专题二 相互作用与牛顿运动定律

合集下载

第2章 牛顿运动定律

第2章 牛顿运动定律

分离变量求定积分,并考虑到初始条件:t=0时v=v0,则有
v dv t μ
dt
v v0
2
0R

v
1
v0
v0t
R
将上式对时间积分,并利用初始条件t=0时,s=0得
s
R μ
ln 1
μ R
v0t
15
例题2-2 一条长为l质量均匀分布的细链条AB,挂在半径 可忽略的光滑钉子上,开始时处于静止状态。已知BC段 长为L(l/2<L<2l/3),释放后链条做加速运动,如图所示。 试求BC=2l/3时,链条的加速度和速度。
a0
a0
mg
T -ma0
mg
讨论一种非惯性系,做直线运动的加速参考系,在以恒定
加速度 沿a直0 线前进的车厢中,用绳子悬挂一物体。在地面
上的惯性参考系中观察,牛顿运动定律成立。 在车厢中的参考系(非惯性系)内观察,虽然物体所受张
f μN
µ为滑动摩擦系数,它与接触面的材料和表面状态(如 粗糙程度、干湿程度等)有关;其数值可查有关手册。
10
2.2.2 力学中常见的几种力
3、摩擦力。
当两个相互接触的物体虽未发生相对运动,但沿接触面有 相对运动的趋势时,在接触面间产生的摩擦力为静摩擦力。 静摩擦力的大小可以发生变化。
如图所示,用一水平力F推一放置在粗糙水平面上的木箱,
解:取被抛物体为研究对象,物体运动过程
中只受万有引力作用。取地球为参考系,垂 直地面向上为正方向。物体运动的初始条件
v0
是:t=0时,r0=R,速度是v0。略去地球的公 转与自转的影响,则物体在离地心r处的万有
m
引力F与地面处的重力P之间的关系为

牛顿运动定律及其应用

牛顿运动定律及其应用

牛顿运动定律及其应用牛顿运动定律是经典物理学的重要组成部分。

该定律是形成整个物理学的基础,它解释了物体运动的力学规律。

牛顿运动定律不仅有纯理论方面的应用,还有实际物理问题的具体解决方案。

一、牛顿运动定律的概念牛顿运动定律简称牛顿定律,是经典力学中的三个基本定律之一,主要阐述了物体在受力作用下的运动规律。

一般认为牛顿运动定律包含以下三个方面的内容:1. 物体运动状态的惯性,即没有外部力作用时,物体将保持静止或匀速直线运动的状态;2. 物体的加速度大小与作用力成正比,方向与作用力方向相同;3. 物体作用力与反作用力大小相等,方向相反。

