函数教学设计
高中数学第59课函数教案
高中数学第59课函数教案
一、教学目标
1. 了解函数的定义和性质。
2. 掌握函数与方程或不等式的联立解法。
3. 培养学生分析问题、解决问题的能力。
二、教学重点与难点
1. 函数的定义和性质。
2. 函数与方程或不等式的联立解法。
3. 函数的应用问题。
三、教学过程
1. 导入新知识:通过举例让学生认识函数的概念和定义。
2. 学习函数的性质:奇偶性、周期性、单调性等。
3. 学习函数与方程或不等式的联立解法:通过实例演练。
4. 完成相关练习题,巩固所学内容。
5. 总结本节课的重点内容,解答学生提出的问题。
四、教学资源
1. 教材《高中数学》。
2. 教具:PPT、黑板、彩色粉笔等。
五、教学评价
在课堂上通过提问、讨论、练习等形式进行评价,以检验学生是否掌握了函数的相关知识和解题方法。
六、作业布置
1. 完成课后练习题。
2. 预习下节课内容。
七、教学反思
本节课注重培养学生的解决问题能力,并通过实例让学生学会应用函数的解决方法。
在教学过程中,可以多采用启发式的教学方法,激发学生的学习兴趣,提高课堂效果。
高中数学函数教案板书
高中数学函数教案板书
课题:函数
教学目标:
1. 理解函数的概念,掌握函数的基本性质和特点。
2. 掌握函数的表示方法及其图像的特征。
3. 能够灵活运用函数的性质解决实际问题。
教学重点:
1. 函数的概念和特点
2. 函数的表示方法和图像
教学难点:
1. 函数的图像特征和性质的理解
2. 函数的实际应用
教学准备:
1. 教案、黑板、彩色粉笔
2. 教学PPT
3. 实例题及练习题目
4. 学生练习册
教学过程:
一、引入(5分钟)
教师通过引入实际生活中的例子,引起学生对函数概念的兴趣。
二、讲解函数的概念和特点(15分钟)
1. 引导学生了解函数的定义,函数的自变量、因变量和定义域、值域的概念。
2. 讲解函数的性质,如奇偶性、周期性等。
三、函数的表示方法和图像(15分钟)
1. 介绍函数的表示方法,包括表达式、图像、函数图像的特征。
2. 分析函数的图像在坐标系中的位置和特点。
四、实例分析和练习(15分钟)
1. 给学生展示一些函数的实例,并引导学生分析函数的图像特征。
2. 给学生练习相关的题目,巩固所学知识。
五、课堂小结(5分钟)
教师对本节课的要点进行回顾,并巩固学生对函数概念的理解。
六、作业布置(5分钟)
布置相关练习题目,要求学生认真完成并及时复习所学知识。
教学反思:
通过本节课的教学,学生对函数的概念有了更深的理解,能够灵活运用函数的性质解决实际问题。
希望学生能够加强练习,巩固所学内容,提升数学学习能力。
初中数学函数备课教案
初中数学函数备课教案知识与技能:1. 学生能理解函数的概念,掌握常量和变量的定义。
2. 学生能够通过实际问题建立函数模型,解决简单的生活问题。
过程与方法:1. 学生通过实例感受函数的模型思想,培养观察、交流、分析的思想意识。
2. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。
情感、态度与价值观:1. 学生培养对数学的兴趣和积极参与数学活动的热情。
2. 学生在解决问题的过程中体会数学的应用价值,感受成功的喜悦,建立自信心。
二、教学重难点重点:认识函数的概念,了解常量与变量的含义。
难点:对函数中自变量取值范围的确定。
三、教学准备教具:PPT、黑板、粉笔、函数图像展示板。
学具:每人一份函数实例材料、练习题。
四、教学过程1. 导入:以生活中的实例引入,如“气温与海拔的关系”、“票价与购票数量的关系”等,让学生感受到函数在日常生活中的应用。
2. 探索函数概念:让学生通过实例,分析常量与变量的关系,引导学生发现函数的定义。
3. 理解函数概念:通过PPT展示函数的定义,让学生明确自变量与函数的关系。
4. 函数模型的建立:让学生通过实例,建立函数模型,如“y = 2x + 1”。
5. 函数图像的展示:通过函数图像展示板,展示函数图像,让学生直观地理解函数。
6. 练习与巩固:让学生通过练习题,巩固所学知识,提高解题能力。
7. 总结与反思:让学生总结本节课所学内容,反思自己的学习过程。
五、教学评价1. 学生能正确理解函数的概念,掌握常量和变量的定义。
2. 学生能通过实际问题建立函数模型,解决简单的生活问题。
3. 学生能通过列表、图像等方式表现函数关系,培养数形结合的思维方式。
4. 学生培养对数学的兴趣和积极参与数学活动的热情。
高中数学函数概论教案模板
高中数学函数概论教案模板
一、教学目标
1. 理解函数的概念及其特点;
2. 掌握函数的定义、性质和基本性质;
3. 熟练运用函数的相关知识解决实际问题。
二、教学内容及安排
1. 函数的概念
- 什么是函数?
