初中几何经典培优题型(三角形)
经典初中数学三角形专题训练及例题解析
经典《三角形》专题训练知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类. ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质定理:三角形的内角和等于180°.推论1:直角三角形的两个锐角互补。
推论2:三角形的一个外角等于不相邻的两个内角的和。
推论3:三角形的一个外角大于与它不相邻的任何一个内角。
7、多边形的外角和恒为360°8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。
③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
B.n 边形共有2)3(-n n 条对角线。
9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。
②多边形的外角和等于360°。
三角形 (按角分) 三角形 (按边分)10、平面镶嵌及平面镶嵌的条件。
①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。
②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。
初一下学期三角形培优专题训练
初一下学期三角形培优专题训练专题一:8字形图型1. 如图所示•求 / A+Z B+Z C+Z D+Z E的大小。
3 .如图:Z A+Z B+Z C+Z D+Z E+Z F 等于()A、180° B 、360 ° C 、270 ° D 、540°A+Z B+Z C+Z D+Z E+Z F 的大小.4.已知,如图, A B C D E F的度数为B C D E F G n度DE是Z CDB的平分线,ZA1 + Z2 +Z3 +Z 4+Z 5+Z 6+Z 7=6. 如图,7. 如图Z&如图AE是Z CAB的平分线,90 ,则n=C=40°,Z E=35° .求Z B的度数.ECEB2•如图是一个六角星,其中AOE60 , A5.如图所示.求Z专题二:燕尾形图型1. (2010?帛州)如图,/ BDC=98,A. 61°B. 60°2. 如图所示,已知/ 1=20°,/ 2=25°A. 60°B. 70 °3. 如图,已知DABC边BC延长线上一点,DF丄AB于F交AC于E, / A=35° ,? / D=42°求/ ACD的度数.4. 如图,直线DE交厶ABC的边AB、AC于D E,/ACB= 74°,/ AED= 48°,则/ BDF的度数是—5.知:如图,点E在AC上,点F在AB上, BE CF交于点O且/ C—/B= 20°,/ EO F/ A= 70°,求/ C的度数.6.下图,BE是/ ABD的角平分线,CF是/ ACD的角平分线,BE与CF交于点G,点/BDC=140 , / BGC=110,则/ A的度数为()A. 70°B. 75C.80°D.85°:C=38,/ /B=23°,/ A的度数是()C.37°D. 39°,/ A=35,则/ BDC的度数为()C.80°D. 85°专题三:双垂直型1 如图所示,在△ ABC 中,/ ACB=90,/ ABC=25 , CDLAB 于 D,则/ AC ________________ 度2.图,在△ ABC 中,/ ACB=90 , CDLAB,垂足为 D.下列说法不正确的是( )A.与/ 1互余的角只有/ 2 B .Z A 与/ B 互余C.Z 仁/ B D.若/ A=2/ 1,则/ B=30°3 .如图,AC 丄BD, DE I AB,下列叙述正确的是()4 如图,△ ABC 中,Z BAC=90 , AD 丄BC 于 D, E 是 AD 上一点, 求证:Z BED>Z C5. 如图,在 VABC C 中, ACB 90 , CD 1 2A.Z A=Z BB.Z B=Z DC.Z A=ZDD.AB , AF 是角平分线,交 CD 于点E ,求证专题四:三角形三条角平分线型1如图①,BD CD 是/ ABC 和/ACB 的角平分线且相交于点 D,请猜想/ A 与/ BDC 之间的 数量关系,并说明理由。
三角形培优题型
专题一:8字形图型如图,90A B C D E F G n ∠+∠+∠+∠+∠+∠+∠=⋅︒,求 n 的大小专题二:飞镖形图型 如图,BE 是∠ABD 的角平分线,CF 是∠ACD 的角平分线,BE 与CF 交于点G ,∠BDC =140°,∠BGC =110°,则∠A 的度数为________专题三:双垂直型 如图,在ABC ∆中,90ACB CD AB AF ∠=︒⊥,,是角平分线,交CD 于点E ,求证12∠=∠专题四:三角形角平分线型如图,点M 是△ABC 两个内角平分线的交点,点N 是△ABC 两个外角平分线的交点,如果∠CMB :∠CNB =3:2,那么∠CAB = 度专题五:同一边上角平分线与高线结合型 1.2.如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC =2∠B ,∠B =2∠DAE ,求∠ACB 的度数。
专题六:图形的折叠问题如图所示,将沿着DE 翻折,若,则.专题七:三角形高与面积的计算在△ABC 中,点D 为边BC 的中点,点E 为线段AD 上一点,且满足AE =2ED ,则△ABC 与△BDE 的面积之比为 。
专题八:三角形三边关系与周长1.若一个等腰三角形的三边长均为整数,且周长为10,则底边长为2.等腰三角形一边长为cm 5,另一边为cm 10,则它的周长是 cm 。
3.已知:△ABC 中,AB =AC ,BD 是AC 边上的中线,如果D 点把三角形ABC 的周长分为12cm 和15cm 两部分,则此三角形腰长为__________.4.若a ,b ,c 分别是三角形的三边,化简│a -b -c │+│b -c -a │-│c -a +b │5.已知等腰三角形的底边长为8cm ,一腰的中线把三角形的周长分为两部分,其中一部分比另一部分长2cm ,则这个三角形的腰长为____________。
专题九:综合题型1.一个n 边形切去一个角后所得多边形的内角和为1800°,则这个多边形的边数是______________.2.如图,△ABC 中,AE 、BF 是角平分线,它们相交于点O .(∠ABC >∠C ), (1)试说明∠BOA=90°+∠C ;(2)当AD 是高,判断∠DAE 与∠C 、∠ABC 的关系,并说明理由.ABC △1280∠+∠=°B ∠= A EDCBG F12。
专题12.25 三角形全等几何模型-“一线三直角”模型(专项练习)(培优篇)
C D E B A 专题12.25 三角形全等几何模型-“一线三直角”模型(专项练习)(培优篇)知识储备:1、模型一: 三垂直全等模型图一如图一,∠D=∠BCA=∠E=90°,BC=AC 。
结论:Rt △BDC ≌Rt △CEA2、拓展:模型二: 三等角全等模型图二如图二,∠D=∠BCA=∠E ,BC=AC 。
结论:△BEC ≌△CDA一、单选题1.如图,Rt△ABC 中,△C=90°,BC=6,DE 是△ABC 的中位线,点D 在AB 上,把点B 绕点D 按顺时针方向旋转α(0°<α<180°)角得到点F ,连接AF ,BF .下列结论:△△ABF 是直角三角形;△若△ABF 和△ABC 全等,则α=2△BAC 或2△ABC ;△若α=90°,连接EF ,则S△DEF=4.5;其中正确的结论是( )A .△△B .△△C .△△△D .△△二、填空题2.如图,点A 的坐标为()4,0,点B 的坐标为()0,1-,分别以OB ,AB 为直角边在第三、第四象限作等腰Rt OBF △,等腰Rt ABE △,连接EF 交y 轴于P 点,点P 的坐标是______.3.如图,AO△OM ,OA=7,点B 为射线OM 上的一个动点,分别以OB ,AB 为直角边,B 为直角顶点,在OM 两侧作等腰Rt△OBF 、等腰Rt△ABE ,连接EF 交OM 于P 点,当点B 在射线OM 上移动时,则PB 的长度____________.三、解答题4.在Rt AOB ∆中,AOB 90∠=.(1)如图△,以点A 为直角顶点,AB 为腰在AB 右侧作等腰Rt ABC ∆,过点C 作CD OA ⊥交OA 的延长线于点D .求证:A AOB CD ∆∆≌.(2)如图△,以AB 为底边在AB 左侧作等腰Rt ABC ∆,连接OC ,求AOC ∠的度数.(3)如图△,Rt AOB ∆中,,OA OB OD AB =⊥,垂足为点D ,以OB 为边在OB 左侧作等边OBC ∆,连接AC 交OD 于E ,2OE =,求AC 的长.5.已知Rt△ABC 中,△BAC =90°,AB =AC ,点E 为△ABC 内一点,连接AE ,CE ,CE △AE ,过点B 作BD △AE ,交AE 的延长线于D .(1)如图1,求证BD=AE ;(2)如图2,点H 为BC 中点,分别连接EH ,DH ,求△EDH 的度数;(3)如图3,在(2)的条件下,点M 为CH 上的一点,连接EM ,点F 为EM 的中点,连接FH ,过点D 作DG △FH ,交FH 的延长线于点G ,若GH :FH =6:5,△FHM 的面积为30,△EHB =△BHG ,求线段EH 的长.6.如图1,在Rt ACB ∆中,90BAC ∠=︒,AB AC =,分别过B 、C 两点作过点A 的直线l 的垂线,垂足为D 、E ;(1)如图1,当D 、E 两点在直线BC 的同侧时,猜想,BD 、CE 、DE 三条线段有怎样的数量关系?并说明理由.(2)如图2,当D 、E 两点在直线BC 的两侧时,BD 、CE 、DE 三条线段有怎样的数量关系?并说明理由.(3)如图3,90BAC ∠=︒,22AB =,28AC =.点P 从B 点出发沿B A C →→路径向终点C 运动;点Q 从C 点出发沿C A B →→路径向终点B 运动.点P 和Q 分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P 和Q 作PF l ⊥于F ,QG l ⊥于G .问:点P 运动多少秒时,PFA ∆与QAG ∆全等?(直接写出结果即可)7.如图,在△ABC 中,△ACB =90°,AC =6,BC =8.点P 从点A 出发,沿折线AC—CB以每秒1个单位长度的速度向终点B 运动,点Q 从点B 出发沿折线BC—CA 以每秒3个单位长度的速度向终点A 运动,P 、Q 两点同时出发.分别过P 、Q 两点作PE△l 于E ,QF△l 于F .设点P 的运动时间为t (秒):(1)当P 、Q 两点相遇时,求t 的值;(2)在整个运动过程中,求CP 的长(用含t 的代数式表示);(3)当△PEC 与△QFC 全等时,直接写出所有满足条件的CQ 的长.8.(1)如图1,已知:在ABC ∆中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD l ⊥,CE l ⊥垂足分别为点D 、E .证明:△CAE ABD ∠=∠;△DE BD CE =+.(2)如图2,将(1)中的条件改为:在ABC ∆中,AB AC =,D 、A 、E 三点都在l 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图3,过ABC ∆的边AB 、AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高,延长HA 交EG 于点I ,求证:I 是EG 的中点.9.如图,A (-2,0),B (0,4)以B 点为直角顶点在第二象限作等腰直角△ABC (1)求C 点的坐标;(2)如图2点E 为y 轴正半轴上一动点,以E 为直角顶点作等腰直角△AEM ,过M 作MN△x 轴于N ,求OE -MN 的值.10.如图,OA OB =,OA OB ⊥,135ACO ∠=︒,求ACB ∠的度数.11.综合与实践.积累经验我们在第十二章《全等三角形》中学习了全等三角形的性质和判定,在一些探究题中经常用以上知识转化角和边,进而解决问题.例如:我们在解决:“如图1,在ABC ∆中,90ACB ∠=︒,AC BC =,线段DE 经过点C ,且AD DE ⊥于点D ,BE DE ⊥于点E .求证:AD CE =,CD BE =”这个问题时,只要证明ADC CEB ∆∆≌,即可得到解决,(1)请写出证明过程;类比应用(2)如图2,在平面直角坐标系中,ABC ∆中,90ACB ∠=︒,AC BC =,点A 的坐标为()0,2,点C 的坐标为()1,0,求点B 的坐标.拓展提升(3)如图3,ABC ∆在平面直角坐标系中,90ACB ∠=︒,AC BC =,点A 的坐标为()2,1,点C 的坐标为()4,2,则点B 的坐标为____________.12.问题背景:(1)如图1,已知△ABC 中,△BAC =90°,AB =AC ,直线m 经过点A ,BD△直线m ,CE△直线m ,垂足分别为点D 、E .求证:DE =BD +CE .拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有△BDA =△AEC =△BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB 中,△ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.13.如图,Rt ACB △中,90ACB ∠=︒,AC BC =,E 点为射线CB 上一动点,连结AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FD AC ⊥交AC 于D 点,求证:FD BC =;(2)如图2,连结BF 交AC 于G 点,若3AG =,1CG =,求证:E 点为BC 中点. (3)当E 点在射线CB 上,连结BF 与直线AC 交于G 点,若4BC =,3BE =,则AG CG =______.(直接写出结果)14.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接 EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△;(2)求证:点G 是EF 的中点.15.如图,等腰Rt ABC 中,90ABC ∠=︒,AB BC =,点A ,B 分别在坐标轴上. (1)如图1,若点C 的横坐标为5,直接写出点B 的坐标_______;图1(2)如图2,若点A 的坐标为()6,0-,点B 在y 轴的正半轴上运动时,分别以OB ,AB 为边在第一、第二象限作等腰Rt OBF ,等腰Rt ABE △,连接EF 交y 轴于点P ,当点B 在y 轴的正半轴上移动时,PB 的长度是否发生改变?若不变,求出PB 的值;若变化,求PB 的取值范围.图216.提出问题:如图1,将三角板放在正方形ABCD 上,使三角板的直角顶点P 在对角线AC 上,一条直角边经过点B ,另一条直角边交边DC 与点E ,求证:PB=PE分析问题:学生甲:如图1,过点P 作PM△BC ,PN△CD ,垂足分别为M ,N 通过证明两三角形全等,进而证明两条线段相等.学生乙:连接DP ,如图2,很容易证明PD=PB ,然后再通过“等角对等边”证明PE=PD ,就可以证明PB=PE 了.解决问题:请你选择上述一种方法给予证明.问题延伸:如图3,移动三角板,使三角板的直角顶点P 在对角线AC 上,一条直角边经过点B ,另一条直角边交DC 的延长线于点E ,PB=PE 还成立吗?若成立,请证明;若不成立,请说明理由.17.(提出问题)如图1,在直角ABC 中,△BAC =90°,点A 正好落在直线l 上,则△1、△2的关系为(探究问题)如图2,在直角ABC 中,△BAC =90°,AB =AC ,点A 正好落在直线l 上,分别作BD △l 于点D ,CE △l 于点E ,试探究线段BD 、CE 、DE 之间的数量关系,并说明理由.(解决问题)如图3,在ABC 中,△CAB 、△CBA 均为锐角,点A 、B 正好落在直线l 上,分别以A 、B 为直角顶点,向ABC 外作等腰直角三角形ACE 和等腰直角三角形BCF ,分别过点E 、F 作直线l 的垂线,垂足为M 、N .△试探究线段EM 、AB 、FN 之间的数量关系,并说明理由;△若AC =3,BC =4,五边形EMNFC 面积的最大值为18.如图,在平面直角坐标系中,点()()3,01,0B A --、分别是x 轴上两点,点()0,P h 是y 轴正半轴上的动点,过点P 作,DP PB CP PA ⊥⊥,且,PD PB PC AP ==.(1)如图1,连接AD BC 、相交于点E ,求证:PCB PAD ≌;(2)如图1,连接PE ,求证:PE 平分CED ∠;(3)如图2,连CD 与y 轴相交于点Q ,当动点P 在y 轴正半轴上运动时,线段PQ 的长度是否改变?如果不变,请求出其值;如果改变,请求出其变化范围.19.在Rt ABC △中,90CAB ∠=︒,AB AC =,点O 是BC 的中点,点P 是射线CB 上的一个动点(点P 不与点C 、O 、B 重合),过点C 作CE AP ⊥于点E ,过点B 作BF AP⊥于点F ,连接EO ,OF .(问题探究)如图1,当P 点在线段CO 上运动时,延长EO 交BF 于点G ,(1)求证:AEC △BFA ;(2)BG 与AF 的数量关系为:______(直接写结论,不需说明理由);(拓展延伸)(3)△如图2,当P 点在线段OB 上运动,EO 的延长线与BF 的延长线交于点G ,OFE ∠的大小是否变化?若不变,求出OFE ∠的度数;若变化,请说明理由;△当P 点在射线OB 上运动时,若2AE =,5CE =,直接写出OEF 的面积,不需证明. 20.如图,线段AB=4,射线BG△AB ,P 为射线BG 上一点,以AP 为边作正方形APCD ,且点C、D与点B在AP两侧,在线段DP上取一点E,使△EAP=△BAP,直线CE与线段AB相交于点F(点F与点A、B不重合).(1)求证:AEP△CEP;(2)判断CF与AB的位置关系,并说明理由;(3)请直接写出AEF的周长.参考答案1.C【分析】△根据直角三角形斜边中线的性质和旋转的性质得出AD BD DF ==,然后利用等腰三角形的性质和三角形内角和定理即可判断;△分两种情况讨论:ABF ABC ∠=∠或ABF BAC ∠=∠,分别求α即可 ; △先根据题意画出图形,首先证明FDG ADE ≅ ,然后得出3FG DE ==,最后利用12DEF S DE FG =⋅即可求解. 【详解】△△DE 是△ABC 的中位线,AD DB ∴=.由旋转可知DF DB =,AD BD DF ∴==,,DAF AFD DBF DFB ∴∠=∠∠=∠ .180DAF AFB ABF ∠+∠+∠=︒ ,90AFD DFB ∴∠+∠=︒ ,即90AFB ∠=︒ ,△△ABF 是直角三角形,故△正确;90C ∠=︒ ,90BAC ABC ∴∠+∠=︒ .