应下移(减方向)?(3)在横向伸缩和纵向伸缩中,为什么它们的缩扩方向相反——如|| > 1时对应着“缩”,而| A |>1时,对应着“扩”?【答疑】对于(2),(3)两道疑问的回答是:这是因为在函数表达式y = A f ()+m 中x和y的地位在形式上“不平等”所至. 如果把函数式变为方程式(y+)= f (),则x、y在形式上就“地位平等"了。

高中三角函数的像变换

高中三角函数的像变换

高中三角函数的像变换三角函数是数学中常见的函数形式,它们在数学和物理等领域中有着广泛的应用。

像变换是对函数图像进行的一种变换操作,可以通过变换操作来改变原始函数图像的形态和位置。

在高中数学中,三角函数的像变换是一个重要的概念,掌握它可以帮助我们更好地理解和应用三角函数。

一、平移变换平移变换是一种保持函数形状不变,只改变位置的变换操作。

对于三角函数来说,平移变换可以分为水平平移和垂直平移两种类型。

1. 水平平移水平平移是将函数图像沿x轴的方向移动,可以使函数图像向左或向右平移。

数学上,水平平移的量可以用常数c表示。

对于三角函数来说:- 正弦函数y = sin(x + c)的图像向左平移c个单位;- 余弦函数y = cos(x + c)的图像向右平移c个单位;- 正切函数y = tan(x + c)的图像向左平移c个单位。

2. 垂直平移垂直平移是将函数图像沿y轴的方向移动,可以使函数图像向上或向下平移。

数学上,垂直平移的量可以用常数d表示。

对于三角函数来说:- 正弦函数y = sin(x) + d的图像向上平移d个单位;- 余弦函数y = cos(x) + d的图像向上平移d个单位;- 正切函数y = tan(x) + d的图像向上平移d个单位。

二、伸缩变换伸缩变换是一种改变函数图像形状和大小的变换操作。

对于三角函数来说,伸缩变换可以分为水平伸缩和垂直伸缩两种类型。

1. 水平伸缩水平伸缩是通过改变自变量x的取值范围来改变函数图像的形状。

数学上,水平伸缩的量可以用常数a表示。

对于三角函数来说:- 正弦函数y = sin(ax)的自变量x的取值范围变为原来的1/a倍,图像被水平挤压;- 余弦函数y = cos(ax)的自变量x的取值范围变为原来的1/a倍,图像被水平挤压;- 正切函数y = tan(ax)的自变量x的取值范围变为原来的1/a倍,图像被水平挤压。

2. 垂直伸缩垂直伸缩是通过改变因变量y的取值范围来改变函数图像的形状和大小。

三角函数第七课(三角函数图像变换)讲义高一上学期数学人教A版

三角函数第七课(三角函数图像变换)讲义高一上学期数学人教A版

三角函数第七课 §三角函数图像变换复习:指出y = sin x 的图像变换为)32sin(π+=x y 的图像的两种方法平移法过程:两种方法殊途同归(1) y=sinx相位变换y=sin(x+φ)周期变换y=sin(ωx+φ)振幅变换 )sin(ϕ+ω=x A y (2)y=sinx 周期变换y=sin ωx 相位变换y=sin(ωx+φ)振幅变换)sin(ϕ+ω=x A y三种变换: 1. 平移变换①对“x ”左加右减; ②对“y ”上加下减。

2. 翻折变换 ①关于x 轴翻折 ②关于y 轴翻折 ③关于原点翻折 ④对“x ”加绝对值 ⑤对“y ”加绝对值 3. 伸缩变换②周期变换巧求初相角,最高点法例题如图,它是函数y =A sin(ωx +ϕ)(A >0,ω>0),|ϕ|<π的图象,由图中条件,写出该函数解析式.练习:1.(1)y =sin(x +4π)是由y =sin x 向 平移 个单位得到的. (2)y =sin(x -4π)是由y =sin x 向 平移 个单位得到的. (3)y =sin(x -4π)是由y =sin(x +4π)向 平移 个单位得到的.2.要得到函数y =sin(2x -3π)的图象,只须将函数y =sin2x 的图象 A.向左平移3πB.向右平移3πC.向左平移6πD.向右平移6π3.若将某函数的图象向右平移2π以后所得到的图象的函数式是y =sin(x +4π),则原来的函数表达式为( )A.y =sin(x +43π) B.y =sin(x +2π) C.y =sin(x -4π) D.y =sin(x +4π)-4π4.将函数y =f (x )的图象沿x 轴向右平移3π,再保持图象上的纵坐标不变,而横坐标变为原来的2倍,得到的曲线与y =sin x 的图象相同,则y =f (x )是( )A.y =sin(2x +3π)B.y =sin(2x -3π)C.y =sin(2x +32π)D.y =sin(2x -32π)5. 函数y =cos(432ππ+x )的最小正周期是__________. 6.要得到函数y =cos(2x -4π)的图象,只需将函数y =sin2x 的图象A.向左平移8π个单位B.向右平移8π个单位 C.向左平移4π个单位 D.向右平移4π个单位7.把函数y =cos(3x +4π)的图象适当变动就可以得到y =sin(-3x )的图象,这种变动可以是( ) A.向右平移4π B.向左平移4π C.向右平移12π D.向左平移12π8.如图b 是函数y =A sin(ωx +φ)+2的图象的一部分,它的振幅、周期、初相各是( )A.A =3,T=34π,φ=-6πB.A =1,T=34π,φ=-43πC.A =1,T=32π,φ=-43πD.A =1,T=34π,φ=-6π9.如图c 是函数y =A sin (ωx +φ)的图象的一段,它的解析式为( )A.)32sin(32π+=x yB.)42sin(32π+=x yC.)3sin(32π-=x yD.)322sin(32π+=x y10.函数y =A sin (ωx +φ)(A >0,ω>0)在同一周期内,当x =3π时,有y ma x =2,当x =0时,有y min =-2,则函数表达式是 .11.如图d 是f (x )=A sin (ωx +φ),A >0,|φ|<2π的一段图象,则函数f (x )的表达式为 .12.如图e ,是f (x )=A sin (ωx +φ),A >0,|φ|<2π的一段图象,则f (x )的表达式为 .13.如图f 所示的曲线是y =A sin (ωx +φ)(A >0,ω>0)的图象的一部分,求这个函数的解析式.图c图d图e图f14.函数y =A sin (ωx +φ)+k(A >0,ω>0)在同一周期内,当x =35π时,y 有最大值为37π,当x =311π时,y 有最小值-32,求此函数的解析式.15.由图g 所示函数图象,求y =A sin (ωx +φ)(|φ|<π)的表达式.16.函数y =Asin(ωx +φ)(|φ|<π)的图象如图h ,求函数的表达式.图g图h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、函数y=sin(x+π),x∈R和y=sin(x-
6-
O
3),x∈R的图象与y=sin x的图象有什么联系?2
个单位所得的曲线是
2
sin x的图象,试求y=f(x)的解析式。

