点差法公式在双曲线中点弦问题中的妙用
点差法公式在双曲线中点弦问题中的妙用
点差法公式在双曲线中点弦问题中的妙用XXXX 外国语学校隆光诚(邮政编码530007)圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理在双曲线12222=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN=⋅. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x b y a x)2()1(-,得.02222122221=---byy a x x.2212121212ab x x y y x x y y =++⋅--∴ 又.22,00021211212x y x y x x y y x x y y k MN ==++--=.2200ab x y k MN=⋅∴ 同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ba x y k MN=⋅. 典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.(1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22ba x y k AB =⋅得:3121=⋅--x y x y , 整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x(2) P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k ∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值X 围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P ? (3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k直线l 与C 有两个公共点,∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k 解之得:k <23且.2±≠k ∴k 的取值X 围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x 设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200ab x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y x C 于A 、B 两点,已知+=(O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y x C 中,122==b a ,焦点在x 轴上.设弦AB 的中点为Q .,+=由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点. 设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫⎝⎛2,2y x . 由2222a bx y k AB =⋅得:14222=⋅+=⋅+x y x y x y x y,整理得:.0422=+-x y x配方得:144)2(22=-+y x . ∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例 4. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线. (Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由. 解:(Ⅰ)由24y =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x . ∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a ∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………② 由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为()A.14322=-y xB. 13422=-y xC. 12522=-y xD. 15222=-y x 2.(02XX )设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线x y 322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200ab x y k MN =⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a a b 得5,222==b a . 故答案选D.2. 解:(1)2,122==b a ,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅AB k ,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上,∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22ab x y k CD =⋅得:21=⋅-x y,即x y 2-=.由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -. 由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3.解:(1)3,122==b a ,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab x y k AB =⋅得:32123=⋅++x y x y , 整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x .(2)由2200abx y k AB =⋅得:32123=--⋅AB k ,∴1=AB k .∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y .由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x , 解之得:1,221=-=x x .∴.2332||1||122=⋅=-+=x x k AB4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a ,∴焦点为)0,32(),0,32(21F F -.在抛物线x y 322-=中,3=p ,∴准线为23=x . ∴在双曲线中,232=c a . 从而.3,3==b a ∴所求双曲线C 的方程为19322=-y x . (2)直线'l 是弦AB 的垂直平分线,∴k m 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(00y x P .由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由6100+⋅-=x ky 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x 又 300+=kx y ,∴32329+⋅=kk ,即12=k . ∴1±=k .由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
点差法公式在双曲线中点弦问题中的妙用
点差法公式在双曲线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN =⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221ΛΛΛΛb y a x by a x )2()1(-,得.02222122221=---byy a x x.2212121212ab x x y y x x y y =++⋅--∴ 又.22,00021211212x y x y x x y y x x y y k MN ==++--=Θ.2200ab x y k MN=⋅∴ 同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ba x y k MN =⋅.典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.(1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22b a x y k AB =⋅得:3121=⋅--x y x y ,整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x(2)Θ P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P ? (3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x kΘ直线l 与C 有两个公共点,∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222φk k k k k k解之得:k <23且.2±≠k ∴k 的取值范围是).23,2()2,2()2,(Y Y ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x 设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200ab x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y x C 于A 、B 两点,已知OB OA OP +=(O为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y x C 中,122==b a ,焦点在x 轴上.设弦AB 的中点为Q .,OB OA OP +=Θ由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点. 设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫⎝⎛2,2y x . 由2222a bx y k AB =⋅得:14222=⋅+=⋅+x y x y x y x y,整理得:.0422=+-x y x配方得:144)2(22=-+y x . ∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例 4. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线. (Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.解:(Ⅰ)由2234y x =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x . ∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………② 由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x kΘ直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( )A.14322=-y xB. 13422=-y xC. 12522=-y xD. 15222=-y x 2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线x y 322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200a b x y k MN =⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a a b 得5,222==b a . 故答案选D.2. 解:(1)2,122==b a ,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅AB k ,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22a b x y k CD=⋅得:21=⋅-xy,即x y 2-=. 由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -. 由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3. 解:(1)3,122==b a ,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab x y k AB =⋅得:32123=⋅++x y x y , 整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x .(2)由2200abx y k AB =⋅得:32123=--⋅AB k ,∴1=AB k .∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y .由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x , 解之得:1,221=-=x x . ∴.2332||1||122=⋅=-+=x x k AB4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a ,∴焦点为)0,32(),0,32(21F F -.在抛物线x y 322-=中,3=p ,∴准线为23=x . ∴在双曲线中,232=c a . 从而.3,3==b a ∴所求双曲线C 的方程为19322=-y x . (2)直线'l 是弦AB 的垂直平分线,∴k m 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(00y x P .由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由6100+⋅-=x ky 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x又Θ300+=kx y ,∴32329+⋅=kk ,即12=k . ∴1±=k . 由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k Θ直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
点差法公式在双曲线中点弦问题中的妙用
