黑龙江省齐齐哈尔市克山县北兴中学2019-2020九年级下学期数学期中考试试卷及参考答案

合集下载

齐齐哈尔2020期中考试初三数学试题(2020.05)

齐齐哈尔2020期中考试初三数学试题(2020.05)

2019—2020学年度下学期期中学业考试初三数学试题一、选择题(每小题3分,满分30分)1.-3的绝对值是()A .-3B .3C .-13D .132.下列“组织的有关图标”图片中,不是轴对称图形的是()3.关于反比例函数4y x =的图象,下列说法正确的是()C .两个分支关于x 轴成轴对称D .两个分支关于原点成中心对称4.如图,A 、B 、C 三点在数轴上所表示的数分别为a 、b 、c .根据图中各点的位置,下列各式正确的为()A .0ac <B .0ab >C .0c a ->D .0b c ->5.如图,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D 在⊙O 上,∠BAC =35°,则∠ADC 的度数为()A .45°B .50°C .55°D .65°6.下列调查,比较适用普查而不适用抽样调查方式的是()A .调查全省市场上的“N95口罩”是否符合国家标准;B .调查一批灯泡的使用寿命;C .调查你所在班级全体学生的身高;D .调查我市初中生每人每周的零花钱数.7.下列四个命题中,错误的命题是()A .四条边都相等的四边形是菱形;B .对角线互相垂直平分的四边形是正方形;C .有三个角是直角的四边形是矩形;D .一组对边平行且相等,对角线垂直且相等的四边形是正方形.8.跳绳是一个非常好的体育运动项目,某校举办跳绳个人测试赛,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟).176180184180170176172164186180该组数据的众数、中位数、平均数分别为()A .180,180,178B .180,178,178C .180,178,176.8D .178,180,176.89.为了建设社会主义新农村,我市积极推进“行政村通畅工程”,对甲村和乙村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程改造道路里程y (公里)与时间x (天)的函数关系大致的图像是()10.如图,二次函数2(0)y ax bx c a =++≠的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫ ⎪⎝⎭,下列结论:①0ac <;②0a b +=;③b a c <+;④44c a =+.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,满分21分)11.中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以我们要为中国节水,为世界节水.若每人每天浪费水0.32升,那么100万人每天浪费的水,用科学记数法表示为升.12.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为.13.已知32sin -=m α,且a 为锐角,则m 的取值范围是.14.如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长为cm .15.如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD=∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有对.16.矩形ABCD 中,AD=5,AB=4,点E 、点F 在直线AD上,且四边形BCEF 为菱形,若点M 为线段EF 的中点,则线段AM 的长为.17.如图,在△OAA 1中,∠AOA 1=30°,∠A=90°,AA 1=1,以OA 1为边作Rt △OA 1A 2,使∠A 1OA 2=30°,∠OA 1A 2=90°;再以OA 2为边作Rt △OA 2A 3,使∠A 2OA 3=30°,∠OA 2A 3=90°;再以OA 3为边作Rt △OA 3A 4,使∠A 3OA 4=30°,∠OA 3A 4=90°;…,如此继续,可以依次得到Rt △OA 1A 2,Rt △OA 2A 3,Rt △OA 3A 4,…,Rt △OA n-1A n ,则OA 2020=.三、解答题(本题共8道大题,共69分)18.(本题6分)计算:19.(本题4分)分解因式:20.(本题5分)解方程:012485)4cos 452π-+︒(1)(2)2x x x+-=+3223129x x y xy -+21.(本题8分)如图,直线PAB交⊙O于A、B两点,AC是⊙O的直径,∠PAC的平分线交⊙O于点D,过点D作DE⊥PA于点D.(1)求证:DE为⊙O的切线;(2)若DE+EA=6,⊙O的直径为10,求AB的长度.22.(本题10分)新冠肺炎疫情发生以来,专家给出了很多预防建议。