- 函数的符号表示:y = f(x)、f: x → y
- 自变量和因变量的概念
2. 函数的性质
- 定义域和值域
- 函数的奇偶性
- 函数的增减性
3. 函数的基本性质
- 函数的连续性
- 函数的周期性
- 函数的单调性
4. 函数的运算
- 函数的相加、相减、相乘、相除
- 函数的复合
5. 实际问题的解决
- 利用函数解决实际问题
- 实际问题的函数建模
三、教学重点与难点
1. 函数的概念及其特点是本节课的重点,学生需要掌握清楚;
2. 函数的运算和实际问题的解决是本节课的难点,需要帮助学生理解和应用。
四、教学方法
1. 讲授与示范结合
2. 分组讨论与合作学习
3. 案例分析与实践应用
五、教学资源
1. 教材
2. 多媒体设备
六、教学评价
1. 课堂练习
2. 作业完成情况
3. 知识掌握程度
七、教学进度安排
第一课:函数的概念
第二课:函数的性质
第三课:函数的基本性质
第四课:函数的运算
第五课:实际问题的解决
八、教学反馈
1. 教师定期对学生学习情况进行诊断和反馈
2. 学生可以提出问题和建议,促进教学质量的提高。
以上为高中数学函数概论教案模板范本,可根据实际教学情况进行调整和修改。
《函数》教学设计
《函数》教学设计一、教学目标分析教学目标:●知识与技能目标1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;3.了解函数的三种表示方法。
●过程与方法目标1.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;2.经历从具体实例中抽象概括的过程,进一步发展学生的抽象思维能力,体会函数的模型思想;3.通过对函数概念的学习,培养学生的语言表达能力。
●情感与态度目标1.在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神●教学重点:1.掌握函数的概念,以及函数的三种表示方法;2.会判断两个变量之间是否是函数关系。
●教学难点:1.对函数概念的理解;2.把实际问题抽象概括为函数问题。
二、教学准备教具:教材,课件,电脑学具:教材,笔,练习本三、教学过程设计本节课设计了六个教学环节:第一环节:创设情境、导入新课;第二环节:展现背景,提供概念抽象的素材;第三环节:概念的抽象;第四环节:概念辨析与巩固;第五环节:课时小结;第六环节:布置作业第一环节:创设情境、导入新课内容:展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k 线图等,提请学生思考问题。
意图:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。
效果:生活实例,激发了学生的研究热情,起到很好的导入效果。
第二环节:展现背景,提供概念抽象的素材内容:问题1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h 与旋转时间t 之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h (米)之间的关系.你能从上图观察出,有几个变化的量吗?当t 分别取3,6,10时,相应的h 是多少?给定一个t 值,你都能找到相应的h 值吗?问题2 .在平整的路面上,某型号汽车紧急刹车后仍将滑行S 米,一般地有经验公式2300v s ,其中v 表示刹车前汽车的速度(单位:千米/时). (1)公式中有几个变化的量?计算当v 分别为50,60,100时,相应的滑行距离s 是多少?(2)给定一个v 值,你都能求出相应的s 值吗?问题3.如图,搭一个正方形需要4根火柴棒,按图中方式,动手做一做,完成下表:表格中有几个变量?按图中方式搭100个正方形,需要多少根火柴棒?若搭n个正方形,需要多少根火柴棒?意图:通过上面三个问题的展示,使学生们初步感受到:现实生活中存在大量的变量间的关系,并且一个变量是随着另一个变量的变化而变化的;变量之间的关系表示方式是多样的(图象、列表和解析式等).效果:通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点.第三环节:概念的抽象内容:1.引导学生思考以上三个问题的共同点,进而揭示出函数的概念:在上面的问题中,都有两个变量,给定其中一个变量(自变量)的值,相应的就确定了另一个变量(因变量)的值.一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.2.点明函数概念中的两个关键词:两个变量,一个x值确定一个y值,它们是判断函数关系的关键。
函数概念的教学设计
函数概念的教学设计教学目标:1.了解函数的概念和作用;2.掌握函数的定义和使用;3.能够灵活运用函数解决问题。
教学内容:1.函数的概念和作用;2.函数的定义和调用;3.函数的参数和返回值;4.函数的递归调用;5.函数的作用域和局部变量。
教学步骤:第一步:导入问题引入问题:在日常生活中,我们常常需要将一系列操作封装成一个整体,以便在需要时调用。
那么,你知道如何实现这个功能吗?第二步:引入函数的概念1.通过实例引入函数的概念:比如,在日常生活中,我们常常会使用机器来完成一些操作,比如洗衣机用来洗衣服,电视遥控器用来控制电视,那么这些机器和遥控器其实就是函数的概念。
2.定义函数:引导学生定义函数,即封装一系列操作的代码块,以便在需要时调用。
第三步:函数的定义和调用1.函数的定义:通过示范将一个简单的操作封装成一个函数的示例,如求两个数的和。
2.函数的调用:通过示范调用已定义的函数来实现封装的功能。
第四步:函数的参数和返回值1.函数的参数:引导学生通过例子,引入函数参数的概念,并进行函数定义和调用。
2.函数的返回值:通过例子引导学生理解函数的返回值,并进行函数定义和调用。
第五步:函数的递归调用1.引导学生理解递归的概念和原理;2.通过实例展示函数的递归调用,并指导学生进行实践。
