材料力学:第七章
合集下载
材料力学第七章应力状态和强度理论
2
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
x y 2 a 0 2
x y x y 2
x y
2
) x
2
2
例题1: 已知:单元体各侧面应力 x=60MPa,
求: (1) = - 450斜截面上的应力,(2)主应力和主平面
dA
y
x y
2
sin 2 xy cos2
y
yx
应力圆
y
1 R 2
x
y
2
4 2 xy
x
yx xy x
y
R c
x y
2
2
x
xy
x´
dA
yx
y´
y
x y 1 2 2 2
40
x y
2 0.431MPa
sin( 80 ) xy cos(80 )
C
C
C
例题3:已知梁上的M、Q,试用单元体表示截面上1、2、
3、4点的应力状态。
1
2 0
2
1点 2点
1 2 0 3
3Q = 2A
M x Wz
2 xy
x y
2 20.6 0.69 60 0
17.2
x y
2 (
6.4MPa
2 34.4
max(min)
x
17.20
x y
2
) xy
2
2
x
66.4MPa
60 0 60 0 2 ( ) 20.6 2 2 2 66.4(6.4) MPa
材料力学第七章
第七章
因而横截面仍保持平面,并与挠曲轴正交
2
第七章 梁的变形
挠度与转角
v q F v ө
x
ө、
挠度-横截面形心在垂直于梁轴方向的位移
v v( x) -挠曲轴方程
转角-横截面的角位移
( x ) -转角方程 挠度与转角的关系
(忽略剪力影响)
第七章
dv ' tan ' (小变形) dx
第三节 计算梁位移的叠加法
例7: 悬臂梁 AB,用短梁 DG 加固,试分析加固效果
解:1. 静不定分析
vC vG
FR (l/2) 3 FR l 3 vG 3EI 24 EI
Fa 3 v2 3EI
求位移之和(代数或矢量和) 在分析某梁段的变形在需
第七章
v v1 v2 Fa ( l a ) ()
3 EI
2
求位移处引起的位移时, 其余梁段视为刚体
16
第三节 计算梁位移的叠加法
例 题
例1: q(x)=q0cos(px/2l),利用叠加法求 vB=?
第七章
dv2 Fb 2 F x2 ( x2 a ) 2 C 2 dx2 2 EIl 2 EI
Fb 3 v1 x1 C1 x1 D1 6 EIl
Fb 3 F v2 x2 ( x2 a)3 C2 x2 10 2 D 6 EIl 6 EI
第二节 用积分法求梁的变形
3 5 Fl 3 FByl vB -物理方程 48EI 3EI
3 3
vB 0
-变形协调条件
5F 16 M A 0, 得 M A 3Fl / 16 FBy
FByl 5Fl 0 -补充方程 48EI 3EI 第七章 综合考虑三方面
因而横截面仍保持平面,并与挠曲轴正交
2
第七章 梁的变形
挠度与转角
v q F v ө
x
ө、
挠度-横截面形心在垂直于梁轴方向的位移
v v( x) -挠曲轴方程
转角-横截面的角位移
( x ) -转角方程 挠度与转角的关系
(忽略剪力影响)
第七章
dv ' tan ' (小变形) dx
第三节 计算梁位移的叠加法
例7: 悬臂梁 AB,用短梁 DG 加固,试分析加固效果
解:1. 静不定分析
vC vG
FR (l/2) 3 FR l 3 vG 3EI 24 EI
Fa 3 v2 3EI
求位移之和(代数或矢量和) 在分析某梁段的变形在需
第七章
v v1 v2 Fa ( l a ) ()
3 EI
2
求位移处引起的位移时, 其余梁段视为刚体
16
第三节 计算梁位移的叠加法
例 题
例1: q(x)=q0cos(px/2l),利用叠加法求 vB=?