2019-2020学年黑龙江省齐齐哈尔市中考数学达标测试试题

2019-2020学年黑龙江省齐齐哈尔市中考数学达标测试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°2.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.14.下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4 B.3 C.2 D.15.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )A.8 B.10 C.13 D.146.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C.240 D.1207.下列二次根式中,最简二次根式的是()A.15B.0.5C.5D.508.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB10.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°二、填空题(本题包括8个小题)11.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.12.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数 100 400800 1 000 2 000 5 000 发芽种子粒数 85 318 652 793 1 604 4 005 发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1). 13.如图,已知点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,那么四边形AOBC 的面积为___________.14.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.15.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________. 16.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷) 品种 第1年 第2年 第3年 第4年 第5年 品种 甲 9.8 9.9 10.1 10 10.2 甲 乙9.410.310.89.79.8乙经计算,x 10 x 10==甲乙,,试根据这组数据估计_____中水稻品种的产量比较稳定.17.利用1个a×a 的正方形,1个b×b 的正方形和2个a×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.18.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB 、BC 、CD 、DA 的中点.若四边形EFGH 为菱形,则对角线AC 、BD 应满足条件_____.三、解答题(本题包括8个小题)19.(6分)已知:在△ABC 中,AC=BC ,D ,E ,F 分别是AB ,AC ,CB 的中点. 求证:四边形DECF 是菱形.20.(6分)某电视台的一档娱乐性节目中,在游戏PK 环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA 1、BB 1、CC 1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA 1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.21.(6分)如图,已知等腰三角形ABC 的底角为30°,以BC 为直径的⊙O 与底边AB 交于点D ,过D 作DE ⊥AC ,垂足为E .证明:DE 为⊙O 的切线;连接OE ,若BC =4,求△OEC 的面积.22.(8分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A ,B 两点处,利用测角仪分别对北岸的一观景亭D 进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D 到南滨河路AC 的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)23.(8分)如图,已知AB 是O 的直径,点C 、D 在O 上,60D ∠=且6AB =,过O 点作OE AC ⊥,垂足为E .()1求OE 的长; ()2若OE 的延长线交O 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积S .24.(10分)如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE .求证:DE 是⊙O 的切线;若AE=6,∠D=30°,求图中阴影部分的面积.25.(10分)已知抛物线2y x bx c =++过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.26.(12分)如图,在Rt △ABC 中,CD ,CE 分别是斜边AB 上的高,中线,BC =a ,AC =b .若a =3,b =4,求DE 的长;直接写出:CD = (用含a ,b 的代数式表示);若b =3,tan ∠DCE=13,求a 的值.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.C 【解析】 【分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.2.B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.3.C【解析】【分析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.4.C【解析】【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.5.C【解析】【分析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.6.D【解析】【分析】由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x 的值,确定出两直角边,即可求出三角形面积.【详解】如图所示,由tanA=,设BC=12x,AC=5x,根据勾股定理得:AB=13x,由题意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,则△ABC面积为120,故选D.【点睛】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.7.C【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A,被开方数含分母,不是最简二次根式;故A选项错误;B,被开方数为小数,不是最简二次根式;故B选项错误;C C选项正确;D D选项错误;故选C.考点:最简二次根式.8.D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.9.C【解析】【分析】根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.10.C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:510.∵51+51=10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.二、填空题(本题包括8个小题)11.2【解析】【分析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC 底边上的高线,依据三角形的面积为12可求得AD的长.【详解】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=12,解得AD=1,∵EF是线段AB的垂直平分线,∴AM=BM.∴BM+MD=MD+AM.∴当点M位于点M′处时,MB+MD有最小值,最小值1.∴△BDM的周长的最小值为DB+AD=2+1=2.【点睛】本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.12.1.2【解析】【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.1【解析】【详解】解:由于点C为反比例函数6yx=-上的一点,则四边形AOBC的面积S=|k|=1.14.1【解析】【分析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解.【详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,个位数字1,3,1,5循环出现,四个一组,2019÷4=504…3,∴22019﹣1的个位数是1.故答案为1.【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键.15.a <﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.16.甲【解析】【分析】根据方差公式分别求出两种水稻的产量的方差,再进行比较即可.【详解】甲种水稻产量的方差是:()()()()()2222219.8109.91010.110101010.2100.025⎡⎤-+-+-+-+-=⎣⎦, 乙种水稻产量的方差是:()()()()()2222219.41010.31010.8109.7109.8100.045⎡⎤-+-+-+-+-=⎣⎦, ∴0.02<0.124.∴产量比较稳定的小麦品种是甲.17.a 1+1ab+b 1=(a+b )1试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.18.AC=BD.【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG 和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.试题解析:添加的条件应为:AC=BD.证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=12AC;同理EF∥AC且EF=12AC,同理可得EH=12 BD,则HG∥EF且HG=EF,∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,∴四边形EFGH为菱形.考点:1.菱形的性质;2.三角形中位线定理.三、解答题(本题包括8个小题)19.见解析【解析】【详解】证明:∵D、E是AB、AC的中点∴DE=BC,EC=AC∵D、F是AB、BC的中点∴DF=AC,FC=BC∴DE=FC=BC,EC=DF=AC∵AC=BC∴DE=EC=FC=DF∴四边形DECF是菱形20.(1)13;(2)13.(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.【详解】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=13;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是31 93 .21.(1)证明见解析;(2)3 2【解析】试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.试题解析:(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD⊥AB,∵△ABC是等腰三角形,∴AD=BD,∴OD 是△ABC 的中位线,∴OD ∥AC ,∵DE ⊥AC ,∴OD ⊥DE ,∵D 点在⊙O 上,∴DE 为⊙O 的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=12BC=2, ∴,∴S△ABC =12AB•CD=12, ∵DE ⊥AC ,∴DE=12AD=12, AE=AD•cos30°=3,∴S△ODE =12OD•DE=12S △ADE =12AE•DE=12, ∵S△BOD =12S △BCD =12×12S △ABC =14,∴S△OEC =S △ABC -S △BOD -S △ODE -S △ADE 2 22.观景亭D 到南滨河路AC 的距离约为248米.【解析】【分析】过点D 作DE ⊥AC ,垂足为E ,设BE=x ,根据AE=DE ,列出方程即可解决问题.【详解】过点D 作DE ⊥AC ,垂足为E ,设BE=x ,在Rt △DEB 中,tan ∠DBE=DE ,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴观景亭D到南滨河路AC的距离约为248米.23.(1)OE=32;(2)阴影部分的面积为32【解析】【分析】(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.【详解】解:(1) ∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE // BC,又∵点O是AB中点,∴OE是△ABC的中位线,∵∠D=60°,∴∠B=60°,又∵AB=6,∴BC=AB·cos60°=3,∴OE=12BC=32;∴∠AOC=120°,∵OF ⊥AC ,∴AE=CE ,AF =CF ,∴∠AOF=∠COF=60°,∴△AOF 为等边三角形,∴AF=AO=CO ,∵在Rt △COE 与Rt △AFE 中,AF CO AE CE=⎧⎨=⎩, ∴△COE ≌△AFE ,∴阴影部分的面积=扇形FOC 的面积,∵S 扇形FOC =2603360π⨯=32π. ∴阴影部分的面积为32π.【点睛】本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合. 24.(1)证明见解析;(2)阴影部分的面积为8833π. 【解析】【分析】(1)连接OC ,先证明∠OAC=∠OCA ,进而得到OC ∥AE ,于是得到OC ⊥CD ,进而证明DE 是⊙O 的切线;(2)分别求出△OCD 的面积和扇形OBC 的面积,利用S 阴影=S △COD ﹣S 扇形OBC 即可得到答案.【详解】解:(1)连接OC , ∵OA=OC , ∴∠OAC=∠OCA ,∵AC 平分∠BAE , ∴∠OAC=∠CAE ,∴∠OCA=∠CAE , ∴OC ∥AE , ∴∠OCD=∠E ,∵AE ⊥DE , ∴∠E=90°, ∴∠OCD=90°, ∴OC ⊥CD ,∵点C 在圆O 上,OC 为圆O 的半径, ∴CD 是圆O 的切线;在Rt △OCD 中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC ,∴DB=OB=OC=AD=4,DO=8,∴CD=22228443-=-=DO OC ∴S △OCD =43422⋅⨯=CD OC =83, ∵∠D=30°,∠OCD=90°,∴∠DOC=60°, ∴S 扇形OBC =16×π×OC 2=83π, ∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=83﹣83π, ∴阴影部分的面积为83﹣83π.25.y=2x +2x ;(-1,-1).【解析】试题分析:首先将两点代入解析式列出关于b 和c 的二元一次方程组,然后求出b 和c 的值,然后将抛物线配方成顶点式,求出顶点坐标.试题解析:将点(0,0)和(1,3)代入解析式得:0{13c b c =++=解得:2{0b c == ∴抛物线的解析式为y=2x +2x ∴y=2x +2x=2(1)x +-1 ∴顶点坐标为(-1,-1).考点:待定系数法求函数解析式.26.(1)710;(222ab a b +(3101. 【解析】【分析】(1)求出BE ,BD 即可解决问题.(2)利用勾股定理,面积法求高CD 即可.(3)根据CD =3DE ,构建方程即可解决问题.【详解】解:(1)在Rt △ABC 中,∵∠ACB =91°,a =3,b =4,∴2235,cos 5BC AB a b B AC ∴=+===. ∵CD ,CE 是斜边AB 上的高,中线,∴∠BDC =91°,15BE AB 22==. ∴在Rt △BCD 中, 39cos 355BD BC B =⋅=⨯= 5972510DE BE BD ∴=-=-=(2)在Rt △ABC 中,∵∠ACB =91°,BC =a ,AC =b , 2222AB BC AC a b ∴=+=+ABC 11S AB CD AC BC 22=⋅=⋅ 222222AC BC ab a b CD AB a b a b⋅+∴===++2222a b a b ++. (3)在Rt △BCD 中,22222cos BD BC B a a b a b =⋅==++, ∴222222222122DE BE BD a b a b a b=-=+=++, 又1tan 3DE DCE CD ∠==, ∴CD =3DE 22222232a b a b =++.∵b =3,∴2a =9﹣a 2,即a 2+2a ﹣9=1.由求根公式得110a =-(负值舍去),即所求a 101.【点睛】本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x-=- B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 2.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则-a b 的值为( ) A .1 B .3 C .14- D .743.如图,平行四边形 ABCD 中, E 为 BC 边上一点,以 AE 为边作正方形AEFG ,若 40BAE ∠=︒,15CEF ∠=︒,则 D ∠的度数是A .65︒B .55︒C .70︒D .75︒4.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45︒B .50︒C .60︒D .75︒5.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D . 6.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线7.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =41°,∠D =30°,斜边AB =4,CD =1.把三角板DCE 绕着点C 顺时针旋转11°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .48.关于x 的一元一次不等式≤﹣2的解集为x≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .29.如果一组数据6,7,x ,9,5的平均数是2x ,那么这组数据的中位数为( )A .5B .6C .7D .910.若ab <0,则正比例函数y=ax 与反比例函数y=b x在同一坐标系中的大致图象可能是( ) A . B . C . D .二、填空题(本题包括8个小题)11.不等式组20262x x ->⎧⎨->⎩①②的解是________. 12.如图,已知函数y =x+2的图象与函数y =k x (k≠0)的图象交于A 、B 两点,连接BO 并延长交函数y =k x(k≠0)的图象于点C ,连接AC ,若△ABC 的面积为1.则k 的值为_____.13.如图,在△ABC 中,AD 、BE 分别是BC 、AC 两边中线,则EDCABC S S =_____.14.将23x =代入函数1y x =-中,所得函数值记为1y ,又将11x y =+代入函数1y x=-中,所得的函数值记为2y ,再将21x y =+代入函数中,所得函数值记为3y …,继续下去.1y =________;2y =________;3y =________;2006y =________.15.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .16.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为______dm .17.如图,已知等腰直角三角形 ABC 的直角边长为 1,以 Rt △ABC 的斜边 AC 为直角 边,画第二个等腰直角三角形 ACD ,再以 Rt △ACD 的斜边 AD 为直角边,画第三个等腰直 角三角形 ADE……依此类推,直到第五个等腰直角三角形 AFG ,则由这五个等腰直角三角形所构成的图形的面积为__________.18.二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为___三、解答题(本题包括8个小题)19.(6分)先化简,再求值:22m 35m 23m 6m m 2-⎛⎫÷+- ⎪--⎝⎭,其中m 是方程2x 3x 10++=的根. 20.(6分)如图,AB ∥CD ,△EFG 的顶点F ,G 分别落在直线AB ,CD 上,GE 交AB 于点H ,GE 平分∠FGD .若∠EFG=90°,∠E=35°,求∠EFB 的度数.21.(6分)在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F 如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;如图②,若点F 为AD 的中点,O 的半径为2,求AB 的长.22.(8分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?23.(8分)如图,AB =AD ,AC =AE ,BC =DE ,点E 在BC 上.求证:△ABC ≌△ADE ;(2)求证:∠EAC =∠DEB .24.(10分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?25.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.求证:DE是⊙O的切线;若DE=3,CE=2. ①求BCAE的值;②若点G为AE上一点,求OG+12EG最小值.26.(12分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.求证:△ABE≌△CAD;求∠BFD的度数.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】解:设动车速度为每小时x 千米,则可列方程为:45050x -﹣450x =23.故选D . 2.D【解析】【分析】 先解方程组求出74x y -=,再将,,x a y b =⎧⎨=⎩代入式中,可得解. 【详解】 解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=, 所以74x y -=, 因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=. 故选D.【点睛】本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b 的值,本题属于基础题型.3.A【解析】分析:首先求出∠AEB ,再利用三角形内角和定理求出∠B ,最后利用平行四边形的性质得∠D=∠B 即可解决问题.详解:∵四边形ABCD 是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四边形ABCD是平行四边形,∴∠D=∠B=65°故选A.点睛:本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.4.C【解析】【分析】根据平行四边形的性质和圆周角定理可得出答案.【详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=12∠AOC,因此∠B+∠D=∠AOC+12∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.5.B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.6.C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.7.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1故选A.考点: 1.旋转;2.勾股定理.8.D【解析】【分析】解不等式得到x≥12m+3,再列出关于m 的不等式求解. 【详解】 23m x -≤﹣1, m ﹣1x≤﹣6,﹣1x≤﹣m ﹣6, x≥12m+3, ∵关于x 的一元一次不等式23m x -≤﹣1的解集为x≥4, ∴12m+3=4,解得m=1. 故选D .考点:不等式的解集9.B【解析】【分析】直接利用平均数的求法进而得出x 的值,再利用中位数的定义求出答案.【详解】∵一组数据1,7,x ,9,5的平均数是2x ,∴679525x x ++++=⨯,解得:3x =,则从大到小排列为:3,5,1,7,9,故这组数据的中位数为:1.故选B .【点睛】此题主要考查了中位数以及平均数,正确得出x 的值是解题关键.10.D【解析】【分析】根据ab <0及正比例函数与反比例函数图象的特点,可以从a >0,b <0和a <0,b >0两方面分类讨论得出答案.【详解】解:∵ab <0,∴分两种情况:(1)当a >0,b <0时,正比例函数y=ax 数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a <0,b >0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D 符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本题包括8个小题)11.x >4【解析】【分析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x >2;由②得 :x >4;∴此不等式组的解集为x >4;故答案为x >4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.3【解析】【分析】连接OA.根据反比例函数的对称性可得OB=OC,那么S△OAB=S△OAC=12S△ABC=2.求出直线y=x+2与y轴交点D的坐标.设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据S△OAB=2,得出a-b=2 ①.根据S△OAC=2,得出-a-b=2 ②,①与②联立,求出a、b的值,即可求解.【详解】如图,连接OA.由题意,可得OB=OC,∴S△OAB=S△OAC=12S△ABC=2.设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2),B(b,b+2),则C(-b,-b-2),∴S△OAB=12×2×(a-b)=2,∴a-b=2 ①.过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,则S△OAM=S△OCN=12 k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴12(-b-2+a+2)(-b-a)=2,将①代入,得∴-a-b=2 ②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),。