第六步:函数的作用域和局部变量1.通过示例引导学生理解变量的作用域;2.通过函数和外部变量的示例引导学生理解函数的作用域和局部变量。
第七步:综合练习与巩固结合实际问题和练习题进行实践,巩固学生对函数概念和使用的理解。
第八步:总结与扩展1.总结函数的概念和作用、定义与调用、参数和返回值、递归调用、作用域与局部变量;2.引导学生思考函数的扩展应用,并引入匿名函数等扩展内容。
教学评价:在教学过程中,可以通过让学生进行问题解决和程序设计的实践,评价学生对函数概念的掌握程度以及能否熟练地使用函数解决问题。
可以通过课堂练习和作业、小组讨论等方式进行评价,确保学生掌握函数的概念和使用。
3.1.1函数概念(第1课时)教学设计.docx
3.1.1函数的概念(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教材地位本节课是普通高中课程标准实验教科书人教A版第三章第一节第一课时(第60~64页).1.概念本身角度:函数是高中数学最抽象的概念,初中曾用运动变化的观点给出函数的描述性定义,并把函数看作两个变量间的依赖关系,但这一定义有一定的阶段性和局限性.2.学科角度:函数是高中数学的核心概念,是整个高中函数知识体系的基石,它不仅将函数概念由“对应论”发展到“集合论”,更承上启下,为后继研究基本初等函数,比如指数函数、对数函数、幂函数、三角函数以及函数的性质等提供研究方法和理论依据,让我们体会到重要概念对数学发展和数学学习的巨大作用;同时,函数的基础知识在日常生活、社会经济、以及等其他学科也有着广泛应用.3.高考角度:函数是高考数学的热点,函数图象性质、函数与代数式方程不等式数列三角解析几何导数的结合问题常考常新,从基础题、中档题到压轴题,每年高考都是绝对重点,高考所考察的五大数学思想中的数形结合思想、函数与方程思想贯穿高中数学学习的全过程.有人说,“得函数者得数学,得数学者得高考”,更是形象的道出了函数在高考中的重要地位.二、学情分析1.从学生知识层面看:通过初中函数相关知识的学习,学生具备了一定的知识经验和基础;通过必修一第一章“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数、从根本上揭示函数的本质提供了知识保证.2.从学生能力层面看:学生已有一定的分析、推理和概括能力,初步具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还有待进一步加强.3.从学生情感培养方面看:多数学生对教学新内容的学习有很高学习兴趣和积极性,但探究能力以及合作交流等能力仍需要通过课堂主渠道加以培养和提高.三、教学目标1.知识与技能:会用集合与对应的语言来刻画函数,理解函数的概念;理解函数符号y=f(x)的含义;了解函数的三要素;会求一些简单函数的定义域.(重点)2.过程与方法:让学生亲身经历函数概念的形成过程,经历从具体到抽象、从特殊到一般、从感性到理性的认知过程,培养学生抽象概括能力,让学生学会数学表达和交流,激发数学学习兴趣,发展数学应用意识.(难点)3.情感、态度与价值观:培养学生细心观察、认真分析、严谨表达的良好思维习惯,养成用函数模型描述和解决现实世界中蕴含的规律,培养学生提出问题的能力,培养创新意识.四、教学重点用集合语言和对应关系刻画函数的概念.五、教学难点对函数概念的理解.六、教学过程1.函数概念的形成1.1创设情境,引发思考思考1:(1)若正方形的边长为1,则其周长l= ;(2)若正方形的边长为2,则其周长l= ; (3)若正方形的边长为x ,则其周长l= ;【预设答案】(1)4(2)8(3)4x【设计意图】通过具体的例子复习函数的概念,让学生再次体会函数高度“抽象”的作用.思考2:初中学习的函数的概念是什么?【预设答案】设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数.其中x 叫自变量,y 叫因变量.【设计意图】复习初中函数概念,强调函数是一种特殊的对应.思考3:请同学们考虑以下两个问题【设计意图】从初中的概念来看,这两组中的两个函数没什么不同,但我们有感觉它们是不同函数.让学生体会初中函数概念不够精确,从而有些问题解决不了.1.2探究典例,形成概念问题1: 某“复兴号”高速列车到350km/h 后保持匀速运行半小时.这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?44y x l x ==(1)与周长是同一函数吗?22x y x y x==()与是同一函数吗?【预设答案】不正确.对应关系应为S=350t ,其中 }1750|{},5.00|{11≤≤=∈≤≤=∈s s B s t t A t .问题2 :某电气维修告诉要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?【预设答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w .思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【预设答案】不是.自变量的取值范围不一样.问题3 :如图,是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻th 的空气质量指数的值I ?你认为这里的I 是t 的函数吗?【预设答案】是,t 的变化范围是}240|{A 3≤≤=t t ,I 的范围是}1500|{I B 3<<=I .问题4: 国际上常用恩格尔系数)总支出金额食物支出金额=r r ( 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高.上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高.你认为该表给出的对应关系,恩格尔系数r 是年份y 的函数吗?思考:上述问题1到问题4中的函数有哪些共同点和不同点?