第七章
dv2 Fb 2 F x2 ( x2 a ) 2 C 2 dx2 2 EIl 2 EI
Fb 3 v1 x1 C1 x1 D1 6 EIl
Fb 3 F v2 x2 ( x2 a)3 C2 x2 10 2 D 6 EIl 6 EI
第二节 用积分法求梁的变形
3 5 Fl 3 FByl vB -物理方程 48EI 3EI
3 3
vB 0
-变形协调条件
5F 16 M A 0, 得 M A 3Fl / 16 FBy
FByl 5Fl 0 -补充方程 48EI 3EI 第七章 综合考虑三方面
材料力学 第07章 应力状态分析与强度理论
2
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力
sin2a t xy cos2a
18/95
7.2 平面应力状态分析 主应力 7.2.3 主平面的方位及极值正应力 s x s y s x s y sa cos2a t xy sin2a 2 2 s x s y ds a 上式对a 求导 2 sin2a t xy cos2a da 2 s x s y 若a a0时,导数为 0 sin2a 0 t xy cos2a 0 0 2 2t xy tan2a 0 s x s y
7.2.5 应力圆
t
sx
tyx
sy
sx txy sy
D(sx,txy) 1. 确定点 D (s ,t ) x xy
O
D'(sy,tyx)
C
s
2. 确定点D' (sy,tyx) tyx= -txy 3. 连接DD'与s 轴交于点C 4. 以 C 为圆心,CD(CD') 为半径画圆。
26/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆
sx sy sz
sxs1 100 MPas 2
0 MPas 3 120 MPa
11/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态 三个主应力中仅有一个主应力不为零 单向应力状态
s1
s1
F
A
F
12/95
7.1 一点的应力状态的概念 单向、二向(平面)、三向(空间)应力状态
O
D'(sy,tyx)
C sx- sx sy/2
s
27/95
7.2 平面应力状态分析 主应力 7.2.5 应力圆 利用应力圆确定角a 斜截面上的正应力和切应力
材料力学第七章知识点总结
p
σα
α
τα
)
(−
B
各边边长,
d x d y
σ
x
σ
y σ
z
τ
xy
τ
yx
τ
yz
τ
zy
τ
zx
τ
xz
(2) 应力状态的分类
a、单向应力状态:只有一个主应力不等于零,另两个主应力
都等于零的应力状态。
b、二向应力状态:有两个主应力不等于零,另一个主应力
等于零的应力状态。
c、三向应力状态:三向主应力都不等于零的应力状态。
平面应力状态:单向应力状态和二向应力状态的总称。
空间应力状态:三向应力状态
简单应力状态:单向应力状态。
复杂应力状态:二向应力状态和三向应力状态的总称。
纯剪切应力状态:单元体上只存在剪应力无正应力。
y
x
σx
σy
σz
τxy τyx
τyz
τzy τzx
τxz
x
y
σx
σy
τyx
τxy
τ第一个下标表示微面元方向,第二个下标表示面元上力的方向
空间问题简化
为平面问题
α——由o
c
b
σττ
σ
ττ
τ
max τ
min
τα
D
A
H
3040MPa
7.27422
)
7.27(=−−
σ
x
σ
y σ
z
τ
xy
τ
yx
τ
yz
τ
zy
τ
zx
τ
xz
y
x
z。
材料力学第七章组合变形
P2=406N
外力向形心简化并分解 弯扭组合变形
每个外力分量对应 的内力方程和内力图
M (x)
M
2 y
(
x)M
2 z
(
x)
解续
MMZz ((NNmm)) 71.25
40.6
MMyy ((NNmm)) MT n ((NNmm))
7.05 120 Mn
+
MM ((NNmm)) Mmax=71.3
41.2
核心边界上的一个角点;
截面角点边界
核心边界上的一条直线;
截面曲线边界
核心边界上的一条曲线。
例:
求右图示矩形截面的截面核心。
解:取截面切线 l1作为中性轴,其截距:
b
az
b 2
ay
4
3
a
并注意到: iz2 Iz / A h2 /12 iy2 I y / A b2 /12
故
h
5 21 z
34
ay
iz2 yP
az
iy2 zP
当偏心外力作用在截面 形心周围一个小区域内, 而对应的中性轴与截面周 边相切或位于截面之外时, 整个横截面上就只有压应 力而无拉应力。
2.截面核心的性质及其确定
(1)性质:是截面的一种几何特征,它只与截面的形状、尺
寸有关,而与外力无关。
(2)确定:根据中性轴方程知,截面上中性轴上的点的坐标
cmax
B
Fp A
MB Wz
Fp 6M B 13.4MPa bh bh2
在 B 截面右边缘处
3、最大拉应力
t
max
Fp A
MB Wz
3.4MPa
4、最大剪应力
材料力学第07章应力状态与应变状态分析
以上由单元体公式
应力圆(原变换)
下面寻求: 由应力圆
单元体公式(逆变换)
只有这样,应力圆才能与公式等价
换句话,单元体与应力圆是否有一一对应关系?
为什么说有这种对应关系?
DE R sin[180o ( 2 20 )] R sin( 2 20 )
( R cos 20 ) sin 2 ( R cos 20 )cos 2
2
cos2
xy
sin 2
同理:
x
y
2
sin 2
xy
cos2
n
Ox
图2
二、极值应力
令:d
d
0
x
y
sin202 xycos200
由此得两个驻点:
01、(
01
2
)和两个极值:
tg20
2 xy x
y
y
mm
ax in
x
y ±(x
2
y
2
)2
2 xy
0 0极值正应力就是主应力 !