2019-2020年九年级期中考试数学试题.docx

2019-2020年九年级期中考试数学试题.docx

九年级数学期中试题时间: 120 分满分120分一、选择题(本大题共15 小题,每小题 3 分,共 45 分)每小题只有一个正确选项1. 有一种圆柱体茶叶筒如图所示,则它的主视图是()A.B.C.D.2.下列方程是关于x 的一元二次方程的是()1A. ax2+ bx+c=0 B.x2+ x = 2C. x2+ 2x = x2-1 D . 3x2+ 1= 2x+ 23.已知菱形ABCD的周长是 16,∠ A=60°,则较短的对角线BD的长度为 ()A.2 B.2 3 C.4D.434.在△ ABC中, D、E 为边 AB、 AC的中点,已知△ ADE的面积为 4,那么△ ABC的面积是A.8 B.12C. 16D. 20第4题图5.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B.C.D.6.下列对正方形的描述错误的是()A.正方形的四个角都是直角B.正方形的对角线互相垂直C.邻边相等的矩形是正方形D.对角线相等的平行四边形是菱形7. 已知反比例函数 y= x的图象经过点P( -1,2 ),则这个函数的图象位于()k第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限8. 已知关于 x 的一元二次方程k1 x23x k 21有一根为 0,则k的值是A. -1B. 1C.1D. 09.已知 x22x40 ,则 3x26x 2的值为()A.13 B .14C. 11D. 1210. 如果两点 P1( 1, y1)和 P2( 2, y2)都在反比例函数y=-1的图象上,那么()xA.y2 < y1<0B. y1< y2<0C. y2> y1> 0D. y1> y2> 011. 如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点 B、C、D,使得 AB⊥ BC,CD ⊥BC,点 E 在 BC上,并且点 A、 E、 D 在同一条直线上,若测得BE=20m,CE=10m, CD=20m,则河的宽度 AB等于()A.60mB.40mC.30mD.20m12.已知粉笔盒里有 4 支红色粉笔和 n 支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是2,则 n 的值是5A. 4B. 6C. 8D.1013.如图, 10× 2 网格中有一个△ ABC,下图中与△ ABC相似的三角形的个数有()C②④①③A BA.1个 B .2个 C.3个 D .4个14.如图,在△ ABC中,∠ ACB= 90°,∠ ABC= 60°,CDBD平分∠ ABC, P 点是 BD的中点,若 AD= 6,P B A则 CP的长为()A. 3 B .3.5 C . 4D.4.514 题图15 如图,△ OAB和△ ACD是等边三角形, O、 A、 C 在 x 轴上, B、 D 在 y=3( x> 0)的图象上,则x点 C 的坐标是()A .(﹣ 1+ , 0)B .( 1+ , 0)C .(2 ,0)D .(2+,0)1 2019- 3 4 5 6 7 8 9 10 11 12 13 14 152020 年九年级期中考试数学试题2二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)16. . 若 y = 3,则xy的值为 _____.x 4x17.如果关于 x 的方程 x 26x m有两个相等的实数根,那么m= _____.18.在平面直角坐标系中,△ABC 顶点 A 的坐标为( 2, 3),若以原点 O 为位似中心,画△ ABC 的位似图形△ A ′ B ′ C ′,使△ ABC 与△ A ′ B ′ C ′的相似比等于 1: 2,则点 A ′的坐标 __________.19.如上图,在矩形ABCD 中, AB = 9, BC = 12,点 E 是 BC 的中点,点 FAD是 CD 边上的任意一点,当AEF 的周长最小时, DF = _________。

2019-2020年九年级数学下学期期中试题(五四制)

2019-2020年九年级数学下学期期中试题(五四制)

2019-2020年九年级数学下学期期中试题(五四制)说明:1.本卷共有三个大题,25个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,在试题卷上作答,不得分.一、选择题(本题共12个小题,每小题3分,满分36分)每小题都给出标号为A,B,C,D四个备选答案,其中有且只有一个是正确的.1.有下列四个论断:○1-是有理数;○2是分数;○31.232232223···是无理数;○4π是无理数,其中正确的个数是()A.1个B.2个C.3个D.4个2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法(保留3个有效数字)可简洁表示为()A.3.4×108B.0.34×109C.3.38×108D.3.39×1083.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.x2+x3=x5 B.a3•a2=a6C.(﹣x3)2÷x5=1 D.(﹣xy)3•(﹣xy)﹣2=﹣xy5.一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是()A.2 B.3 C.4 D.56. 下列说法正确的个数是()①一组数据的众数只有一个; ②样本的方差越小,波动性越小,说明样本稳定性越好;③一组数据的中位数一定是这组数据中的某一数据;④数据:1,1,3,1,1,2的众数为4;⑤一组数据的方差一定是正数.A.0个B.1个C.2个D.4个7.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是()8.平面直角坐标系中,已知、、三点,是一个动点,当周长最小时,的面积为A. B. C. D.9.若分式不论x取何值总有意义,则m的取值范围是()A.m≥1B.m≤1C.m>1D.m<110. 如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为()A.πB.πC.πD.π11.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论①abc>0;②a﹣b+c<0; ③阴影部分的面积为4; ④若c=﹣1,则b2=4a.中正确的有()A.1个B.2个C.3个D.4个12.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与B,C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()二、填空题(本大题共6个小题,每小题3分,满分18分)13.如图,半径为2的⊙O 在第一象限与直线y =x 交于点A ,反比例函数y =kx(x >0)的图象过点A ,则k =_________. 14.已知x,y 为实数,且满足-(y-2)=0,则的值为 .15. 如图,在平面直角坐标系中,点A (0,4),B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A ′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为 . 16.已知不等式组无解,则实数a 的取值范围为 .17.已知△ABC ,∠BAC=30°,AB=6,要使满足条件的△ABC 唯一确定,那么BC 边长度x 的取值范围为 .18.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点(0,1),(1,1),(1,0),(1,-1),(2,-1),(2,0),…,则点的坐标是 .三、解答题(本大题共7小题,满分66分)19.(本题满分6分)先化简,再求值:(+)÷,其中a与2,3构成△ABC的三边,且a为整数.20. (本题满分8分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数 a 6 5 7 6根据图中提供的信息,解答下列问题:(1)a= ,b= ;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21. (本题满分9分)如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可以绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18º时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18º不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9º≈0.1564,9º≈0.9877º,sin18º≈0.3090, 18º≈0.9511)22. (本题满分9分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?23. (本题满分11分)如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.24.(本题满分9分)在平面直角坐标系xOy中,抛物线(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.25.(本题满分14分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.xx学年第二学期期中考试初四数学答题卷一、选择题(本题共12个小题,每小题3分,满分36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案二、填空题(本大题共6个小题,每小题3分,满分18分)13. ; 15. ;17. ;三、解答题(本大题共7小题,满分66分)23.25.备用图1 备用图2 备用图3xx学年第二学期期中考试数学答案一、选择题(本题共12个小题,每小题3分,满分36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C D B D C B C C C A C C二、填空题(本大题共6个小题,每小题3分,满分18分)13. 2 ;14. ;15. y=﹣x+ ;16.a≤-1 ; 17.x=3或x≥6; 18. (20,0)三、解答题(本大题共7小题,满分66分)19.(本题满分6分)原式= ··········3分原式=1 ··········6分20. (本题满分8分)解:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为:16,17.5;··············2分(2)600×[6÷(5÷12.5%)]=90(人),故答案为:90;·················4分(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.·········8分21. (本题满分9分)(1) 图1,作OC⊥AB,∵OA=OB, OC⊥AB,∴AC=BC, ∠AOC=∠BOC=∠AOB=9°,CB在Rt △AOC 中,sin ∠AOC = , ∴AC ≈0.1564×10=1.564, ∴AB=2AC=3.128≈3.13.∴所作圆的半径是3.13cm. ············4分(2)图2,以点A 为圆心,AB 长为半径画弧,交OB 于点C, 作AD ⊥BC 于点D;∵AC=AB, AD ⊥BC ,∴BD=CD, ∠BAD=∠CAD=∠BAC, ∵∠AOB=18°,OA=OB ,AB=AC, ∴∠BAC=18°, ∴∠BAD=9°, 在Rt △BAD 中, sin ∠BAD = , ∴BD ≈0.1564×3.128≈0.4892, ∴BC=2BD=0.9784≈0.98∴铅笔芯折断部分的长度约为0.98cm. ··············9分 22. (本题满分9分)解:(1)由题意知,若观光车能全部租出,则0<x≤100, 由50x ﹣1100>0, 解得x >22, 又∵x 是5的倍数,∴每辆车的日租金至少应为25元;················3分 (2)设每天的净收入为y 元, 当0<x≤100时,y 1=50x ﹣1100, ∵y 1随x 的增大而增大,∴当x=100时,y 1的最大值为50×100﹣1100=3900; 当x >100时, y 2=(50﹣)x ﹣1100 =﹣x 2+70x ﹣1100 =﹣(x ﹣175)2+5025,当x=175时,y 2的最大值为5025, 5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.·······9分 23. (本题满分11分)D CB(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;············3分(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;···········5分(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.···············11分24. (本题满分9分)解析:(1)将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1); (2)分(2)①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB 上的整点有(0,0),(1,0),(2,0)共3个;··4分②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.·············9分25. (本题满分14分)解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ADC,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;···········3分(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO与△CEO中,,∴△AOP≌△COE,∴CE=AP=t,∵△CEH∽△ABC,∴,∴EH=,∵DN==,∵QM∥DN,∴△CQM∽△CDN,∴,即,∴QM=,∴DG=﹣=,∵FQ∥AC,∴△DFQ∽△DOC,∴,∴FQ=,∴S五边形OECQF=S△OEC+S四边形OCQF=×5×+(+5)•=﹣t2+t+12,∴S与t的函数关系式为S=﹣t2+t+12;···········8分(3)存在,∵S△ACD=×6×8=24,∴S五边形OECQF:S△ACD=(﹣t2+t+12):24=9:16,解得t=,t=0,(不合题意,舍去),∴t=时, S五边形OECQF:S△ACD=9:16;(4)如图3,过D作DM⊥PE于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=DN=,∴ON=OM==,∵OP•DM=3PD,∴OP=5﹣t,∴PM=﹣t,∵PD2=PM2+DM2,∴(8﹣t)2=(﹣t)2+()2,解得:t=16(不合题意,舍去),t= ,∴当t= 时,OD平分∠COP.················14分-----如有帮助请下载使用,万分感谢。