点差法公式在双曲线中点弦问题中的妙用广西南宁外国语学校 隆光诚(邮政编码530007)圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN =⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221ΛΛΛΛb y a x by a x)2()1(-,得.02222122221=---byy a x x又.22,00021211212x y x y x x y y x x y y k MN ==++--=Θ同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200b a x y k MN =⋅. 典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22b a x y k AB =⋅得:3121=⋅--x y x y ,整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x(2)Θ P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P ? (3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k Θ直线l 与C 有两个公共点,∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222φk k k k k k解之得:k <23且.2±≠k ∴k 的取值范围是).23,2()2,2()2,(Y Y ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x 设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200ab x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y x C 于A 、B 两点,已知+=(O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y x C 中,122==b a ,焦点在x 轴上.设弦AB 的中点为Q . 由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点. 设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫⎝⎛2,2y x . 由2222a b x y k AB =⋅得:14222=⋅+=⋅+x y x y x y x y, 整理得:.0422=+-x y x配方得:144)2(22=-+y x . ∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例4. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.(Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.解:(Ⅰ)由24y =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x . ∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………② 由①、②得:3,00==y k x . 由100+=kx y 得:132+=k ,∴2±=k.又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x kΘ直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( ) A.14322=-y x B. 13422=-y x C. 12522=-y x D. 15222=-y x 2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线x y 322-=的准线为右准线. (1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200a b x y k MN =⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a a b 得5,222==b a . 故答案选D.2. 解:(1)2,122==b a ,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅AB k ,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22a b x y k CD=⋅得:21=⋅-xy,即x y 2-=. 由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -. 由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆.3. 解:(1)3,122==b a ,焦点在x 上. 设点M 的坐标为),(y x . 若直线l 的的斜率不存在,则x l⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab x y k AB =⋅得:32123=⋅++x y x y , 整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x .(2)由2200abx y k AB =⋅得:32123=--⋅AB k ,∴1=AB k .∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y .由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x , 解之得:1,221=-=x x .4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a , ∴焦点为)0,32(),0,32(21F F -.在抛物线x y 322-=中,3=p ,∴准线为23=x . ∴在双曲线中,232=c a . 从而.3,3==b a ∴所求双曲线C 的方程为19322=-y x . (2)直线'l 是弦AB 的垂直平分线,∴k m 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(00y x P . 由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由6100+⋅-=x ky 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x又Θ300+=kx y ,∴32329+⋅=k k ,即12=k . ∴1±=k . 由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k Θ直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
点差法公式在双曲线中点弦问题中的妙用
点差法公式在双曲线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN=⋅. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x b y a x)2()1(-,得.02222122221=---byy a x x.2212121212ab x x y y x x y y =++⋅--∴ 又.22,00021211212x y x y x x y y x x y y k MN ==++--=.2200a b x y k MN=⋅∴ 同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200b a x y k MN=⋅. 典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.(1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22ba x y k AB =⋅得:3121=⋅--x y x y , 整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x(2) P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k ∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P ? (3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k直线l 与C 有两个公共点,∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k 解之得:k <23且.2±≠k ∴k 的取值范围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x 设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200ab x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y x C 于A 、B 两点,已知OB OA OP +=(O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y x C 中,122==b a ,焦点在x 轴上.设弦AB 的中点为Q .,OB OA OP +=由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点. 设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫⎝⎛2,2y x . 由2222a bx y k AB =⋅得:14222=⋅+=⋅+x y x y x y x y,整理得:.0422=+-x y x配方得:144)2(22=-+y x . ∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例 4. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线. (Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由. 解:(Ⅰ)由24y =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x . ∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a ∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………② 由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( )A.14322=-y xB. 13422=-y xC. 12522=-y xD. 15222=-y x 2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线x y 322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200ab x y k MN =⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a a b 得5,222==b a . 故答案选D.2. 解:(1)2,122==b a ,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅AB k ,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22ab x y k CD =⋅得:21=⋅-x y,即x y 2-=.由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -. 由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3. 解:(1)3,122==b a ,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab x y k AB =⋅得:32123=⋅++x y x y , 整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x .(2)由2200abx y k AB =⋅得:32123=--⋅AB k ,∴1=AB k .∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y .由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x , 解之得:1,221=-=x x . ∴.2332||1||122=⋅=-+=x x k AB4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a ,∴焦点为)0,32(),0,32(21F F -.在抛物线x y 322-=中,3=p ,∴准线为23=x . ∴在双曲线中,232=c a . 从而.3,3==b a ∴所求双曲线C 的方程为19322=-y x . (2)直线'l 是弦AB 的垂直平分线,∴k m 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(00y x P .由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由6100+⋅-=x ky 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x 又 300+=kx y ,∴32329+⋅=kk ,即12=k . ∴1±=k .由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
点差法公式在双曲线中点弦问题中的妙用
点差法公式在双曲线中点弦问题中的妙用广西南宁外国语学校 隆光诚(邮政编码530007)圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN =⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=---byy a x x又.22,00021211212x y x y x x y y x x y y k MN ==++--=同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200b a x y k MN =⋅. 典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22b a x y k AB =⋅得:3121=⋅--x y x y ,整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x(2) P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P ? (3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k直线l 与C 有两个公共点,∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k解之得:k <23且.2±≠k ∴k 的取值范围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x 设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200ab x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y x C 于A 、B 两点,已知+=(O为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y x C 中,122==b a ,焦点在x 轴上.设弦AB 的中点为Q . 由平行四边形法则知:2=,即Q 是线段OP 的中点. 设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫⎝⎛2,2y x . 由2222a b x y k AB =⋅得:14222=⋅+=⋅+x y x y x y x y,整理得:.0422=+-x y x配方得:144)2(22=-+y x . ∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例 4. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线. (Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.解:(Ⅰ)由24y =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x . ∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………② 由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( ) A.14322=-y x B. 13422=-y x C. 12522=-y x D. 15222=-y x 2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线x y 322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200a b x y k MN =⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a a b 得5,222==b a . 故答案选D.2. 解:(1)2,122==b a ,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅AB k ,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22a b x y k CD=⋅得:21=⋅-xy,即x y 2-=. 由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -. 由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3. 解:(1)3,122==b a ,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab x y k AB =⋅得:32123=⋅++x y x y , 整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x .(2)由2200ab x y k AB =⋅得:32123=--⋅AB k ,∴1=AB k .∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y .由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x , 解之得:1,221=-=x x .4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a , ∴焦点为)0,32(),0,32(21F F -.在抛物线x y 322-=中,3=p ,∴准线为23=x . ∴在双曲线中,232=c a . 从而.3,3==b a ∴所求双曲线C 的方程为19322=-y x .(2)直线'l 是弦AB 的垂直平分线,∴k m 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(00y x P .由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由6100+⋅-=x ky 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x又 300+=kx y ,∴32329+⋅=kk ,即12=k . ∴1±=k . 由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