若△ABF 和△ABC 全等,当ABF ABC ∠=∠时,180218022(90)2ABF ABC ABC BAC α=︒-∠=︒-∠=︒-∠=∠ ;当ABF BAC ∠=∠时,180218022(90)2ABF BAC BAC ABC α=︒-∠=︒-∠=︒-∠=∠,综上所述,若△ABF 和△ABC 全等,则α=2△BAC 或2△ABC ,故△正确;过点F 作FG DE ⊥交ED 的延长线于点G ,△DE 是ABC 的中位线,//DE BC ∴ ,90AED ACB ∴∠=∠=︒ .FG DE ⊥,90FGE ∴∠=︒.90FDB ∠=︒,90ADF ∴∠=︒,90FDG ADE ∴∠+∠=︒.90DAE ADE ∠+∠=︒ ,FDG DAE ∴∠=∠.90AFB ∠=︒,D 为AB 中点,FD AD ∴=.在FDG △和ADE 中,FGD AED FDG DAE FD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()FDG ADE AAS ∴≅3FG DE ∴==,1133 4.522DEF S DE FG ∴=⋅=⨯⨯=,故△正确; 所以正确的有:△△△.故选:C .【点拨】本题主要考查三角形中位线的性质,直角三角形斜边中线的性质,全等三角形的判定及性质,掌握三角形中位线的性质,直角三角形斜边中线的性质,全等三角形的判定及性质是解题的关键.2.()0,3-【分析】作EN y ⊥轴于N ,求出NBE BAO ∠=∠,证ABO BEN ≅△△,得BN =AO ,再由90OBF FBP BNE ∠=∠=∠=︒,证BFP NEP ≅△△,推出BP NP ==2,由点B 的坐标为()0,1-即可得出点P 的坐标为()0,3-.【详解】解:如图,作EN y ⊥轴于N ,90ENB BOA ABE ∠=∠=∠=︒,90OBA NBE ∴∠+∠=︒,90OBA OAB ∠+∠=︒,NBE BAO ∴∠=∠,在ABO 和BEN 中,AOB BNE BAO NBE AB BE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABO BEN AAS ∴≅△△,OB NE BF ∴==,OA=BN90OBF FBP BNE ∠=∠=∠=︒,在BFP △和NEP △中,FPB EPN FBP ENP BF NE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BFP NEP AAS ∴≅△△,BP NP ∴=,又因为点A 的坐标为(4,0),4OA BN ∴==,122BP NP BN ∴===, 又△点B 的坐标为()0,1-,△点P 的坐标为()0,3-.故答案为:()0,3-.【点拨】本题考查了全等三角形的性质和判定,坐标与图形性质等知识点的应用,主要考查学生综合运用性质进行推理和计算的能力,有一定的难度,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,全等三角形的对应角相等,对应边相等.3.72【分析】根据题意过点E 作EN△BM ,垂足为点N ,首先证明△ABO△△BEN ,得到BO=ME ;进而证明△BPF△△MPE 并分析即可得出答案.【详解】解:如图,过点E 作EN△BM ,垂足为点N ,△△AOB=△ABE=△BNE=90°,△△ABO+△BAO=△ABO+△NBE=90°,△△BAO=△NBE ,△△ABE 、△BFO 均为等腰直角三角形,△AB=BE ,BF=BO ;在△ABO 与△BEN 中,BAO NBE AOB BNE AB BE ∠⎪∠⎧⎩∠⎪∠⎨===,△△ABO△△BEN (AAS ),△BO=NE ,BN=AO ;△BO=BF ,△BF=NE ,在△BPF 与△NPE 中,FBP ENP FPB EPN BF NE ∠⎪∠⎧⎩∠⎪∠⎨===,△△BPF△△NPE (AAS ), △BP=NP=12BN ,BN=AO , △BP= 12AO= 12×7=72. 故答案为:72. 【点拨】本题考查三角形内角和定理以及全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形并灵活运用有关定理进行分析.4.(1)见解析;(2)135AOC ∴∠=;(3)【分析】(1)根据“一线三垂直”模型,可以证得A AOB CD ∆∆≌;(2)过点C 作CM△CO 交BO 于M ,AC 与BO 交于点N ,利用旋转模型证明BCM ∆△()ACO ASA ∆,由外角的性质计算即可;(3)在CE 上截取一点H ,使CH=AE ,连接OH ,利用等腰直角△AOB ,等边△BOC 证得OAE ∆△()OCH SAS ∆,通过等角代换证明HOE ∆为等边三角形,由线段和计算即可得到结果.【详解】(1)△△BAC=△AOB=90°,△△BAO+△DAC=△BAO+△ABO=90°,△△DAC=△ABO ,△△ABC 是等腰直角三角形,△AB=AC ,在△AOB 和△CDA 中,ABO DAC AOB CDA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△AOB△△CDA (AAS )(2)如图△,过点C 作CM△CO 交BO 于M ,AC 与BO 交于点N ,90MCO ACB ∴∠=∠=,BCM ACO ∴∠=∠,90BCA AOB ∠=∠=,BNC ANO ∠=∠,CBM OAC ∴∠=∠,△AC=BC ,BCM ∴∆△()ACO ASA ∆,CM CO ∴=,45COM CMO ∴∠=∠=,9045135AOC ∴∠=+=,故答案为:135°.(3)如图△,在CE 上截取一点H ,使CH=AE ,连接OH ,△△AOB 是等腰直角三角形,△BOC 是等边三角形,所以AO BO CO ==,OAE OCH ∴∠=∠,OAE ∴∆△()OCH SAS ∆,OH OE ∴=,AE=CH=3,△AOE=△COH ,OD AB ⊥,△AOB=90°,45AOE BOE ∴∠=∠=,45COH ∴∠=,△BOH=△BOC -△COH=60°-45°=15°,154560HOE ∴∠=+=,HOE ∴∆为等边三角形,2HE EO ∴==,Rt△ADE 中,△DAE=45°-15°=30°,△AE=2DE ,设DE=x ,则AE=2x ,,△AD=OD ,,,,.故答案为:.【点拨】本题考查了“一线三垂直”模型,三角形全等的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,等角代换的应用,计算线段和的应用,掌握三角形全等的判定和性质是解题的关键.5.(1)见解析;(2)△EDH=45°;(3)EH=【分析】(1)根据全等三角形的判定得出△CAE△△ABD,进而利用全等三角形的性质得出AE=BD 即可;(2)根据全等三角形的判定得出△AEH△△BDH,进而利用全等三角形的性质解答即可;(3)过点M作MS△FH于点S,过点E作ER△FH,交HF的延长线于点R,过点E作ET△BC,根据全等三角形判定和性质解答即可.【详解】证明:(1)△CE△AE,BD△AE,△△AEC=△ADB=90°,△△BAC=90°,△△ACE+CAE=△CAE+△BAD=90°,△△ACE=△BAD,在△CAE与△ABD中ACE BAD AEC ADB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩△△CAE △△ABD (AAS ),△AE =BD ;(2)连接AH△AB =AC ,BH =CH ,△△BAH =11904522BAC ∠=⨯︒=︒,△AHB =90°, △△ABH =△BAH =45°,△AH =BH ,△△EAH =△BAH ﹣△BAD =45°﹣△BAD ,△DBH =180°﹣△ADB ﹣△BAD ﹣△ABH =45°﹣△BAD ,△△EAH =△DBH ,在△AEH 与△BDH 中AE BD EAH DBH AH BH =⎧⎪∠=∠⎨⎪=⎩△△AEH △△BDH (SAS ),△EH =DH ,△AHE =△BHD ,△△AHE +△EHB =△BHD +△EHB =90°即△EHD =90°,△△EDH =△DEH =18090452︒-︒=︒; (3)过点M 作MS △FH 于点S ,过点E 作ER △FH ,交HF 的延长线于点R ,过点E 作ET △BC ,交HR 的延长线于点T .△DG △FH ,ER △FH ,△△DGH =△ERH =90°,△△HDG +△DHG =90°△△DHE =90°,△△EHR +△DHG =90°,△△HDG =△HER在△DHG 与△HER 中HDG HER DGH ERH DH EH ∠=∠⎧⎪∠=∠⎨⎪=⎩△△DHG △△HER (AAS ),△HG =ER ,△ET △BC ,△△ETF =△BHG ,△EHB =△HET ,△ETF =△FHM ,△△EHB =△BHG ,△△HET =△ETF ,△HE =HT ,在△EFT 与△MFH 中ETF FHM EFT MFH EF FM ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△EFT △△MFH (AAS ),△HF =FT , △22HF MS FT ER =, △ER =MS ,△HG =ER =MS ,设GH =6k ,FH =5k ,则HG =ER =MS =6k , 563022HF MS k k ==, k△FH =△HE =HT =2HF =【点拨】本题考查全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用数形结合的思想思考问题,属于压轴题.6.(1)+DE CE BD =(2)CE DE BD =+(3)当P 点运动6秒或10秒时PFA ∆与QAG ∆全等【分析】(1)根据题意首先证明()ABD ACE AAS ∆≅∆,在采用等量替换即可证明+DE CE BD =. (2)根据题意首先证明()ABD CAE AAS ∆≅∆,在采用等量替换即可证明CE BD DE =+.(3)根据PFA ∆与QAG ∆全等,列方程即可,注意要分类讨论.【详解】(1)+DE CE BD =.理由如下:△在Rt ABC ∆中,90BAC ∠=︒,△90BAD EAC ∠+∠=︒,又△90ADB AEC ∠=∠=︒,△90BAD ABD ∠+∠=︒,△EAC ABD ∠=∠,△AB AC =,△()ABD ACE AAS ∆≅∆,△AD CE =,BD AE =,△DE AD AE CE BD =+=+.(2)CE DE BD =+..理由如下:△BD AE ⊥,CE AE ⊥,△90ADB AEC ∠=∠=︒,△90ABD BAD ∠+∠=︒,△90BAC ∠=︒,△90BAD EAC ∠+∠=︒,△ABD EAC ∠=∠,在ABD ∆和CAE ∆中,△ABD CAE ∠=∠,ADB CEA ∠=∠,AB AC =,△()ABD CAE AAS ∆≅∆,△BD AE =,AD CE =,△AD AE DE =+,△AD BD DE =+,△CE BD DE =+;(3)解:△当点P 在AB 上,点Q 在AC 上时,222283t t -=-,解得6t =,△当点P 在AB 上,点Q 在AC 上时,222328t t -=-,解得10t =.△当点P 在AC 上,点Q 在AB 上时,(t>11)222328t t -=-解得:t=6(舍)△当点Q 运动到B 点,点P 在AC 上时,(11<t≤503) 22222t -=,解得22t =(舍).所以当P 点运动6秒或10秒时PFA ∆与QAG ∆全等.【点拨】本题主要考查三角形的全等证明,关键在于第三问的分类讨论思想,这是数学的一个重要思想,应当熟练掌握.7.(1)t 的值为72秒;(2)CP 的长为6(6)6(614)t t t t -≤⎧⎨-<≤⎩;(3)当△PEC 与△QFC 全等时,满足条件的CQ的长为5或2.5或6【分析】(1)由题意得t+3t=6+8,即可求得P、Q两点相遇时,t的值;(2)根据题意即可得出CP的长为6(6)6(614)t tt t-≤⎧⎨-<≤⎩;(3)分两种情况讨论得出关于t的方程,解方程求得t的值,进而即可求得CQ的长.【详解】解:(1)由题意得t+3t=6+8,解得:t=72(秒),当P、Q两点相遇时,t的值为72秒;(2)由题意可知AP=t,则CP的长为6(6)6(614)t tt t-≤⎧⎨-<≤⎩;(3)当P在AC上,Q在BC上时,△△ACB=90,△△PCE+△QCF=90°,△PE△l于E,QF△l于F.△△EPC+△PCE=90°,△PEC=△CFQ=90°,△△EPC=△QCF,△△PCE△△CQF,△PC=CQ,△6﹣t=8﹣3t,解得t=1,△CQ=8﹣3t=5;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,6﹣t=3t﹣8,解得:t=3.5,△CQ=3t﹣8=2.5,当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6,综上,当△PEC与△QFC全等时,满足条件的CQ的长为5或2.5或6.【点拨】本题考查了三角形全等的判定和性质,线段的动点问题,根据题意得出关于t 的方程是解题的关键.8.(1)△见解析;△见解析;(2)成立:DE=BD+CE ;证明见解析;(3)见解析【分析】(1)△根据平行线的判定与性质即可求解;△由条件可证明△ABD△△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知△BAD +△CAE =180°−α,且△DBA +△BAD =180°−α,可得△DBA =△CAE ,结合条件可证明△ABD△△CAE ,同(1)可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI△△GNI ,可得出结论I 是EG 的中点.【详解】(1)△△BD△直线l ,CE△直线l△△BDA=△CEA=90°△△BAC=90°△△BAD+△CAE=90°△△BAD+△ABD=90°△△CAE=△ABD△在△ADB 和△CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△ADB△△CEA (AAS )△AE=BD ,AD=CE△DE=AE+AD=BD+CE ;(2)成立:DE=BD+CE 证明如下:△△BDA=△BAC=α△△DBA+△BAD=△BAD+△CAE=180°﹣α△△DBA=△CAE在△ADB 和△CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△ADB△△CEA (AAS )△AE=BD 、AD=CE△DE=AE+AD=BD+CE ;(3)如图过E 作EM△HI 于M ,GN△HI 的延长线于N△△EMI=GNI=90°由(1)和(2)的结论可知EM=AH=GN△EM=GN在△EMI 和△GNI 中GIH EIM EM GNGHI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩△△EMI△△GNI (AAS )△EI=GI△I 是EG 的中点.【点拨】本题主要考查全等三角形的判定和性质,由条件证明三角形全等得到BD =AE 、CE =AD 是解题的关键.9.(1)C (-4,6);(2)OE -MN=2.【分析】(1)作CE△y 轴于E ,易证△CBE△△BAO ,即可得点C 的坐标;(2)作MF△y 轴于F ,易证△AOE△△EFM ,可得OE -MN=EF=OA 即可求得答案.【详解】(1)作CE△y 轴于E ,如图1,△A (-2,0),B (0,4),△OA=2,OB=4,△△CBA=90°,△△CEB=△AOB=△CBA=90°,△△ECB+△EBC=90°,△CBE+△ABO=90°,△△ECB=△ABO ,在△CBE 和△BAO 中ECB ABO CEB AOB BC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩△△CBE△△BAO ,△CE=BO=4,BE=AO=2,即OE=2+4=6,△C (-4,6).(2)如图2,作MF△y 轴于F ,则△AEM=△EFM=△AOE=90°,△△AEO+△MEF=90°,△MEF+△EMF=90°,△△AEO=△EMF ,在△AOE 和△EMF 中,AOE EFM AEO EMF AE EM ∠=∠⎧⎪∠=∠⎨⎪=⎩△△AEO△△EMF ,△EF=AO=2,MF=OE ,△MN△x 轴,MF△y 轴,△△MFO=△FON=△MNO=90°,△四边形FONM 是矩形,△MN=OF ,△OE -MN=OE -OF=EF=OA=2.考点:全等三角形的判定及性质.10.△ACB=90°.【分析】作AM△直线OC 于M ,BN△直线OC 于N .通过AAS 证明△AOM△△OBN ,根据全等三角形的性质和等腰直角三角形的性质即可求得答案.【详解】作AM△直线OC 于M ,BN△直线OC 于N .△△ACO=135°,△△ACM=45°,△AM=CM ,在△AOM 与△OBN 中,90()AMO ONB AOM OBN BON OA OB ∠∠︒⎧⎪∠∠∠⎨⎪=⎩===均为的余角,△△AOM△△OBN(AAS),△OM=BN ,ON=AM=CM ,△NC=OM=BN ,又△BN△NS .△△BCN=45°,△△ACB=△ACO -△BCN=90°.【点拨】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,有一定的综合性,难点是作出辅助线.11.(1)见解析;(2)B 的坐标(3,1);(3)(3,4)【分析】(1)根据AD△DE 、BE△DE 得到△D=△E=90°再根据直角三角形的性质以及同角的余角相等,推出△DAC=△BCE ,进而证明ADC CEB ≅,最后再根据全等三角形对应边相等得出AD=CE ,CD=BE ;(2)如图4,过点B 作BE△x 轴于点E ,通过证明AOC CEB ≅,进而得出AO=CE ,CO=BE ,再根据点A 的坐标为(0,2),点C 的坐标(1,0),求得OE=3,最后得出B 的坐标(3,1);(3)如图5,过点C 做CF△x 轴与点F ,再过点A 、B 分别做AE△CF ,BD△CF ,通过证明CDB AEC ≅,进而得出BD=CE=,AE=CD ,最后根据点A 的坐标为()2,1,点C 的坐标为()4,2,得出B 坐标(3,4).