3
)y=sin2x
3)
3
)
3)
3
) 3
),x∈R的简图。

π2
3
),x∈R
6
),x∈R 三角函数图像的变换
题型归纳:
系?
π
34
),x∈R的图象与y=sin x的图象有什么联
-
π-π
3
1y
π5ππ
6
34x
2、函数y=3sin(2x+π
(1)y=sin x(2)y=sin x
y=sin(x+π4、函数f(x)的横坐标伸长为原来的2倍,再向左平移
πy=1
5、函数y=Asin(ωx+φA>0,ω>0,|φ|<π)的图象如图,求函数的表达式.
y=sin(2x+πy=3sin(2x+πy=sin(2x+π
y=3sin(2x+π
★☆作业:(A组)
1、画出下列函数在长度为一个周期的闭区间上的简图:
3、画出函数y=3sin(2x+π
y
2x+
3
x
3sin(2x+π)
3
(3)y=4sin(x-
π
(4)y=sin(2x+π第1页共2页
6 ) ,x ∈R
(2) y = 1 sin( 3 x -
(1) y = 5 sin( 1 x + 4 ) ,x ∈R 6、把函数 y =cos(3x + π
A.向右平移 π 4
C.向右平移 12 (3) y = 3sin(2 x - ) ,x ∈R
(4) y = 2 cos( x + π ) ,x ∈R
3 ,φ =- 6 B.A
=1,T= 2 3 ,φ =- 4
D.A =1,T= 3 sin(2x +
3 sin(2x +
(1) y = 8sin( - ) ,x ∈[0,+∞) (2) y = 1 7 ) ,x ∈[0,+∞)
2 的图象的一部分,求这个函数的解析式。

4、(1)y =sin(x + π
(2)y =sin(x - π
(3)y =sin(x - π
4 )是由 y =sin(x + 4 )向 5、若将某函数的图象向右平移 π
10、设函数 y = sin (x - π
A.y =sin(x + 3π
B.y =sin(
x + π
C.y =sin(x - π
D.y =sin(x + π
2、说明下列函数的图像由正弦函数或余弦函数经过了怎样的变换。

π 2 2
π 4 )的图象适当变动就可以得到 y =sin(-3x )的图象,这种变动
可以是( )
π π π
4 B.向左平移
D.向左平移
12
★★☆☆作业( B 组):
7、如图:是函数 y =A sin(ω x +φ )+2 的图象的一部分,它
的振幅、周期、初相各是 ( )
π
1
1
6
4
A.A =3,T= 4π π 4π 3π
3
,φ =-
4
C.A =1,T= 2π
3π 4π π
3 ,φ =- 6
8、如左下图是函数 y =A sin (ω x +φ )的图象的一段,它的 解析式为 ( )
A. y =
2
π 2 x
3 ) B. y = 3 sin( 2 + π 2 π
4 ) C. y = 3 sin(x - 3 )
D. y =
2
2π 3
)
3、不画简图,直接 写出下列函数的振幅、周期和初相,并说明这些 函数的图象可由正弦曲
线经过怎样的变化得出(注意定义域): x π
4
8
3 cos(3x +
π
4 )是由 y =sin x 向
平移
个单位得到的.
4 )是由 y =sin x 向
平移 个单位得到的.
π
平移
个单位得到的.
2 以后所得到的图象的函数式是 y =sin(x +
表达式为( )
4 )
2 )
π
4
)-
4
4 )
π
4 ),则原来的函数
第2页共2页9、如右上图所示的曲线是y
=A sin(ωx+φ)(A>0,ω
>0)|φ|<
6
)cosx;①求出函数的单
调区间;②求出函数的值域。

相关文档
最新文档