【预设答案】共同点有:(1)都包含两个非空数集,用A ,B 来表示;(2)都有一个对应关系不同点有:(1)(2)是通过解析式表示对应关系,(3)是通过图象,(4)是通过表格【设计意图】通过四个具体的例子,发现要在集合的基础上定义函数会比较准确,同时让学生体会函数对应关系的3种表示形式.函数概念:一般地,设A , B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A B →为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}()f x x A |∈叫做函数的值域.函数的三个要素:定义域,对应关系,值域.常见函数的三要素:正比例函数:y kx =的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.一次函数:(0)y ax b a =+≠的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.二次函数:2(0)y ax bx c a =++≠的定义域是R ,值域是B .当a >0时,244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a <0时,244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数2(0)ax bx c a ++≠. 反比例函数:(0)k y k x =≠的定义域为{}0x x ≠,对应关系为“倒数的k 倍”,值域为{}0y y ≠.反比例函数用函数定义叙述为:对于非空数集{}0A x x =≠中的任意一个x 值,按照对应关系f :“倒数(0)k k ≠倍”,在集合{}0B y y =≠中都有唯一确定的数k x 和它对应,那么此时f :A B →就是集合A 到集合B 的一个函数,记作()(0),.k f x k x A x=≠∉2.例题讲解,理解概念例1.判断下列对应是否是函数【预设答案】(1)是(2)是(3)不是【设计意图】让学生体会函数只能是“一对一”或“多对一”,不能“一对多”.例2. 判断下列图象能表示函数图象的是()【预设答案】D【设计意图】让学生体会概念中的“唯一”二字例3 .你能构建一个问题情景,使其中函数的对应关系为y=x(10-x)吗?【预设答案】长方形的周长为20,设一边长为x,面积为y,那么y=x(10-x),其中x的取值范围是A={x|0<x<10},y的取值范围是B={y|0<y≤25}.对应关系f把每一个长方形的边长x,对应到唯一确定的面积x(10-x)【设计意图】让学生体会数学建模,数学应用思想,同时巩固函数概念是建立在集合基础上的.3.课堂练习,巩固新知练习1.若函数y=f(x)的定义域为{x|−3≤x≤8,x≠5},值域为{y|−1≤y≤2,y≠0},则y=f(x)的图象可能是()A. B.C. D.【答案】B练习2.已知函数f(x),g(x)分别由下表给出.则g(f(5))=;f(g(2))=.【答案】4 3练习3.集合A,B与对应关系f,如图所示,f:A→B是否为从集合A到集合B的函数?如果是,那么定义值域与对应关系各是什么?【答案】由图知A中的任意一个数,B中都有唯一确定数,与之对应,所以f:A→B 是从A 到B的函数定义域是A={1,2,3,4,5},值域C={2,3,4,5}4.构建一个问题情景,使其中的变量关系能用解析式y=√x来描述.【答案】正方形的面积为x,其边长为y,则y=√x,其中x的取值范围是A={x|0<x},y的取值范围是B={y|0<y}4.课堂小结,思想升华本节课主要是在集合的基础上重新定义了函数,让函数的概念更加清晰准确.。
初中《函数》教案设计
初中《函数》教案设计教学目标:1. 理解函数的概念,能够识别函数的各个组成部分。
2. 掌握函数的表示方法,包括解析式和表格法。
3. 能够运用函数解决实际问题,提高解决问题的能力。
教学重点:1. 函数的概念及组成部分。
2. 函数的表示方法。
教学难点:1. 函数概念的理解。
2. 函数表示方法的运用。
教学准备:1. 教学课件或黑板。
2. 函数相关例题和练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾之前学过的数学知识,如变量、自变量、因变量等。
2. 提问:同学们,你们认为什么是函数呢?函数有哪些组成部分?二、新课讲解(15分钟)1. 讲解函数的概念,引导学生理解函数的定义。
2. 解释函数的各个组成部分,如定义域、值域、对应关系等。
3. 举例说明函数的表示方法,包括解析式和表格法。
4. 引导学生通过实例理解函数的实际应用。
三、课堂练习(10分钟)1. 布置一些简单的函数题目,让学生独立完成。
2. 选取部分学生的作业进行讲解和点评。
四、巩固知识(10分钟)1. 通过课件或黑板,展示一些常见的函数图像,如正比例函数、一次函数、二次函数等。
2. 引导学生观察图像,分析函数的特点和性质。
五、拓展提高(10分钟)1. 引导学生思考:函数在实际生活中有哪些应用?2. 举例说明函数在生活中的应用,如温度与海拔的关系、商品价格与数量的关系等。
六、总结(5分钟)1. 回顾本节课所学的内容,让学生总结函数的概念和表示方法。
2. 强调函数在实际生活中的重要性。
教学反思:本节课通过讲解、练习、巩固和拓展等环节,帮助学生理解和掌握函数的基本概念和表示方法。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和积极性。
同时,结合实际生活中的例子,让学生感受函数的应用价值,提高学生的数学素养。
八年级《一次函数》教学设计(5篇)
八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。
你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。
(2)、能够用图像法解一元一次不等式。
(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。