【详解】(1)证明:△AD△DE ,BE△DE△△D=△E=90°△△DAC+△ACD=90°又△△ACB=90°△△ACD+△BCE=90°△△DAC=△BCE在△ADC 和△CEB 中D E DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩△△ADC△△CEB△AD=CE ,CD=BE(2)解:如图,过点B 作BE△x 轴于点E△△AOC=90°△△OAC+△ACO=90°又△△ACB=90°△△ACO+△BCE=90°△△OAC=△BCE在△AOC 和△CEB 中90AOC CEB OAC ECBAC BC ⎧∠=∠=⎪∠=∠⎨⎪=⎩△△AOC△△CEB△AO=CE ,CO=BE又△点A 的坐标为(0,2),点C 的坐标(1,0)△AO=2,CO=1△CE=2,BE=1△OE=3△B 的坐标(3,1)(3)(3,4)解:如图5,过点C 做CF△x 轴与点F ,再过点A 、B 分别做AE△CF ,BD△CF , △AE△CF ,BD△CF△90AEC CDB ∠=∠=︒,△90ACE CAE ∠+∠=︒,又△90ACB ∠=︒,△90ACE BCD ∠+∠=︒,△CAE BCD ∠=∠,△在ACE △和BCD △中AEC CDB CAE BCD AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,△ACE BCD ≅(AAS )△BD=CE ,AE=CD ,又△A 的坐标为()2,1,点C 的坐标为()4,2,△CE=BD=2-1=1,CD=AE=4-2=2设B 点坐标为(a ,b ),则a =4-1=3,b =2+2=4,△B 坐标(3,4).【点拨】本题综合考查了全等三角形的证明以及平面直角坐标系中求点坐标的综合应用问题;通过构建“一线三等角”模型,再利用直角三角形的性质以及同角的余角相等解决角关系是本题的关键.12.(1)证明见解析;(2)DE =BD +CE ;(3)B(1,4)【分析】(1)证明△ABD△△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明△ABD=△CAE ,证明△ABD△△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(3)根据△AEC△△CFB ,得到CF=AE=3,BF=CE=OE -OC=4,根据坐标与图形性质解答.【详解】(1)证明:△BD△直线m ,CE△直线m ,△△ADB =△CEA =90°△△BAC =90°△△BAD +△CAE =90°△△BAD +△ABD =90°△△CAE =△ABD△在△ADB 和△CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩△△ADB△△CEA (AAS )△AE =BD ,AD =CE△DE =AE +AD =BD +CE即:DE =BD +CE(2)解:数量关系:DE =BD +CE理由如下:在△ABD 中,△ABD=180°-△ADB -△BAD ,△△CAE=180°-△BAC -△BAD ,△BDA=△AEC ,△△ABD=△CAE ,在△ABD 和△CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩===△△ABD△△CAE (AAS )△AE=BD ,AD=CE ,△DE=AD+AE=BD+CE ;(3)解:如图,作AE△x 轴于E ,BF△x 轴于F ,由(1)可知,△AEC△△CFB ,△CF=AE=3,BF=CE=OE -OC=4,△OF=CF -OC=1,△点B 的坐标为B (1,4).【点拨】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.13.(1)见解析;(2)见解析;(3)113或53 【分析】(1)证明△AFD△△EAC ,根据全等三角形的性质得到DF=AC ,等量代换证明结论; (2)作FD△AC 于D ,证明△FDG△△BCG ,得到DG=CG ,求出CE ,CB 的长,得到答案;(3)过F 作FD△AG 的延长线交于点D ,根据全等三角形的性质得到CG=GD ,AD=CE=7,代入计算即可.【详解】解:(1)证明:△FD△AC ,△△FDA=90°,△△DFA+△DAF=90°,同理,△CAE+△DAF=90°,△△DFA=△CAE ,在△AFD 和△EAC 中, AFD EAC ADF ECA AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△AFD△△EAC (AAS ),△DF=AC ,△AC=BC ,△FD=BC ;(2)作FD△AC 于D ,由(1)得,FD=AC=BC,AD=CE,在△FDG和△BCG中,90 FDG BCG FGD BGCFD BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,△△FDG△△BCG(AAS),△DG=CG=1,△AD=2,△CE=2,△BC=AC=AG+CG=4,△E点为BC中点;(3)当点E在CB的延长线上时,过F作FD△AG的延长线交于点D,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF△△ECA,△GDF△△GCB,△CG=GD,AD=CE=7,△CG=DG=1.5,△4 1.5111.53 AGCG+==,同理,当点E在线段BC上时,4 1.551.53 AGCG-==,故答案为:113或53.【点拨】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.14.(1)证明见解析;(2)证明见解析.【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1) △FH AG ⊥,90AEH EAH ∴∠+∠=︒,90FAC ∠=︒,90FAH CAD ∴∠+∠=︒,AFH CAD ∴∠=∠,在AFH ∆和CAD ∆中,90AHF ADC AFH CADAF AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AFH CAD AAS ∴∆≅∆,(2)由(1)得AFH CAD ∆≅∆,FH AD ∴=,作FK AG ⊥,交AG 延长线于点K ,如图;同理得到AEK ABD ∆≅∆,EK AD ∴=,FH EK ∴=,在EKG ∆和FHG ∆中,90EKG FHG EGK FGHEK FH ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()EKG FHG AAS ∴∆≅∆,EG FG ∴=.即点G 是EF 的中点.【点拨】此题考查了全等三角形的判定与性质,熟练掌握K 字形全等进行证明是解本题的关键.15.(1)()05,;(2)不变,PB 的值为3【分析】(1)作CD△BO ,可证△ABO 全等于△BCD ,根据全等三角形对应边相等的性质即可解题; (2)作EG△y 轴,可证△BAO 全等于△EBG 全等于△EGP 全等于△FBP ,可得BG=OA 和PB=PG,即可求得PB 是AO 的2倍,即可得到结论.【详解】(1)如图,作CD△BO 于D ,△△CBD+△ABO=90°,△ABO+△BAO=90°,△△CBD=△BAO,在△ABO 和△BCD 中,90BOA BDC CBD BAOAB BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩△△ABO△△BCD,△CD=BO=5,△B 点的坐标(0,5)故答案为:()05,. (2)不发生改变,理由如下:作EG y ⊥轴于G ,90BAO OBA ∠+∠=︒,90OBA EBG ∠+∠=︒,BAO EBG ∴∠=∠.在BAO ∆和EBG ∆中,90AOB BGE BAO EBGAB BE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()BAO EBG AAS ∴∆≅∆AO BG ∴=,OB EG =OB BF =,BF EG ∴=在EGP ∆和FBP ∆中,90EPG FPB EGP FBP EG FB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()EGP FBP AAS ∴∆≅∆PG PB ∴=.11322PB BG AO ∴===. △不变,PB 的值为3.【点拨】本题考查三角形全等、等腰直角三角形性质、勾股定理、角平分线性质,熟练掌握添加辅助线证明三角形全等是解题的关键.16.解决问题:证明见解析;问题延伸:成立,证明见解析.【分析】解决问题:对于图1,根据正方形的性质得△BCD=90°,AC 平分△BCD ,而PM△BC ,PN△CD ,则四边PMCN 为矩形,根据角平分线性质得PM=PN ,根据四边形内角和得到△PBC+△CEP=180°,再利用等角的补角相等得到△PBM=△PEN ,然后根据“AAS”证明△PBM△△PEN ,则PB=PE ;对于图2,连结PD ,根据正方形的性质得CB=CD ,CA 平分△BCD ,根据角平分线的性质得△BCP=△DCP ,再根据“SAS”证明△CBP△△CDP ,则PB=PD ,△CBP=△CDP ,根据四边形内角和得到△PBC+△CEP=180°,再利用等角的补角相等得到△PBC=△PED ,则△PED=△PDE ,所以PD=PE ,于是得到PB=PD ;问题延伸:对于图3,过点P 作PM△BC ,PN△CD ,垂足分别为M ,N ,根据正方形的性质得△BCD=90°,AC 平分△BCD ,而PM△BC ,PN△CD ,得到四边PMCN 为矩形,PM=PN ,则△MPN=90°,利用等角的余角相等得到△BPM=△EPN ,然后根据“AAS”证明△PBM△△PEN ,所以PB=PE .【详解】解决问题:如图1,△四边形ABCD 为正方形,△△BCD=90°,AC 平分△BCD ,△PM△BC ,PN△CD ,△四边PMCN 为矩形,PM=PN ,△△BPE=90°,△BCD=90°,△△PBC+△CEP=180°,而△CEP+△PEN=180°,△△PBM=△PEN ,在△PBM 和△PEN 中PMB PNE PBM PEN PM PN ∠=∠∠=∠=⎧⎪⎨⎪⎩△△PBM△△PEN (AAS ),△PB=PE ;如图2,连结PD ,△四边形ABCD 为正方形,△CB=CD ,CA 平分△BCD ,△△BCP=△DCP ,在△CBP 和△CDP 中CB CD BCP DCP CP CP =∠=∠=⎧⎪⎨⎪⎩,△△CBP△△CDP (SAS ),△PB=PD ,△CBP=△CDP ,△△BPE=90°,△BCD=90°,△△PBC+△CEP=180°,而△CEP+△PEN=180°,△△PBC=△PED ,△△PED=△PDE ,△PD=PE ,△PB=PD ;问题延伸:如图3,PB=PE 还成立.理由如下:过点P 作PM△BC ,PN△CD ,垂足分别为M ,N ,△四边形ABCD 为正方形,△△BCD=90°,AC 平分△BCD ,△PM△BC ,PN△CD ,△四边PMCN 为矩形,PM=PN ,△△MPN=90°,△△BPE=90°,△BCD=90°,△△BPM+△MPE=90°,而△MEP+△EPN=90°,△△BPM=△EPN ,在△PBM 和△PEN 中PMB PNE BPM EPN PM PN ∠=∠∠=∠=⎧⎪⎨⎪⎩,△△PBM△△PEN (AAS ),△PB=PE .17.提出问题:1290∠+∠=︒;探究问题:BD CE DE +=,理由见解析;解决问题:△EM FN AB +=,理由见解析;△492. 【分析】 提出问题:根据平角的定义、角的和差即可得;探究问题:先根据垂直的定义可得90ADB CEA ∠=∠=︒,再根据直角三角形的两锐角互余、角的和差可得2ABD ∠=∠,然后根据三角形全等的判定定理与性质可得,BD AE AD CE ==,最后根据线段的和差即可得;解决问题:△如图(见解析),同探究问题的方法可得,EM AD FN BD ==,再根据线段的和差即可得;△如图(见解析),同探究问题的方法可得,ACD EAM BCD FBN ≅≅,再根据三角形全等的性质可得,ACD EAM BCD FBN S S S S ==,然后利用三角形的面积公式将五边形EMNFC 面积表示出来,由此即可得出答案.【详解】提出问题:12180,90BAC BAC ∠+∠+∠=︒∠=︒,2190∴∠+∠=︒,故答案为:1290∠+∠=︒;探究问题:BD CE DE +=,理由如下:,BD l CE l ⊥⊥,90ADB CEA ∴∠=∠=︒,190ABD ∴∠+∠=︒,由提出问题可知,1290∠+∠=︒,2ABD ∴∠=∠,在ABD △和CAE 中,2ADB CEA ABD AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABD CAE AAS ∴≅,,BD AE AD CE ∴==,DE AE AD BD CE ∴=+=+,即BD CE DE +=;解决问题:△EM FN AB +=,理由如下:同探究问题的方法可证:,EM AD FN BD ==,AB AD BD EM FN ∴=+=+,即EM FN AB +=;△如图,过点C 作CD l ⊥于点D ,同探究问题的方法可证:,ACD EAM BCD FBN ≅≅,,ACD EAM BCD FBN S S S S ∴==, ACE 和BCF △都是等腰直角三角形,且3,4AC BC ==,3,4AE AC BF BC ∴====, 191,8222ACE BCF S AC AE S BC BF ∴=⋅==⋅=, ∴五边形EMNFC 面积为EAM ACE ACD BCD BCF FBN SS S S S S +++++, 982ACD ACD BCD BCDS S S S =+++++, ()2522ACD BCD SS =++, 2522ABC S =+, 则当ABC 面积取得最大值时,五边形EMNFC 面积最大, 设ABC 的BC 边上的高为h ,则122ABC S BC h h =⋅=, 在ABC 中,CAB ∠、CBA ∠均为锐角,∴当90ACB ∠=︒时,h 取得最大值,最大值为3AC =,ABC ∴面积的最大值为236ABC S =⨯=,则五边形EMNFC 面积的最大值为25492622⨯+=, 故答案为:492.【点拨】本题考查了垂直的定义、三角形全等的判定定理与性质、等腰直角三角形的定义等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.18.(1)见解析;(2)见解析;(3)不变,1.【分析】(1)根据题意直接证明即可;(2)作PM D A ⊥,PN BC ⊥,运用角平分线的判定定理证明;(3)通过“一线三垂直”模型,证得SDQ CTQ △△≌,进而结合边长数量关系求解.【详解】(1)90DPB APC ∠=∠=︒,DPA BAC ∴∠=∠,在PCB 与PAD △中,PD PB DPA BAC PC AP =∠=∠=⎧⎪⎨⎪⎩()PCB PAD SAS ∴△≌△(2)如图,作PM D A ⊥,PN BC ⊥,则90PMA PNC ∠=∠=︒,由PCB PAD ≌,得PCN PAM ∠=∠,在PMA △与PNC △中,PMA PNC PCN PAM PA PC ∠=∠⎧⎪∠=∠⎨⎪=⎩()PMA PNC AAS ∴△△≌,PM PN ∴=,PE ∴平分CED ∠(3)如图,作DS CT 、分别垂直于y 轴,垂足为S T 、,90APO TPC ∠+∠=︒,90TPC TCP ∠+∠=︒,APO PCT ∴∠=∠(余角的性质)在APO △与PCT △中,POA CTP APO PCT PA PC ∠=∠⎧⎪∠=∠⎨⎪=⎩()APO PCT AAS ∴△△≌,1OA TP ∴==,PO CT =,同理可证:PBO DPS △△≌,3OB SP ∴==,4ST SP PT =+=,∴ PO SD =,CT SD =,在SDQ △与CTQ △中,CQT SQD CTQ DSQ CT SD ∠=∠⎧⎪∠=∠⎨⎪=⎩()SDQ CTQ AAS ∴△△≌122SQ TQ ST ∴===, 1PQ QT PT ∴=-=.。
全等三角形问题培优
全等三角形问题培优在初中数学学习中,全等三角形是一个很重要的概念。
全等三角形指的是具有相等边长和相等内角的两个三角形。
在解决问题时,我们常常要运用全等三角形的性质。
本文将从这一角度出发,介绍全等三角形问题的培优方法。
一、全等三角形的定义和性质全等三角形是指具有相等边长和相等内角的两个三角形。
在解决问题时,我们可以利用全等三角形的性质来简化计算过程和证明过程。
1. 边边边(SSS)全等条件:如果两个三角形的三边分别相等,则这两个三角形全等。
2. 边角边(SAS)全等条件:如果两个三角形的一个边和其夹角分别相等,并且另一边也相等,则这两个三角形全等。
3. 角边角(ASA)全等条件:如果两个三角形的两个角和夹在两个角之间的边分别相等,则这两个三角形全等。
利用这些全等条件,我们可以在解决问题过程中找到相应的全等三角形,从而得出答案。
二、全等三角形的应用1. 边长和角度比较在问题中,经常会出现两个或多个三角形的边长或内角需要进行比较的情况。
利用全等三角形的性质,我们不需要逐一计算每个边长或者每个内角的数值,只需要通过观察边长和角度的关系,找到全等三角形,就可以简化计算过程。
例如,已知三角形ABC和三角形DEF的三个内角分别相等,我们可以得出这两个三角形全等。
如果已知三角形ABC的一条边的长度为a,而三角形DEF的相应边的长度为b,那么我们就可以直接得出三角形DEF的边长与a的比较结果。
2. 证明问题在几何证明中,全等三角形是常常被用到的工具。
通过找到一个或多个全等三角形,我们可以得到所求证的结论。
例如,我们需要证明两条线段相等,可以通过构造两个全等三角形,使得所求线段等于全等三角形中的某条边。
然后,利用全等三角形的性质,我们可以得到所求线段等于另一条边,从而得到所需要证明的结论。
3. 问题求解在解决具体问题时,全等三角形也是一个很有用的工具。
通过观察问题中的几何关系,我们可以找到并利用全等三角形来简化问题的求解过程。
初中几何的培优题型与解题方法
初中几何的培优题型与解题方法
初中几何的培优题型和解题方法如下:
1. 直角三角形的性质:
- 题型:给定直角三角形的两个边长或斜边长度,求第
三边长或斜边长度、面积、周长等。
- 解题方法:利用勾股定理、正弦定理、余弦定理等求解。
2. 三角形的性质:
- 题型:给定三角形的边长或角度,求面积、周长、角
度等。
- 解题方法:利用海伦公式、正弦定理、余弦定理、三
角形内角和等于180度等求解。
3. 平行线与比例:
- 题型:给定平行线与交线段的长度比例,求其他线段
的长度比例。
- 解题方法:利用平行线的性质,如对应角相等、内错
角相等等,以及相似三角形的性质求解。
4. 相似三角形:
- 题型:给定两个相似三角形的一些边长或角度,求其
他边长或角度。
- 解题方法:利用相似三角形的性质,如对应边成比例、对应角相等等求解。
5. 圆的性质:
- 题型:给定圆的半径或直径,求圆的周长、面积、弧长等。
- 解题方法:利用圆的性质,如周长公式、面积公式、弧长公式等求解。
6. 平行四边形与梯形:
- 题型:给定平行四边形或梯形的一些边长或角度,求其他边长或角度、面积等。
- 解题方法:利用平行四边形的性质,如对角线互相平分、对边平行等,以及梯形的性质,如高等求解。
7. 圆锥与圆柱:
- 题型:给定圆锥或圆柱的一些参数,求体积、表面积等。
- 解题方法:利用圆锥和圆柱的性质,如体积公式、表面积公式等求解。
以上是初中几何的一些常见培优题型和解题方法,希望对你有帮助!。
初中数学几何培优小专题:翻折之直角三角形存在性