点差法公式在双曲线中点弦问题中的妙用
点差法公式在双曲线中点弦问题中的妙用广西南宁外国语学校 隆光诚(邮政编码530007)圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN =⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=---byy a x x.2212121212ab x x y y x x y y =++⋅--∴ 又.22,00021211212x y x y x x y y x x y y k MN ==++--=.2200ab x y k MN=⋅∴ 同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ba x y k MN =⋅.典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.(1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22b a x y k AB =⋅得:3121=⋅--x y x y ,整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x(2) P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P ? (3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k直线l 与C 有两个公共点,∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k解之得:k <23且.2±≠k ∴k 的取值范围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x 设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200ab x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y x C 于A 、B 两点,已知OB OA OP +=(O为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y x C 中,122==b a ,焦点在x 轴上.设弦AB 的中点为Q .,+=由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点. 设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫⎝⎛2,2y x . 由2222a b x y k AB =⋅得:14222=⋅+=⋅+x yx y x y x y,整理得:.0422=+-x y x配方得:144)2(22=-+y x . ∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例 4. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线. (Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.解:(Ⅰ)由24y =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x . ∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………② 由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( )A.14322=-y xB. 13422=-y xC. 12522=-y xD. 15222=-y x 2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线x y 322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200a b x y k MN =⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a a b 得5,222==b a . 故答案选D.2. 解:(1)2,122==b a ,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅AB k ,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22a b x y k CD=⋅得:21=⋅-xy,即x y 2-=. 由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -. 由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3. 解:(1)3,122==b a ,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab x y k AB =⋅得:32123=⋅++x y x y , 整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x .(2)由2200abx y k AB =⋅得:32123=--⋅AB k ,∴1=AB k .∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y .由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x , 解之得:1,221=-=x x . ∴.2332||1||122=⋅=-+=x x k AB4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a ,∴焦点为)0,32(),0,32(21F F -.在抛物线x y 322-=中,3=p ,∴准线为23=x . ∴在双曲线中,232=c a . 从而.3,3==b a ∴所求双曲线C 的方程为19322=-y x . (2)直线'l 是弦AB 的垂直平分线,∴k m 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(00y x P .由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由6100+⋅-=x ky 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x又 300+=kx y ,∴32329+⋅=kk ,即12=k . ∴1±=k . 由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
-双曲线点差法
点差法公式在双曲线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN =⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x by a x )2()1(-,得.02222122221=---byy a x x.2212121212ab x x y y x x y y =++⋅--∴ 又.22,00021211212x y x y x x y y x x y y k MN ==++--=.2200a b x y k MN=⋅∴ 同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200b a x y k MN =⋅. 典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.(1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22b a x y k AB =⋅得:3121=⋅--x y x y ,整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x(2) P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P ? (3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k直线l 与C 有两个公共点,∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k解之得:k <23且.2±≠k ∴k 的取值范围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x 设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200ab x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y x C 于A 、B 两点,已知OB OA OP +=(O为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y x C 中,122==b a ,焦点在x 轴上.设弦AB 的中点为Q .,+=由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点. 设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫⎝⎛2,2y x . 由2222a bx y k AB =⋅得:14222=⋅+=⋅+x y x y x y x y,整理得:.0422=+-x y x配方得:144)2(22=-+y x . ∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例 4. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线. (Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.解:(Ⅰ)由24y =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x . ∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………② 由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( )A.14322=-y xB. 13422=-y xC. 12522=-y xD. 15222=-y x 2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线x y 322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200a b x y k MN =⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a a b 得5,222==b a . 故答案选D.2. 解:(1)2,122==b a ,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅AB k ,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22a b x y k CD=⋅得:21=⋅-xy,即x y 2-=. 由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -. 由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3. 解:(1)3,122==b a ,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab x y k AB =⋅得:32123=⋅++x y x y , 整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x .(2)由2200abx y k AB =⋅得:32123=--⋅AB k ,∴1=AB k .∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y .由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x , 解之得:1,221=-=x x . ∴.2332||1||122=⋅=-+=x x k AB4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a ,∴焦点为)0,32(),0,32(21F F -.在抛物线x y 322-=中,3=p ,∴准线为23=x . ∴在双曲线中,232=c a . 从而.3,3==b a ∴所求双曲线C 的方程为19322=-y x . (2)直线'l 是弦AB 的垂直平分线,∴k m 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(00y x P .由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由6100+⋅-=x ky 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x又 300+=kx y ,∴32329+⋅=kk ,即12=k . ∴1±=k . 由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
_点差法_求双曲线中的中点弦方程为什么要检验_王怀学
x1-x2
2 2 分非必要条件 , 因为若把 x12- y1 =-1 与 x22- y2 =-1 2 2
相减 , 也能推出 k= y1-y2 =2. 类似的双曲线方程还可
x1-x2
以 举 出 很 多.所 以 两 式 相 减 的 变 形 有 时 是 不 同 解 变 形 . 我 们 猜 想 : 这 条 直 线 y=2x-1 可 能 适 合 于 已 知 双
2
解
设P ( 4cosα,2 姨 3 sinα) , 由 OP 与 x 轴 正
向所成角 θ= π 得 tan π = 2 姨 3 sinα ,
3
3
4cosα
∈
2
即 tanα=2 , 而 sinα>0 ,cosα>0 , 由此得到 cosα= 姨 5 ,sinα= 2 姨 5 ,
x=acosφ, y=bsinφ
2
x1-x2
( x-1) , 即 y=2x-1 , 这时 , 直线的方程为 y-1=2 将 y =2x -1 , 代 入 双 曲 线 方 程 得 一 元 二 次 方 程
曲 线 根 本 就 不 相 交 ,怎 么 能 出 现 弦 呢.可 见 ,这 里 对 “ 直 线 是 否 与 双 曲 线 有 交 点 ”的 检 验 是 很 有 必 要 的. 双曲线和椭圆的最大的区别是图形的封闭性 , 椭圆
数) , 是椭圆的另一个重 要 形 式 , 其 中 2a ,2b 分 别 是 椭圆的长轴长 、 短轴长 , 且焦点在 x 轴上 , 参数 φ 的 几何意义是椭圆的离心角 , 当然椭圆的 参数方 程 不 是 唯 一 的.学 习 椭 圆 的 参 数 方 程 一 要 学 会 利 用 三 角 函数将椭圆的参数方程与椭圆的普通方程进行相 互 转 化 ;二 要 学 会 利 用 椭 圆 的 参 数 方 程 求 最 值 ;三 要学会构造点坐标求点 .
