三角函数图像变换
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数图像及其变换
一、
知识梳理
1、sin y x =与cos y x =的图像与性质
2、sin y x =与sin()y A x ωφ=+
(1) 形如sin()y A x ωφ=+的函数图像的画法 (2) sin y x =与sin()y A x ωφ=+图像的关系
二、
典型例题
1、把函数sin y x =(x R ∈)的图象上所有点向左平行移动3
π
个单位长度,再把所得图象上所有点的横坐标缩短到原来的1
2
倍(纵坐标不变),得到的图象所表示的函数是
(A )sin(2)3y x π=-,x R ∈ (B )sin()26x y π
=+,x R ∈
(C )sin(2)3y x π=+,x R ∈ (D )sin(2)3
2y x π
=+,x R ∈
2、为得到函数πcos 23y x ⎛
⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )
A .向左平移
5π
12个长度单位 B .向右平移
5π
12个长度单位 C .向左平移5π
6
个长度单位
D .向右平移5π
6
个长度单位
3、函数πsin 23y x ⎛⎫=-
⎪⎝
⎭在区间ππ2⎡⎤-⎢⎥⎣⎦
,的简图是( )
4、下面有五个命题:
①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =
Z k k ∈π
,2
|. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 36
)32sin(3的图象得到的图象向右平移x y x y =π
π+= ⑤函数.0)2
sin(〕上是减函数,在〔ππ
-
=x y 其中真命题的序号是 (写出所言 )
5、将函数3sin()y x θ=-的图象向右平移3
π
个单位得到图象F ',若F '的一条对称轴是直线4
x π
=,则θ的一个可能取值是
A.
π125 B. π125- C. π12
11 D. 1112π-
三、高考再现
1、已知函数2
π()sin
sin 2
f x x x x ωωω⎛⎫
=++ ⎪⎝
⎭
(0ω>)的最小正周期为π.
(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦
,上的取值范围.
2、已知函数()cos(2)2sin()sin()344
f x x x x π
ππ
=-
+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122
ππ
-上的值域
3、已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2
π (Ⅰ)求f (
8
π
)的值; (Ⅱ)将函数y =f (x )的图象向右平移
6
π
个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间.
自我检测
1为得到函数πcos 23y x ⎛⎫
=+ ⎪⎝
⎭
的图像,只需将函数sin 2y x =的图像 A .向左平移
5π
12个长度单位 B .向右平移
5π
12个长度单位 C .向左平移5π
6个长度单位
D .向右平移5π
6
个长度单位
2. 函数)0,0)(cos()(>>+=ωϕωA x A x f 的部分图象如图所示,则
+++)3()2()1(f f f )2009(f + 的值为
A .2
B .22-
C .7
D .0
3、已知函数f (x )=sin 2x+3sinxcosx+2cos 2x ,x ∈R . (1)求函数f (x )的最小正周期和单调增区间;
(2)函数f (x )的图象可以由函数y=sin2x (x ∈R )的图象经过怎样的变换得到?