积极思考,尝试回答问题,导出本节课题。
阅读学习目标,明确探究方向。
从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。
问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。
《一次函数的图象和性质》教学设计(优秀7篇)
《一次函数的图象和性质》教学设计(优秀7篇)一次函数篇一教学目标:1、知道与正比例函数的意义。
2、能写出实际问题中正比例关系与关系的解析式。
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。
教学重点:对于与正比例函数概念的理解。
教学难点:根据具体条件求与正比例函数的解析式。
教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。
教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。
)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。
一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。
特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)第1 2 页一次函数篇二课题一次函数的应用教学内容:知识与技能:巩固所学的一次函数的定义、图象和性质。
能够用一次函数的知识解决实际问题。
过程与方法:掌握用待定系数法求函数解析式的一般方法。
情感态度与价值观:继续渗透数形结合的数学思想。
教学重点和难点:重点:用待定系数法求一次函数的解析式是本节课的重点。
难点:根据解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想,是本节课的难点。
认识函数数学教案
认识函数数学教案
标题:认识函数数学教案
一、教学目标
1. 学生能够理解函数的基本概念。
2. 学生能够掌握函数的表示方法。
3. 学生能够解决与函数有关的问题。
二、教学重点和难点
1. 教学重点:函数的概念和表示方法。
2. 教学难点:理解和应用函数的概念。
三、教学过程
1. 导入新课:
通过实际生活中的例子引入函数的概念,如身高与年龄的关系,距离与时间的关系等。
2. 讲授新课:
(1)定义函数:讲解什么是函数,函数的输入和输出,以及函数的基本性质。
(2)函数的表示方法:介绍如何用图像、表格和解析式表示函数。
(3)函数的应用:通过实例让学生了解函数在现实生活中的应用。
3. 练习与实践:
设计一些练习题,让学生自己动手解题,以此检验他们对函数的理解程度。
4. 小结:
总结本节课的主要内容,强调关键知识点。
5. 布置作业:
设计一些相关的作业,让学生在课后继续巩固所学知识。
四、教学反思
对本节课的教学效果进行反思,分析学生的学习情况,为下一次教学提供参考。
正比例函数教学设计(9篇)
正比例函数教学设计(9篇)正比例函数教学设计1【教学内容】正比例【教学目标】使学生理解正比例的意义,会正确判断成正比例的量。
【重点难点】重点:理解正比例的意义。
难点:正确判断两个量是否成正比例的关系。
【教学准备】投影仪。
【复习导入】1、复习引入。
用投影仪逐一出示下面的题目,让学生回答。
①已知路程和时间,怎样求速度?板书:=速度。
②已知总价和数量,怎样求单价?板书:=单价。
③已知工作总量和工作时间,怎样求工作效率?板书:=工作效率。
2、引入课题:这是我们过去学过的一些常见的数量关系。
这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。
板书课题:成正比例的量。
【新课讲授】1、教学例1.教师用投影仪出示例1的.图和表格。
学生观察上表并讨论问题。
(1)铅笔的总价和数量有关系吗?(2)铅笔的总价是怎样随着数量的变化而变化的?(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。
根据观察,学生可能会说出:①铅笔的。
总价随着数量变化,它们是两种相关联的量。
②数量增加,总价也增加;数量降低,总价也减少。
③铅笔的总价和数量的比值总是一定的,即单价一定。
教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。
2、教师出示:一列火车行驶的时间和路程如下表。
引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是=速度(一定)。
教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。
3、归纳概括正比例关系。
①组织学生分小组讨论,上面两个例子有什么共同规律?②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。
《函数的概念》教学设计
《函数的概念》教学设计教学设计:《函数的概念》教学目标:1.了解函数的定义和基本概念;2.掌握函数的表示方法和函数的性质;3.能够应用函数解决实际问题。
教学重点:1.函数的定义和基本概念;2.函数的表示方法和函数的性质。
教学难点:1.函数的概念的理解;2.函数的性质的应用。
教学过程:Step 1:导入新知(5分钟)1.教师向学生介绍函数的概念,并与学生一起讨论函数在生活中的应用;2.引导学生思考,如何描述从一个自变量到一个因变量的关系。
Step 2:函数的定义与表达(15分钟)1.教师向学生介绍函数的定义,即自变量和因变量之间的对应关系;2.引导学生思考函数的表示方法,如函数的符号表示和图像表示;3.教师通过示例,向学生演示函数的符号表示和图像表示的过程。