双曲线点差法
点差法公式在双曲线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理在双曲线12222by ax (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有)2(.1)1(,1222222221221by ax by a x )2()1(,得.02222122221by y ax x .2212121212ab x x y y x x y y 又.22,000021211212x y x y x x y y x x y y k MN.2200ab x y k MN同理可证,在双曲线12222bx ay (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ba x y k MN.典题妙解例1 已知双曲线13:22xyC ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.(1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程.解:(1),3,122ba焦点在y 轴上.设点M 的坐标为),(y x ,由22ba x y k AB得:3121xy xy ,整理得:.032322y x y x 所求的轨迹方程为.032322y x yx(2)P 恰为弦AB 的中点,由220ba x y k AB得:,3121ABk 即.32ABk 直线l 的方程为)2(321x y ,即.0132y x例2 已知双曲线22:22yx C 与点).2,1(P (1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围;(2)是否存在过点P 的弦AB ,使得AB 的中点为P ?(3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2xk y,即.2k kx y由.22,222yxk kx y 得.064)2(2)2(2222k kxk k x k直线l 与C 有两个公共点,得.0)64)(2(4)2(4,0222222kkkk kk解之得:k <23且.2k k 的取值范围是).23,2()2,2()2,((2)双曲线的标准方程为.2,1,122222bayx设存在过点P 的弦AB ,使得AB 的中点为P ,则由220abx y k AB得:.1,22k k 由(1)可知,1k 时,直线l 与C 有两个公共点,存在这样的弦.这时直线l 的方程为.1x y(3)设以)1,1(Q 为中点的弦存在,则由2200ab x y k AB得:.2,21k k 由(1)可知,2k 时,直线l 与C 没有两个公共点,设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(M 作直线l 交双曲线1:22yxC 于A 、B 两点,已知OB OA OP(O为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22yxC 中,122ba,焦点在x 轴上.设弦AB 的中点为Q .,OB OA OP 由平行四边形法则知:OQ OP2,即Q 是线段OP 的中点.设点P 的坐标为),(y x ,则点Q 的坐标为2,2y x . 由2222ab x yk AB得:14222xy x y xy x y,整理得:.0422x yx配方得:144)2(22yx .点P 的轨迹方程是144)2(22yx ,它是中心为)0,2(,对称轴分别为x 轴和直线02x 的双曲线.例 4. 设双曲线C 的中心在原点,以抛物线4322x y的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.(Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x 与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'axyl (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由.解:(Ⅰ)由2234yx 得)32(322xy,3p ,抛物线的顶点是)0,32(,准线是3213223x.在双曲线C 中,.321,322cac..1,3122ba双曲线C 的方程为1322yx. (Ⅱ)由.13,1222yxx y 得:0242xx.设),(),,(2211y x B y x A ,则2,42121x x x x .102]24)4)[(21(]4))[(1(||22212212x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB的垂直平分线. 因而ka1,从而41:'xk yl . 设线段AB 的中点为),(00y x P . 由2200abx y k AB得:300x y k,003x ky .…………………………………………①由4100x ky 得:k x ky 400.…………………………………………………②由①、②得:3,0y k x . 由10kx y 得:132k,2k.又由.1,1322kx yyx 得:.022)3(22kxx k直线l 与双曲线C 相交于A 、B 两点,)3(8422kk>0,即2k <6,且32k.符合题意的k 的值存在,2k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1x y与其相交于M 、N 两点,MN 的中点的横坐标为32,则此双曲线的方程为()A.14322yxB.13422yxC.12522yxD.15222yx2.(02江苏)设A 、B 是双曲线1222yx 上两点,点)2,1(N 是线段AB 的中点.(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322yx,过点)23,21(P 作直线l 交双曲线于A 、B 两点.(1)求弦AB 的中点M 的轨迹; (2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522yx的焦点为焦点,以抛物线x y322的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'mmx yl 对称,求k 的值.参考答案1. 解:在直线1x y中,1k ,32x时,35y. 由2200ab x y k MN得222532351ab .又由72522222cbaa b得5,222ba.故答案选 D. 2. 解:(1)2,122ba,焦点在x 上. 由220ab x y k AB得:22AB k ,1AB k .所求的直线AB 方程为)1(12x y ,即01y x .(2)设直线CD 的方程为0myx,点)2,1(N 在直线CD 上,021m ,3m .直线CD 的方程为03yx.又设弦CD 的中点为),(y x M ,由22ab xy k CD得:21xy ,即x y2.由.2,03x yy x 得6,3y x .点M 的坐标为)6,3(.又由.12,0122y xy x得)4,3(),0,1(B A .由两点间的距离公式可知:102||||||||MD MC MB MA .故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆.3.解:(1)3,122ba ,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l 轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab xy k AB得:32123x y xy,整理,得:0332622yx y x. 点M 的轨迹方程为0332622y x yx.(2)由2200ab x y k AB得:32123ABk ,1ABk .所求的直线l 方程为)21(123xy,即1x y.由.1,1322x yy x 得022xx,解之得:1,221x x ..2332||1||122x x k AB 4. 解:(1)在椭圆1132522yx中,32,13,522bacba,焦点为)0,32(),0,32(21F F .在抛物线x y322中,3p,准线为23x.在双曲线中,232ca. 从而.3,3ba 所求双曲线C 的方程为19322yx. (2)直线'l 是弦AB 的垂直平分线,km1,从而61:'xkyl . 设弦AB 的中点为),(00y x P .由2200ab x y k AB得:300x y k,003x ky .…………………………………………①由610x ky 得:k x ky 600.…………………………………………………②由①、②得:29,2300y k x 又300kx y ,32329k k,即12k.1k.由.3,19322kx y yx 得.0186)3(22kxx k 直线l 与双曲线C 相交于A 、B 两点,)3(723622kk>0,即2k <6,且32k. 1k 符合题意.故k 的值为1.。
双曲线点差法