黑龙江省齐齐哈尔市九年级下学期数学期中考试试卷

黑龙江省齐齐哈尔市九年级下学期数学期中考试试卷

黑龙江省齐齐哈尔市九年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列计算正确的是()A . x+x=B . •=C . ÷x=D . =2. (2分) (2015九上·黄陂期中) 一元二次方程x2+x﹣6=0的根的情况是()A . 有两个相等的实根B . 没有实数根C . 有两个不相等的实根D . 无法确定3. (2分) (2019九下·杭州期中) 某车间对甲、乙、丙、丁四名生产工人一天生产出的各自20个零件长度进行调查。

每位生产工人生产的零件长度的平均值均为10厘米,方差分别为S甲2=0.51,S乙2=1.5,S丙2=0.35,S丁2=0.75.其中生产出的零件长度最稳定的是()A . 甲B . 乙C . 丙D . 丁4. (2分) (2017九上·萝北期中) 如图,已知长方形的长为10cm,宽为4cm,则图中阴影部分的面积为()A . 20cm2B . 15cm2C . 10cm2D . 25cm25. (2分) (2018九上·合肥期中) 一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A . 第4张B . 第5张C . 第6张D . 第7张6. (2分)如图,线段AB的两个端点坐标分别为A(1,4),B(6,2),以原点O为位似中心,将线段AB缩小后得到线段A′B′.若AB=2A′B′,则端点B′的坐标为()A . (2,2)B . (3,2)C . (2,1)D . (3,1)二、填空题 (共12题;共15分)7. (1分) (2019七上·杭州月考) ﹣的相反数是________; -5的倒数是________.8. (1分) (2018七下·邵阳期中) 将多项式xy2-16x因式分解;其结果是________.9. (1分)(2020·上海模拟) 分解因式: ________.10. (1分) (2019九上·呼兰期末) 函数中,自变量x的取值范围是________.11. (1分)(2019·平阳模拟) 已知一组数据6,x,3,3,5,2的众数是3和5,则这组数据的平均数是________.12. (1分) (2019九上·武汉月考) 一只蚂蚁在如图所示的树枝上寻找食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是__.13. (1分)抛物线y=2(x+2)2+3的对称轴为直线________.14. (2分)(2017·日照模拟) 如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4),将矩形OABC 绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是________.15. (1分) (2018九上·松江期中) 计算:=________.16. (2分)如图:D、E是△ABC边AB、AC上的点,且DE∥BC,DE∶BC=2∶3,AH⊥BC,垂足为H,交DE于G. 若AH=6,则GH=________ ;若S四边形BCED=10,则S△ADE=________.17. (2分)(2016·临沂) 如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为________.18. (1分)如图所示,在△ABC中,AB=AC,D,E分别是AB,AC的中点,G,H为BC上的点连接DH,EG.若AB=5cm,BC=6cm,GH=3cm,则图中阴影部分的面积为________.三、解答题 (共7题;共41分)19. (5分)(2016·张家界) 计算:.20. (5分)用适当的方法解下列方程:(1)(2x+1)2=(x﹣1)2(2).21. (2分)如图,在⊙O中,AB为直径,点B为的中点,直径AB交弦CD于E,CD=2, AE=5.(1)求⊙O半径r的值;(2)点F在直径AB上,连接CF,当∠FCD=∠DOB时,求AF的长.22. (10分) (2019七下·荔湾期末) 某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.23. (2分) (2017八下·曲阜期中) 如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△ACE;(2)若∠B=30°,AB=26,BD=10,求平行四边形ABDE的面积.24. (15分)(2017·宁德模拟) 如图,抛物线l:y= (x﹣h)2﹣2与x轴交于A,B两点(点A在点B 的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.(1)若点A的坐标为(1,0).①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;(2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.25. (2分)(2017·白银) 已知一次函数y=k1x+b与反比例函数y= 的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)写出点P关于原点的对称点P'的坐标;(3)求∠P'AO的正弦值.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共15分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共41分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-2、25-1、25-2、25-3、。

2020年齐齐哈尔市初三数学下期中试卷(含答案)

2020年齐齐哈尔市初三数学下期中试卷(含答案)
23.如图,在△ABC 和△ADE 中,∠BAD=∠CAE,∠ABC=∠ADE. (1)求证:△ABC∽△ADE; (2)判断△ABD 与△ACE 是否相似?并证明.
24.如图,M、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府 决定打一直线涵洞.工程人员为了计算工程量,必须计算 M、N 两点之间的直线距离,选择 测量点 A、B、C,点 B、C 分别在 AM、AN 上,现测得 AM=1 千米、AN=1.8 千米, AB=54 米、BC=45 米、AC=30 米,求 M、N 两点之间的距离.
16.如图,在△ABC 中,∠C=90°,BC=16 cm,AC=12 cm,点 P 从点 B 出发,沿 BC 以 2 cm/s 的速度向点 C 移动,点 Q 从点 C 出发,以 1 cm/s 的速度向点 A 移动,若点 P、Q 分别从点 B、C 同时出发,设运动时间为 ts,当 t=__________时,△CPQ 与△CBA 相似.
9.C
解析:C 【解析】 【分析】 先根据非负数的性质求出 sinA 及 tanB 的值,再根据特殊角的三角函数值求出∠A 及∠B 的 值,由三角形内角和定理即可得出结论. 【详解】
∵|sinA− 3 |+(1−tanB)2=0, 2
∴sinA= 3 ,tanB=1, 2
∴∠A=60°,∠B=45°, ∴∠C=180°-∠A-∠B=180°-60°-45°=75°. 故选 C. 【点睛】 (1)非负数的性质:几个非负数的和等 0,这几个非负数都为 0;(2)三角形内角和等于 180°.
∴∠POH=30°,∴OH= 1 OP=1, 2
在 Rt△OHC 中,∵OC=4,OH=1,
∴CH= OC2 OH 2 = 15 ,

黑龙江省齐齐哈尔市朝鲜族学校2019-2020学年九年级下学期期中数学试题

黑龙江省齐齐哈尔市朝鲜族学校2019-2020学年九年级下学期期中数学试题

黑龙江省齐齐哈尔市朝鲜族学校2019-2020学年九年级下学期期中数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 若方程(m﹣1)x2﹣4x=0是关于x的一元二次方程,则m的取值范围是()A.m≠1B.m=1 C.m≠0D.m≥12. 下列图形中,既是中心对称图形又是轴对称图形的有几个()A.4个B.3个C.2个D.1个3. 已知二次函数y=﹣x2+2x﹣3,用配方法化为y=a(x﹣h)2+k的形式,结果是()A.y=﹣(x﹣1)2﹣2 B.y=﹣(x﹣1)2+2C.y=﹣(x﹣1)2+4D.y=﹣(x+1)2﹣44. 如图,PA,PB分别与⊙O相切于A、B两点.直线EF切⊙O于C点,分别交PA、PB于E、F,且PA=10.则△PEF的周长为()A.10 B.15 C.20 D.255. 下列说法错误的是A.必然事件发生的概率为B.不可能事件发生的概率为C.有机事件发生的概率大于等于、小于等于D.概率很小的事件不可能发生6. 若关于x的一元二次方程kx2+2x+1=0有实数根,则k的取值范围是()A.k<1且k≠0B.k≤1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠07. 某旅游景点8月份共接待游客16万人次,10月份共接待游客36万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.16(1+x2)=36 B.16x+16x(x+1)=36C.16(1+x)+16(1+x)2=36 D.16x(x+1)=368. 如图,△ABC内接于⊙O,OD⊥AB于D,OE⊥AC于E,连结DE.且DE=,则弦BC的长为()A.B.2C.3D.9. 如图,在△ABC中,AB=2.2,BC=3.6,∠B=60°,将△ABC绕点A按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在BC边上时,则CD的长为()A.1.5 B.1.4 C.1.3 D.1.210. 如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),对称轴是x=1,现有结论:①abc>0 ②9a﹣3b+c=0 ③b=﹣2a④(﹣1)b+c<0,其中正确的有()A.1个B.2个C.3个D.4个二、填空题11. 在函数y=+(x﹣5)﹣1中,自变量x的取值范围是_____.12. 若一个三角形的两边长分别是4和6,第三边的长是方程x2﹣17x+60=0的一个根,则该三角形的第三边长是_____.13. 若方程x2﹣2x﹣1009=0有一个根是α,则2α2﹣4α+1的值为_____.14. 已知:在⊙O中,直径AB=4,点P、Q均在⊙O上,且∠BAP=60°,∠BAQ=30°,则弦PQ的长为_____.15. 如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA=1.25m,A 处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O,直径为线段CB.建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x轴的距离为2.25m,到y轴的距离为1m,则水落地后形成的圆的直径CB=_____m.16. 如图,已知半⊙O的直径AB=8,将半⊙O绕A点逆时针旋转,使点B落在点B'处,AB'与半⊙O交于点C,若图中阴影部分的面积是8π,则弧BC的长为_____.17. 如图,在平面直角坐标系中,等腰Rt△OA1B1的斜边OA1=2,且OA1在x轴的正半轴上,点B1落在第一象限内.将Rt△OA1B1绕原点O逆时针旋转45°,得到Rt△OA2B2,再将Rt△OA2B2绕原点O逆时针旋转45°,又得到Rt△OA3B3,……,依此规律继续旋转,得到Rt△OA2019B2019,则点B2019的坐标为_____.三、解答题18. (1)用公式法解方程:x2﹣2x﹣1=0(2)用因式分解法解方程:(x﹣1)(x+3)=1219. 如图,已知抛物线y=﹣x2+(m﹣1)x+m的对称轴为x=,请你解答下列问题:(1)m=,抛物线与x轴的交点为.(2)x取什么值时,y的值随x的增大而减小?(3)x取什么值时,y<0?20. 在一个不透明的口袋里,装有若干个完全相同的A、B、C三种球,其中A 球x个,B球x个,C球(x+1)个.若从中任意摸出一个球是A球的概率为0.25.(1)这个袋中A、B、C三种球各多少个?(2)若小明从口袋中随机模出1个球后不放回,再随机摸出1个.请你用画树状图的方法求小明摸到1个A球和1个C球的概率.21. 如图,点D、O在△ABC的边AC上,以CD为直径的⊙O与边AB相切于点E,连结DE、OB,且DE∥OB.(1)求证:BC是⊙O的切线.(2)设OB与⊙O交于点F,连结EF,若AD=OD,DE=4,求弦EF的长.22. 如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(矩形ABCD),墙长为22m,这个矩形的长AB=xm,菜园的面积为Sm2,且AB>AD.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)若要围建的菜园为100m2时,求该莱园的长.(3)当该菜园的长为多少m时,菜园的面积最大?最大面积是多少m2?23. 如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点O是边AC的中点.(1)在图1中,将△ABC绕点O逆时针旋转n°得到△A1B1C1,使边A1B1经过点C.求n的值.(2)将图1向右平移到图2位置,在图2中,连结AA1、AC1、CC1.求证:四边形AA1CC1是矩形;(3)在图3中,将△ABC绕点O顺时针旋转m°得到△A2B2C2,使边A2B2经过点A,连结AC、A2C、CC2.2①请你直接写出m的值和四边形AA2CC2的形状;②若AB=,请直接写出AA2的长.24. 如图,在平面直角坐标系中,抛物线y=ax2+bx+c与两坐标轴分别交于点A、B、C,直线y=﹣x+4经过点B,与y轴交点为D,M(3,﹣4)是抛物线的顶点.(1)求抛物线的解析式.(2)已知点N在对称轴上,且AN+DN的值最小.求点N的坐标.(3)在(2)的条件下,若点E与点C关于对称轴对称,请你画出△EMN并求它的面积.(4)在(2)的条件下,在坐标平面内是否存在点P,使以A、B、N、P为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.。