Step 3:函数的性质(15分钟)1.教师介绍函数的性质,如函数的定义域、值域和奇偶性等;2.以示例为基础,引导学生发现函数在不同定义域和值域上的特点;3.教师组织学生进行小组合作,让学生根据所学知识,共同解答一些函数性质相关的问题。
Step 4:函数的应用(20分钟)1.教师通过实际问题引导学生思考函数的应用;2.教师给出一些实际问题,要求学生运用函数的概念和性质解决;3.学生进行个人思考和小组合作,找出解决问题的方法,并给出解答。
Step 5:总结与扩展(10分钟)1.教师对本节课进行总结,强调重要知识点和难点;2.引导学生思考函数的发展历程,以及函数在实际生活中的应用;3.教师布置相应的作业,巩固学生对函数的理解和应用。
教学手段:1.教师讲解;2.学生合作学习;3.教学实例;4.教学辅助工具。
教学资源准备:1.教材《高中数学》相关章节;2.教学投影仪或白板;3.相关课件和教具。
教学评价方式:1.学生能够准确、简洁地描述函数的概念;2.学生能够运用所学知识解决实际问题;3.学生能够理解函数的性质与其在实际中的应用。
高中数学思想函数教案设计
高中数学思想函数教案设计
教学内容:函数的基本概念和性质
一、教学目标
1. 理解函数的基本概念,包括定义域、值域、对应关系等。
2. 掌握函数的性质,如奇偶性、周期性等。
3. 能够应用函数的知识解决实际问题。
二、教学重点
1. 函数的定义和基本性质。
2. 函数的图像和性质。
三、教学难点
1. 函数的性质的理解和应用。
2. 函数图像的绘制和分析。
四、教学过程
1. 导入(5分钟)
引入函数的概念,让学生通过实际例子理解函数是一种对应关系。
2. 讲解(15分钟)
介绍函数的定义和基本性质,如定义域、值域、奇偶性和周期性等。
3. 练习(20分钟)
让学生做一些简单的练习,加深对函数性质的理解。
4. 拓展(10分钟)
引导学生思考函数在实际问题中的应用,如利用函数解决最优化问题等。
5. 总结(5分钟)
总结本节课的重点内容,强化学生对函数性质的理解和应用。
六、作业布置
布置练习题,巩固学生对函数概念和性质的掌握。
七、教学反思
通过本节课的教学实践,发现学生对函数的理解存在一定困难,需要更多的实例讲解和练习,加深学生对函数的认识和应用能力。
《函数的概念》教学设计
《函数的概念》教学设计第一篇:《函数的概念》教学设计《函数的概念》教学设计教材分析:函数作为初等数学的核心内容,贯穿于整个初等数学体系之中函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段对函数的概念加入“对应”,这一章内容渗透了函数的思想、特殊到一般,数形结合思想,从感性到理性,数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响教学目标:知识与技能:(1)理解函数的概念,;(2)能够正确使用“区间”的符号表示某些集合。
2过程与方法:通过学生自身对实际问题分析、抽象与概括,培养了抽象、概括、归纳知识以及建模等方面的能力;3情感与价值观:以熟知的生活实例引入,激发了学习数学的兴趣,增强其数学应用意识、创新意识。
相互合作学习,增强其合作意识体会合作学习的重要性。
教法:启发探究为主,讨论法为辅学法:观察分析、自主探究、合作交流教学重点:理解函数的实际背景,用集合与对应的语言来刻画函数教学难点:理解函数的实际背景,用集合与对应的语言来刻画函数教学过程:一、复习引入:.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x和,对于x的每一个值,都有唯一确定的值与之对应,此时是x的函数,x是自变量,是因变量。
表示方法有:解析法、列表法、图象法二、概念情景引入:思考1:(本P1)给出三个实例:A.一枚炮弹发射,经26秒后落地击中目标,射高为84米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。
B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。
(见本P1图).国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表。
高中数学试讲教案函数
高中数学试讲教案函数
一、教学目标:
1. 知识目标:学生能够理解函数的定义,掌握函数的符号表示和性质。
2. 能力目标:学生能够运用函数的相关知识解决实际问题。
3. 情感目标:培养学生对数学的兴趣和探索精神。
二、教学重点:
1. 函数的定义和符号表示。
2. 函数的性质和特点。
三、教学难点:
1. 运用函数的相关知识解决实际问题。
2. 培养学生对函数的理解和探索能力。
四、教学过程:
1. 导入:通过实际问题引入函数的概念,引发学生对函数的思考和讨论。
2. 讲授:简要讲解函数的定义和符号表示,介绍函数的性质和特点,引导学生理解函数的基本概念。
3. 练习:让学生通过练习题目巩固函数的相关知识,培养运用函数解决问题的能力。
4. 拓展:引导学生探索函数的更多应用领域,激发学生对函数的兴趣和热爱。
五、归纳总结:总结本节课学习的重点和难点,强化学生对函数的理解和掌握。
六、作业布置:布置相关作业,巩固学生对函数的学习成果。
七、评价反馈:通过课堂练习和作业检查,评价学生对函数的理解和掌握情况,及时给予反馈和指导。
八、课后反思:对本节课的教学过程进行反思,总结教学中的不足之处,为下一次的教学改进提供参考。
函数的概念说课教案8篇
函数的概念说课教案8篇在我们日常的教学生涯中,难免会遇到要写教案的情况,教案是需要结合实际的教学进度和内容的,下面是作者为您分享的函数的概念说课教案8篇,感谢您的参阅。