双曲线点差法点差法公式在双曲线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MNk ,则2200a b x y kMN=⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x b y a x∴由2200ba x y k AB =⋅得:,3121=⋅AB k即.32=ABk∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y xC 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围;(2)是否存在过点P 的弦AB ,使得AB 的中点为P ?(3)试判断以)1,1(Q 为中点的弦是否存在. 解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+= 由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k直线l 与C 有两个公共点, ∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k解之得:k <23且.2±≠k ∴k的取值范围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200a b x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y xC 于A 、B 两点,已知OB OA OP +=(O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y xC 中,122==b a,焦点在x 轴上.设弦AB 的中点为Q . ,OB OA OP +=由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点.设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫ ⎝⎛2,2y x . 由2222a b x yk AB =⋅得:14222=⋅+=⋅+xy x y x y xy ,整理得:.0422=+-x y x 配方得:144)2(22=-+y x .∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例4. 设双曲线C 的中心在原点,以抛物线4322-=x y的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.(Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ; (Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由. 解:(Ⅰ)由24y=-得)32(322-=x y,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x .∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a∴双曲线C 的方程为1322=-y x.(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x .设),(),,(2211y x B y x A ,则2,42121=-=+x x x x.∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线.因而ka 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(0y x P .由2200ab x y k AB =⋅得:30=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:kx ky 400+-=.…………………………………………………②由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k.∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( ) A.14322=-y x B. 13422=-y x C.12522=-y xD.15222=-y x2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点.(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点.(1)求弦AB 的中点M 的轨迹; (2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线xy322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200a b x y kMN=⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a ab 得5,222==b a.故答案选D.2. 解:(1)2,122==b a,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅ABk,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22ab x y k CD =⋅得:21=⋅-xy,即x y 2-=.由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x . ∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -.由两点间的距离公式可知:102||||||||====MD MC MB MA .故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3. 解:(1)3,122==b a,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22a b x y kAB =⋅得:32123=⋅++x y x y ,整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x.(2)由2200ab x y kAB =⋅得:32123=--⋅AB k ,∴1=ABk.∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y . 由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x,解之得:1,221=-=x x .∴.2332||1||122=⋅=-+=x x k AB4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a ,∴焦点为)0,32(),0,32(21F F -.在抛物线xy322-=中,3=p ,∴准线为23=x .∴在双曲线中,232=c a . 从而.3,3==b a∴所求双曲线C 的方程为19322=-y x .(2)直线'l 是弦AB 的垂直平分线,∴km 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(0y x P .11 由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………① 由6100+⋅-=x k y 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x又 300+=kx y, ∴32329+⋅=k k ,即12=k .∴1±=k . 由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
双曲线点差法
点差法公式在双曲线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点.它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200a b x y k MN=⋅。
证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x b y a x)2()1(-,得.02222122221=---byy a x x.2212121212ab x x y y x x y y =++⋅--∴ 又.22,00021211212x y x y x x y y x x y y k MN ==++--=.2200ab x y k MN=⋅∴ 同理可证,在双曲线12222=-b x a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ba x y k MN=⋅。
典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点。
(1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程.解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22b a x y k AB =⋅得:3121=⋅--x y x y , 整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x (2) P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k ∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB,使得AB 的中点为P ? (3)试判断以)1,1(Q 为中点的弦是否存在。
双曲线的点差法公式在高考中的妙用