齐齐哈尔市九年级下学期数学期中考试试卷

齐齐哈尔市九年级下学期数学期中考试试卷

齐齐哈尔市九年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12小题,每小题3分,共36分。

(共12题;共35分)1. (3分)﹣5的倒数是()A .B . -C . -5D . 52. (3分) (2017七上·潮阳月考) 下列各组单项式中,为同类项的是()A . a3与a2B . a2与2a2C . 2xy与2xD . ﹣3与a3. (3分) (2019八下·长春期末) 如图,在矩形中,,,过对角线交点作交于点,交于点,则的长是()A . 1B .C . 2D .4. (2分)下列图形,既是轴对称图形,又是中心对称图形的是()A .B .C .D .5. (3分)(2020·无锡模拟) 一组数据:3,4,4,4,5.若拿掉一个数据4,则发生变化的统计量是()A . 极差B . 方差C . 中位数D . 众数6. (3分) (2019七下·内乡期末) 《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A .B .C .D .7. (3分) (2017八上·雅安期末) 如图,直线y=﹣ x+3与坐标轴分别交于A,B两点,与直线y=x交于点C,线段OA上的点Q以每秒1个单位长度的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为()A . 2B . 4C . 2或3D . 2或48. (3分)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A1的坐标是()A . (6,1)B . (0,1)C . (0,-3)D . (6,-3)9. (3分) (2019八下·蔡甸月考) 如图所示图象(折线ABCDE)描述了轮船在海上沿笔直路线行驶过程中,轮船离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①轮船共行驶了120千米;②轮船在行驶途中停留了0.5小时;③轮船在整个过程中的平均速度为千米/时;④轮船自出发后3小时至4.5小时之间行驶的速度在逐渐减少,其中正确的说法共有()A . 1个B . 2个C . 3个D . 4 个10. (3分)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A . 4kmB . 2kmC . 2kmD . (+1)km11. (3分)小明、小亮、小梅、小花四人共同探究代数式x2-4x+5的值的情况,他们作了如下分工:小明负责找值为1时的x值,小亮负责找值为0时的x值,小梅负责找最小值,小花负责找最大值。