函数的概念说课教案篇1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1、复习初中所学函数的概念,强调函数的模型化思想;2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国#年4月份非典疫情统计:日期#新增确诊病例数#3、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b 为从集合a到集合b的一个函数(function).记作:y=f(x),x∈a.其中,x叫做自变量,x的取值范围a叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈a}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本p20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本p22第1题2.判断两个函数是否为同一函数课本p21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
函数单调性教案函数单调性教学设计(6篇)
函数单调性教案函数单调性教学设计(6篇)为你细心整理了6篇《函数的单调性教学设计》的范文,但愿对你的工作学习带来帮忙,盼望你能喜爱!固然你还可以在搜寻到更多与《函数的单调性教学设计》相关的范文。
《函数的单调性》教学设计【教材分析】《函数单调性》是高中数学新教材必修一其次章第三节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个根底学问点,是讨论和争论初等函数有关性质的根底。
把握本节内容不仅为今后的函数学习打下理论根底,还有利于培育学生的抽象思维力量及分析问题和解决问题的力量.【学生分析】从学生的学问上看,学生已经学过一次函数,二次函数,反比例函数等简洁函数,函数的概念及函数的表示,接下来的任务是对函数应当连续讨论什么,从各种函数关系中讨论它们的共同属性,应当是顺理成章的。
从学生现有的学习力量看,通过初中对函数的熟悉与试验,学生已具备了肯定的观看事物的力量,积存了一些讨论问题的阅历,在肯定程度上具备了抽象、概括的力量和语言转换力量。
从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何给函数性质以数学描述?如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。
函数的单调性是学生从已经学习的函数中比拟简单发觉的一共性质,学生也简单产生共鸣,通过比照产生顿悟,渴望获得这种学习的.积极心向是学生学好本节课的情感根底。
【教学目标】1.使学生从形与数两方面理解函数单调性的概念.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培育学生观看、归纳、抽象的力量和语言表达力量.3.通过学问的探究过程培育学生细心观看、仔细分析、严谨论证的良好思维习惯,让学生经受从详细到抽象,从特别到一般,从感性到理性的认知过程.【教学重点】函数单调性的概念.【教学难点】从形与数两方面理解函数单调性的概念.【教学方法】教师启发讲授,学生探究学习.【教学手段】计算机、投影仪.【教学过程】教学根本流程1、视频导入------营造气氛激发兴趣2、直观的熟悉增(减)函数-----问题探究3、定量分析增(减)函数)-----归纳规律4、给出增(减)函数的定义------展现结果5、微课教学设计函数的单调性定义重点强调 ------ 稳固深化 7、课堂收获 ------提高升华(一)创设情景,提醒课题1.钱江潮,自古称之为“天下奇观”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章一次函数1.函数成都七中育才学校鄢正清、魏进华一、学生起点分析在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。
二、教学任务分析《函数》是义务教育课程标准北师大版实验教科书八年级(上)第六章《一次函数》第一节的内容。
●教材内容本节内容安排了1个学时。
教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。
与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。
●教材地位及作用函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容。
本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。
同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。
三、教学目标分析教学目标:●知识与技能目标1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;3.了解函数的三种表示方法。
●过程与方法目标1.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;2.经历从具体实例中抽象概括的过程,进一步发展学生的抽象思维能力,体会函数的模型思想;3.通过对函数概念的学习,培养学生的语言表达能力。
●情感与态度目标1.在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神●教学重点:1.掌握函数的概念,以及函数的三种表示方法;2.会判断两个变量之间是否是函数关系。
●教学难点:1.对函数概念的理解;2.把实际问题抽象概括为函数问题。
四、教学准备教具:教材,课件,电脑学具:教材,笔,练习本五、教学过程设计本节课设计了六个教学环节:第一环节:创设情境、导入新课;第二环节:展现背景,提供概念抽象的素材;第三环节:概念的抽象;第四环节:概念辨析与巩固;第五环节:课时小结;第六环节:布置作业第一环节:创设情境、导入新课内容:展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。
意图:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。
效果:生活实例,激发了学生的研究热情,起到很好的导入效果。