y
O
x
七、主单元体、主平面、主应力:
y
y
主单元体(Principal bidy):
x
各侧面上剪应力均为零的单元体。
z
z
2
3
主平面(Principal Plane):
剪应力为零的截面。 x
主应力(Principal Stress ):
主平面上的正应力。
1
主应力排列规定:按代数值大小,
1 2 3
三向应力状态( Three—Dimensional State of Stress): 三个主应力都不为零的应力状态。
A
材料力学 第七章 应力状态和强度理论
y
2
2 xy
tan 2a0
2 xy x
y
max
1
2
3
主应力符号与规定: 1 2 3 (按代数值)
§7-3 空间应力状态
与任一截面相对应 的点,或位于应力 圆上,或位于由应 力圆所构成的阴影 区域内
max 1 min 3
max
1
3
2
最大切应力位于与 1 及 3 均成45的截面上
针转为正,顺时针转为负。
tg 2a 0
2 x x
y
在主值区间,2a0有两个解,与此对应的a0也有两个解,其中落
在剪应力箭头所指象限内的解为真解,另一解舍掉。
三、应力圆
由解析法知,任意斜截面的应力为
a
x y
2
a x
x
y
2
y cos2a
2
sin 2a x c
x s os2a
in
2a
广义胡克定律
1、基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y
x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
3
1
1
E
2
E
3
E
1
1 E
1
2
3
同理
2
1 E
2
3
1
广义胡克定律
3
1 E
3
1
2
7-5, 7-6
§7-4 材料的破坏形式
⒈ 上述公式中各项均为代数量,应用公式解题时,首先应写清已 知条件。
材料力学第七章
若应力状态由主应力表示,并且在max 0 和 min 0 的情况下,则式(7-7) 成为
max min
max
min
2
1 3
2
进一步讨论,由式(7-4)和式(7-6)可知
tan
21
1 tan 20
上式表明1 与 0 之间有如下关系:
1
0
4
可见,切应力取得极值的平面与主平面之间的夹角为 45 。
若三个主应力中,只有一个主应力不等于零,这样的应力状态称为 单向应力状态。若三个主应力中有两个不等于零,称为二向应力状态或 平面应力状态。若三个主应力皆不为零,称为三向应力状态或空间应力 状态。
第二节 平面应力状态分析——解析法
一、斜截面上的应力
图 7-1 所示为平面应力状态的最一般情况。已知 x , y , xy 和 yx 。现 在研究图中虚线所示任一斜截面上的应力,设截面上外法向 n 与 x 轴的夹角 为 。
令 d /d 0 ,由式(7-1)可得
x
2
y
sin
2
xy
cos 2
0
解得
(7-3)
tan 20
2 xy x y
通过运算,可以得到斜截面上正应力的极值为
(7-4)
max min
x
y 2
x
2
y
2
2 xy
(7-5)
由式(7-4)可知, 取得极值的角0 有两个,二者相差 90 ,即最大正应 力 max 和最小正应力 min ,二者分别作用在两个相互垂直的截面上。当 0 , 取得极值时,该斜截面上的切应力 0 ,即正应力就是主应力。
(a)
(b) 图7-6
例 7-4 悬臂梁受力如图 7-7(a)所示。试求截面 n n 上 A 点处的主应力 大小和方向,并按主平面画出单元体。
材料力学-第七章-强度理论
脆性断裂,最大拉应力准则
r1 = max= 1 [] 其次确定主应力
ma xx 2y 1 2 xy2 4x 2y 2.2 9 M 8 P
m inx 2y 1 2 xy2 4x 2y 3 .7M 2 P
1=29.28MPa,2=3.72MPa, 3=0
r113M 0 Pa
根据常温静力拉伸和压缩试验,已建立起单向应力状态下的弹 性失效准则;
考虑安全系数后,其强度条件
根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性失 效准则;
考虑安全系数后,强度条件
建立常温静载复杂应力状态下的弹性失效准则: 强度理论的基本思想是:
确认引起材料失效存在共同的力学原因,提出关于这一 共同力学原因的假设;
像铸铁一类脆性材料均具有 bc bt 的性能,
可选择莫尔强度理论。
思考题:把经过冷却的钢质实心球体,放入沸腾的热油锅 中,将引起钢球的爆裂,试分析原因。
答:经过冷却的钢质实心球体,放入沸腾的热油锅中, 钢 球的外部因骤热而迅速膨胀,其内芯受拉且处于三向均 匀拉伸的应力状态因而发生脆性爆裂。
思考题: 水管在寒冬低温条件下,由于管内水结冰引起体 积膨胀,而导致水管爆裂。由作用反作用定律可知,水 管与冰块所受的压力相等,试问为什么冰不破裂,而水管 发生爆裂。
局限性:
1、未考虑 2 的影响,试验证实最大影响达15%。
2、不能解释三向均拉下可能发生断裂的现象, 此准则也称特雷斯卡(Tresca)屈服准则
4. 畸变能密度理论(第四强度理论) 材料发生塑性屈服的主要因素是 畸变能密度;