中考数学翻折专题训练直角三角形存在性问题1.(2017•河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM 的长为.2.(2020•郑州二模)如图,矩形ABCD中,AB=3,BC=4,对角线AC,BD相交于点O,点E是AD边上一动点,将△AEO沿直线EO折叠,点A落在点F处,线段EF,OD相交于点G.若△DEG是直角三角形,则线段DE的长为.3.(2020•恩施市校级模拟)如图,在矩形ABCD中,AB=4,BC=6,E是BC的中点,连接AE,P是边AD 上一动点,沿过点P的直线将矩形折叠,使点D落在AE上的点D′处,当△APD′是直角三角形时,PD=.4.(2020•洛阳一模)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2,BD平分∠ABC,点E是边AB上一动点(不与A、B重合),沿DE所在的直线折叠∠A,点A的对应点为F,当△BFC是直角三角形且BC为直角边时,则AE的长为.5.(2020春•二七区校级月考)如图,在矩形ABCD中,AB:BC=3:4,点E是对角线BD上一动点(不与点B,D重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC上,当△DEF为直角三角形时,CN:BN的值为.6.(2019•临颍县一模)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点E、F分别在边AC、BC上,连接EF,沿EF折叠该三角形,使点C的对应点D落在边AB上.若△BDF是直角三角形,则CF的长为.7.(2019•包河区一模)如图,在矩形ABCD中,AD=4,AC=8,点E是AB的中点,点F是对角线AC上一点,△GEF与△AEF关于直线EF对称,EG交AC于点H,当△CGH中有一个内角为90°时,则CG的长为.8.(2018秋•蜀山区校级期中)如图,矩形ABCD中,AB=3,AD=9,将△ABE沿BE翻折得到△A′BE,点A落在矩形ABCD的内部,且∠AA′G=90°,若以点A′、G、C为顶点的三角形是直角三角形,则AE=.9.(2019秋•川汇区期末)如图,在矩形ABCD中,已知AB=2,点E是BC边的中点,连接AE,△AB′E和△ABE关于AE所在直线对称,若△B′CD是直角三角形,则BC边的长为.10.(2019秋•建湖县期中)如图,长方形ABCD中,∠A=∠ABC=∠BCD=∠D=90°,AB=CD=5,AD=BC =13,点E为射线AD上的一个动点,若△ABE与△A'BE关于直线BE对称,当△A'BC为直角三角形时,AE 的长为.11.(2020•梁园区校级二模)如图所示,在矩形ABCD中,AB=2,AD=2,对角线AC与BD交于点O,E 是AD边动点,作直线OE交BC于点G,将四边形DEGC沿直线EG折叠,点D落在点D′处,点C落在点C′处,ED′交AC于F,若△AEF是直角三角形,则AE=.12.(2020•望城区模拟)如图,在矩形ABCD中,AB=3,BC=4,点E为射线CB上一动点(不与点C重合),将△CDE沿DE所在直线折叠,点C落在点C′处,连接AC′,当△AC′D为直角三角形时,CE的长为.13.(2020•宜城市模拟)如图,矩形ABCD 中,AB =8,AD =6,E 为AB 边上一点,将△BEC 沿着CE 翻折,使点B 落在点F 处,连接AF ,当△AEF 为直角三角形时,BE = .14.(2020•沈阳)如图,在矩形ABCD 中,AB =6,BC =8,对角线AC ,BD 相交于点O ,点P 为边AD 上一动点,连接OP ,以OP 为折痕,将△AOP 折叠,点A 的对应点为点E ,线段PE 与OD 相交于点F .若△PDF 为直角三角形,则DP 的长为 .15.如图,在三角形ABC 中,∠C=90°,AC=3,BC=4,D,E 分别是AB ,BC 上的动点,将BDE Δ沿着直线DE 翻折得到FDE Δ,使点F 落在射线AC 上,当BE 的长为 时,ADF Δ是直角三角形。
全等三角形经典培优题型(含答案)
全等三角形的提高拓展训练全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. "全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.全等三角形证明经典题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD ?2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2BADBC3已知:∠1=∠2,CD=DE ,EF︒=∠90ACB BC AC =MN C MN AD ⊥D MN BE ⊥E 1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗若成立,请给出证明;若不成立,说明理由.《&C#BABCDPDA CA PEDCBADCBAMF ECB AA CB $D E F ¥A CD F21 E15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。
初中几何经典培优题型(三角形)
全等三角形辅助线找全等三角形的方法:〔1〕可以从结论出发,看要证明相等的两条线段〔或角〕分别在哪两个可能全等的三角形中;〔2〕可以从已知条件出发,看已知条件可以确定哪两个三角形相等;〔3〕从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;〔4〕若上述方法均不行,可考虑添加辅助线,构造全等三角形.三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形.常见辅助线的作法有以下几种:1)遇到等腰三角形,可作底边上的高,利用"三线合一"的性质解题,思维模式是全等变换中的"对折".2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的"旋转".3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的"对折",所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的"平移"或"翻转折叠"5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.常见辅助线写法:⑴过点A作BC的平行线AF交DE于F⑵过点A作BC的垂线,垂足为D⑶延长AB至C,使BC=AC⑷在AB上截取AC,使AC=DE⑸作∠ABC的平分线,交AC于D⑹取AB中点C,连接CD交EF于G点例1如图,AB=CD=1,∠AOC=60°,证明:AC+BD≥1.例2<2007年中考〕如图,已知△ABC⑴请你在BC边上分别取两点D、E〔BC的中点除外〕,连接AD、AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;⑵请你根据使⑴成立的相应条件,证明AB+AC>AD+AE.例3已知线段OA、OB、OC、OD、OE、OF.∠AOB=∠BOC=∠COD=∠DOE=∠EOF=60°.且AD=BE=CF=2.求证:S△OAB+S△OCD+S△OEF3.例4如图1,在四边形ABCD中,连接对角线AC、BD,如果∠1=∠2,那么∠3=∠4.仔细阅读以上材料,完成下面的问题.如图2,设P为□ABCD内一点,∠P AB=∠PCB,求证:∠PBA=∠PDA.图1图2⑴集散思想:有些几何题,条件与结论比较分散,通过添加适当的辅助线,将图形中分散,远离了的元素聚集到有关的图形上,使它们相对集中,便于比较,建立关系,从而找出问题的解决途径.⑵平移只能用来作为作辅助线的思路,具体做辅助线的时候不能直接说将△ABC 平移至△DEF .1.在正方形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的点,且EG ⊥FH ,求 证:EG =FH .2.如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC .3.如图,已知△ABC 的面积为16,BC =8,现将△ABC 沿直线BC 向右平移a 个单位到△DEF 的位置.⑴当a =4时,求△ABC 所扫过的面积;⑵连接AE 、AD ,设AB =5,当△ADE 是以DE 为一腰的等腰三角形时,求a 的值.4.如图,AA ′=BB ′=CC ′=1,∠AOB ′=∠BOC ′=∠COA ′=60°,求证:34AOB BOC COA SS S '''++<.例1 如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且∠EAF =45°,AH ⊥EF ,H 为垂足,求证:AH =AB .例2△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内的一点,且AP =3,CP =2,BP =1,求∠BPC 的度数.例3已知在△ABC 中,AB =AC ,P 为三角形内一点,且∠APB >∠APC ,求证:PB <PC .有边相等或者有角度拼起来为特殊角的时候可以用旋转⑴边相等时常见图形为正方形,等腰三角形和等边三角形等等 ⑵角度能拼成的特殊角指的是180°,90°等等例4已知△ABC ,∠1=∠2,AB =2AC ,AD =BD .求证:DC ⊥AC .例5△ABC 为等腰直角三角形,∠ABC =90°,AB =AE ,∠BAE =30°,求证:BE =CE .例6在△ABC 中,E 、F 为BC 边上的点,已知∠CAE =∠BAF ,CE =BF ,求证:AC =AB .出现轴对称的时候可以考虑翻折,尤其注意有角平分线,有角相等或者出现特殊角的一半的时候,翻折是常用添加辅助线的思想.强调:旋转和翻折只能是一种作辅助线的思路,具体做辅助线的时候不能直接说将△ABC旋转或翻折至△DEF.1.如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心角为直角的扇形纸板的圆心方在O点处,并将纸板绕O点旋转,其半径分别交AB、AD于点M、N,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a.2.〔2008##〕在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点,试判断EC与EB的位置关系,并写出推理过程.3.如图,P是等边△ABC内一点,若AP=3,PB=4,PC=5,求∠APB的度数.4.已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,∠DAE=45°.⑴猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;⑵当动点E在线段BC上,动点D运动在线段CB延长线上时,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.5.如图,已知等腰直角三角线ABC,BD平分∠ABC,CE⊥BD,垂足为E,求证:BD=2CE.6.如图,折叠长方形的一边AD,使点D落在BC边的点F处,如果AB=8,BC=10,求EC的长.中点的妙用一、倍长中线法例1<文汇中学2009-2010期中测试题>,AD是△ABC中BC边上的中线,若AB=2,AC=4,则AD的取值范围是___________.例2已知在△ABC中,AD是BC边上的中线,E是AD上一点,延长BE交AC于F,AF=EF,求证:AC=BE.例3⑴如图1,△ABC与△BDE均为等腰直角三角形,BA⊥AC,ED⊥BD,点D在AB边上.连接EC,取EC中点F,连接AF,DF,猜测AF,DF的数量关系和位置关系,并加以证明.图1⑵如图2,将△BDE旋转至如图位置,使E在AB延长线上,D在CB延长线上,其他条件不变,则⑴中AF,DF的数量关系和位置关系是否发生变化,并加以证明.图2例4已知四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,求证EFGH为平行四边形.例5如图,已知四边形ABCD中,AB=CD,M、N分别为BC、AD中点,延长MN与AB、CD延长线交于E、F,求证∠BEM=∠CFM例6已知△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°,连接DE,设M为DE的中点.⑴求证:MB =MC ;⑵设∠BAD =∠CAE ,固定Rt △ABD ,让Rt △ACE 移至图示位置,此时MB =MC 是否成立?请证明你的结论.出现中点的时候一般有以下作辅助线的方法⑴倍长中线法⑵构造中位线⑶如果是直角三角形,经常还会构造斜边上的中线例7如图,已知△ABC 和△ADE 都是等腰直角三角形,点M 为EC 中点,求证△BMD 为等腰直角三角形.1.在△ABC 中,AB =12,AC =30,求BC 边上的中线AD 的范围.2.在△ABC 中,D 为BC 边上的点,已知∠BAD =∠CAD ,BD =CD ,求证:AB =AC .3.如图,在△ABC 中,AD ⊥BC ,M 是BC 中点,∠B =2∠C ,如图,求证:DM =12AB 4.已知△ABC 中,AC =7,BC =4,D 为AB 中点,E 为边AC 上一点,且102AED C ∠=︒+∠9,求CE 的长.5.在任意五边形ABCDE 中,M,N,P,Q 分别为AB 、CD 、BC 、DE 的中点,K 、L 、分别为MN 、PQ 的中点,求证:KL 平行且等于14AE . 6.如图,已知△ABC 中,AB =AC ,CE 是AB 边上的中线,延长AB 到D ,使BD =AB ,那么CE 是CD 的几分之几?7.四边形ABCD 四边中点分别为E 、F 、G 、H ,当四边形ABCD 满足时,EFGH 为菱形;当四边形ABCD 满足时,EFGH 为矩形;当四边形ABCD 满足时,EFGH 为正方形.例1在△ABC 中,∠B =2∠C ,∠BAC 的平分线AD 交BC 与D .求证:AB +BD =AC .例2 ABCD 是正方形,P 为BC 上任意一点,∠P AD 的平分线交CD 于Q ,求证:DQ =AP -BP . 例3已知△ABC ,∠ABC =90°,以AB 、AC 为边向外做正方形ABDE 和ACFG ,延长BA 交EG 于H ,则BC =2AH .例4 AD 是△ABC 的角平分线,BE ⊥AD 交AD 的延长线于E ,EF //AC 交AB 于F .求证:AF =FB .截长补短法补形法例5如图,六边形ABCDEF的六个内角都相等,已知BC+CD=11,DE-AB=3,求DC+EF的值. 例6如图所示:BC>AB,AD=AC,BD平分∠ABC,求证:∠A+∠C=180°.1.如图,在△ABC中,AB+BD=AC,∠BAC的平分线AD交BC与D,求证:∠B=2∠CAB CD已知△ABC,以AB、AC为边向外作正方形ABGF、ACDE,M是BC中点,连接AM求证:EF=2AM且AM⊥EF.3.在△ABC中,AB=AC,∠A=100°,BE评分∠B交AC与E,如图,求证:AE+BE=BC 4.在△ABC中,D、E为AB、AC中点,DE与∠B的平分线交与F,如图所示.求证:AF⊥BF5.在△ABC中,MB、NC分别是三角形的外角∠ABE、∠ACF的角平分线,AM⊥BM,AN⊥CN,垂足分别是M,N.求证:MN∥BC,MN=12<AB+AC+BC>6.在△ABC中,MB、NC分别是三角形的内角∠ABC、∠ACB的角平分线,AM⊥BM,AN⊥CN,垂足分别是M,N.求证:MN∥BC,MN=12<AB+AC-BC>例1在四边形ABCD中,已知AB=BC=CD,∠ABC=70°,∠BCD=170°,求∠BAD的度数.例2如图,△ABC中,AB=AC,AD=BC,∠A=20°,求∠DCA的度数.例3任意△ABC,试在△ABC内找一点P,使得P A+PB+PC的值最小例4<2000 初二数学竞赛〕,在等腰△ABC中,延长边AB到点D,延长边CA到点E,连接DE, 恰有AD=BC=CE=DE.求证:∠BAC=100°.例5如图所示,在△ABC中,∠B=60°∠A=100°,E为AC的中点,∠DEC=80°,D是BC边上的点,BC=1,求△ABC的面积与△CDE的面积的两倍的和.例6如图所示,在△ABC中,∠ACB=2∠ABC,P为三角形内一点,AP=AC,PB=PC,求证:∠BAC=3∠BAP.1.如图所示,在四边形ABCD中,BC CD=,60BCA ACD∠-∠=︒,求证:AD CD AB+≥.2.在ABC∆中,AB AC=,60120A︒<∠<︒,P为ABC∆内部一点,PC AC=,120PCA A∠=︒-∠,求CBP∠的度数.巧构等边3.在等边△ABC内有一点P,它到三个顶点A、B、C的距离分别为1求∠APB的度数.4.在凸四边形ABCD中,∠DAC=30°,∠CAB=20°,∠ADB=50°,∠BDC=30°,四边形的对角线交于点P,求证:PB=PC5.在等腰△ABC中,∠B=∠C=40°,延长AB至点D,使AD=BC,求∠BCD的度数. 6.如图,D是△ABC外一点,AB=AC=BD+CD,∠ABD=60°.求∠ACD的度数.。
八年级上数学几何培优试题分类解析
八年级上数学培优练习(一): 三角形(1) 1、△ABC 的内角为∠A ,∠B ,∠C ,且∠1=∠A+∠B ,∠2=∠B+∠C ,∠3=∠A+∠C ,则∠1、∠2、∠3中( )A .至少有一个锐角 ;B .一定都是钝角;C .至少有两个钝角;D .可以有两个直角;2、如图,在等腰△ABC 中,AB=AC ,∠A=130°,将它向右平移到△DEF 的位置,使AB=BE ,若BD 和AF 相交于点M ,则∠BMF 等于( ) A .130° B .142.5° C .150° D .1553.如上图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,点E 是AD 中点,点F 是CD 上一点,若8=∆ABE S , 3=∆DEF S ,则___________=∆BEF S 4.△ABC 中,AB=BC ,在BC 上取点N 和M (N 比M 更靠近B),使得NM=AM 且∠MAC=∠BAN ,则∠CAN=( )A .30°B .45°C .60°D .75°5.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤ 6.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( ) A .5个 B .4个 C .3个 D .2个7.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值范围是________.8.不等边三角形中,如果有一条边长等于另外两条边长的平均值,那么,最大边上的高与最小边上的高的比值k 的取值范围是( )A .143<<kB .131<<kC . 1<k<2D .121<<k 9.已知三角形的三边的长a 、b 、c 都是整数,且a ≤b<c ,若b=7,则这样的三角形有( )A .14个B .28个C .21个D .49个10.如果三角形的一个外角大于这个三角形的某两个内角的2倍,那么这个三角形一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .直角或钝角三角形11.如下图,在△ABC 中,BC>AC ,∠A=60°,D 、E 分别为AB 、AC 的中点,若PC 平分∠ACB ,PD 平分∠ADE ,则∠DPC=___________B A F12.如上图,在直角三角形ABC的两直角边AC、BC上分别作正方形ACDE和CBFG,连接DG,连接AF交BC于W,连接GW。