点差法公式在双曲线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-b y a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN=⋅. 证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x b y a x)2()1(-,得.02222122221=---byy a x x.2212121212ab x x y y x x y y =++⋅--∴ 又.22,00021211212x y x y x x y y x x y y k MN ==++--=.2200ab x y k MN=⋅∴ 同理可证,在双曲线12222=-bx a y (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ba x y k MN=⋅. 典题妙解例1 已知双曲线13:22=-x y C ,过点)1,2(P 作直线l 交双曲线C 于A 、B 两点.(1)求弦AB 的中点M 的轨迹;(2)若P 恰为弦AB 的中点,求直线l 的方程. 解:(1),3,122==b a 焦点在y 轴上.设点M 的坐标为),(y x ,由22ba x y k AB =⋅得:3121=⋅--x y x y , 整理得:.032322=+--y x y x∴所求的轨迹方程为.032322=+--y x y x(2) P 恰为弦AB 的中点,∴由2200ba x y k AB =⋅得:,3121=⋅AB k 即.32=AB k ∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y x C 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围; (2)是否存在过点P 的弦AB ,使得AB 的中点为P ? (3)试判断以)1,1(Q 为中点的弦是否存在.解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+=由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k直线l 与C 有两个公共点,∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k 解之得:k <23且.2±≠k ∴k 的取值范围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x 设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200ab x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y x C 于A 、B 两点,已知OB OA OP +=(O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y x C 中,122==b a ,焦点在x 轴上.设弦AB 的中点为Q .,OB OA OP +=由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点. 设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫⎝⎛2,2y x . 由2222a b x y k AB =⋅得:14222=⋅+=⋅+x yx y x y x y,整理得:.0422=+-x y x配方得:144)2(22=-+y x . ∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例 4. 设双曲线C 的中心在原点,以抛物线4322-=x y 的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线. (Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ;(Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由. 解:(Ⅰ)由2234y x =-得)32(322-=x y ,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x . ∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a ∴双曲线C 的方程为1322=-y x .(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x . 设),(),,(2211y x B y x A ,则2,42121=-=+x x x x .∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线. 因而k a 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(00y x P . 由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:k x ky 400+-=.…………………………………………………② 由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k .∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( )A.14322=-y xB. 13422=-y xC. 12522=-y xD. 15222=-y x 2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点. (1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点. (1)求弦AB 的中点M 的轨迹;(2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线x y 322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200ab x y k MN =⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a a b 得5,222==b a . 故答案选D.2. 解:(1)2,122==b a ,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅AB k ,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22ab x y k CD =⋅得:21=⋅-x y,即x y 2-=.由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x .∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -. 由两点间的距离公式可知:102||||||||====MD MC MB MA . 故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3. 解:(1)3,122==b a ,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22ab x y k AB =⋅得:32123=⋅++x y x y , 整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x .(2)由2200abx y k AB =⋅得:32123=--⋅AB k ,∴1=AB k .∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y .由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x , 解之得:1,221=-=x x . ∴.2332||1||122=⋅=-+=x x k AB4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a ,∴焦点为)0,32(),0,32(21F F -.在抛物线x y 322-=中,3=p ,∴准线为23=x . ∴在双曲线中,232=c a . 从而.3,3==b a ∴所求双曲线C 的方程为19322=-y x . (2)直线'l 是弦AB 的垂直平分线,∴k m 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(00y x P .由2200ab x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………①由6100+⋅-=x ky 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x 又 300+=kx y ,∴32329+⋅=kk ,即12=k . ∴1±=k .由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
双曲线点差法
双曲线点差法点差法公式在双曲线中点弦问题中的妙用圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗浅的探讨,以飨读者。