2019年齐齐哈尔市九年级数学下期中模拟试卷带答案

2019年齐齐哈尔市九年级数学下期中模拟试卷带答案

2019年齐齐哈尔市九年级数学下期中模拟试卷带答案一、选择题1.已知4A 纸的宽度为21cm ,如图对折后所得的两个矩形都和原来的矩形相似,则4A 纸的高度约为( )A .29.7cmB .26.7cmC .24.8cmD .无法确定2.如图,△ABC 的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O 为位似中心,将△ABC 扩大得到△A 1B 1C 1,且△ABC 与△A 1B 1C 1的位似比为1 :3.则下列结论错误的是 ( )A .△ABC ∽△A 1B 1C 1B .△A 1B 1C 1的周长为6+32 C .△A 1B 1C 1的面积为3D .点B 1的坐标可能是(6,6)3.如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对4.在Rt △ABC 中,∠ACB =90°,AB 5tan ∠B =2,则AC 的长为 ( ) A .1 B .2 C 5D .55.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =V V ,那么S EAF S EBCV V 的值是( )A.12B.13C.14D.196.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:47.反比例函数kyx=与1(0)y kx k=-+≠在同一坐标系的图象可能为()A.B.C.D.8.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A.9B.8C.15D.14.59.在同一直角坐标系中,函数kyx=和y=kx﹣3的图象大致是()A.B.C.D .10.在ABC V 中,点D ,E 分别在边AB ,AC 上,:1:2AD BD =,那么下列条件中能够判断//DE BC 的是( )A .12DE BC =B .31DE BC = C .12AE AC =D .31AE AC = 11.已知线段a 、b 、c 、d 满足ab=cd ,把它改写成比例式,错误的是( ) A .a :d =c :b B .a :b =c :d C .c :a =d :b D .b :c =a :d12.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕着点A 逆时针旋转得到△AC′B′,则tanB′的值为( )A .12B .24C .14D .13二、填空题13.若点A(m ,2)在反比例函数y =的图象上,则当函数值y≥-2时,自变量x 的取值范围是____.14.如图,CAB BCD ∠=∠,2AD =,4BD =,则BC =______.15.如图是由棱长相等的小立方体摆成的几何体的主视图与俯视图,根据视图可以判断组成这个几何体至少要________个小立方体.16.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x的图象经过A 、B 两点,则菱形ABCD 的面积是_____;17.如图,矩形ABCD 的顶点,A C 都在曲线k y x= (常数0k ≥,0x >)上,若顶点D 的坐标为()5,3,则直线BD 的函数表达式是_.18.在 ABC V 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE = ________时,以A 、D 、E 为顶点的三角形与 ABC V 相似.19.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm 的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm ),请你帮小华算出圆盘的半径是_____cm .20.如图,将矩形ABCD 折叠,折痕为EF ,BC 的对应边B'C′与CD 交于点M ,若∠B′MD=50°,则∠BEF 的度数为_____.三、解答题21.已知四边形ABCD 中,E ,F 分别是AB ,AD 边上的点,DE 与CF 交于点G.(1)如图①,若四边形ABCD 是矩形,且DE ⊥CF ,求证:DE AD CF CD= ; (2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得DE AD CF CD=成立?并证明你的结论.22.如图,直线y=12x+2与双曲线y=k x 相交于点A (m ,3),与x 轴交于点C . (1)求双曲线的解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.23.已知如图,AD BE CF P P ,它们依次交直线a ,b 于点A 、B 、C 和点D 、E 、F.(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.24.如图,在△ABC 中,AB=AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B.(1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当PD∥AB 时,求BP 的长.25.已知:在四边形ABCD 中,对角线AC 、BD 相交于点E ,且AC ⊥BD ,作BF ⊥CD ,垂足为点F ,BF 与AC 交于点C ,∠BGE=∠ADE .(1)如图1,求证:AD=CD ;(2)如图2,BH 是△ABE 的中线,若AE=2DE ,DE=EG ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE 面积的2倍.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】设A4纸的高度为xcm ,对折后的矩形高度为2x cm ,然后根据相似多边形的对应边成比例列方程求解.【详解】 设A4纸的高度为xcm ,则对折后的矩形高度为2x cm , ∵对折后所得的两个矩形都和原来的矩形相似, ∴21=212x x 解得21229.7=≈x故选A.【点睛】本题考查相似多边形的性质,熟记相似多边形对应边成比例,找到对应边列出方程是关键. 2.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC ∽△A 1B 1C 1,故A 正确;B. 由图可知,AB=2-1=1,BC=2-1=1,2,所以△ABC 的周长为2,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A1B1C1时,B1点的横纵坐标均为B的3倍,此时B1的坐标为(6,6),故D正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.3.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.4.B解析:B【解析】【分析】根据正切的定义得到BC=12AC,根据勾股定理列式计算即可.【详解】在Rt△ABC中,∠ACB=90°,tan∠B=2,∴ACBC=2,∴BC=12 AC,由勾股定理得,AB2=AC2+BC2)2=AC2+(12AC)2,解得,AC=2,故选B.本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A 的对边a 与邻边b 的比叫做∠A 的正切是解题的关键.5.D解析:D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD 中,∴AE ∥CD ,∴△EAF ∽△CDF , ∵12EAF CDF C C V V ,= ∴12AF DF =, ∴11123AF BC ==+, ∵AF ∥BC ,∴△EAF ∽△EBC , ∴21139EAF EBC S S ⎛⎫== ⎪⎝⎭V V , 故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方. 6.A解析:A【解析】试题解析:∵ED ∥BC ,.DOE COB AED ACB ∴V V V V ∽,∽:4:9DOE BOC DOE COB S S V V Q V V ∽,,=:2:3.ED BC ∴=AED ACB QV V ∽,::.ED BC AE AC ∴=:2:3,?::ED BC ED BC AE AC Q ,==:2:3AE AC ∴=,:2:1.AE EC ∴=故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.7.B解析:B【解析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A 根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.8.A解析:A【解析】【分析】由勾股定理可求AM的长,通过证明△ABM∽△EMA,可求AE=10,可得DE=6,由平行线分线段成比例可求DF的长,即可求解.【详解】解:∵AB=4,BM=2,∴AM===,∵四边形ABCD是正方形,∴AD∥BC,∠B=∠C=90°,∴∠EAM=∠AMB,且∠B=∠AME=90°,∴△ABM∽△EMA,∴BM AM AM AE==∴AE=10,∴DE=AE﹣AD=6,∵AD∥BC,即DE∥MC,∴△DEF∽△CMF,∴DE DF MC CF=,∴642DFCF=-=3,∵DF+CF=4,∴S△DEF=12DE×DF=9,故选:A.【点睛】本题考查了相似三角形的判定与性质,正方形的性质,勾股定理;熟练掌握相似三角形的性质,并能进行推理计算是解决问题的关键.9.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.10.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】如图,可假设DE∥BC,则可得12AD AEDB EC==,13AD AEAB AC==,但若只有13DE ADBC AB==,并不能得出线段DE∥BC.故选D.【点睛】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.11.B解析:B【解析】【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、d:a=b:c⇒dc=ab,故正确;D、a:c=d:b⇒ab=cd,故正确.故选B.【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.12.D解析:D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.二、填空题13.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A(解析:x≤-2或x>0【解析】【分析】先把点A(m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A点关于原点的对称点A’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】把点A(m,2)代入y=,得A(2,2),∵点A(2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x的取值范围为x≤-2或x>0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性. 14.【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD再根据相似三角形的性质可解【详解】解:∵∠B=∠B∠CAB=∠BCD∴△ABC∽△CBD∴BC:BD=AB:BC∴BC:BD=(AD解析:6【解析】【分析】角对应相等的两个三角形相似可证得△ABC∽△CBD,再根据相似三角形的性质可解.【详解】解:∵∠B=∠B,∠CAB=∠BCD,∴△ABC∽△CBD,∴BC:BD=AB:BC,∴BC:BD=(AD+BD):BC,即BC:4=(2+4):BC,∴6.故答案为:6.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.15.8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个由主视图可知第二层最少有2个第三层最少有1个所以组成这个几何体的小正方体的个数最少为5+2+1=8个点睛:本题主要考查学生由三视图判断几何解析:8【解析】由俯视图可以看出组成这个几何体的底面小正方体有5个,由主视图可知第二层最少有2个,第三层最少有1个,所以组成这个几何体的小正方体的个数最少为5+2+1=8个.点睛:本题主要考查学生由三视图判断几何体,同时也体现了对空间想象能力方面的考查.做题要掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”.16.【解析】【分析】作AH⊥BC交CB的延长线于H根据反比例函数解析式求出A的坐标点B的坐标求出AHBH根据勾股定理求出AB根据菱形的面积公式计算即可【详解】作AH⊥BC交CB的延长线于H∵反比例函数y解析:42【解析】【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y=3x的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB2222=2,∵四边形ABCD是菱形,∴BC=AB=2,∴菱形ABCD的面积=BC×AH=2,故答案为2【点睛】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.17.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m 解析:35y x =【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ), 设直线BD 的解析式为y=mx+n , 把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.18.【解析】当时∵∠A=∠A∴△AED∽△ABC 此时AE=;当时∵∠A=∠A∴△ADE∽△ABC 此时AE=;故答案是: 解析:51235或 【解析】 当AE AB AD AC=时,∵∠A=∠A,∴△AED∽△ABC,此时AE=·621255 AB ADAC⨯==;当AD ABAE AC=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE=·52563 AC ADAB⨯==;故答案是:125 53或.19.10【解析】【分析】如图先利用垂径定理得BD=6再利用勾股定理建立方程求解即可得出结论【详解】如图记圆的圆心为O连接OBOC交AB于D∴OC⊥ABBD =AB由图知AB=16﹣4=12cmCD=2cm解析:10【解析】【分析】如图,先利用垂径定理得,BD=6,再利用勾股定理建立方程求解即可得出结论.【详解】如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=12 AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.【点睛】本题考查了垂径定理的应用,勾股定理,正确添加辅助线构造出直角三角形是解本题的关键.20.70°【解析】【分析】设∠BEF=α则∠EFC=180°﹣α∠DFE=∠BEF=α∠CFE=40°+α依据∠EFC=∠EFC即可得到180°﹣α=40°+α进而得出∠BEF的度数【详解】∵∠C=∠C解析:70°【解析】【分析】设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,依据∠EFC=∠EFC',即可得到180°﹣α=40°+α,进而得出∠BEF的度数.【详解】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握相关的性质是解题的关键.三、解答题21.(1)详见解析;(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,理由详见解析.【解析】【分析】(1)根据矩形的性质可得∠A=∠ADC=90°,由DE⊥CF可得∠ADE=∠DCF,即可证得△ADE∽△DCF,从而证得结论;(2)在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.根据平行线的性质可得∠A=∠CDM,再结合∠B+∠EGC=180°,可得∠AED=∠FCB,进而得出∠CMF=∠AED即可证得△ADE∽△DCM,从而证得结论;【详解】解:(1)∵四边形ABCD是矩形,∴∠A=∠ADC=90°,∵DE⊥CF,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE AD CF DC=(2)当∠B+∠EGC=180°时,DE ADCF DC=成立,证明如下:在AD的延长线上取点M,使CM=CF,则∠CMF=∠CFM.∵AB ∥CD.∴∠A =∠CDM.∵AD ∥BC ,∴∠CFM =∠FCB.∵∠B +∠EGC =180°,∴∠AED =∠FCB ,∴∠CMF =∠AED ,∴△ADE ∽△DCM ,∴DE AD CM DC =,即DE AD CF DC =. 【点睛】本题是相似形综合题目,考查了相似三角形的判定与性质、等腰三角形的性质以及平行线的性质,熟练掌握等腰三角形的性质,证明三角形相似是解决问题的关键.22.(1)6y x =(2)(-6,0)或(-2,0). 【解析】分析:(1)把A 点坐标代入直线解析式可求得m 的值,则可求得A 点坐标,再把A 点坐标代入双曲线解析式可求得k 的值,可求得双曲线解析式;(2)设P (t ,0),则可表示出PC 的长,进一步表示出△ACP 的面积,可得到关于t 的方程,则可求得P 点坐标.详解:(1)把A 点坐标代入y =12x +2,可得:3=12m +2,解得:m =2,∴A (2,3).∵A 点也在双曲线上,∴k =2×3=6,∴双曲线解析式为y =6x ; (2)在y =12x +2中,令y =0可求得:x =﹣4,∴C (﹣4,0).∵点P 在x 轴上,∴可设P 点坐标为(t ,0),∴CP =|t +4|,且A (2,3),∴S △ACP =12×3|t +4|.∵△ACP 的面积为3,∴12×3|t +4|=3,解得:t =﹣6或t =﹣2,∴P 点坐标为(﹣6,0)或(﹣2,0). 点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.23.(1)DE 的长为9;(2)BE 的长为11;【解析】【分析】(1)由果6AB =,8BC =,可得AC=14,然后根据平行线等分线段定理得到6=14DE AB DF AC =,然后将已知条件代入即可求解; (2)过D 作DH∥AC,分别交BE,CF 于H ,说明四边形ABGD 和四边形BCHG 是平行四边形,然后根据平行四边形的性质得CH=BG=AD=9;进一步说明FH=CF-DH=5,然后再按照平行线等分线段定理得到:2:5DE DF =,最后代入已知条件求解即可.【详解】(1)∵6AB =,8BC =,∴AC=AB+BC=14∵AD BE CFP P∴6=14 DE ABDF AC=∴66219 1414DE DF==⨯=(2)过D作DH∥AC,分别交BE,CF于H.∵AD BE CFP P∴四边形ABGD和四边形BCHG是平行四边形,∴CH=BG=AD=9∴FH=CF-DH=5∵:2:5DE DF=∴:2:5GE HF=∴225255GE HF==⨯=∴BE=BG+GE=9+2=11.【点睛】本题主要考查平行线分线段成比例的知识,关键是掌握三条平行线截两条直线,所得的对应线段成比例.24.(1)证明见解析;(2)BP=25 3.【解析】【分析】(1)由题意可得∠ABC=∠ACB,∠DPC=∠BAP,可证△ABP∽△PCD;(2))由△ABP∽△PCD,可得PC ABCD BP=,由PD∥AB,可得PC BCCD AC=,即AB BCBP AC=,可求BP的长.【详解】(1)∵AB=AC,∴∠ABC=∠ACB.∵∠APC=∠ABC+∠BAP,∴∠APD+∠DPC=∠ABC+∠BAP,且∠APD=∠B,∴∠DPC=∠BAP且∠ABC=∠ACB,∴△BAP∽△CPD.(2)∵△ABP∽△PCD,∴PC CDAB BP=即PC ABCD BP=.∵PD∥AB,∴PC CDBC AC=即PC BCCD AC=,∴AB BCBP AC=,∴101210BP=,∴BP253=.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,熟练掌握相似三角形的性质是本题的关键.25.(1)证明见解析;(2)△ACD、△ABE、△BCE、△BHG.【解析】分析:(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.详解:(1)∵∠BGE=∠ADE,∠BGE=∠CGF,∴∠ADE=∠CGF,∵AC⊥BD、BF⊥CD,∴∠ADE+∠DAE=∠CGF+∠GCF,∴∠DAE=∠GCF,∴AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,∴S△ADE=12AE×DE=12×2a×a=a2,∵BH是△ABE的中线,∴AH=HE=a,∵AD=CD、AC⊥BD,∴CE=AE=2a,则S△ADC=12AC•DE=12•(2a+2a)•a=2a2=2S△ADE;在△ADE和△BGE中,∵AED BEG DE GEADE BGE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ADE≌△BGE(ASA),∴BE=AE=2a,∴S△ABE=12AE•BE=12•(2a)•2a=2a2,S△ACE=12CE•BE=12•(2a)•2a=2a2,S△BHG=12HG•BE=12•(a+a)•2a=2a2,综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质.。

2019-2020学年黑龙江省齐齐哈尔市 九年级 中考模拟考试数学试卷(PDF版含答案)

2019-2020学年黑龙江省齐齐哈尔市 九年级 中考模拟考试数学试卷(PDF版含答案)