【八年级数学几何培优竞赛专题】专题2 全等三角形判定方法的选择【含答案】
专题2 全等三角形判定方法的选择知识解读三角形全等判定方法的选择已知条件可供选择的判定方法一边和这边邻角对应相等选边:只能选角的另一边(SAS )选角:可选另外两对角中任意一对角(AAS ,ASA )一边及它的对角对应相等只能再选一角:可选另外两对角中任意一对角(AAS )两边对应相等选边;只能选剩下的一边(SSS )选角:只能选两边的夹角(SAS )两角对应相等只能选边:可选三条边的任意一对对应边(AAS .ASA )典例示范一、从变换的角度理解“全等”1.轴对称变换例1如图1-2-1,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,且AB =AC ,∠B =∠C ,求证:BD =CE .【提示】从结论“BD =CE ”来看,有两种思路,思路一:通过证明△BOD ≌△COE 得到对应边相等;思路二:通过证明“△ACD ≌△ABE ”得到AD =AE ,然后运用等式性质证得.从题设看,由“AB =AC ,∠B =∠C ”加上公共角∠A ,可得△ACD ≌△ABE ,所以我们考虑使用思路二给出证明过程.图1-2-1B【技巧点评】哪些情况下,可考虑利用全等的性质来证明线段相等和角相等呢?本题中,这个图形很显然是轴对称图形,而BD 和CE 也是轴对称的,这时候就可以考虑把BD 和CE 置于一对轴对称的三角形中,且BD 和CE 恰好是一对对应边.跟踪训练1.如图1-2-2,已知AB =DC ,AE =DF ,CE =F B .求证:AF =DE .图1-2-22.旋转变换例2如图1-2-3,AD 是△ABC 的中线,在AD 及其延长线上截取DE =DF ,连接CE ,BF ,试判断△BDF 与△CDE 全等吗?BF 与CE 有何位置关系?【提示】若△BDF 与△CDE 全等,需要寻找三个相等的要素,题中已知一对对顶角相等,由中线可得到BD =CD ,加上DE =DF ,即可根据“SAS ”得到两个三角形全等.图1-2-3B【技巧点评】本题是一个简单的全等证明题,本题意在说明图中△BDF 与△CDE 是中心对称的图形.,其中一个三角形可以看作另一个三角形绕点D 旋转180°得到.从中心对称的角度寻找相等的线段和相等的角,可以为证明全等提供方便.跟踪训练2.如图1-2-4,AB =AE ,∠1=∠2,∠B =∠E ,求证:BC =E D .图1-2-4二、线段和角度相等,常考虑证全等例3如图1-2-5,AC 交BD 于点O ,AC =BD ,AB =CD ,求证:∠C =∠B .【提示】要证明∠C =∠B ,可考虑将∠C 和∠B 置于一对三角形中,证明两个三角形全等,由于本题图中△AOB 和ACOD 全等不容易证明,可考虑连接AD ,证明△ACD 与△DBA 全等.图1-2-5跟踪训练3.已知,如图1-2-6,AD ⊥DB ,BC ⊥CA ,AC ,BD 相交于点O ,且AC =BD ,求证:AD =B C .图1-2-6B【技巧点评】由于全等三角形的对应角相等,对应边相等,因此证明两个三角形全等是证明两个角相等和两条线段相等常用的方法.利用全等三角形证明线段相等和角相等的思路:对应边(角)相等→两个三角形全等→线段相等或者角相等,可以看出全等三角形类似于一个桥梁,建立起角度相等与线段相等、线段相等与另两条相等的线段、角相等与另一对相等的角之间的联系.跟踪训练4.如图1-2-7,A ,D ,B 三点在同一条直线上,△ADC ,△BDO 均为等腰三角形,AO ,BC 的大小关系和位置关系分别如何?证明你的结论.图1-2-7三、借助“同角的余角相等”寻找相等的角例4如图1-2-8,在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,F 是BD 上一点,BF =AC ,G 是CE 延长线一点,CG =AB ,连接AG ,AF .(1)求证:∠ABD =∠ACE ;(2)探求线段AF ,AG 有什么关系,并证明.【提示】(1)∠ABD ,∠ACE 都和∠BAC 互余,根据“同角的余角相等”可证明∠ABD =∠ACE ;(2)由已知条件“BF =AC ”“CG =AB ” “∠ABD =∠ACE ”可证明△ABF ≌△GCA ,AF ,AG 恰好是这对全等三角形的对应边,所以这两条线段的大小关系是相等.又由于∠G =∠BAF ,∠G +∠GAE =90°,因此∠GAF =90°,所以AF 和AG 的位置关系是垂直.图1-2-8B 【技巧点评】(1)当已知两条边相等,要证明两个三角形全等时,“同角的余角相等”是常用的证明夹角相等的手段.(2)要证明两直线垂直,证明夹角等于90°也是常用思路,当夹角是由两个角的和组成的时候,常考虑证明这两个角的和等于90°.跟踪训练5.如图1-2-9,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过E 点作AC 的垂线,交CD 的延长线于点F .求证:AB =F C .图1-2-9A四、从等腰、等边、正方形中获取全等所需的元素例5如图1-2-10,在Rt △ABC 中,∠ACB =90°,AC =BC ,D 为BC 的中点,CE ⊥AD ,垂足为E ,BF ∥AC 交CE 的延长线于点F .求证:DB =BF .【提示】要证明DB =BF ,由于D 为BC 的中点,所以CD =BD ,因此本题可转证CD =BF ,将这两条线段放置到三角形中,可证明△ACD ≌△CBF .图1-2-10A【技巧点评】本题证明△ACD ≌△CBF 需要的三个要素AC =BC ,∠CAD =∠BCF ,∠ACD =∠CBF 都和△ABC 是等腰直角三角形相关.当题目中出现等边三角形、等腰三角形、正方形、菱形等条件时,往往图形中隐含着一对全等三角形,这对全等三角形的一对对应边往往和等边三角形、等腰三角形、正方形、菱形的边长相等有关.跟踪训练6.如图1-2-11,在Rt △ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A ,D 重合,连接BE ,E C .试猜想线段BE 和EC 的数量关系和位置关系,并证明你的猜想.图1-2-11B拓展延伸五、AAS 华丽变全等例6 如图1-2-12,在△ABC 中,∠DBC =∠ECB =∠A ,求证:BE =CD .21ABCD E F【提示】要证明BE =CD ,一般考虑证明两个三角形全等,而△DCF 和△EBF 显然不全等,本题有三种构造全等的方法,如图1-2-13①②③.图1-2-12GFE D CBAHFE D CBAFE D CBAH G 【技巧点评】本题△BEF 和△CDF 虽然不全等,但是∠BFE =∠CFD ,加之可证FB =FC 以及待证的BE =CD ,可见这两个三角形虽然不全等,但也有3对相等的要素.构造全等三角形可将小三角形补上一部分,或者将大三角形截去一部分.跟踪训练7.如图1-2-14,OC 平分∠AOB ,点D 、E 分别在OA 、OB 上,点P 在OC 上,且有PD =PE ,求证:∠PDO =∠PEB .(有三种解法)P OD C BA E竞赛链接图1-2-13图1-2-14②③①例7 (全国初中数学竞赛浙江赛区题)如图1-2-15,在四边形ABCD 中,∠A =∠BCD =90°,BC =CD ,E 是AD 延长线上一点,若DE =AB =3cm ,CE =4cm ,则AD 的长是.2【提示】如图1-2-16,连接CA ,构造△BAC ≌△DEC ,利用勾股定理求出AE 的长.EDCB AAB CDE【技巧点评】勾股定理——如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2.跟踪训练8.(希望杯竞赛题)如图1-2-17,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC 与BD 相交于O ,AE ⊥BD 于E ,CF ⊥BD 于F ,那么图中的全等三角形共有()A .5对B .6对C .7对D .8对F OABCDE 培优训练1.如图1-2-18,AC ,BD 交于点E ,且∠1=∠2,∠3=∠4,求证:AC =BD .4321ABCED2.如图1-2-19,已知AD =AE ,AB =AC .求证:BF =FC .图1-2-17图1-2-15图1-2-16图1-2-18ABCDEF3.如图1-2-20,已知△ABD 、△AEC 都是等边三角形,AF ⊥CD 于F ,AH ⊥BE 于H ,问:(1)BE 与CD 有何数量关系?为什么?(2)AF 、AH 有何数量关系?O HFEDCBA 4.如图1-2-21,△ACD 和△BCE 都是等腰直角三角形,∠ACD =∠BCE =90°,AE 交DC 于点F ,BD分别交CE ,AE 于点G ,H 试猜测线段AE 和BD 的位置关系和数量关系,并说明理由.DBCFH AE G 5.将两个全等的直角三角形ABC 和DBE 按图1-2-22①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)求证:AF +EF =DE ;(2)若将图1-2-22①中的△DBE 绕点B 按顺时针方向旋转角,且0°<<60°,其他条件不变,请在αα图1-2-22②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立.AC BABCE FD①图1-2-19图1-2-20图1-2-21②图1-2-226.如图1-2-23,AD 是△ABC 的高,作∠DCE =∠ACD ,交AD 的延长线于点E ,点F 是点C 关于直线AE 的对称点,连接AF .(1)求证:CE =AF(2)在线段AB 上取一点N ,使∠ENA =∠ACE ,EN 交BC 于点M ,连接AM 请你判断∠B 与∠MAF 21的数量关系,并说明理由.DBEAF CN M直击中考7.★★(2017江苏常州)如图1-2-24,在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.ECDBA 8.(凉山州中考题)如图1-2-25,△ABO 与△CDO 关于O 点中心对称,点E 、F 在线段AC 上,且AF =CE .求证:FD =BE .FBECDAO9.(内江中考题)如图1-2-26,△ABC 和△ECD 都是等腰直角三角形,∠ACB =∠DCE =90°,D 为AB 边上一点.求证:AE =BD .图1-2-23图1-2-24图1-2-25CDEBA10.(重庆中考题)如图1-2-27,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D .CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG .求证:(1)AF =CG ;(2)CF =2DE .GCDFEBA挑战竟赛11.(希望杯竞赛题)如图1-2-28,在△ABC 中,∠ACB =60°,∠BAC =75°,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 交于H ,则∠CHD =.HBCE ADBGF E ADC12.(希望杯竞赛题)如图1-2-29,在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠BCA 的平分线交AD 于F ,交AB 于E ,FG ∥BC 交AB 于G .AE =4,AB =14,则BG =.图1-2-26图1-2-27图1-2-28图1-2-29。
全等三角形经典培优题型(含答案)
全等三角形经典培优题型(含答案)1.已知三角形ABC中,AB=4,AC=2,D是BC的中点,AD是整数,求AD的长度。
解:由题意可得AD=AB-DB,又BD=DC=AC/2=1,故AB=AD+DB=AD+1,代入AB=4得AD=3.2.已知四边形BCDE中,BC=DE,∠B=∠E,∠C=∠D,F是CD的中点,证明∠1=∠2.解:由于BC=DE,且∠B=∠E,所以△BCE≌△EDC,从而∠1=∠BCE=∠EDC=∠2.3.已知四边形ABCD中,∠1=∠2,CD=DE,EF//AB,证明EF=AC。
解:由于EF//AB,所以△EFC∼△ABC,从而EF/AC=FC/BC,而CD=DE,所以FC=CD,代入得EF/AC=CD/BC,又由于∠1=∠2,所以△BCD∼△ECD,从而CD/BC=ED/AC,代入得EF/AC=ED/AC,即EF=AC。
4.已知三角形ABC中,AD平分∠BAC,AC=AB+BD,证明∠B=2∠C。
解:由于AD平分∠BAC,所以∠BAD=∠CAD,从而∠B=∠BAD+∠ABD=∠CAD+∠ACD,又由于AC=AB+BD,所以BD=AC-AB,代入得∠B=∠CAD+∠ACD=∠CAD+∠ABC,又由于∠CAD=∠CAB,所以∠B=∠CAB+∠ABC=2∠C。
5.已知三角形ABC中,AC平分∠BAD,CE⊥AB,∠B+∠D=180°,证明AE=AD+BE。
解:由于AC平分∠BAD,所以∠CAD=∠CAB,从而△ABE∼△DCE,所以AE/AD=BE/CD,又由于∠B+∠D=180°,所以CD=AB,代入得AE/AD=BE/AB,即AE=AD·(BE/AB),又由于CE⊥AB,所以△CEB为直角三角形,从而BE/AB=CE/AC,代入得AE=AD·(CE/AC),又由于AC平分∠BAD,所以△ACD∼△ABC,从而CE/AC=CD/AB,代入得AE=AD·(CD/AB),又由于CD=AB-BD,所以AE=AD·((AB-BD)/AB),即AE=AD+BE·(AB/AD-1),又由于AB>AD,所以AB/AD-1<AB/AD,从而AE<AD+BE·(AB/AD),即AE<AD+BE。
2020--2021学年九年级数学中考专项复习 :三角形 培优训练(含答案)
2021中考数学几何专项:三角形培优训练一、选择题1. 下列式子错误..的是()A. cos40°=sin50°B. tan15°·tan75°=1C. sin225°+cos225°=1D. sin60°=2sin30°2. 如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带哪块玻璃碎片去玻璃店()A.①B.②C.③D.④3. 如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.424. △ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A. 120°B. 125°C. 135°D. 150°5. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种6. 如图,考古学家发现在地下A处有一座古墓,古墓上方是煤气管道,为了不影响管道,准备在B,C处开工挖出“V”字形通道.如果∠DBA=130°,∠ECA=135°,那么∠A的度数是()A.75°B.80°C.85°D.90°7. 如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A. 2B. 3C. 2D. 68. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是()A.x=y+zB.x=y-zC.x=z-yD.x+y+z=1809. 如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()10. 如图,在△ABC中,∠ACB=70°,∠1=∠2,则∠BPC的度数为()A.70°B.108°C.110°D.125°二、填空题11. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).12. 长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了________m.13. 如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E.若∠AFD=158°,则∠EDF=°.14. 如图,等边三角形ABC内有一点P,分别连接AP,BP,CP,若AP=6,BP=8,CP=10,则S△ABP+S△BPC=.15. 如图所示,已知AD∥BC,则∠1=∠2,理由是________________;又知AD =CB,AC为公共边,则△ADC≌△CBA,理由是______,则∠DCA=∠BAC,理由是__________________,则AB∥DC,理由是________________________________.三、解答题16. 如图,沿AC方向开山修路,为了加快施工进度,要在山的另一面同时施工,工人师傅在AC上取一点B,在小山外取一点D,连接BD并延长,使DF=BD,过点F作AB的平行线FM,连接MD并延长,在延长线上取一点E,使DE=DM,在点E开工就能使A,C,E三点成一条直线,你知道其中的道理吗?17. 如图①,点A,B,C,D在同一直线上,AB=CD,作EC⊥AD于点C,FB ⊥AD于点B,且AE=DF.(1)求证:EF平分线段BC;(2)若将△BFD沿AD方向平移得到图②,其他条件不变,(1)中的结论是否仍成立?请说明理由.18. 如图,已知∠C=60°,AE,BD是△ABC的角平分线,且交于点P.(1)求∠APB的度数.(2)求证:点P在∠C的平分线上.(3)求证:①PD=PE;②AB=AD+BE.19. 如图所示,∠BAC=∠BCA,AD为△ABC中BC边上的中线,延长BC至点E,使CE=AB,连接AE.求证:∠CAD=∠CAE.20. 在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2-5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图①);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n既为该方程的另一个实数根.(1)在图②中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图①,请证明“第三步”操作得到的m就是方程x2-5x+2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1).Q(m2,n2)就是符合要求的一对固定点?2021中考数学几何专项:三角形培优训练-答案一、选择题选项逐项分析正误A cos40°=sin(90°-40°)=sin50°√ B tan15°·tan75°=1tan75°×tan75°=1√ C sin 2A +cos 2A =1√ D ∵sin60°=32,2sin30°=2×12=1,∴sin60°≠2sin30°×2. 