无论处于什么应力状态,只要危险点处畸变能密度达到 与材料性质有关的某一极限值,材料就发生屈服。
具有屈服极限 s
铸铁拉伸破坏
r1 = max= 1 [] 其次确定主应力
ma xx 2y 1 2 xy2 4x 2y 2.2 9 M 8 P
m inx 2y 1 2 xy2 4x 2y 3 .7M 2 P
1=29.28MPa,2=3.72MPa, 3=0
r113M 0 Pa
根据常温静力拉伸和压缩试验,已建立起单向应力状态下的弹 性失效准则;
考虑安全系数后,其强度条件
根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性失 效准则;
考虑安全系数后,强度条件
建立常温静载复杂应力状态下的弹性失效准则: 强度理论的基本思想是:
确认引起材料失效存在共同的力学原因,提出关于这一 共同力学原因的假设;
像铸铁一类脆性材料均具有 bc bt 的性能,
可选择莫尔强度理论。
思考题:把经过冷却的钢质实心球体,放入沸腾的热油锅 中,将引起钢球的爆裂,试分析原因。
答:经过冷却的钢质实心球体,放入沸腾的热油锅中, 钢 球的外部因骤热而迅速膨胀,其内芯受拉且处于三向均 匀拉伸的应力状态因而发生脆性爆裂。
思考题: 水管在寒冬低温条件下,由于管内水结冰引起体 积膨胀,而导致水管爆裂。由作用反作用定律可知,水 管与冰块所受的压力相等,试问为什么冰不破裂,而水管 发生爆裂。
局限性:
1、未考虑 2 的影响,试验证实最大影响达15%。
2、不能解释三向均拉下可能发生断裂的现象, 此准则也称特雷斯卡(Tresca)屈服准则
4. 畸变能密度理论(第四强度理论) 材料发生塑性屈服的主要因素是 畸变能密度;
无论处于什么应力状态,只要危险点处畸变能密度达到 与材料性质有关的某一极限值,材料就发生屈服。
具有屈服极限 s
铸铁拉伸破坏
材料力学 第七章 弯曲变形
,
FA
3FP 4
(↑)
3FP
FP
FC
FP 4
(↑)
4
4
明德行远 交通天下
材料力学
(2)分段列梁的弯矩方程
AB段:
M1(x)
3 4
FP x
0x l 4
3
l
BC段:
M 2 ( x)
4
FP x
-
FP (x
-
) 4
l xl 4
(3)积分法求梁的挠曲线
挠曲线近似微分方程
EI
d 2w1 dx2
=
-
M1(x)
-
wC- wC
P
A (b)
图(b): wA 0 A 0
或写成w C
左
wC右
光滑条件
C- C
或写成 C 左 C 右
明德行远 交通天下
材料力学
讨论: ①适用于小变形、线弹性材料、细长构件的平面弯曲。 ②可求解各种载荷作用下等截面或变截面梁上任意位置处的位移。 ③积分常数由挠曲线变形的几何相容条件(边界条件、光滑连续条件)确定。 ④优点:使用范围广,直接求出较精确; 缺点:计算较繁。
(2)
EIzw=EIz = -
q(x)dx3
1 2
C1x2
C2
x
C3
(3)
明德行远 交通天下
材料力学
例题7-1如图所示,受集中荷载的简支梁AC。已知EI、l、FP。试写出梁的挠 度方程和转角方程,并求截面A和C处的转角及B截面处的挠度。
明德行远 交通天下
y
FP
A
B
θA wB
l 4
EI
3l 4
C
θC
材料力学第七章知识点总结
研究应力状态的目的:找出一点处沿不同方向应力的变化
规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x
⎣
−σ y
2
sin 2α0
+τ xy
cos
2α
0
⎤ ⎥
⎦
=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D
规律,确定出最大应力,从而全面考虑构件破坏的原因,建 立适当的强度条件。
材料力学
3、一点的应力状态的描述
研究一点的应力状态,可对一个 包围该点的微小正六面体——单 元体进行分析
在单元体各面上标上应力 各边边长 dx , dy , dz
——应力单元体
三、几个对应关系
点面对应——应力圆上某一点的坐标值对应着单元体某一截面
上的正应力和切应力;
y
σy
n
τ
H (σα ,τα )
τ yxHτ xy来自αxσx
(σy ,Dτyx)
2α A (σx ,τxy)
c
σ
σx +σ y
2
转向对应——半径旋转方向与截面法线的旋转方向一致; 二倍角对应——半径转过的角度是截面法线旋转角度的两倍。
α =α0
=
−2⎢⎡σ x
⎣
−σ y
2
sin 2α0
+τ xy
cos
2α
0
⎤ ⎥
⎦
=0
=
−2τ α 0
τα0 = 0
tg
2α 0
=
− 2τ xy σx −σ y
可以确定出两个相互垂直的平面——主平面,分别为
最大正应力和最小正应力所在平面。
主平面的方位
(α0 ; α0′ = α0 ± 900 )
主应力的大小
材料力学
四、在应力圆上标出极值应力
τ
τ max
x
R
O σ min
2α12α0A(σx ,τxy)
c
σ
σ
max
(σy ,τyx) D
《材料力学》第七章
h
6
为什么要研究一点的应力状态?