二、牛顿运动定律的应用1. 牛顿第一定律的应用牛顿第一定律是运动学与动力学的基础,具有重要的应用价值。

在许多科学技术领域,长时间的恒定作用力是很难实现的。

而且,为了保证精度及可靠性,必须满足设备的高精度、长时间性能稳定等需求。

常常采用惯性运动的概念,即由物体的惯性保持其原来的状态,以达到稳定的效果。

比如说,汽车减速时要离开刹车,将离合器松开,让发动机阻力和车轮的弹性力平衡,这就是利用牛顿第一定律所实现的。

2. 牛顿第二定律的应用牛顿第二定律说明了力与加速度的关系。

任何物体都可以视为质点,即对质量集中在一个点而导致的物体。

它通常被描述为一个物体所受力的大小与速度的变化率成正比。

因此,牛顿第二定律可以被看作是加速度计算的基本公式。

举个例子,当我们想要去提高跳绳的速度时,必须增加绳索的旋转速度,以增加绳上的拉力,使脚踩弹跳更顺畅。

根据牛顿第二定律,物体受力与加速度成正比。

因此,在提高跳绳速度的过程中,我们可以通过应用拉力来增加加速度,从而提高跳绳的速度。

3. 牛顿第三定律的应用牛顿第三定律描述了两个物体之间相互作用的情况。

它表示每个物体受到的作用力与另一个物体施加在其上的相同大小的反作用力相等,方向相反。

举个例子,当人们在游泳时,水对游泳池边的力与离水面很近的空气对人体的相等的反向力是一对牛顿第三定律的作用力和反作用力。

大学物理第2章 牛顿运动定律

大学物理第2章 牛顿运动定律
1、第一定律(物体在没有外力作用的情况下会保持原有的状态);
推论:当你不去追求一个美眉,这个美眉就会待在那里不动。 2、第二定律(F=ma,物体的加速度,与施加在该物体上的外力成正比); 推论:当你强烈地追求一个美眉,这个美眉也会有强烈的反应。 评述:这个显然也是错误的!如果你是一只蛤蟆,那么公主是不会动心的。 你的鲜花送得越勤,电话费花得越多,可能对方越是反感,还可能肥了不费力 气的对手。更可能的情况是,当多个人同时在追求一个美眉时,该美眉反而无 动于衷,心想:机会多着呢,再挑一挑。所以,紧了绷,轻了松,火候要拿捏 得好。
mgR 2 F r2
R2 dv mg 2 m 由牛顿第二定律得: r dt 2 dv dv dr dv gR 又 v dr vdv 2 dt dr dt dr r
当r0 = R 时,v = v0,作定积分,得:
v gR 2 R r 2 dr v0 vdv r
故有
k
例题2-4 不计空气阻力和其他作用力,竖直上抛物体的初速 v0最小应取多大,才不再返回地球?
分析:初始条件,r R 时的速度为 v0 只要求出速率方程 v v ( r ) “不会返回地球”的数学表示式为: 当
r 时, v 0
结论:用牛顿运动定律求出加速度后,问 题变成已知加速度和初始条件求速度方程或运动 方程的第二类运动学问题。 解∶地球半径为R,地面引力 = 重力= mg, 物体距地心 r 处引力为F,则有:
说明
1)定义力
2)力的瞬时作用规律
3)矢量性
4)说明了质量的实质 : 物体惯性大小的量度
5)适用条件:质点、宏观、低速、惯性系
在直角坐标系中,牛顿第二定律的分量式为
d ( mv x ) Fx dt

相互作用与牛顿运动定律

相互作用与牛顿运动定律
变化.
度 进 行 探 究 ,通 过 这 些 探 究 明 确 力 的
基本 特性 ,并 且能应 用基本规 律解决 常见的力学 问题. 牛顿运动定律是力学的基石 , 也是

重力方向 :总是竖直向下.
( )弹 力 2
每年高考的重点 , 牛顿第一 、 二 、 第 第三
专题 中 , 对运动和力 的关 系 、 体运动 物
所 以两者的速度之差不变 ,距离越来越大 )
5 A (— 图的斜率 表示 速度 ,交点 代表 相遇 ; . st

t 图的斜率表示加速度 ,交点代表速度相 同,此 时 6 D ( 于匀 变 速直 线 运动 ,其 甲 图应 为 一 . 对 £
1 B( 1 . 小孩从 1楼至地面的时间 。V = 6 为z、 g =/
减 第 1 内 的 位 移 ;C项 :可 利 用 任 1 的平 均 速 度 s s内
解题方法有公式法 和图像法 ;对 自由落体运动中 甲乙
两球 ,当 选 乙 球 为 参 考 系 时 ,甲 球 作 匀 速 直线 运 动 ,
等 于中间时刻的速度来求解 ;D项 :任 1 内 的位移 s 比前 l 内的位移之差即为) s


知识梳理 为重力等于万有引力. 重力 大小 :G= ,在 地 面附 近

力 是物 体 与物 体 问 的相 互作 用 ,
这是 我们对力 最基本 的认识 ,围绕这

般认为任何 一个 物体 的重 力均 为一
基本 观点 ,本专题从 几个不 同的 角
个恒定不 变的量 ,其 大小 和方向不 随 其运动状 态和地理 位置的变 化而发生
动学物理量 ;根据物体 的运动情况 ,由运动学 的公式 计算加速度 ,再根据牛顿运动定律计算物体所受 的合