【答案】D [解析] 第①块只保留了原三角形的一个角和部分边,根据这块玻璃碎片不能配一块与原来完全一样的玻璃;第②③块只保留了原三角形的部分边,根据这两块玻璃碎片中的任一块均不能配一块与原来完全一样的玻璃;第④块玻璃碎片不仅保留了原来三角形的两个角,还保留了一条完整的边,则可以根据“ASA”来配一块完全一样的玻璃.最省事的方法是带④去.3. 【答案】B[解析]过点D 作DH ⊥AB 交BA 的延长线于H.∵BD 平分∠ABC ,∠BCD=90°, ∴DH=CD=4,∴四边形ABCD 的面积=S △ABD +S △BCD =AB ·DH +BC ·CD=×6×4+×9×4=30.4. 【答案】C 【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA =12(∠DAC +∠DCA)=12(180°-∠ADC)=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA)=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.5. 【答案】C6. 【答案】C[解析] ∵∠DBA=130°,∠ECA=135°,∴∠ABC=180°-∠DBA=50°,∠ACB=180°-∠ECA=45°.∴∠A=180°-∠ABC-∠ACB=180°-50°-45°=85°.7. 【答案】B【解析】如解图,连接OC ,由已知条件易得∠A =∠OCE ,CO =AO ,∠DOE =∠COA ,∴∠DOE -∠COD =∠COA -∠COD ,即∠AOD =∠COE ,∴△AOD ≌△COE (ASA),∴AD =CE ,进而得CD +CE =CD +AD =AC=22AB =3,故选B.8. 【答案】A[解析] 根据题意,得∠A+∠ABC+∠ACB=180°①,变化后的三角形的三个角的度数分别是∠A-x°,∠ABC+y°,∠ACB+z°,∴∠A-x°+∠ABC+y°+∠ACB+z°=180°②,①②联立整理可得x=y+z.9. 【答案】C[解析] 选项A中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项B中由全等三角形的判定定理“SAS”证得图中两个小三角形全等.选项C中,如图①,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.这两个角所对的边是BE和CF,而已知条件给的是BD=CF=3,故不能判定两个小三角形全等.选项D中,如图②,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE.∴∠FEC=∠BDE.又∵BD=CE=2,∠B=∠C,∴△BDE≌△CEF.故能判定两个小三角形全等.10. 【答案】C[解析] ∵在△ABC中,∠ACB=70°,∠1=∠2,∴∠2+∠BCP=∠1+∠BCP=∠ACB=70°.∴∠BPC=180°-∠2-∠BCP=180°-70°=110°.二、填空题11. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF.在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).12. 【答案】2(3-2) 【解析】开始时梯子顶端离地面距离为4×sin 45°=4×22=22,移动后梯子顶端离地面距离为4×sin 60°=4×32=23,故梯子顶端沿墙面升高了 23-22=2(3-2)m .13. 【答案】68[解析] ∵∠AFD=158°,∴∠CFD=180°-∠AFD=180°-158°=22°. ∵FD ⊥BC , ∴∠FDC=90°.∴∠C=180°-∠FDC-∠CFD=180°-90°-22°=68°. ∵∠B=∠C ,DE ⊥AB ,∴∠EDB=180°-∠B-∠DEB=180°-68°-90°=22°. ∴∠EDF=180°-90°-22°=68°.14. 【答案】16+24 [解析]将△ABP 绕点B 顺时针旋转60°到△CBP',连接PP',所以P'C=P A=6,BP=BP',∠PBP'=60°,所以△BPP'是等边三角形,其边长BP 为8,所以PP'=8,S △BPP'=16,因为PC=10,所以PP'2+P'C 2=PC 2, 所以△PP'C是直角三角形,S △PP'C =24,所以S △ABP +S △BPC =S △BPP'+S △PP'C =16+24.15. 【答案】两直线平行,内错角相等SAS 全等三角形的对应角相等 内错角相等,两直线平行三、解答题16. 【答案】解:在△BDE 和△FDM 中,⎩⎨⎧BD =FD ,∠BDE =∠FDM ,DE =DM ,∴△BDE ≌△FDM(SAS). ∴∠BEM =∠FME.∴BE ∥MF. 又∵AB ∥MF ,∴A ,C ,E 三点在一条直线上.17. 【答案】解:(1)证明:∵EC ⊥AD ,FB ⊥AD ,∴∠ACE=∠DBF=90°.∵AB=CD ,∴AB+BC=BC+CD , 即AC=DB.在Rt △ACE 和Rt △DBF 中,∴Rt △ACE ≌Rt △DBF (HL).∴EC=FB. 在△CEG 和△BFG 中,∴△CEG ≌△BFG (AAS). ∴CG=BG ,即EF 平分线段BC. (2)EF 平分线段BC 仍成立. 理由:∵EC ⊥AD ,FB ⊥AD ,∴∠ACE=∠DBF=90°.∵AB=CD,∴AB-BC=CD-BC,即AC=DB.在Rt△ACE和Rt△DBF中,∴Rt△ACE≌Rt△DBF(HL).∴EC=FB.在△CEG和△BFG中,∴△CEG≌△BFG(AAS).∴CG=BG,即EF平分线段BC.18. 【答案】解:(1)∵AE,BD是△ABC的角平分线,∴∠BAP=12∠BAC,∠ABP=12∠ABC.∴∠BAP+∠ABP=12(∠BAC+∠ABC)=12(180°-∠C)=60°.∴∠APB=120°.(2)证明:如图,过点P作PF⊥AB,PG⊥AC,PH⊥BC,垂足分别为F,G,H.∵AE,BD分别平分∠BAC,∠ABC,∴PF=PG,PF=PH.∴PH=PG.又∵PG⊥AC,PH⊥BC,∴点P在∠C的平分线上.(3)证明:①∵∠C=60°,PG⊥AC,PH⊥BC,∴∠GPH=120°.∴∠GPE+∠EPH=120°.又∵∠APB =∠DPE =∠DPG +∠GPE =120°,∴∠EPH =∠DPG .在△PGD 和△PHE 中,⎩⎨⎧∠PGD =∠PHE =90°,PG =PH ,∠DPG =∠EPH ,∴△PGD ≌△PHE.∴PD =PE.②如图,在AB 上截取AM =AD.在△ADP 和△AMP 中,⎩⎨⎧AD =AM ,∠DAP =∠MAP ,AP =AP ,∴△ADP ≌△AMP.∴∠APD =∠APM =60°.∴∠EPB =∠MPB =60°.在△EBP 和△MBP 中,⎩⎨⎧∠EPB =∠MPB ,BP =BP ,∠EBP =∠MBP ,∴△EBP ≌△MBP.∴BE =BM.∴AB =AM +BM =AD +BE.19. 【答案】证明:如图,延长AD 到点F ,使得DF =AD ,连接CF.∵AD 为△ABC 中BC 边上的中线,∴BD =CD.在△ADB 和△FDC 中,⎩⎨⎧AD =FD ,∠ADB =∠FDC ,BD =CD ,∴△ADB ≌△FDC(SAS).∴AB =CF ,∠B =∠DCF.∵CE =AB ,∴CE =CF.∵∠ACE =∠B +∠BAC ,∠ACF =∠DCF +∠BCA ,∠BAC =∠BCA , ∴∠ACE =∠ACF.在△ACF 和△ACE 中,⎩⎨⎧AC =AC ,∠ACF =∠ACE ,CF =CE ,∴△ACF ≌△ACE(SAS).∴∠CAD =∠CAE.20. 【答案】【思路分析】(1)因为点C 是x 轴上的一动点,且∠ACB =90°保持不变,所以由圆周角的性质得,点C 必在以AB 为直径的圆上,所以以AB 为直径画圆,与x 轴相交于两点,除点C 的另一点就是所求;(2)因为∠ACB =90°,∠AOC =90°,所以过点B 作BE ⊥x 轴,垂足为E ,则构造了一个“K”字型的基本图形,再由相似三角的性质得出比例式,化简后得m 2-5m +2=0,问题得证;(3)由(2)中的证明过程可知,一个二次项系数为1的一元二次方程,一次项系数是点A 的横坐标与点B 的横坐标的和的相反数;常数项是点A 的纵坐标与点B 的纵坐标的积,先把方程ax 2+bx +c =0,化为 x 2+b a x +c a =0,再根据上述关系写出一对固定点的坐标;(4)由(2)的证明中知,本题的关键点在“K”字型的构造,所以本小题解题的关键是要抓住图②中的“K”字型,只要P 、Q 两点分别在AD 、BD 上,过P 、Q 分别作x 轴垂线,垂足为M 、N ,这样就构造出满足条件的基本图形,再应用相似三角形的性质,可得相应的关系式.图① 图②(1)解:如解图①,先作出AB 的中点O 1,以O 1为圆心,12AB 为半径画圆.x 轴上另外一个交点即为D 点;(4分)(2)证明:如解图①,过点B 作x 轴的垂线交x 轴于点E ,∵∠ADB =90°,∴∠ADO +∠BDE =90°,∵∠OAD +∠ADO =90°,∴∠OAD =∠BDE ,∵∠AOD =∠DEB =90°,∴△AOD ∽△DEB ,(6分)∴AO DE =OD EB ,即15-m=m 2, ∴m 2-5m +2=0,∴m 是x 2-5x +2=0的一个实根;(8分)(3)解:(0,1),(-b a ,c a )或(0,1a ),(-b a ,c );(10分)(4)解:在解图②中,P 在AD 上,Q 在BD 上,过P ,Q 分别作x 轴的垂线交x 轴于M ,N.由(2)知△PMD ∽△DNQ ,∴n 1m 2-x =x -m 1n 2,(12分) ∴x 2-(m 1+m 2)x +m 1m 2+n 1n 2=0与ax 2+bx +c =0同解,∴-b a =m 1+m 2;c a =m 1m 2+n 1n 2.(14分)【难点突破】本题是一道考查数形结合思想的题.本题解题的突破口要抓住∠ACB =90°保持不变的特征,构造相似三角形中的基本图形,通过数形结合的方法,以相似三角形的比例式为桥梁,以此获得关于m 的等量关系,从而使问题得以解决.。
初一下学期三角形培优专题
B.15度
C.20度
D.不能确定
5.如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是( )
A.∠1=1∕2(∠2-∠3)
B.∠1=2(∠2-∠3)
C.∠G=1∕2(∠3-∠2)
D.∠G=1∕2∠1
专题八:平行线型
A.∠A=∠B
B.∠B=∠D
C.∠A=∠D
D.∠A+∠D=90°
4如图,△ABC中,∠BAC=90°,AD⊥BC于D,E是AD上一点,求证:∠BED>∠C
5.如图,在 中, 是角平分线,交 于点 ,求证
专题四:三角形三条角平分线型
1.如图①,BD、CD是∠ABC和∠ACB的角平分线且相交于点D,请猜想∠A与∠BDC之间的数量关系,并说明理由。
(1)试找出∠1、∠2、∠3之间的关系并说出理由;
(2)如果点P在A、B两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化?
(3)如果点P在A、B两点外侧运动时,试探究∠1、∠2、∠3之间的关系(点P和A、B不重合)
5.如下图,AB∥CD,直线a交AB、CD分别于点E、F,点M在EF上,p是直线CD上的一个动点,(点P不与F重合)
(3)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?
专题十三:三角形三边关系与周长
1.若一个等腰三角形的三边长均为整数,且周长为10,则底边长为
2.周长为16的三角形的三边长都是整数,这样的三角形有个
3.三角形三条边长是三个连续的自然数,周长小于19,则满足条件的三角形有个
4.三角形三条边长均为整数,其中两边长之差为7,三角形的周长是奇数,则第三边长可能为
培优专题01 与三角形模型有关的角度计算-解析版
培优专题01 与三角形模型有关的角度计算◎模型一A字模型【条件】△ADE与△ABC.【结论】∠AED+∠ADE=∠B+C.【证明】根据三角形内角和可得,∠AED+∠ADE=180°-∠A,∠B+C=180°-∠A,∠∠AED+∠ADE=∠B+C,得证.1.(2022·湖北咸宁·七年级期中)如图,已知l1∥l2,∠A=45°,∠2=100°,则∠1的度数为()A.50°B.55°C.45°D.60°【答案】B【分析】根据平角的定义得出∠ACB=80°,根据三角形内角和得到∠ABC=55°,再根据平行线的性质即可得解.【详解】解:∠∠2=100°,∠∠ACB =180°−100°=80°, ∠∠A =45°,∠∠ABC =180°−45°−80°=55°, ∠l 1∥l 2,∠∠1=∠ABC =55°, 故选:B .【点睛】此题考查了平行线的性质,熟记“两直线平行,内错角相等”是解题的关键.2.(2022·全国·八年级课时练习)如图,ABC 中,65A ∠=︒,直线DE 交AB 于点D ,交AC 于点E ,则BDE CED ∠+∠=( ).A .180︒B .215︒C .235︒D .245︒【答案】D【分析】根据三角形内角和定理求出ADE AED ∠+∠,根据平角的概念计算即可. 【详解】解:65A ∠=︒,18065115ADE AED ∴∠+∠=︒-︒=︒, 360115245BDE CED ∴∠+∠=︒-︒=︒,故选:D .【点睛】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180︒是解题的关键. 3.(2022·全国·八年级课时练习)如图是某建筑工地上的人字架,若1120∠=︒,那么32∠-∠的度数为_________.【答案】60︒【分析】根据平角的定义求出4,再利用三角形的外角的性质即可解决问题.【详解】解:如图14180∠+∠=︒,1120∠=︒, 460∴∠=︒,324,32460∴∠-∠=∠=︒,故答案为:60︒.【点睛】本题考查三角形外角的性质、平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考基础题.4.(2020·湖南·常德市第二中学九年级期中)如图,在ABC ∆中,90C ∠=︒,6BC =,D ,E 分别在AB 、AC 上,将ADE ∆沿DE 折叠,使点A 落在点A '处,若A '为CE 的中点,则折痕DE 的长为__.DE BC ,故∆BC .【详解】解:ABC ∆沿90DEA =∠'=︒,AED ∆∽,的中点,AE =∴=.ED2故答案为:2.【点睛】本题考查相似三角形的判定和性质,掌握“A ”字形三角形相似的判定和性质为解题关键. 5.(2022·全国·八年级课时练习)如图所示,DAE ∠的两边上各有一点,B C ,连接BC ,求证180DBC ECB A +∠=︒∠+∠.【答案】见解析【分析】根据三角形的外角等于与它不相邻的两个内角的和证明即可. 【详解】解:DBC ∠和ECB ∠是ABC 的外角, ,DBC A ACB ECB A ABC ∴∠=∠+∠∠=∠+∠.又180A ABC ACB ∠+∠+∠=︒,180DBC ECB A ACB ABC A A ∴∠+∠=∠+∠+∠+∠︒=+∠.【点睛】本题主要考查三角形外角的性质,熟知三角形的外角等于与它不相邻的两个内角的和是解题的关键.◎模型二 8字模型【条件】AD 、BC 相交于点O.【结论】∠A +∠B =∠C +∠D.(上面两角之和等于下面两角之和)【证明】在∠ABO 中,由内角和定理:∠A +∠B +∠BOA =180°,在∠CDO 中,∠C +∠D +∠COD =180°, ∠∠A +∠B +∠BOA =180°=∠C +∠D +∠COD ,由对顶角相等:∠BOA =∠COD ∠∠A +∠B =∠C +∠D ,得证.6.(2022·全国·八年级课时练习)如图,AB 和CD 相交于点O ,∠A =∠C,则下列结论中不能完全确定正确的是()A.∠B=∠D B.∠1=∠A+∠D C.∠2>∠D D.∠C=∠D【答案】D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∠∠A+∠AOD+∠D=180°,∠C+∠COB+∠B=180°,∠A=∠C,∠AOD=∠BOC,∠∠B=∠D,∠∠1=∠2=∠A+∠D,∠∠2>∠D,故选项A,B,C正确,故选D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键.7.(2022·全国·八年级课时练习)如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=()A.240°B.280°C.360°D.540°【答案】A【分析】根据三角形内角和定理得到∠B与∠C的和,然后在五星中求得∠1与另外四个角的和,加在一起即可.【详解】解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,∠∠1+∠2+∠3=180°,∠1=60°,∠∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°,∠∠B+∠C=120°,∠∠A+∠B+∠C+∠D+∠E+∠F=240°.故选A.【点睛】本题考查了三角形的外角和三角形的内角和的相关知识,解决本题的关键是将题目中的六个角分成两部分来分别求出来,然后再加在一起.8.(2022·全国·八年级课时练习)如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=__.【答案】900°【分析】根据多边形的内角和,可得答案.【详解】解:连EF,GI,如图,∠6边形ABCDEFK的内角和=(6-2)×180°=720°,∠∠A+∠B+∠C+∠D+∠E+∠F=720°-(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+(∠1+∠2)=720°,∠∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∠∠A+∠B+∠C+∠D+∠E+∠F∠H+(∠3+∠4)=900°,∠∠A+∠B+∠C+∠D+∠E+∠F(∠3+∠4)+∠5+∠6+∠H=720°+180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=900°,故答案为:900°.【点睛】本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数).9.(2022·全国·八年级课时练习)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为__.