定理 在双曲线12222=-by a x (a >0,b >0)中,若直线l 与双曲线相交于M 、N 两点,点),(00y x P 是弦MN 的中点,弦MN 所在的直线l 的斜率为MNk ,则2200a b x y kMN=⋅.证明:设M 、N 两点的坐标分别为),(11y x 、),(22y x ,则有⎪⎪⎩⎪⎪⎨⎧=-=-)2(.1)1(,1222222221221 b y a x b y a x∴由2200ba x y k AB =⋅得:,3121=⋅AB k即.32=ABk∴直线l 的方程为)2(321-=-x y ,即.0132=--y x 例2 已知双曲线22:22=-y xC 与点).2,1(P(1)斜率为k 且过点P 的直线l 与C 有两个公共点,求k 的取值范围;(2)是否存在过点P 的弦AB ,使得AB 的中点为P ?(3)试判断以)1,1(Q 为中点的弦是否存在. 解:(1)直线l 的方程为)1(2-=-x k y ,即.2k kx y -+= 由⎩⎨⎧=--+=.22,222y x k kx y 得.064)2(2)2(2222=+-+---k k x k k x k直线l 与C 有两个公共点, ∴得⎪⎩⎪⎨⎧+----=∆≠-.0)64)(2(4)2(4,0222222 k k k k k k解之得:k <23且.2±≠k ∴k的取值范围是).23,2()2,2()2,( ---∞(2)双曲线的标准方程为.2,1,122222==∴=-b a y x设存在过点P 的弦AB ,使得AB 的中点为P ,则由2200ab x y k AB =⋅得:.1,22=∴=⋅k k由(1)可知,1=k 时,直线l 与C 有两个公共点,∴存在这样的弦.这时直线l 的方程为.1+=x y(3)设以)1,1(Q 为中点的弦存在,则由2200a b x y k AB =⋅得:.2,21=∴=⋅k k由(1)可知,2=k 时,直线l 与C 没有两个公共点,∴设以)1,1(Q 为中点的弦不存在.例3 过点)0,2(-M 作直线l 交双曲线1:22=-y xC 于A 、B 两点,已知OB OA OP +=(O 为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线.解:在双曲线1:22=-y xC 中,122==b a,焦点在x 轴上.设弦AB 的中点为Q . ,OB OA OP +=由平行四边形法则知:OQ OP 2=,即Q 是线段OP 的中点.设点P 的坐标为),(y x ,则点Q 的坐标为⎪⎭⎫ ⎝⎛2,2y x . 由2222a b x yk AB =⋅得:14222=⋅+=⋅+xy x y x y xy ,整理得:.0422=+-x y x 配方得:144)2(22=-+y x .∴点P 的轨迹方程是144)2(22=-+y x ,它是中心为)0,2(-,对称轴分别为x 轴和直线02=+x 的双曲线.例4. 设双曲线C 的中心在原点,以抛物线4322-=x y的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.(Ⅰ)试求双曲线C 的方程;(Ⅱ)设直线:21l y x =+与双曲线C 交于,A B 两点,求AB ; (Ⅲ)对于直线1:+=kx y l ,是否存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线4:'+=ax y l (a 为常数)对称,若存在,求出k 值;若不存在,请说明理由. 解:(Ⅰ)由24y=-得)32(322-=x y,∴3=p ,抛物线的顶点是)0,32(,准线是3213223=+-=x .∴在双曲线C 中,⎪⎪⎩⎪⎪⎨⎧==.321,322ca c . ∴.1,3122==b a∴双曲线C 的方程为1322=-y x.(Ⅱ)由⎩⎨⎧=-+=.13,1222y x x y 得:0242=++x x .设),(),,(2211y x B y x A ,则2,42121=-=+x x x x.∴102]24)4)[(21(]4))[(1(||22212212=⨯--+=-++=x x x x k AB .(Ⅲ)假设存在这样的实数k ,使直线l 与双曲线C 的交点,A B 关于直线'l 对称,则'l 是线段AB 的垂直平分线.因而ka 1-=,从而41:'+-=x ky l . 设线段AB 的中点为),(0y x P .由2200ab x y k AB =⋅得:30=⋅x y k ,∴003x ky =.…………………………………………①由4100+⋅-=x ky 得:kx ky 400+-=.…………………………………………………②由①、②得:3,00==y k x .由100+=kx y 得:132+=k ,∴2±=k .又由⎩⎨⎧+==-.1,1322kx y y x 得:.022)3(22=++-kx x k直线l 与双曲线C 相交于A 、B 两点,∴)3(8422--=∆k k >0,即2k <6,且32≠k.∴符合题意的k 的值存在,2±=k .金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于M 、N 两点,MN 的中点的横坐标为32-,则此双曲线的方程为( ) A.14322=-y x B. 13422=-y x C.12522=-y xD.15222=-y x2.(02江苏)设A 、B 是双曲线1222=-y x 上两点,点)2,1(N 是线段AB 的中点.(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆,为什么?3. 已知双曲线1322=-y x ,过点)23,21(--P 作直线l 交双曲线于A 、B 两点.(1)求弦AB 的中点M 的轨迹; (2)若点P 恰好是弦AB 的中点,求直线l 的方程和弦AB 的长.4、双曲线C 的中心在原点,并以椭圆1132522=+y x 的焦点为焦点,以抛物线xy322-=的准线为右准线.(1)求双曲线C 的方程;(2)设直线)0(3:≠+=k kx y l 与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线)0(6:'≠+=m mx y l 对称,求k 的值.参考答案1. 解:在直线1-=x y 中,1=k ,32-=x 时,35-=y . 由2200a b x y kMN=⋅得222532351a b ==--⋅. 又由⎪⎩⎪⎨⎧==+=72522222c b a ab 得5,222==b a.故答案选D.2. 解:(1)2,122==b a,焦点在x 上. 由2200ab x y k AB =⋅得:22=⋅ABk,∴1=AB k .∴所求的直线AB 方程为)1(12-⋅=-x y ,即01=+-y x .(2)设直线CD 的方程为0=++m y x ,点)2,1(N 在直线CD 上, ∴021=++m ,3-=m .∴直线CD 的方程为03=-+y x .又设弦CD 的中点为),(y x M ,由22ab x y k CD =⋅得:21=⋅-xy,即x y 2-=.由⎩⎨⎧-==-+.2,03x y y x 得6,3=-=y x . ∴点M 的坐标为)6,3(-.又由⎪⎩⎪⎨⎧=-=+-.12,0122y x y x 得)4,3(),0,1(B A -.由两点间的距离公式可知:102||||||||====MD MC MB MA .故A 、B 、C 、D 四点到点M 的距离相等,即A 、B 、C 、D 四点共圆. 3. 解:(1)3,122==b a,焦点在x 上. 设点M 的坐标为),(y x .若直线l 的的斜率不存在,则x l ⊥轴,这时直线l 与双曲线没有公共点,不合题意,故直线l 的的斜率存在.由22a b x y kAB =⋅得:32123=⋅++x y x y ,整理,得:0332622=-+-y x y x .∴点M 的轨迹方程为0332622=-+-y x y x.(2)由2200ab x y kAB =⋅得:32123=--⋅AB k ,∴1=ABk.∴所求的直线l 方程为)21(123+⋅=+x y ,即1-=x y . 由⎪⎩⎪⎨⎧-==-.1,1322x y y x 得022=-+x x,解之得:1,221=-=x x .∴.2332||1||122=⋅=-+=x x k AB4. 解:(1)在椭圆1132522=+y x 中,32,13,522=-===b a c b a ,∴焦点为)0,32(),0,32(21F F -.在抛物线xy322-=中,3=p ,∴准线为23=x .∴在双曲线中,232=c a . 从而.3,3==b a∴所求双曲线C 的方程为19322=-y x .(2)直线'l 是弦AB 的垂直平分线,∴km 1-=,从而61:'+⋅-=x ky l . 设弦AB 的中点为),(0y x P .11 由2200a b x y k AB =⋅得:300=⋅x y k ,∴003x ky =.…………………………………………① 由6100+⋅-=x k y 得:k x ky 600+-=.…………………………………………………② 由①、②得:29,2300==y k x又 300+=kx y, ∴32329+⋅=k k ,即12=k .∴1±=k . 由⎪⎩⎪⎨⎧+==-.3,19322kx y y x 得.0186)3(22=++-kx x k 直线l 与双曲线C 相交于A 、B 两点,∴)3(723622--=∆k k >0,即2k <6,且32≠k . ∴1±=k 符合题意.故k 的值为1±.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点差法公式在双曲线中点弦问题中的妙用广西南宁外国语学校隆光诚(邮政编码 530007)圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。