1. 判断受力构件上哪一点、沿哪个方向的应力最大?哪个 点、哪个方向最危险?从而解决构件在复杂应力状态下的强 度计算提供条件,解决其强度问题。
2.解释变形构件的变形现象和破坏原因。
3.在弹性力学、塑性力学和断裂力学等学科的研究中都要广 泛用到应力状态理论。
要研究一点的应力状态,
σx
应力所在平面的法线方
向的方向,即其方向
σx
τxy
应力的方向
τxy
应力所在平面的法线方向
应力的符号规定为:
正应力以拉应力为正、压应力为负;切应力对单元体内
任意点的矩顺时针转向时为正;反之为负。
h
16
一、斜截面上的应力
设σx 、σy、τxy和τyx已知,取任意斜截面ef的方位角α>0, 用截面法求ef面上的正应力σα和切应力τα。
有正应力,又有切应力。
FN A
原始单元体
求出
h
任一单元体
coos 2
1 2
sin2
8
又如矩形截面悬臂梁,在梁上边缘A、B、C点处截 取单元体,其原始单元体如图:
My Iz
FSS* I zb
应该指出:
1.认为单元体各面上的应力
均匀分布;
m二原始单元体如在m点周围按图c的方式截取单元体使其和纸面垂直的四个侧面既丌不杆件轴线平行又丌不轴线垂直均为杆件的斜截面则四个侧面上既有正应力又有切应力
第七章 应力和应变分析 强度理论
h
1
基本要求: 1.熟悉应力状态的概念; 2.掌握用解析法和图解法计算二向应力状态下斜截面的应力、主 应力及最大最小切应力; 3.了解三向应力状态,会计算最大切应力; 4.了解广义胡克定律; 5.会应用四种强度理论进行复杂应力状态下构件的强度计算。
材料力学第七章
单向应力状态又称简单应力状态;平面和空间应 力状态又称复杂应力状态。
§7-2
平面应力状态分析
一、平面应力状态分析的解析法 1.平面应力状态图示(一般表现形式):
sy sx sy txy sx sx tyx sx txy sy
tyx
平面应力状态一般表现为:单元体有一对侧面应力 为零,其它四个侧面的应力都平行于该侧面。 (也可能是单向应力状态,需具体计算分析)
用法线平行的轴表示面,如x面为法线平行于 x轴的面;
§7-1
一点的应力状态
二、研究应力状态的方法 2.单元体上的应力分量: 2)各面应力分量共有九个,独立分量有六个; 切应力互等定理:t yz t zy,t zx t xz,t xy t yx
s 11 s 12 s 13 s x t xy t xz 3)应力矩阵: s ij s 21 s 22 s 23 t yx s y t yz t t s s 31 s 32 s 33 zx zy z 3.截取单元体的方法、原则: 用三个坐标轴(笛卡尔或极坐标)在一点截取, 因其微小,统一看成微小长方体; 各个面上的应力已知或可求;
t' s x s y s 's " 2 t xy 2)极值切应力: t '' 2 2
3)极值切应力与主应力方位的关系: 1 —极值切应力平面与 tan 2a 0 主平面成45o tan 2a1
2
§7-2 一、平面应力状态分析的解析法 5.主应力迹线:
§7-2
平面应力状态分析
总
结
任一斜截面上的应力 s x s y s x s y cos 2a t xy sin 2a s a 2 2 s x s y t a sin 2a t xy cos 2a 2 主应力,主平面方位
§7-2
平面应力状态分析
一、平面应力状态分析的解析法 1.平面应力状态图示(一般表现形式):
sy sx sy txy sx sx tyx sx txy sy
tyx
平面应力状态一般表现为:单元体有一对侧面应力 为零,其它四个侧面的应力都平行于该侧面。 (也可能是单向应力状态,需具体计算分析)
用法线平行的轴表示面,如x面为法线平行于 x轴的面;
§7-1
一点的应力状态
二、研究应力状态的方法 2.单元体上的应力分量: 2)各面应力分量共有九个,独立分量有六个; 切应力互等定理:t yz t zy,t zx t xz,t xy t yx
s 11 s 12 s 13 s x t xy t xz 3)应力矩阵: s ij s 21 s 22 s 23 t yx s y t yz t t s s 31 s 32 s 33 zx zy z 3.截取单元体的方法、原则: 用三个坐标轴(笛卡尔或极坐标)在一点截取, 因其微小,统一看成微小长方体; 各个面上的应力已知或可求;
t' s x s y s 's " 2 t xy 2)极值切应力: t '' 2 2
3)极值切应力与主应力方位的关系: 1 —极值切应力平面与 tan 2a 0 主平面成45o tan 2a1
2
§7-2 一、平面应力状态分析的解析法 5.主应力迹线:
§7-2
平面应力状态分析
总
结
任一斜截面上的应力 s x s y s x s y cos 2a t xy sin 2a s a 2 2 s x s y t a sin 2a t xy cos 2a 2 主应力,主平面方位
材料力学第7章