【答案】1080°【分析】连KF,GI,根据n边形的内角和定理得到7边形ABCDEFK的内角和=(7-2)×180°=900°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,由三角形内角和定理可得到∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,则∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,即可得到∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数.【详解】解:连KF,GI,如图,∠7边形ABCDEFK的内角和=(7-2)×180°=900°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠K=900°-(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,∠∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)=900°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K=1080°.故∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为1080°.故答案为:1080°.【点睛】本题考查了n边形的内角和定理:n边形的内角和为(n-2)×180°(n≥3的整数).10.(2022·全国·八年级课时练习)如图,OAB和OCD中,OA=OB,OC=OD,∠AOB=∠COD=α,AC、BD交于M(1)如图1,当α=90°时,∠AMD 的度数为 °; (2)如图2,当α=60°时,求∠AMD 的度数;(3)如图3,当OCD 绕O 点任意旋转时,∠AMD 与α是否存在着确定的数量关系?如果存在,请你用α表示∠AMD ,并用图3进行证明;若不确定,说明理由. 【答案】(1)90;(2)120︒;(3)180α︒-【分析】(1)如图1,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKO AKM ∠=∠,可得90AMK BOK ∠=∠=︒;(2)如图2,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKO AKM ∠=∠,可得60AMK BOK ∠=∠=︒;(3)如图3,设OA 交BD 于K ,只要证明△≌△BOD AOC ,推出OBD OAC ∠=∠,由BKM AKO ∠=∠,可得BMK AOK α∠=∠=,可得180AMD α∠=︒-; 【详解】解:(1)如图1中,设OA 交BD 于K∠OA OB OC OD ==,,90AOB COD ∠=∠=︒ ∠BOD AOC ∠=∠ ∠△≌△()BOD AOC SAS ∠OBD OAC ∠=∠ ∠BKO AKM ∠=∠ ∠90AMK BOK ∠=∠=︒ ∠90AMD ∠=︒ 故答案为90︒(2)如图2,设OA 交BD 于K ,∠OA OB OC OD ==,,60AOB COD ∠=∠=︒ ∠BOD AOC ∠=∠ ∠△≌△()BOD AOC SAS ∠OBD OAC ∠=∠ ∠BKO AKM ∠=∠ ∠60AMK BOK ∠=∠=︒ ∠180120AMD AMK ∠=︒-∠=︒ 故答案为120︒(3)如图3,设OA 交BD 于K ,∠OA OB OC OD ==,,AOB COD α∠=∠= ∠BOD AOC ∠=∠ ∠△≌△()BOD AOC SAS ∠OBD OAC ∠=∠ ∠AKO BKM ∠=∠ ∠BMK AOK α∠=∠=∠180180AMD BMK α∠=︒-∠=︒- 故答案为180α︒-【点睛】本题考查了几何变换综合题,全等三角形的判定,三角形内角和性质,解题的关键是灵活运用所学知识解决问题,学会利用“8字型”证明角相等.◎模型三 飞镖模型【条件】四边形ABDC 如上左图所示.【结论】∠D =∠A +∠B +∠C.(凹四边形凹外角等于三个内角和) 【证明】如上右图,连接AD 并延长到E ,则:∠BDC =∠BDE +∠CDE =(∠B +∠1)+(∠2+∠C )=∠B +∠BAC +∠C.本质为两个三角形外角和定理证明. 11.(2022·全国·八年级课时练习)在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果52,25A B ︒︒∠=∠=,30,35,72C D E ︒︒︒∠=∠=∠=,那么F ∠的度数是( ).A .72︒B .70︒C .65︒D .60︒【答案】A【分析】延长BE 交CF 的延长线于O ,连接AO ,根据三角形内角和定理求出,BOC ∠再利用邻补角的性质求出DEO ∠,再根据四边形的内角和求出DFO ∠,根据邻补角的性质即可求出DFC ∠的度数. 【详解】延长BE 交CF 的延长线于O ,连接AO ,如图,∠180,OAB B AOB ∠+∠+∠=︒∠180,AOB B OAB ∠=︒-∠-∠ 同理得180,AOC OAC C ∠=︒-∠-∠ ∠360,AOB AOC BOC ∠+∠+∠=︒ ∠360BOC AOB AOC ∠=︒-∠-∠360(180)(180)B OAB OAC C =︒-︒-∠-∠-︒-∠-∠ 107,B C BAC =∠+∠+∠=︒ ∠72,BED ∠=︒∠180108,DEO BED ∠=︒-∠=︒ ∠360DFO D DEO EOF ∠=︒-∠-∠-∠36035108107110,=︒-︒-︒-︒=︒∠180********DFC DFO ∠=︒-∠=︒-︒=︒, 故选:A .【点睛】本题考查三角形内角和定理,多边形内角和,三角形的外角的性质,邻补角的性质,解题关键是会添加辅助线,将已知条件联系起来进行求解.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;邻补角性质:邻补角互补;多边形内角和:180(2)n ︒-.12.(2022·全国·八年级课时练习)如图,已知BE ,CF 分别为△ABC 的两条高,BE 和CF 相交于点H ,若△BAC=50°,则△BHC 为( )A .115°B .120°C .125°D .130°【答案】D【详解】∠BE 为∠ABC 的高,∠BAC=50°, ∠∠ABE=90°-50°=40°, ∠CF 为∠ABC 的高, ∠∠BFC=90°,∠∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.13.(2022·全国·八年级课时练习)如图,若115∠+∠+∠+∠+∠+∠=EOC∠=︒,则A B C D E F____________.【答案】230°【分析】根据三角形外角的性质,得到∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠EOC=∠1+∠F=115°,∠1=∠A+∠B,即可得到结论.【详解】解:如图∠∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠∠E+∠D+∠C=115°,∠∠EOC=∠1+∠F=115°,∠1=∠A+∠B,∠∠A+∠B+∠F=115°,∠∠A+∠B+∠C+∠D+∠E+∠F=230°,故答案为:230°.【点睛】本题主要考查三角形内角和定理和三角形外角的性质,解决本题的关键是要熟练掌握三角形外角性质.14.(2022·山东德州·七年级期末)如图,则∠A+∠B+∠C+∠D+∠E的度数是__.【答案】180°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.【详解】解:如图可知:∠∠4是三角形的外角,∠∠4=∠A+∠2,同理∠2也是三角形的外角,∠∠2=∠D+∠C,在∠BEG中,∠∠B+∠E+∠4=180°,∠∠B+∠E+∠A+∠D+∠C=180°.故答案为:180°.【点睛】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.15.(2022·全国·八年级课时练习)模型规律:如图1,延长CO交AB于点D,则∠=∠+∠=∠+∠+∠.因为凹四边形ABOC形似箭头,其四角具有“BOC A B C 1BOC B A C B∠=∠+∠+∠”这个规律,所以我们把这个模型叫做“箭头四角形”.模型应用(1)直接应用:∠如图2,60,20,30A B C∠=︒∠=︒∠=︒,则BOC∠=__________︒;∠如图3,A B C D E F∠+∠+∠+∠+∠+∠=__________︒;(2)拓展应用:∠如图4,ABO∠、ACO∠的2等分线(即角平分线)1BO、1CO交于点1O,已知120BOC∠=︒,50BAC∠=︒,则1BO C∠=__________︒;∠如图5,BO、CO分别为ABO∠、ACO∠的10等分线1,2,3,,(,)89i=⋯.它们的交点从上到下依次为1O、2O、3O、…、9O.已知120BOC∠=︒,50BAC∠=︒,则7BO C∠=__________︒;∠如图6,ABO∠、BAC∠的角平分线BD、AD交于点D,已知120,44BOC C∠=︒∠=︒,则ADB=∠__________︒;∠如图7,BAC∠、BOC∠的角平分线AD、OD交于点D,则B、C∠、D∠之同的数量关系为__________.【详解】解:(1)∠∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;◎模型四双垂直模型【条件】∠B=∠D=∠ACE=90°.【结论】∠BAC=∠DCE,∠ACB=∠CED.【证明】∠∠B=∠D=∠ACE=90°;∠∠BAC+∠ACB=90°;又∠ECD+∠ACB=90°;∠∠BAC=∠DCE同理,∠ACB+∠DCE=90°,且∠CED+∠DCE=90°;∠∠ACB=∠CED,得证.16.(2021·青海海东·八年级期中)如图,已知∠ABC∠∠CDE,∠B=90°,点C为线段BD上一点,则∠ACE的度数为()A.94°B.92°C.90°D.88°【答案】C【分析】由全等三角形的性质得出∠ACB=∠CED,则可得出答案.【详解】解:∠∠ABC∠∠CDE,∠∠ACB=∠CED,∠B=∠D=90°,∠∠CED+∠ECD=90°,∠∠ACB+∠ECD=90°,∠∠ACB+∠ECD+∠ACE=180°,∠∠ACE=90°.故选:C.【点睛】本题考查了全等三角形的性质;熟练掌握三角形全等的性质定理是解题的关键.17.(2020·河南·郑州市第八中学模拟预测)如图所示,一副三角尺摆放置在矩形纸片的内部,三角形的三个顶点恰好在矩形的边上,若16FGC ∠=︒,则AEF ∠等于( )A .106︒B .114︒C .126︒D .134︒【答案】D【分析】根据矩形的性质可得∠C=90°,AD∠BC ,利用直角三角形的两个锐角互余求出∠GFC ,从而求出∠EFB ,然后根据平行线的性质可得∠AEF +∠EFB=180°,从而求出结论. 【详解】解:∠四边形ABCD 为矩形 ∠∠C=90°,AD∠BC ∠16FGC ∠=︒∠∠GFC=90°-∠FGC=74° 由三角尺可知:∠EFG=60° ∠∠EFB=180°-∠GFC -∠EFG=46° ∠AD∠BC∠∠AEF +∠EFB=180° ∠∠AEF=180°-∠EFB=134° 故选D .【点睛】此题考查的是矩形的性质、直角三角形的性质和平行线的性质,掌握矩形的性质、直角三角形的两个锐角互余和平行线的性质是解决此题的关键.18.(2022·山东青岛·七年级期末)如图,小虎用10块高度都是4cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC BC =,90ACB ∠=︒),点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离为______.【答案】40 cm【分析】根据题意可得AC=BC,∠ACB=90°,AD∠DE,BE∠DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE =∠DAC ,再证明∠ADC ∠∠CEB 即可,利用全等三角形的性质进行解答.【详解】解:由题意得:AC =BC ,∠ACB =90°,AD ∠DE ,BE ∠DE , ∠∠ADC =∠CEB =90°,∠∠ACD +∠BCE =90°,∠ACD +∠DAC =90°, ∠∠BCE =∠DAC , 在∠ADC 和∠CEB 中,ADC CEB DAC BCE AC BC ∠∠⎧⎪∠∠⎨⎪⎩=== , ∠∠ADC ∠∠CEB (AAS );由题意得:AD =EC =12cm ,DC =BE =28cm , ∠DE =DC +CE =40(cm ), 答:两堵木墙之间的距离为40cm , 故答案为:40 cm .【点睛】此题主要考查了全等三角形的应用,涉及到垂直的定义、直角三角形的性质和连个三角形全等的判定与性质等知识点,解题的关键是正确找出证明三角形全等的条件.19.(2021·江苏盐城·七年级期中)将含有30角的直角三角板(30A ∠=︒)和直尺按如图方式摆放,已知136∠=︒,则2∠=______︒.【答案】24【分析】过点B 作BC //MN ,由平行线传递性,可得BC //KL ,再由平行线的性质可得1=LBC ∠∠ ,2=ABC ∠∠ ,最后由在直角三角形中两锐角互余的关系,求出2=24∠︒ .【详解】解:过点B 作BC //MN ,如图所示:MN //KH∴ BC //KL1LBC ∴∠=∠又1=36∠︒=36LBC ∴∠︒又 BC //MN2=ABC ∴∠∠又=30A ∠︒=60ABL ∴∠︒又=ABL LBC ABC ∠∠+∠603624ABC ∴∠=︒-︒=︒224∴∠=︒故答案为:24【点睛】本题考查了平行线的判定与性质(两直线平行,内错角相等),平行线传递性(如果两条直线都与第三条直线平行,那么这两条直线也互相平行),直角三角形中两锐角互余,角的和差计算等综合知识点.难点是作已知直线的平行线.20.(2022·全国·八年级专题练习)如图1,已知ABC ∆中,90ACB ∠=︒,AC BC =,BE 、AD 分别与过点C 的直线垂直,且垂足分别为E ,D .(1)猜想线段AD 、DE 、BE 三者之间的数量关系,并给予证明.(2)如图2,当过点C 的直线绕点C 旋转到ABC ∆的内部,其他条件不变,如图2所示,∠线段AD 、DE 、BE 三者之间的数量关系是否发生改变?若改变,请直接写出三者之间的数量关系,若不改变,请说明理由;∠若 2.8AD =, 1.5DE =时,求BE 的长. 【答案】(1)DE AD BE =+,证明见解析 (2)∠发生改变,DE AD BE =-;∠1.3【分析】(1)证明ACD CBE ∆≅∆,可得AD CE =,CD =BE , 即可求解;(2)∠证明ACD CBE ∆≅∆,可得AD CE =,CD =BE , 即可求解;∠由∠可得DE AD BE =-,从而得到BE AD DE =-,即可求解.(1)解:DE AD BE =+, 理由如下: ∠BE 、AD 分别与过点C 的直线垂直, ∠90BEC ADC ∠∠=︒=, ∠90ACD CAD ∠∠+︒=, ∠90ACB ∠=︒, ∠90ACD BCE ∠+∠=︒, ∠CAD BCE ∠=∠,在ACD ∆和CBE ∆中,ADC BECCAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴∆≅∆,AD CE ∴=,CD =BE ,∠ DE =EC +CD ,DE AD BE ∴=+;(2)解:∠发生改变.∠BE 、AD 分别与过点C 的直线垂直,∠90BEC ADC ∠∠=︒=,∠90ACD CAD ∠∠+︒=, ∠90ACB ∠=︒, ∠90ACD BCE ∠+∠=︒, ∠CAD BCE ∠=∠,在ACD ∆和CBE ∆中,ADC BEC CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴∆≅∆,AD CE ∴=,CD =BE ,∠ DE =CE -CD , ∠DE AD BE=-; ∠由∠知:DE AD BE =-, ∠ 2.8 1.5 1.3BE AD DE =-=-=, ∠BE 的长为1.3.【点睛】本题主要考查了全等三角形的判定和性质、等角的余角相等,熟练掌握全等三角形的判定和性质是解题的关键.◎模型五 风筝模型【条件】四边形ABPC ,分别延长AB 、AC 于点D 、E ,如上左图所示. 【结论】∠PBD+∠PCE =∠A +∠P .【证明】如上右图,连接AP ,则:∠PBD =∠PAB +∠APB ,∠PCE =∠PAC +∠APC ,∴∠PBD+∠PCE=∠PAB +∠APB+∠PAC +∠APC=∠BAC +∠BPC ,得证.21.(2022·内蒙古赤峰·八年级期末)如图,将ABC 的一角折叠,若12130∠+∠=︒,则B C ∠+∠=()A.50°B.65°C.115°D.130°【答案】C【分析】根据折叠性质证得∠3=∠4,∠5=∠6,再根据平角定义求得∠4+∠5=115°,然后根据三角形的内角和定理求解即可.【详解】解:如图,由折叠性质得:∠3=∠4,∠5=∠6,∠∠1+∠3+∠4=180°,∠5+∠6+∠2=180°,∠∠1+∠2+2∠4+2∠5=360°,∠∠1+∠2=130°,∠2∠4+2∠5=360°-130°=230°,∠∠4+∠5=115°,∠∠4+∠5+∠A=180°,∠A+∠B+∠C=180°,∠∠B+∠C=∠4+∠5=115°,故选:C.【点睛】本题考查三角形折叠中的角度问题,熟练掌握折叠性质是解答的关键.22.(2022·海南海口·七年级期末)如图,把∠ABC纸片沿MN折叠,使点C落在∠ABC内部点C′处,若∠C=36°,则∠1+∠2等于()A .54°B .62°C .72°D .76°【答案】C【分析】根据折叠可知∠C =∠'C ,四边形内角和为360°,即可求出'CMC ∠+'CNC ∠,用平角的定义即可求出∠1+∠2【详解】∠∠CMN 折叠得到'C MN ∠∠C =∠'C∠∠1=180°-'CMC ∠,∠2=180°-'CNC ∠∠∠1+∠2=180°-'CMC ∠+180°-'CNC ∠=360°-('CMC ∠+'CNC ∠) ∠'CMC ∠+'CNC ∠=360°-∠C -'C ∠=360°-36°-36°=288° ∠∠1+∠2=360°-288°=72° 故选:C【点睛】本题主要考查了折叠问题,掌握三角形的内角和定理,四边形的内角和以及平角的定义是解题的关键.23.(2022·山东烟台·七年级期中)如图,在三角形纸片ABC 中65A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在∠ABC 内,若150∠=︒,则∠2的度数为_________.【答案】30°##30度【分析】根据题意,已知∠A =65°,∠B =75°,可结合三角形内角和定理和四边形内角和求解. 【详解】解:如图,设折痕为DE ;∠65A ∠=︒,75B ∠=︒,∠180180657540C A B ∠=︒-∠+∠=︒-︒+︒=︒()(), ∠180140CDE CED C ∠+∠=︒-∠=︒, 又∠150∠=︒,∠2360(1)36030030A B CED CDE ∠=︒-∠+∠+∠+∠+∠=︒-︒=︒, 故答案为:30°.