第二章-牛顿运动定律

第二章-牛顿运动定律

Fi 0
( 静力学基本方程 )
二. 牛顿第二定律
某时刻质点动量对时间的变化率正比与该时刻作用在质点上
所有力的合力。
Fi
d(mv) dt
Fi
k
d(mv) dt
取适当的单位,使 k =1 ,则有
Fi
d(mv) dt
dmv dt
m
dv dt
当物体的质量不随时间变化时
Fi
m
dv dt
ma
• 直角坐标系下为
例 一柔软绳长 l ,线密度 ρ,一端着地开始自由下落.
求 下落到任意长度 y 时刻,给地面的压力为多少?
解 在竖直向上方向建坐标,地面为原点(如图).
取整个绳为研究对象 设压力为 N
N gl dp p p yv
y
dt
N gl d( yv) dy v gt
dt dt
y
l
d( yv) dyv dv y v 2 yg dt dt dt
• 同时性 —— 相互作用之间是相互依存,同生同灭。
讨论
第三定律是关于力的定律,它适用于接触力。对于非接触的 两个物体间的相互作用力,由于其相互作用以有限速度传播, 存在延迟效应。
§2.2 力学中常见的几种力
一. 万有引力
质量为 m1、m2 ,相距为 r 的 两质点间的万有引力大小为
m1
F12
r r0
l
λΔ lg
T (l)
T
N
f2
四. 摩擦力
1. 静摩擦力 当两相互接触的物体彼此之间保持相对静止,且沿接触面有 相对运动趋势时,在接触面之间会产生一对阻止上述运动趋 势的力,称为静摩擦力。
说明
静摩擦力的大小随引起相对运动趋势的外力而变化。最大 静摩擦力为 fmax=µ0 N ( µ0 为最大静摩擦系数,N 为正压力) 2. 滑动摩擦力 两物体相互接触,并有相对滑动时,在两物体接触处出现 的相互作用的摩擦力,称为滑动摩擦力。

高三物理二轮专题训练(相互作用与牛顿运动定律)

高三物理二轮专题训练(相互作用与牛顿运动定律)