积分一次: Fb 2 EIw1 x C1 2l 积分二次: Fb 3 EIw1 x C1 x D1 6l
11
CB段(a x l): 弯矩方程:
Fb M 2 x x F x a l
挠曲线近似微分方程:
Fb EIw2 x F x a l Fb 2 F 2 x x a C2 积分一次: EIw2 2l 2
ቤተ መጻሕፍቲ ባይዱ 1 x 0
Fab l b , B 2 6lEI
Fab l a B = 6lEI
Fl 3 Fl 3 Fl 3 2 EI 6 EI 3EI
7
wmax w x l
例题7.2:图示弯曲刚度为EI的简支梁,受集度为q的均布 荷载作用,试求梁的挠曲线方程和转角方程,并确定其最 大挠度和最大转角。 解:由平衡方程得支座反力 ql FA FB 2 建立坐标系,得梁的弯矩方程为 1 1 2 M x qlx qx 2 2 梁挠曲线近似微分方程
1 3 C ql , D 0 24
9
梁的转角方程
q w (4 x3 6lx 2 l 3 ) 24 EI
梁的挠曲线方程
(5)
qx w ( x3 2lx 2 l 3 ) 24 EI
最大转角
(6)
max
ql 3 A B 24 EI
2
最大挠度
M ( x) F l x
1
挠曲线近似微分方程
EIw M x F l x 2 两次积分,得 1 2 EIw Flx Fx C 2 1 1 3 2 EIw Flx Fx Cx D 2 6
材料力学第七章 弯曲变形
1.叠加原理 各载荷同时作用下梁任一截面的挠度和转角
等于各个 载荷单独作用时同一截面挠度和转角 的代数和。
2.叠加原理的前提 小变形 材料是线弹性材料
例1:求大梁跨度中点的挠度 F
q
A
c
B
l
l
F
2
2
q
A
c
B+ A
c
B
l
l
l
l
2
2
2
2
(wc )F
Fl 3 48 EI
(wc )q
5ql 4 384 EI
dx
o
三、弯曲刚度条件
x
w
w f (x) 挠曲线
| w |max [w], | |max [ ]
§7.2 挠曲线的近似微分方程
| ds | | d | (a)
纯弯曲时挠曲线曲率与弯矩的关系为 1 M (b)
EI
横力弯曲时, 剪力对梁弯曲变形很小,可忽略不计。此时曲率与 弯矩为x的函数 。它们的关系仍满足(b)式。
EI2 EIw2' C2 EIw2 C2 x D2
确定积分常数
边界条件 x 0,1 0 w1 0
连续条件 x a,1 2 w1 w2
求得自由端转角和挠度为
C1 0 C2 ma
D1 0
D2
1 2
ma2
B
2
|xl
ma EI
fB
w2
|xl
ma (l EI
a) 2
§7.4 用叠加法求弯曲变形
由(a)(b)可得 d M (c)
ds EI
y
d
由于挠度很小,挠曲线非常平
坦,ds dx,并考虑到符号(c)可
材料力学 第七章 应力状态与强度理论
取三角形单元建立静力平衡方程
n 0
dA ( xdA cos ) sin ( xdA cos ) cos ( y dA sin ) cos ( y dA sin ) sin 0
t 0
dA ( xdA cos ) cos ( xdA cos ) sin ( y dA sin ) sin ( y dA sin ) cos 0
2 2
cos 2 x sin 2
2 x y 2 x y ( ) ( cos 2 x sin 2 )2
2
2
x y
sin 2 x cos 2
( 0) (
x y
2
2
sin 2 x cos 2 )
max x y x y 2 x 2 2 min
2
max
1 3
2
例7-2 试求例7-1中所示单元体的主应力和最大剪应力。
(1)求主应力的值
x 10MPa, y 30MPa, x 20MPa max x y x y 2 2 x min 2
复杂应力状态下(只就主应力状态说明) 有三个主应力
1 , 2 , 3
1
E
由 1引起的线段 1应变 1
由 2引起的线段 1应变 1
2
由 3引起的线段1应变 1
3
E
E
沿主应力1的方向的总应变为:
1 1 1 1
1 42.4 1 3 2 0 MPa 由 max 3 2.4 2
材料力学第七章 梁的变形
EIy1=-Fx13/9+ 5Fa2x1/9 EIy2=-Fx23/9+F(x2-a )3/6+ 5Fa2x2/9
(0≤x1 ≤a)
( a ≤x2 ≤3a )
7. 求ymax , θmax
x 0,
max
A
5Fa2 9EI
()
x 1.367a,
ymax
0.4838 Fa3 EI
21
F
A
C
在如图所示的座标系下,顺时针转为正,反之为负。
转角方程 θ = θ(x)
平行于轴线方向的线位移忽略
7
挠度与转角的关系:
θ θ’
y
x y
小变形
θ =θ ′
tgθ ′ ≈ θ ′ = y′
y dy
dx
x
8
§7-2 直梁挠曲线近似微分方程
一、挠曲线近似微分方程
纯弯曲 k 1 M
EIz
(x)
F C yCF
42
例题4
怎样用叠加法确定C 和 yC ?