【点睛】本题主要是考查了三角形、四边形内角和,即三角形的内角和为180°,四边形的内角和为360°;熟练掌握三角形的内角和定理是解题的关键.24.(2022·湖北恩施·一模)图,把等边ABC 沿直线DE 折叠,点A 落在'A 处,若150∠=︒,则2∠=______.【答案】40︒【分析】先求出AED ∠的度数,再根据折叠得到AED A ED '∠=∠,即可求出2∠的度数. 【详解】∠等边ABC 沿直线DE 折叠 ∠60A ∠=︒,AED A ED '∠=∠ ∠150∠=︒∠180170AED A ∠=︒-∠-∠=︒ ∠70AED A ED '∠=∠=︒∠420180AED A ED ∠=︒-'∠-∠=︒ 故答案为:40︒【点睛】此题考查翻折问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.25.(2022·江苏·扬州市竹西中学七年级期末)如图∠,把∠ABC纸片沿DE折叠,使点A落在四边形BCED内部点A′的位置,通过计算我们知道:2∠A=∠1+∠2.请你继续探索:(1)如果把∠ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,如图∠,此时∠A与∠1、∠2之间存在什么样的关系?为什么?请说明理由.(2)如果把四边形ABCD沿EF折叠,使点A、D落在四边形BCFE的内部A′、D′的位置,如图∠,你能求出∠A、∠D、∠1与∠2之间的关系吗?(直接写出关系式即可)(1)解:如图所示,连接AA',◎模型六 两内角角平分线模型【条件】△ABC 中,BI 、CI 分别是∠ABC 和∠ACB 的角平分线,且相交于点I. 【结论】A I ∠+︒=∠2190 【证明】∵BI 是∠ABC 平分线,∴ABC ∠=∠212∵CI 是∠ACB 平分线,∴ACB ∠=∠213 由A →B →I →C →A 的飞镖模型可知: ∠I =∠A +∠2+∠3=∠A +ABC ∠21+ACB ∠21=∠A +)180(21A ∠-︒=A ∠+︒2190. 26.(2022·山东东营·七年级期末)如图,在△ABC 中,BF 平分△ABC ,CF 平分△ACB ,△BFC =125°,则△A 的度数为( )A .60°B .80°C .70°D .45°【答案】C【分析】先根据三角形内角和定理得出CBF BCF ∠+∠的度数,再由角平分线的性质得出ABC ACB ∠+∠的度数,根据三角形内角和定理即可得出结论. 【详解】解:∠125BFC ∠=︒, ∠18012555BCF CBF ∠+∠=︒︒=︒﹣. ∠BF 平分ABC ∠,CF 平分ACB ∠,∠()2110ABC ACB BCF CBF ∠+∠=∠+∠=︒, ∠180A ABC ACB ∠+∠+∠=︒,∠18011070﹣.A∠=︒︒=︒故选:C .【点睛】本题考查的是三角形内角和定理,以及三角形角平分线的定义,熟知三角形内角和是180°是解答此题的关键.27.(2022·福建·泉州五中七年级期末)如图,在四边形ABCD 中,∠A +∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )A .90°﹣12α B .12αC .90°+12α D .360°﹣α28.(2022·河南鹤壁·七年级期末)已知ABC 中,A α∠=.在图1中B 、C ∠的平分线交于点1O ,则可计算得11902BO C α∠=︒+;在图2中,设B 、C ∠的两条三等分角线分别对应交于2O 、3O ,则3BO C ∠=_______________.【详解】解:Aα∠=,180ACB=︒-B∠、C∠的两条三等分角线分别对应交于332 ( 3CBO BCO ABC ∴∠+=∠3(BO C CBO∴∠=-∠+故答案为:【点睛】本题考查三角形内角和定理,解题的关键是熟练运用三等分角线求解.29.(2022·江苏常州·七年级期中)如图,在∠MBC中,∠ABC、∠ACB的角平分线OB、OC交于点O,若∠O=m°,则∠A的度数是______________________________°(用含m的代数式表示).【答案】(2m-180)【分析】先由角平分线的定义得到∠ABC=2∠OBC,∠ACB=2∠OCB,再利用三角形内角和定理求解即可.【详解】解:∠OB,OC分别是∠ABC和∠ACB的角平分线,∠∠ABC=2∠OBC,∠ACB=2∠OCB,∠∠O+∠OBC+∠OCB=180°,∠∠OBC+∠OCB=180°-∠O=180°-m°,∠∠ABC+∠ACB=2∠OBC+2∠OCB=360°-2m°,∠∠A=180°-∠ABC-∠ACB=2m°-180°,故答案为:(2m-180).【点睛】本题主要考查了三角形内角和定理,角平分线的定义,熟知相关知识是解题的关键.30.(2021·重庆·垫江第八中学校七年级阶段练习)在∠ABC中,BD,CE是它的两条角平分线,且BD,CE相交于点M,MN∠BC于点N.将∠MBN记为∠1,∠MCN记为∠2,∠CMN记为∠3.(1)如图1,若∠A=110°,∠BEC=130°,则∠2= °,∠3-∠1= °;(2)如图2,猜想∠3-∠1与∠A的数量关系,并证明你的结论;(3)若∠BEC=α,∠BDC=β,用含α和β的代数式表示∠3-∠1的度数.(直接写出结果即可)∠BD平分∠ABD,【点睛】本题主要考查了三角形内角和定理,三角形外角的像这种,角平分线的定义,垂直的定义,熟知三角形内角和为180度是解题的关键.◎模型七 两外角角平分线模型【条件】△ABC 中,BI 、CI 分别是△ABC 的外角的角平分线,且相交于点O. 【结论】A O ∠-︒=∠2190. 【证明】∵BO 是∠EBC 平分线,∴EBC ∠=∠212,∵CO 是∠FCB 平分线,∴FCB ∠=∠215 由△BCO 中内角和定理可知:∠O =180°-∠2 -∠5 =180°-EBC ∠21 -FCB ∠21 =180°-)180(21ABC ∠-︒ -)180(21ACB ∠-︒=)(21ACB ABC ∠+∠=)180(21A ∠-︒=A O ∠-︒=∠2190. 31.(2022·江苏·江阴市祝塘第二中学七年级阶段练习)如图,在△ABC 中,设∠A =x °,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2;…;∠A 2021BC 与∠A 2021CD 的平分线相交于点A 2022,得∠A 2022,则∠A 2022是( )度.A .202012x B .202112x C .202212x D .202312x∠∠A=∠ACD−∠ABC,∠A1=∠A1CD−∠A1BC,∠BA1和CA1分别是∠ABC和∠ACD的角平分线,32.(2022·浙江·八年级专题练习)如图,ABC 中,56A ∠=︒,BD 平分ABC ∠,CD 平分ABC 的外角ACE ∠,BD 、CD 交于点D ,则D ∠的度数( )A .28︒B .56︒C .30D .26︒BD 平分平分ABC 的外角DBC ∴∠=12DCE ACE =∠根据外角性质:DBC D +∠28D DCE α∴∠=∠-=︒.故选:A .33.(2022·陕西·西安博爱国际学校八年级期末)如图,在∠ABC中,∠ABC=75°,∠A=40°,∠ACD是∠ABC的外角,若∠ABC与∠ACD的平分线交于点P,则∠BPC的大小为_____.∠34.(2022·陕西·西安市曲江第一中学八年级期末)如图,在ABC中,ABC的内角CAB∠和外角CBD 的角平分线交于点P,已知42∠=︒,则CAPB∠的度数为____________.【答案】84︒##84度为ABC外角CBD=∠C+∠以求出答案.【详解】解:如下图,。
《全等三角形》培优题型全集
《全等三角形》培优题型全集题型一:倍长中线(线段)造全等1、已知:如图,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且 AE=EF ,求证:AC=BFC2、如图,△ABC 中,AB=5,AC=3,则中线AD 的取值范围是______.DCBA3、在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( ) A 、1<AB<29 B 、4<AB<24C 、5<AB<19D 、9<AB<194、已知:AD 、AE 分别是△ABC 和△ABD 的中线,且BA=BD , 求证:AE=21AC CE5、已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ABFDEC题型二:截长补短1、已知,四边形ABCD 中,AB ∥CD ,∠1=∠2,∠3=∠4。
求证:BC =AB +CD 。
2、已知:如图,在△ABC 中,∠C =2∠B ,∠1=∠2, 求证:AB=AC+CD.3、如图,在△ABC 中,∠BAC=60°, AD 是∠BAC 的平分线,且AC=AB+BD ,求∠ABC 的度数DCBA4、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB ADCB A 12题型三:角平分线上的点向角两边引垂线段1、如图,在四边形ABCD中,BC>BA,AD=CD,求证:∠BAD+∠C=180°DCBA2、如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E ,AD+AB=2AE,则∠B与∠ADC互补,为什么?3、如图,△ABD和△ACD,BD=CD,∠ABD=∠ACD,求证AD平分∠BAC.4、已知,AB>AD,∠1=∠2,CD=BC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
常见辅助线的作法有以下几种:1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.常见辅助线写法:⑴过点A作BC的平行线AF交DE于F⑵过点A作BC的垂线,垂足为D⑶延长AB至C,使BC=AC⑷在AB上截取AC,使AC=DE⑸作∠ABC的平分线,交AC于D⑹取AB中点C,连接CD交EF于G点例1如图,AB =CD =1,∠AOC =60°,证明:AC +BD ≥1。
OC DAB例2(2007年北京中考)如图,已知△ABC⑴请你在BC 边上分别取两点D 、E (BC 的中点除外),连接AD 、AE ,写出使此图中只存在两对面积相 等的三角形的相应条件,并表示出面积相等的三角形; ⑵请你根据使⑴成立的相应条件,证明AB +AC >AD +AE 。
例3已知线段OA、OB、OC、OD、OE、OF。
∠AOB=∠BOC=∠COD=∠DOE=∠EOF=60°。
且AD=BE=CF=2。
求证:S△OAB+S△OCD+S△OEF。
例4如图1,在四边形ABCD中,连接对角线AC、BD,如果∠1=∠2,那么∠3=∠4。
仔细阅读以上材料,完成下面的问题。
如图2,设P为□ABCD内一点,∠P AB=∠PCB,求证:∠PBA=∠PDA。
图1 图2⑴集散思想:有些几何题,条件与结论比较分散,通过添加适当的辅助线,将图形中分散,远离了的元素聚集到有关的图形上,使它们相对集中,便于比较,建立关系,从而找出问题的解决途径。
⑵平移只能用来作为作辅助线的思路,具体做辅助线的时候不能直接说将△ABC平移至△DEF。
1.在正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的点,且EG⊥FH,求证:EG=FH。
F D CB HGEA2.如图所示,P为平行四边形ABCD内一点,求证:以AP、BP、CP、DP为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB和BC。
3.如图,已知△ABC 的面积为16,BC =8,现将△ABC 沿直线BC 向右平移a 个单位到△DEF 的位置。
⑴当a =4时,求△ABC 所扫过的面积;⑵连接AE 、AD ,设AB =5,当△ADE 是以DE 为一腰的等腰三角形时,求a 的值。
4.如图,AA ′=BB ′=CC ′=1,∠AOB ′=∠BOC ′=∠COA ′=60°,求证:4AOB BOC COA SSS'''++<。
例1如图,E、F分别是正方形ABCD的边BC、CD上的点,且∠EAF=45°,AH⊥EF,H为垂足,求证:AH=AB。
例2△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且AP=3,CP=2,BP=1,求∠BPC的度数。
例3已知在△ABC中,AB=AC,P为三角形内一点,且∠APB>∠APC,求证:PB<PC。
有边相等或者有角度拼起来为特殊角的时候可以用旋转⑴边相等时常见图形为正方形,等腰三角形和等边三角形等等⑵角度能拼成的特殊角指的是180°,90°等等例4已知△ABC,∠1=∠2,AB=2AC,AD=BD。
求证:DC⊥AC。
例5△ABC为等腰直角三角形,∠ABC=90°,AB=AE,∠BAE=30°,求证:BE=CE。
例6在△ABC中,E、F为BC边上的点,已知∠CAE=∠BAF,CE=BF,求证:AC=AB。
出现轴对称的时候可以考虑翻折,尤其注意有角平分线,有角相等或者出现特殊角的一半的时候,翻折是常用添加辅助线的思想。
强调:旋转和翻折只能是一种作辅助线的思路,具体做辅助线的时候不能直接说将△ABC旋转或翻折至△DEF。
EDCBA1.如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长、圆心角为直角的扇形 纸板的圆心方在O 点处,并将纸板绕O 点旋转,其半径分别交AB 、AD 于点M 、N ,求 证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a 。
2.(2008山东)在梯形ABCD 中,AB ∥CD ,∠A =90°,AB =2,BC =3,CD =1,E 是 AD 中点,试判断EC 与EB 的位置关系,并写出推理过程。
CBAE'DAB CFD EE3.如图,P是等边△ABC内一点,若AP=3,PB=4,PC=5,求∠APB的度数。
343PCBA4.已知:在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,∠DAE=45°。
⑴猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;⑵当动点E在线段BC上,动点D运动在线段CB延长线上时,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明。
D EC B A5.如图,已知等腰直角三角线ABC ,BD 平分∠ABC ,CE ⊥BD ,垂足为E ,求证:BD =2CE 。
6.如图,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,如果AB =8,BC =10,求EC 的长。
F(D)DECBA一、倍长中线法例1(北京文汇中学2009-2010期中测试题),AD 是△ABC 中BC 边上的中线,若AB =2,AC =4,则AD 的取值范围是___________。
DCBA例2已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF =EF ,求证:AC =BE 。
A B CD EF中点的妙用例3⑴如图1,△ABC 与△BDE 均为等腰直角三角形,BA ⊥AC ,ED ⊥BD ,点D 在AB 边上。
连接EC ,取EC 中点F ,连接AF ,DF ,猜测AF ,DF 的数量关系和位置关系,并加以证明。
FDEACB图1⑵如图2,将△BDE 旋转至如图位置,使E 在AB 延长线上,D 在CB 延长线上,其他条件不变,则⑴中AF ,DF 的数量关系和位置关系是否发生变化,并加以证明。
FD ACBE图2例4已知四边形ABCD 中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 的中点,求证EFGH 为平行四边形。
HGF DEACB例5如图,已知四边形ABCD 中,AB =CD ,M 、N 分别为BC 、AD 中点,延长MN 与AB 、CD 延长线交于E 、F ,求证∠BEM =∠CFME FACDMB例6已知△ABD 和△ACE 都是直角三角形,且∠ABD =∠ACE =90°,连接DE ,设M 为DE 的中点。
⑴求证:MB =MC ;⑵设∠BAD =∠CAE ,固定Rt △ABD ,让Rt △ACE 移至图示位置,此时MB =MC 是否成立?请证明你的结论。
EA CDMBEACDMB出现中点的时候一般有以下作辅助线的方法 ⑴倍长中线法 ⑵构造中位线⑶如果是直角三角形,经常还会构造斜边上的中线例7如图,已知△ABC 和△ADE 都是等腰直角三角形,点M 为EC 中点,求证△BMD 为等腰直角三角形。
AMCEDB1.在△ABC 中,AB =12,AC =30,求BC 边上的中线AD 的范围。
ABCD2.在△ABC 中,D 为BC 边上的点,已知∠BAD =∠CAD ,BD =CD ,求证:AB =AC 。
ABCD3.如图,在△ABC 中,AD ⊥BC ,M 是BC 中点,∠B =2∠C ,如图,求证:DM =12ABDABC4.已知△ABC中,AC=7,BC=4,D为AB中点,E为边AC上一点,且12AED C∠=︒+∠9,求CE的长。
BAE DC5.在任意五边形ABCDE中,M,N,P,Q分别为AB、CD、BC、DE的中点,K、L、分别为MN、PQ的中点,求证:KL平行且等于14 AE。
6.如图,已知△ABC 中,AB =AC ,CE 是AB 边上的中线,延长AB 到D ,使BD =AB , 那么CE 是CD 的几分之几?ABE DC7.四边形ABCD 四边中点分别为E 、F 、G 、H ,当四边形ABCD 满足 时,EFGH为菱形;当四边形ABCD 满足 时,EFGH 为矩形;当四边形ABCD 满足 时,EFGH 为正方形。
例1在△ABC 中,∠B =2∠C ,∠BAC 的平分线AD 交BC 与D 。
求证:AB +BD =AC 。
DCBA截长补短法例2ABCD是正方形,P为BC上任意一点,∠P AD的平分线交CD于Q,求证:DQ=AP-BP。
PQ D CB A例3已知△ABC ,∠ABC =90°,以AB 、AC 为边向外做正方形ABDE 和ACFG ,延长BA 交EG 于H ,则BC =2AH 。
GHFEDCBA例4AD 是△ABC 的角平分线,BE ⊥AD 交AD 的延长线于E ,EF //AC 交AB 于F 。
求证:AF =FB 。
EABCDF补形法例5如图,六边形ABCDEF的六个内角都相等,已知BC+CD=11,DE-AB=3,求DC+EF的值。
ABC DE F例6如图所示:BC>AB,AD=AC,BD平分∠ABC,求证:∠A+∠C=180°。
ABCD1.如图,在△ABC中,AB+BD=AC,∠BAC的平分线AD交BC与D,求证:∠B=2∠CAB CD已知△ABC,以AB、AC为边向外作正方形ABGF、ACDE,M是BC中点,连接AM求证:EF=2AM且AM⊥EF。