它 的一般方法联立直线和圆锥曲线的方程,借助于一兀二次方程的根的判别式、根与系数的关中点坐标公式及参数法求解。
若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式 作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。
我们称这种代点作差的方法 为“点差法”,它的一般结论叫做点差法公式。
本文就双曲线的点差法公式在高考中的妙用做一些粗 浅的探讨,以飨读者。
P(x 0,y °)是弦MN 的中点,弦MN 所在的直线I 的斜率为k MN ,则k M典题妙解例1已知双曲线C : y 21,过点P(2,1)作直线I 交双曲线C 于定理 在双曲线 2x~2a2■y2 1 ( a > 0, b > 0)中,若直线l 与双曲线相交于 M 、N 两点,点 b 2b 2~ . a证明:设M 、 N 两点的坐标分别为(x i ,yj 、(X 2, y 2),则有2 X 1 -2~a 2 X2~2a2y 1 2y 21, 1.(1)2X 1 (1) (2),得丄2X 2~2 a2 2y 1 y 20.y 2 y 1 X 2 X 1 y 2 y 1 X 2 X 1b 2 2 . a又k|MNy y 1X 2 X 1X 1 X 22 y2X 0y 。
X 0kMNXb 2 2 . a同理可证,在双曲线2 y 2a(a > 0, b > 0)中,若直线I 与双曲线相交于M 、N 两点,点P(X 0, y °)是弦MN 的中点,弦MN 所在的直线I 的斜率为k MN ,则kMNy X 02a_衣.(1) 求弦AB 的中点 (2) 若P 恰为弦ABM 的轨迹;的中点,求直线I 的方程. 解:(1) a 2 1,b 23,焦点在y 轴上. 设点M 的坐标为(x,y),由k AB — 整理得:x 2 3y 22x 3y 0. 2 所求的轨迹方程为 x3y 2 2x 3y 0.(2) P 恰为弦AB 的中点, 由 k A B x 2 b 2 得:kAB 丄,即 k 3AB直线I 的方程为y 1 3(x2),即 2x 3y 0.已知双曲线C :2x 22 与点 P(1,2).(1) (2) I 与C 有两个公共点,求 P ? 斜率为k 且过点P 的直线 是否存在过点 P 的弦AB ,使得AB 的中点为 k 的取值范围;(3) 试判断以Q(1,1)为中点的弦是否存在.解:(1)直线I 的方程为y 2 k(x 1),即ykx 2 k.由 72^ 22 k,得(k 22)x 22(k 22k) x2x y 2. k 24k 6 0.直线I 与C 有两个公共点, k 2得 2 0, 2 2 2 2 4( k 2k) 4(k2)( k 4k 6)0.解之得: k 的取值范围是( 2)(2自(2)双曲线的标准方程为 2J 1,21,b 22.设存在过点P 的弦AB ,使得 AB 的中点为P, 则由 kAByX 0b 2-7 得:k 2 2, k 1.a由(1)可知,k 1时,直线I 与C 有两个公共点,存在这样的弦•这时直线I 的方程为y x 1.(3)设以Q(1,1)为中点的弦存在,则由k AB 虫 b2得:k 1 2, k 2. X o a由(1)可知,k 2时,直线l 与C 没有两个公共点,设以Q(1,1)为中点的弦不存在.2 2例3过点M( 2,0)作直线I 交双曲线C : x y 1于A 、B 两点,已知OP OA OB ( O为坐标原点),求点P 的轨迹方程,并说明轨迹是什么曲线解:在双曲线C : x 2y 21中,a 2b 21,焦点在x 轴上•设弦AB 的中点为Q .OP OA OB,由平行四边形法则知:OP 2OQ ,即Q 是线段OP 的中点.x 2 0的双曲线y 22 3x 4的顶点为双曲线的右焦点,抛物线的准线为双曲线的右准线.(I)试求双曲线 C 的方程;(n)设直线l : y 2x 1与双曲线C 交于A, B 两点,求AB(川)对于直线 l : y kx 1,是否存在这样的实数k ,使直线l 与双曲线C 的交点A, B 关于直线 l ': y ax 4 (a 为常数)对称,若存在,求出 k 值;若不存在,请说明理由.设点P 的坐标为(x, y),则点 Q 的坐标为x2yy由kAB2 b 2 得 2 y y y x a x2 x x 4x22整理得: 2x2y4x 0.配方得:(x 2)22y144点P 的轨迹方程是(x 2)22y44y ■21,1,它是中心为 (2,0),对称轴分别为x 轴和直线例4.设双曲线C 的中心在原点,以抛物线解:(I)由y 22、.3X 4 得y22、.3(x 2 ),<32i 3 21p 、3,抛物线的顶点是(,0),准线是x.J32 V32j32 321 2在双曲线C 中, 2・ a —, b 1.a 213c 2®2 2双曲线C 的方程为3x y 1 .y 2x 1,2(n)由 22 得:x 24x 20.3x 2 y 2 1.设 A(x 1,yj, BXy),则 X x ?4,也 2.| AB| ■. (1 k 2)[(X 1 X 2)24x 1X 2] ,(1 22)[( 4)24 2]2 10.符合题意的k 的值存在,k 2.金指点睛1. (03全国)已知双曲线中心在原点且一个焦点为 F (-、7,0),直线y x 1与其相交于 M 、N 两点,MN 的中点的横坐标为2,则此双曲线的方程为()的垂直平分线.因而a1 k ,从而 1': y1x 4 .设线段AB 的中点为 kP(x °,y °).由k AEy 。
b 2~2得: k y ° 3,ky ° 3x °. .................................. ......... ①xax °由y1 kx ° 4 得: ky °x ° 4k. .......................... ........ ②由①、②得: x °k, y °3.由ykx °1得:3k 21 ,k 2.又由3x 22y1'得:(k 23)x 22kx 2 0.y kx 1.直线l 与双曲线C 相交于A 、B 两点,4k 28(k 2 3) >0,即 k 2 v 6,且 k 23.(川)假设存在这样的实数 k ,使直线l 与双曲线C 的交点代B 关于直线l '对称,则「是线段AB右准线.(1) 求双曲线C 的方程;(2) 设直线I : y kx 3(k 0)与双曲线C 相交于A 、B 两点,使A 、B 两点关于直线l : y mx 6( m 0)对称,求k 的值.参考答案b 25 又由 a 32得 a 22,b 25.a 2b 2c 27故答案选D.所求的直线AB 方程为y2 1 (x 1),即 x y 10. (2)设直线CD 的方程为xy m 0,点N(1,2)在直线CD 上,1 2 m 0, m 3.直线CD 的方程为x y3 0.2xA.—2xB.4C.x 22xD.222.( 02江苏)设A 、B 是双曲线x 2— 21上两点,点N(1,2)是线段AB 的中点.(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于 C 、D 两点,那么A 、B 、C D 四点是否共圆,为什么?2 2y3.已知双曲线x1,过点P(3丄,3)作直线I 交双曲线于A 、B 两点. 2 2(2)若点P 恰好是弦AB 的中点,求直线I 的方程和弦AB 的长.4、双曲线C 的中心在原点,2x并以椭圆—— 2y1的焦点为焦点,以抛物线y 2132 3x 的准线为1.解:在直线yx 1 中,k 1 , x2评3时,y由kMNy o X o2 2b - a5 - 25 一3一 222V o 2.解:(1)a 1,b 2,焦点在x 上.由k AB - X b 22得:akAB 2又设弦CD的中点为M (x, y),由k CD -x-2,即y 2x. xy 3 0,得x2x.3, y 6.的坐标为(3,6).x y 1 又由2 y2x2 0,得A(1.1,0),B(3,4).由两点间的距离公式可知:|MA| |MB | |MC | |MD | 2.10 .故A、B、C、D四点到点M的距离相等,即A、B、C、D四点共圆•2 23.解:(1)a 1,b3,焦点在X上.设点M的坐标为(x,y).若直线i的的斜率不存在,则率存在.I x轴, 这时直线I与双曲线没有公共点,不合题意,故直线l的的斜由k ABx b2 得:a3y21x2整理,得: 6x2 2 y2 3x 3y 02点M的轨迹方程为6x2y23x 3y 0.(2)由k A B yc_xb2~~2a得:32]2k AB 1.所求的直线I方程为(x -),即y x 1.22y_3x 1.解之得:X1 2x|AB| 1 k2I X2 X1 | 3 2.4.解:⑴在椭圆252-1 中,a 5,b 、13,c13a2b2 2 3,焦点为 F i ( 2、.3,0), F 2(2 ..3,0).2在抛物线y2 3x 中,p准线为x在双曲线中,c空从而a2-.3,b 3. 所求双曲线C x 2的方程为一32y 9—,从而l : yk—x 6.设弦AB 的中点为 kP(x °, y °). 由k AB y 。
2得:kX 。
aX °由y ° 1 k x ° 6 得: ky °由①、②得: 3k x ° ,y °2又 y kx 0 3,9 3k 2k - -3,即 k 1 2 2k 1.2 2x y % 得(k 2由3 9 3)y kx 3.(2)直线|是弦AB 的垂直平分线,9 2 直线l 与双曲线C 相交于A 、 3, ky ox 0 6k .3x o .6kx 18.B 两点,2 2 36k 72(k 3) >0, 2 2即k v 6,且k 3. k 1符合题意.故k 的值为 1.。