第二环节:展现背景,提供概念抽象的素材内容:问题1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式2300vs ,其中v 表示刹车前汽车的速度(单位:千米/时).(1)公式中有几个变化的量?计算当v 分别为50,60,100时,相应的滑行距离s 是多少?(2)给定一个v 值,你都能求出相应的s 值吗?问题3.如图,搭一个正方形需要4根火柴棒,按图中方式,动手做一做,完成下表:表格中有几个变量?按图中方式搭100个正方形,需要多少根火柴棒?若搭n 个正方形,需要多少根火柴棒?意图:通过上面三个问题的展示,使学生们初步感受到:现实生活中存在大量的变量间的关系,并且一个变量是随着另一个变量的变化而变化的;变量之间的关系表示方式是多样的(图象、列表和解析式等).效果:通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点.第三环节:概念的抽象内容:1.引导学生思考以上三个问题的共同点,进而揭示出函数的概念:在上面的问题中,都有两个变量,给定其中一个变量(自变量)的值,相应的就确定了另一个变量(因变量)的值.一般地,在某个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量.2.点明函数概念中的两个关键词:两个变量,一个x 值确定一个y 值,它们是判断函数关系的关键。
3.再通过对上面3个情境的比较,引导学生思考三个情境呈现形式的不同(依次以图像、代数表达式、表格的形式反映两个变量之间的关系),得出函数常用的三种表示方法:(1) 图象法 ; (2)列表法 ; (3)解析法。
意图:通过比较异同点,揭示函数的本质概念和不同的表示方法。
效果:教学过程中,由于有了七年级较好的铺垫,学生都能顺利地抽象出有关概念。
第四环节:概念辨析与巩固内容:1.介绍常量与变量的概念常量:在某一变化过程中,始终保持不变的量;变量:在某一变化过程中,可以取不同数值的量.指出下列关系式中的变量与常量:(1)球的表面积S (cm 2)与球半径R (cm)的关系式是S=4πR 2(2)以固定的速度V 0(米/秒)向上抛一个球,小球的高度h(米)与小球运动的时间t(秒)之间的关系式是h=V 0t-4.9t 2.2.概念应用举例1. 小明骑车从家到学校速度是15千米/时,你能表示出他走过的路程s 与时间t 之间的变化关系吗?S 是t 的函数吗?路程s 随时间t 的变化的图像是什么?略解:S=15t,是函数,图像略.2. 如果A 、B 路程为200千米,一辆汽车从A 地到B 地行驶的速度v 与行驶时间t 是怎样的变化关系?V 是t 的函数吗?速度v 随时间t 的变化的图像是什么? 略解: ,是函数,图像略.3. 若正方形的边长为x,则面积y 与边长x 之间的关系是什么?y 是x 的函数吗?面积y 随边长x 的变化的图像是什么?略解:s=x 2,是函数,图像通过课件展示给同学们意图:通过常量与变量的区别阐述,进一步理解函数的关键;通过三个例题,对函数概念进行更深入的探讨,再次揭示函数概念的本质特征.效果:通过对函数基本特征的反复比较与探究,学生能比较深刻地理解函数的概念;同时三个例题涉及了初中阶段将要学到一次函数、反比例函数和二次函数,也为学生将来学习这三种函数留下了一个初步的印象.第五环节:课时小结内容:请同学们针对本节的内容进行自我小结,学生之间相互补充后;最后教师总结。
意图:引导学生自己总结本节课的知识要点和数学学习方法,使学生从感性上升到理性,形成系统的知识。
效果:学生各抒己见,然后相互补充完善,最后师生共同完成了小结内容。
当然,在学生发言时,教师要注意学生的语言表述的准确性。
最终总结了下面的内容:1.初步掌握函数的概念,并能判断两个变量之间的关系是否是函数的关系。
理解函数的概念应抓住以下三点:(1)函数的概念由三句话组成:“两个变量”,“x 的每一个值”,“y 有确定的值”;(2)判断两个变量是否有函数关系不是看它们之间是否有关系是存在,更重要的是看对于x 的每一个确定的值,y 是否有唯一确定的值与之对应;200v t =(3)函数不是数,它是指在某一变化的过程中两个变量之间的关系。
2.在一个函数关系式中,能识别自变量与因变量,并能由给定的自变量的值,相应的求出函数的值。
3.函数的三种表达式:(1)图象法(用图像来表示函数的方法);(2)列表法(把自变量x的一系列值和函数y的对应值列成一个表格来表示函数的反方法);(3)解析法(用代数式来表示函数的方法,用来表示函数关系的式子叫做函数关系式,函数关系式是等式,在书写时有顺序性,一般写成:“函数=函自变量的代数式”的形式)。
4.学会用辩证唯物主义的观点的看待一个问题。
5.本节课用到的基本思想是:通过观察、分析、对比、归纳等过程获取数学知识.第六环节:布置作业习题6.1六、教学设计反思(1)突出重点、突破难点的策略函数是研究现实世界变化规律的一个重要模型,对函数的学习一直以来都是中学阶段的一个重要的内容。
函数的概念是学习后续“函数知识”的最重要的基础内容,而函数的概念又是一个比较抽象的,对它的理解一直是一个教学难点,学生对这些问题的探索以及研究思路都是比较陌生的,因此,在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解。
(2)评价方式根据新课标的评价理念,教师在课堂中应尊重学生的个体差异,满足多样化的学习需求,鼓励学生探索方式、表达方式和解题方法的多样化。
在教学活动中教师要关注学生的参与程度和表现出来的思维水平,应关注的是学生对概念的理解水平和学生的语言表达的能力,应关注学生对概念理解的程度和是否能准确的判断所给的问题是否是函数关系,关注学生能否用辩证唯物主义的观点看待事物,教学中又通过学生“议一议”、“想一想”等活动情况和学生对反馈练习的完成情况,分析学生的认识状况和列出函数关系的能力水平。
另外,对于学生的回答教师应给预恰当的评价和鼓励,帮助学生认识自我,建立自信,发挥评价的教育功能。
附:板书设计。