(4)如图 3,若 PA= 3 ,点 A、P、Q 在一条直线上时,则 cos∠PCQ=
(5)如图 4,若 AB=2,连接 DP,在△PBQ 绕点 B 旋转的过程中,DP 的最小值为
; ;
图1
图2
图3
图4
24. 综合与探究(本小题满分 14 分)
如图,已知直线 AB 与坐标轴交于 A,B 两点,线段 OA=1,且 tan∠ OBA= 1 ,抛物线 y=x2+bx+c 3
判断三角形形状等问题,在实际生活中也有着十分重要的地位和作用. 问题背景
一块等边三角形建筑材料内一点到三角形三个顶点的距离满足一定条件时,我们可以 用所学的知识帮助工人师傅在没有刻度尺的情况下求出等边三角形的边长. 数学建模
如图 1,等边三角形 ABC 内有一点 P,已知 PA= 2 3 ,PB=4,PC= 2 7 .
得:
1+ b + c c= 3
=
0

b c
2 3
∴y=x2+2x-3 …………………………………………………………………3 分 (2) 过点 M 作 x 轴的垂线交 BC 于点 N,交 x 轴于点 D,由 x2+2x-3=0 得 C(-3,0)
(2)解:由(1)知△OCD 是等边三角形
∵CD=6
∴S△OCD=
3 CD2= 4
3 ×62= 9 4
3 ……………………………………………………6 分
∵S
= 扇形 COD
nπR 2 360
= 6π
……………………………………………………7 分
∴阴影部分的面积= 6π - 9 3 ……………………………………………………8 分

黑龙江省齐齐哈尔市2019-2020学年第三次中考模拟考试数学试卷含解析

黑龙江省齐齐哈尔市2019-2020学年第三次中考模拟考试数学试卷含解析

黑龙江省齐齐哈尔市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A .15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503y yx x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.15022503y yx x⎧-=⎪⎪⎨⎪-=⎪⎩2.下列二次根式中,与a是同类二次根式的是()A.2a B.2a C.4a D.4a+3.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.4.函数的自变量x的取值范围是()A.x>1 B.x<1 C.x≤1D.x≥15.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( ) A .1颗B .2颗C .3颗D .4颗6.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( ) A .3或6B .1或6C .1或3D .4或67.如图,二次函数y=ax 2+bx+c (a≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中﹣1<x 1<0,1<x 2<2,下列结论:4a+2b+c <0,2a+b <0,b 2+8a >4ac ,a <﹣1,其中结论正确的有( )A .1个B .2个C .3个D .4个8.已知抛物线y =ax 2+bx+c (a <0)与x 轴交于点A (﹣1,0),与y 轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n ),则下列结论:①4a+2b <0; ②﹣1≤a≤23-; ③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程ax 2+bx+c =n ﹣1有两个不相等的实数根.其中结论正确的个数为( ) A .1个B .2个C .3个D .4个9.9的值是( ) A .±3B .3C .9D .8110.△ABC 在网络中的位置如图所示,则cos ∠ACB 的值为( )A .12B .22C .3 D .3 11.如图,△ABC 中,AB=AC=15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为21,则BC 的长为( )A .16B .14C .12D .612.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠1=50°,则∠2的度数为_______.14.圆锥的底面半径为2,母线长为6,则它的侧面积为_____.15.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.16.如图,在Rt △ABC 中,∠ACB=90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E ,BC=6,sinA=35,则DE=_____.17.计算:5-=____.18.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____ 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.20.(6分)在数学课上,老师提出如下问题:小楠同学的作法如下:老师说:“小楠的作法正确.”请回答:小楠的作图依据是______________________________________________.21.(6分)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣1.求一次函数的解析式;求△AOB 的面积;观察图象,直接写出y1>y1时x的取值范围.22.(8分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;若m为正整数,求此方程的根.23.(8分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=12∠BAC=60°,于是BCAB=2BDAB=3迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.(1)求证:△ADB≌△AEC;(2)若AD=2,BD=3,请计算线段CD的长;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.(3)证明:△CEF是等边三角形;(4)若AE=4,CE=1,求BF的长.24.(10分)如图,已知A(﹣4,12),B(﹣1,m)是一次函数y=kx+b与反比例函数y=nx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.25.(10分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD的长.26.(12分)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠F=30°,BF=3,求弧AD的长.27.(12分)如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证: △BDA∽△CED.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】设甲的钱数为x ,人数为y ,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】解:设甲的钱数为x ,乙的钱数为y ,依题意,得:15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩.故选A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键. 2.C 【解析】 【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的定义判断即可. 【详解】A=|a|B不是同类二次根式; C=是同类二次根式; D不是同类二次根式. 故选C . 【点睛】本题考查了同类二次根式的定义,一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式. 3.B 【解析】 【详解】 由题意可知, 当03x ≤≤时,11222y AP AB x x =⋅=⨯=; 当35x <≤时,ABE ADP EPC ABCD y S S S S ∆∆∆=---矩形()()11123123325222x x =⨯-⨯⨯-⨯--⨯-1922x =-+; 当57x <≤时,()1127722y AB EP x x =⋅=⨯⨯-=-.∵3x =时,3y =;5x =时,2y =.∴结合函数解析式, 可知选项B 正确. 【点睛】考点:1.动点问题的函数图象;2.三角形的面积. 4.C 【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围. 试题解析:根据题意得:1-x≥0, 解得:x≤1. 故选C .考点:函数自变量的取值范围. 5.B 【解析】试题解析:由题意得25134xx y x x y ⎧⎪+⎪⎨⎪⎪++⎩==,解得:23x y ⎧⎨⎩==. 故选B . 6.B 【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论. 详解:如图,当h <2时,有-(2-h )2=-1,解得:h 1=1,h 2=3(舍去);当2≤h≤5时,y=-(x-h )2的最大值为0,不符合题意; 当h >5时,有-(5-h )2=-1, 解得:h 3=4(舍去),h 4=1. 综上所述:h 的值为1或1. 故选B .点睛:本题考查了二次函数的最值以及二次函数的性质,分h <2、2≤h≤5和h >5三种情况求出h 值是解题的关键. 7.D 【解析】由抛物线的开口向下知a<0,与y 轴的交点为在y 轴的正半轴上,得c>0, 对称轴为x=2ba-<1,∵a<0,∴2a+b<0, 而抛物线与x 轴有两个交点,∴2b −4ac>0, 当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2. ∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac ,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0. 由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8, 上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点. 8.C 【解析】 【分析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误; ②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确. 【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ), ∴-2ba=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0), ∴a-b+c=3a+c=0, ∴a=-3c. 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点), ∴2≤c≤3, ∴-1≤a≤-23,结论②正确; ③∵a <0,顶点坐标为(1,n ), ∴n=a+b+c ,且n≥ax 2+bx+c ,∴对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确; ④∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ), ∴抛物线y=ax 2+bx+c 与直线y=n 只有一个交点, 又∵a <0, ∴抛物线开口向下,∴抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,∴关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确. 故选C . 【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键. 9.C试题解析:∵93=∴9的值是3故选C.10.B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则2BD.cos∠ACB=222ADAB==,故选B.11.C【解析】【分析】先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.【详解】∵AB=AC=15,AD平分∠BAC,∴D为BC中点,∵点E为AC的中点,∴DE为△ABC中位线,∴DE=12 AB,∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理. 12.C【分析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项.【详解】A 、原式6a =,故错误;B 、原式5a =,故错误;C 、利用合并同类项的知识可知该选项正确;D 、cos600.5︒=,cos600.50︒-=,所以原式无意义,错误,故选C .【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.65°【解析】因为AB ∥CD ,所以∠BEF=180°-∠1=130°,因为EG 平分∠BEF ,所以∠BEG=65°,因为AB ∥CD ,所以∠2=∠BEG=65°.14.12π.【解析】试题分析:根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积. 解:根据圆锥的侧面积公式:πrl=π×2×6=12π,故答案为12π.考点:圆锥的计算.15.1【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=12BC=3, ∵OB=12AB=5,∴在Rt △OBD 中,=1.故答案为1.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.16.15 4【解析】【详解】∵在Rt△ABC中,BC=6,sinA=3 5∴AB=10∴AC8=.∵D是AB的中点,∴AD=12AB=1.∵∠C=∠EDA=90°,∠A=∠A ∴△ADE∽△ACB,∴DE AD BC AC=即DE5 68=解得:DE=154.17.5.【解析】试题分析:根据绝对值意义,正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是0,所以-5的绝对值是5.故答案为5.考点:绝对值计算.18.﹣6 或8【解析】试题解析:当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.【解析】【详解】试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×40300=160人;(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.考点:①条形统计图;②扇形统计图.20.两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.【解析】【分析】根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据.【详解】解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定和性质.21.(1)y1=﹣x+1,(1)6;(3)x<﹣1或0<x<4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.试题解析:(1)设点A坐标为(﹣1,m),点B坐标为(n,﹣1)∵一次函数y 1=kx+b (k≠0)的图象与反比例函数y 1=﹣的图象交于A 、B 两点∴将A (﹣1,m )B (n ,﹣1)代入反比例函数y 1=﹣可得,m=4,n=4∴将A (﹣1,4)、B (4,﹣1)代入一次函数y 1=kx+b ,可得 ,解得∴一次函数的解析式为y 1=﹣x+1;,(1)在一次函数y 1=﹣x+1中,当x=0时,y=1,即N (0,1);当y=0时,x=1,即M (1,0) ∴=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y 1>y 1时,x 的取值范围为:x <﹣1或0<x <4考点:1、一次函数,1、反比例函数,3、三角形的面积22.(1)98m £且0m ≠;(2)10x =,21x =-. 【解析】【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()22341m m m =----⎡⎤⎣⎦V ≥0,然后求出两个不等式的公共部分即可;(2)利用m 的范围可确定m=1,则原方程化为x 2+x=0,然后利用因式分解法解方程.【详解】(1)∵2=[(23)]4(1)m m m ∆---- =89m -+. 解得98m ≤且0m ≠. (2)∵m 为正整数,∴1m =.∴原方程为20x x +=.解得10x =,21x =-.【点睛】考查一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.23.(1)见解析;(2)CD =233+;(3)见解析;(4)23【解析】试题分析:迁移应用:(1)如图2中,只要证明∠DAB=∠CAE ,即可根据SAS 解决问题;(2)结论:CD=3AD+BD .由△DAB ≌△EAC ,可知BD=CE ,在Rt △ADH 中,DH=AD•cos30°=3 AD ,由AD=AE ,AH ⊥DE ,推出DH=HE ,由CD=DE+EC=2DH+BD=3AD+BD ,即可解决问题; 拓展延伸:(3)如图3中,作BH ⊥AE 于H ,连接BE .由BC=BE=BD=BA ,FE=FC ,推出A 、D 、E 、C 四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC 是等边三角形;(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在Rt △BHF 中,由∠BFH=30°,可得HF BF=cos30°,由此即可解决问题.试题解析:迁移应用:(1)证明:如图2,∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE ,在△DAE 和△EAC 中,DA=EA ,∠DAB=∠EAC ,AB=AC ,∴△DAB ≌△EAC ,(2)结论:3.理由:如图2-1中,作AH ⊥CD 于H .∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=3 AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=3AD+BD=233.拓展延伸:(3)如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,(4)∵AE=4,EC=EF=1,∴AH=HE=2,FH=3,在Rt△BHF中,∵∠BFH=30°,∴HFBF=cos30°,∴=24.(1)m=2;y=12x+52;(2)P 点坐标是(﹣52,54). 【解析】【分析】(1)利用待定系数法求一次函数和反比例函数的解析式; (2)设点P 的坐标为15,22P x x ⎛⎫+ ⎪⎝⎭,根据面积公式和已知条件列式可求得x 的值,并根据条件取舍,得出点P 的坐标.【详解】解:(1)∵反比例函数n y x =的图象过点14,,2⎛⎫- ⎪⎝⎭ ∴1422n =-⨯=-, ∵点B (﹣1,m )也在该反比例函数的图象上,∴﹣1•m=﹣2,∴m=2;设一次函数的解析式为y=kx+b ,由y=kx+b 的图象过点A 14,,2⎛⎫- ⎪⎝⎭,B (﹣1,2),则 1422,k b k b ⎧-+=⎪⎨⎪-+=⎩ 解得:125,2k b ⎧=⎪⎪⎨⎪=⎪⎩∴一次函数的解析式为1522y x =+; (2)连接PC 、PD ,如图,设15,22P x x ⎛⎫+ ⎪⎝⎭, ∵△PCA 和△PDB 面积相等, ∴()1111541222222x x ⎛⎫⨯⨯+=⨯-⨯-- ⎪⎝⎭, 解得: 5155,,2224x y x =-=+=∴P点坐标是55,.24⎛⎫-⎪⎝⎭【点睛】本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.25.23【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt△ABD中,由勾股定理可解得AD的长.试题解析:∵四边形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴OB=OA=2,∴BD=2OB=4,在Rt△ABD中∴22BD AB-2242-=326.(1)见解析;(2)2π.【解析】【详解】证明:(1)连接OD,∵AB是直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠OAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵DE⊥AC,∴OD⊥EF,∵OD过O,∴EF是⊙O的切线.(2)∵OD⊥DF,∴∠ODF=90°,∵∠F=30°,∴OF=2OD,即OB+3=2OD,而OB=OD,∴OD=3,∵∠AOD=90°+∠F=90°+30°=120°,∴»AD的长度=12032180ππ⨯⨯=.【点睛】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.27.证明见解析.【解析】【分析】不难看出△BDA和△CED都是直角三角形,证明△BDA∽△CED,只需要另外找一对角相等即可,由于AD是△ABC的中线,又可证AD⊥BC,即AD为BC边的中垂线,从而得到∠B=∠C,即可证相似.【详解】∵AB是⊙O直径,∴AD⊥BC,又BD=CD,∴AB=AC,∴∠B=∠C,又∠ADB=∠DEC=90°,∴△BDA∽△CED.【点睛】本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2019-2020)九年级下学期期中考试试卷
数 学
试卷共三道大题,满分120分,考试时量120分钟.
一、选择题(本大题共10道小题,每小题3分,满分30分.每道小题给出的四个选项中,只有一项是符合题设要求的,
1.若反比例函数)0(≠=
k x
y 的图象经过点P (-1,2),则k 的值是( ) A .0 B .-2 C .2 D .-1 2.一元二次方程652=+x x 的一次项系数、常数项分别是( ) A. 1,5 B. 1,-6 C. 5,-6 D. 5,6 3.一元二次方程210x x ++=的根的情况为( )
A .有两个相等的实数根;
B .没有实根;
C .只有一个实数根;
D .有两个不相等的实数根;
4.两个相似多边形的周长比是2:3,其中较小多边形的面积为16cm 2,则较大多边形的面积为( )
A .9cm 2
B .12cm 2
C .56cm 2
D .36cm 2 5.000sin30tan 45cos60+-的值等于 ( )
B.1
C.0
D.
6.在直角三角形ABC 中,已知∠C=90°,∠A=60°,AC=则BC 等于( ) A . B .10 C .20 D .30 7.如图1,Rt △ABC ∽Rt △DEF ,∠A=30°,则∠E 的度数为( ) A.50° B.45° C.55° D.60°
图1 图 2 图3
8.如图2,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为( )
A.2
5
3
B.
3
5
4
C.
4
5
5
D.
3
5
5
9.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕10只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?()A.100只B.150只C.180只D.200只
10.如图3,抛物线=m-4mx+2n-1与平行于x轴的直线交于A、B两点,且点A的坐标为(-1,2),请结合图像分析以下结论:(1)对称轴为直线x=2;(2)抛物线与y轴交点坐标为(0,-1);(3)m>;(4)若抛物线=a (a≠0)与线段AB恰有
一个公共点,则a的取值范围是≤a≤2;(5)不等式m-4mx+2n>0的解作为函数的自变量的取值是,对应的函数值均为正数,其中正确的结论的个数是()
A.2个
B.3个
C.4个
D.5个
02=++c bx ax
二、填空题(本大题共7道小题,每小题3分, 满分21分)
11.已知函数
是反比例函数,则m 的值为 .
12.已知关于x 的一个一元二次方程一个根为1,则
c b a ++=______.
13.老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是.22S 17,15S ==乙甲.则成绩比较稳定的是 (填“甲”、“乙”中的一个).
14. 等腰△ABC 中,BD ⊥AC ,垂足为点D ,且AC=2BD ,则等腰△ABC 的底角的度数为
15.如图4,王伟家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在她家北偏东60度方向上的500m 处,那么水塔所在的位置到公路的距离AB 是
图4
16.若关于x 的方程+
=
无解,则m 的值是
17.在平面直角坐标系中,已知点A (4,0),B (-6,0),点C 是y 轴上一个动点,当∠BCA=45°时,求点C 的坐标为 .
得分 2
2(1)m y m x -=+
三、解答题
18.(1)(3分)计算:
+(-)-|+
(2)(2分)解方程:x 2-4x -12=0
(3)(2分)因式分解:xy+6-2x-3y .
19.(8分)如图5,在△ABC 中,∠ACB=90°,CD ⊥AB,垂足为D,若角B=30°,CD=6,求AB 的长.
图5
20.(8分)某校开展了主题为“梅山文化知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了不完整的表格和扇形统计图(如图6).
得分
C
B
A
D
等级非常了解比较了解基本了解不太了解
频数50m 4020
图6 根据以上提供的信息解答下列问题:
(1)本次问卷调查共抽取的学生数为____人,表中m的值为____;
(2)计算等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度
数,并补全扇形统计图;
(3)若该校有学生2000人,请根据调查结果估计这些学生中“不太了解”梅山
文化知识的人数约为多少?
21.(10分)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.
(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:
方案一:打九折销售;方案二:不打折,每吨优惠现金200元.
试问小华选择哪种方案更优惠,请说明理由.
22.(10分)如图,已知等腰△ABC,P是斜边BC上一点(不与点B,C重合),PE是△ABP的外接圆⊙O的直径。