q
A
B
C
yC
l
l
C
2
2
43
A
B
l 2
q
C
yC
l
C
2
A
l 2
A
l 2
q
B
l 2
q
B
l 2
A
q
l
B
l
2
2
44
简单静不定梁(超静定梁)
一、静定梁
F Fl
A
B
C
l
l
2
2
qa
A
B
C
a
a
45
工程力学(材料力学部分第七章)
4 主应力及应力状态的分类
主应力和主平面
切应力全为零时的正应力称为主应力;
主应力所在的平面称为主平面;
主平面的外法线方向称为主方向。
主应力用1 , 2 , 3 表示 (1 2 3 ) 。
应力状态分类
单向应力状态
11
应力状态分类
单向应力状态 二向应力状态(平面应力状态)
三向应力状态(空间应力状态)
D点
由 y 40, yx 60
D'点
画出应力圆
52
圆心坐标
OC x y 80 (40)
2
2
20
半径
R
x
2
y
2
2 xy
80 (40) 2
(60)2
84.85 85
2
53
圆心坐标 OC 20
半径
R 85
1 OA1 OC R
E
105 MPa
3 OC R
65 MPa
D (x ,xy)
x y
2
R 1 2
x y
2
4
2 xy
38
3 应力圆上的点与单元体面上的应力的对应关系 (1) 点面对应
应力圆上某一点 的坐标值对应着 单元体某一方向面上的正应力和切应力。
39
(1) 点面对应
应力圆上某一点的坐 标 值对应着单元体某 一方向面上的正应力 和切应力。
D点对应的面与E点 对应的面的关系
主应力。
从半径CD转到CA1 的角度即为从x轴转
到主平面的角度的
两倍。
44
主应力 即为A1, B1处的正应力。
max min
x
y
2
x
2
材料力学第七章应力应变分析
x
y
2
x
2
y
cos 2
xy sin 2
x
y
2
sin 2
xy cos 2
1、最大正应力的方位
令
d d
2[
x
y sin 2
2
xy cos 2 ] 0
tg 2 0
2 xy x
y
0 0
90
0 和 0+90°确定两个互相垂直的平面,一个是最大正应 力所在的平面,另一个是最小正应力所在的平面.
的方位.
m
m a
A
l
解: 把从A点处截取的单元体放大如图
x 70, y 0, xy 50
A
tan 20
2 xy x y
2 50 1.429
1
3
(70) 0
0
A
x
0
27.5 62.5
3
1
因为 x < y ,所以 0= 27.5° 与 min 对应
max min
x
2
y
(
x
2
y )2
三、应力状态的分类
1、空间应力状态
三个主应力1 、2 、3 均不等于零
2、平面应力状态
三个主应力1 、2 、3 中有两个不等于零
3、单向应力状态
三个主应力 1 、2 、3 中只有一个不等于零
2 3
2
1
1
1
1
1
3 2
2
1
例题 1 画出如图所示梁S截面的应力状态单元体.
F
5
S平面
4
3
l/2
2
l/2 1
任意一对平行平面上的应力相等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yx
dAsinα
y
t
Ft 0
dA xy(dAcos ) cos x (dAcos )sin yx(dAsin )sin y (dAsin ) cos 0
{ 利用三角函数公式
cos2 1 (1 cos 2 )
2
sin2 1 (1 cos 2 )
2
2sin cos sin2
y
y
n
yx
H
xy
x
x
D/
(y ,yx)
H ( a , a )
2 D (x ,xy)
c
x y
2
§7.4 1.定义
三向应力状态
2
1
3
三个主应力都不为零的应力状态。
2
1
0 3
2
3
由三向应力圆可以看出:
max
1
3
2
结论:
代表单元体任意斜 1 截面上应力的点,
必定在三个应力圆
圆周上或圆内。
§7.5 广义胡克定律
强度条件: 五、莫尔强度理论
莫尔准则:
强度条件:
r2 1 2 3
❖ 强度设计准则的应用
➢1. 分析计算危险点的应力 ➢2. 计算主应力 ➢3. 选择适当的失效判据并计算相当应力 ➢4. 应用强度设计准则进行计算
❖强度校核 ❖截面设计 ❖确定许用载荷
本章小结
❖ 应力状态的概念 ❖ 用解析法分析二向应力状态 ❖ 用图解法分析二向应力状态 ❖ 三向应力状态 ❖ 广义胡克定律 ❖ 五种强度理论
x
2
y
(
x
y
)2
2 xy
2
68.3MPa
x
m in
x
2
y
(
x
y
)2
2 xy
2
48.3MPa
1 68.3MPa, 2 0, 3 48.3MPa
y
主平面的方位:
xy x
tan
20
2 xy x
y
60 0.6 60 40
0 15.5 ,
代入 表达式可知
0 15.5 90 105.5
关于屈服的强度理论: 最大切应力理论和形状改变比能理论
❖ 强度设计准则
一、最大拉应力理论(第一强度理论) 断裂准则: 强度条件:
二、最大伸长线应变理论(第二强度理论) 断裂准则:
强度条件: 1 2 3
三、最大切应力理论(第三强度理论) 屈服准则: 强度条件:
四、畸变能密度理论(第四强度理论) 屈服准则:
q
τy
1 2
τx
3 4
σx
5
应力公式中, x x , y 0 , xy x
τx σx
τy
x
2
x
2
cos 2
x
sin 2
x
2
sin 2
x
cos 2
tan
20
2 x x
max
min
x
2
x
2
2
2 x
max
min
x
2
2
2 x
梁横截面上的应力
q
1
1
2
3
2
4
5
3
1点
σx
σx
4
5点
20MPa
20MPa
63.3MPa 80.78o
63.3MPa
-9.22o
§7.3 二向应力状态分析——图解法
1. 应力圆:
R C
R
(
x
y
)2
2 xy
2
x y
2
2.应力圆的画法
y y
yx
D xy x
A x
D/
(y ,yx)
R
(
x
y
)2
2 xy
2
R
D (x ,xy)
c
x y
2
3、对应关系
点面对应——应力圆上某一点的坐标值对应着 微元某一截面上的正应力和切应力
到斜截面外法线时为正;反 之为负。
3. 正应力极值和方向
确定正应力极值
1 2
(
x
y)
1 2
(
x
y ) cos 2
xy
sin
2
d d
( x
y ) sin 2 2 xy cos 2
设α=α0 时,上式值为零,即
( x y ) sin 20 2 xy cos 20 0 代入切应力公式:
例7.2 由梁内某点处截取的应力单元体如图所示,已知σx=40MPa,
τx=- τy=- 60MPa。试求:⑴该单元体45o斜截面上的应力;⑵主应力数值及 其作用平面的方位,画出主应力单元体;⑶最大切应力数值及其作用平面方
位,画最大切应力单元体。
τy σx
τx σx
解:2. 计算主应力
35.8o 83.3MPa
2 xy
应力圆的画法
y y yx
D xy
A x
max
1
3
2
x
D/
(y ,yx)
R 1 3
2
R
D (x ,xy)
c
1 3
2
作业
❖P253 习题
❖7.3(d) ❖7.4(d)
❖7.8
x
y
2
4
2 xy
主应力按代数值排序:σ1 σ2 σ3
例7.1 一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, 30。
试求(1) 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
y xy
x
解:(1) 斜面上的应力
xy
yx
y
y
1 E
y
z
x
lT
z
1 E
z
x
y
lT
xy
xy
G
yz
yz
G
zx
zx
G
§7.6 弹性应变能
❖ 弹性应变能
❖ 应变能密度
W V
dV dV
V V dV
❖ 应变能密度的分解
➢ 体积改变能密度
➢ 畸变能密度(形状改变密度)
§7.7 强度理论的概述
1. 杆件基本变形下的强度条件
1. 基本变形时的胡克定律
1)轴向拉压胡克定律
x E x
横向变形
y x
x
E
2)纯剪切胡克定律
G
y
x x
2、三向应力状态的广义胡克定律-叠加法
2
2
1
1
3
1
1
E
2
E
1
1 E
1
2
3
3
3
E
2
1
1 E
1
2
3
3
1
2
1 E
2
3
1
3
1 E
3
1
2
3、广义胡克定律的一般形式
x
1 E
[ x
第七章 应力和应变分析 强度理论
应力状态的概念 用解析法分析二向应力状态 用图解法分析二向应力状态 三向应力状态 广义胡克定律 四种强度理论 莫尔强度理论
§7.1
1、问题的提出 铸铁
应力状态的概念
低碳钢
塑性材料拉伸时为什么会出现滑移线?
§7.1 应力状态的概念
低碳钢
铸铁
脆性材料扭转时为什么沿45º螺旋面断开?
(拉压)
max
FN ,max A
[ ]
(弯曲)
max
Mmax W
[ ]
(弯曲)
max
Fs
S
* z
bIz
[ ]
(扭转) max
T Wp
[ ]
(正应力强度条件)
max [ ]
(切应力强度条件)
max [ ]
max max
满足
max [ ] max [ ]
是否强度就没有问题了?
2(
σx
σy 2
) s
i
n
2α0
τx
yc
o
s
2α0
2τα0
0
即α=α0 时,切应力为零
主应力
tan
2 0
2 xy x
y
由上式可以确定出两个相互垂直的平面,分别 为最大正应力和最小正应力所在平面。
所以,最大和最小正应力分别为:
主应力
max
x
2
y
1 2
x
y
2
4
2 xy
min
x
2
y
1 2
主应力 1 方向: 0 15.5 主应力 3 方向:0 105 .5
(3)主应力单元体:
y xy
x
3 1
15.5
正应力极值:
max
min
x
y
2
x
2
y
2
2 xy
tan
2 0
2 xy x
y
切应力极值:
主应力
max
min
x
2
y
2
2 xy
tan
20
x 2 xy
y
二、梁的主应力
§7.8 五种常用强度理论
强度理论:人们根据大量的破坏现象,通过判断推 理、概括,提出了种种关于破坏原因的假说,找出 引起破坏的主要因素,经过实践检验,不断完善, 在一定范围与实际相符合,上升为理论。
为了建立复杂应力状态下的强度条件,而提出 的关于材料破坏原因的假设及计算方法。