(1)求证:△APE是等腰直角三角形
(2)若⊙O的直径为2,求+的值
23.(12分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车行驶的时间为x(单位:h),两车之间的距离为y(单位:km),图中的折线表示y与x之间的函数关系,根据图像解决以下问题:
(1)慢车的速度为 km/h,快车的速度为 km/h;
(2) 解释图中点C的实际意义,并求出点C的坐标;
(3)求当x为多少时,两车之间的距离为500km?
24.(14分)如图,抛物线y=a +bx+2与y轴交于点A(-1,0),B(4,0),与y轴交于点C。

(1)求抛物线的解析式;
(2)将△ABC绕AB中点M旋转180°,得到△BAD.
①求点D的坐标;
①判断四边形ADBC的形状,并说明理由;
(3)在抛物线的对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的点P的坐标;若不存在,请说明理由。

九年级下学期数学期中测试参考答案
1.B
2.C
3.B
4.D
5.B
6.D
7.D
8.C
9.A 10.B
11.1 12.0 13.乙 14.15°或45°或75° 15.250 16.-1或5或- 17.(0,12)或(0,-12) 18.(1) (2)=6 =-2 (3)(y-2)(x-3) 19.8
20解:(1)40÷20%=200人,
200×45%=90人;
(2)50
200×100%×360°=90°,1-25%-45%-20%=10%,扇形统计图如图
所示:
第22题答图
(3) 2000×10%=200人,
答:这些学生中“不太了解”梅山文化知识的人数约为200人.
21解:(1)设平均每次下调的百分率为x.
由题意,得5(1-x)2=3.2.
解方程,得x1=0.2,x2=1.8.
因为降价的百分率不可能大于1,所以x2=1.8不符合题意,
符合题目要求的是x1=0.2=20%.
答:平均每次下调的百分率是20%.
(2)小华选择方案一购买更优惠.
理由:方案一所需费用为3.2×0.9×5 000=14 400(元),
方案二所需费用为3.2×5 000-200×5=15 000(元).
∵14 400<15 000,
∴小华选择方案一购买更优惠.22.
23.
24.。

相关文档
最新文档