高三物理二轮专题训练(相互作用与牛顿运动定律)限时:30分钟一、单项选择题(1~26题只有一个选项正确)1.下列几种运动,运动状态发生变化的是( ). (A )汽车沿着有一定倾角的公路(直线)匀速前进 (B )火车沿水平面内的弯曲轨道匀速前进 (C )气球被风刮着沿水平方向向正东匀速飘移 (D )降落伞与伞兵一起斜向下匀速降落2.同样的力作用在质量为m 1的物体上时,产生的加速度是a 1;作用在质量是m 2的物体上时,产生的加速度是a 2.那么,若把这个力作用在质量是(m 1+m 2)的物体上时,产生的加速度应是( ).(A )21a a (B )2121a a a 2a + (C )2121a a a a + (D )2a a 2221+3.在地球赤道上的A 处静止放置一个小物体,现在设想地球对小物体的万有引力突然消失,则在数小时内,小物体相对于A 点处的地面来说( ). (A )水平向东飞去 (B )向上并渐偏向东方飞去 (C )向上并渐偏向西方飞去 (D )一直垂直向上飞去4.一辆汽车分别以6m /s 和4m /s 的速度运动时,它的惯性大小( ). (A )一样大 (B )速度为4m /s 时大 (C )速度为6m /s 时大 (D )无法比较5.关于物体的惯性,下列说法中正确的是( ).(A )运动速度大的物体不能很快地停下来,是因为物体速度越大,惯性也越大 (B )静止的火车启动时,速度变化慢,是因为静止的物体惯性大的缘故 (C )乒乓球可以被快速抽杀,是因为乒乓球惯性小 (D )在宇宙飞船中的物体不存在惯性6.关于运动和力的关系,以下论点正确的是( ). (A )物体所受的合外力不为零时,其速度一定增加 (B )物体运动的速度越大,它受到的合外力一定越大 (C )一个物体受到的合外力越大,它的速度变化一定越快(D )某时刻物体的速度为零,此时刻它受到的合外力一定为零7.放在水平地面上的小车,用力推它就运动,不推它就不动.下列说法中不正确的是 ( ).(A )用力推小车,小车就动,不推小车,小车就不动.说明力是维持物体运动的原因,力是产生速度的原因(B )放在地面上的小车原来是静止的,用力推小车,小车运动,小车的速度由零增加到某一数值,说明小车有加速度,因此力是运动状态变化的原因(C )小车运动起来后,如果是匀速运动的话,小车除了受推力作用外,同时还受到摩擦阻力的作用(D )小车运动起来后,如果推力变小,推力小于摩擦阻力的话,小车的速度将变小 8.火车在水平的长直轨道上匀速运动,门窗紧密的车厢里有一位旅客向上跳起,结果仍然落在车厢地板上的原处,原因是( ).(A )人跳起的瞬间,车厢地板给他一个向前的力,使他与火车一起向前运动 (B )人跳起后,车厢内的空气给他一个向前的力,使他与火车一起向前运动(C)人在跳起前、跳起后直到落地,沿水平方向人和车始终具有相同的速度(D)人跳起后,车仍然继续向前运动,所以人落回地板后确实偏后一些,只是离地时间短,落地距离太小,无法察觉而已9.物体运动时,若其加速度大小和方向都不变,则物体( ).(A)一定作曲线运动 (B)可能作曲线运动(C)一定作直线运动 (D)可能作匀速圆周运动10.如图所示,一个劈形物体M放在固定的粗糙斜面上,其上面呈水平.在其水平面上放一光滑小球m.当劈形物体从静止开始释放后,观察到m和M有相对运动,则小球m在碰到斜面前的运动轨迹是( ).(A)沿水平向右的直线(B)沿斜面向下的直线(C)竖直向下的直线(D)无规则的曲线11.课本中实验是用以下什么步骤导出牛顿第二定律的结论的( ).(A)同时改变拉力F和小车质量m的大小(B)只改变拉力F的大小,小车的质最m不变(C)只改变小车的质量m,拉力F的大小不变(D)先保持小车质量m不变,研究加速度a与F的关系,再保持F不变,研究a与m的关系,最后导出a与m及F的关系12.物体静止在光滑的水平桌面上.从某一时刻起用水平恒力F推物体,则在该力刚开始作用的瞬间( ).(A)立即产生加速度,但速度仍然为零(B)立即同时产生加速度和速度(C)速度和加速度均为零(D)立即产生速度,但加速度仍然为零13.在牛顿第二定律公式F=kma中,比例系数k的数值( ).(A)在任何情况下都等于1(B)是由质量m、加速度a利力F三者的大小所决定的(C)是由质量m、加速度a和力F三者的单位所决定的(D)在国际单位制中一定等于114.一轻质弹簧上端固定,下端挂一重物体,平衡时弹簧伸长4cm,现将重物体向下拉1cm 然后放开,则在刚放开的瞬时,重物体的加速度大小为( ).(取g=10m/s2)(A)2.5m/s2(B)7.5m/s2(C)10m/s2(D)12.5m/s215.在粗糙的水平面上,物体在水平推力作用下由静止开始作匀加速直线运动,作用一段时间后,将水平推力逐渐减小到零,则在水平推力逐渐减小到零的过程中( ).(A)物体速度逐渐减小,加速度逐渐减小(B)物体速度逐渐增大,加速度逐渐减小(C)物体速度先增大后减小,加速度先增大后减小(D)物体速度先增大后减小,加速度先减小后增大16.如图所示,物体P置于水平面上,用轻细线跨过质量不计的光滑定滑轮连接一个重力G=10N的重物,物体P向右运动的加速度为a1;若细线下端不挂重物,而用F=10N的力竖直向下拉细线下端,这时物体P的加速度为a2,则( ).(A)a1>a2(B)a1=a2(C)a1<a2(D)条件不足,无法判断17.惯性制导系统已广泛应用于弹道式导弹工程中,这个系统的重要元件之一是加速度计.加速度计的构造原理的示意图如图所示.滑导弹长度方向安装的固定光滑杆上套一质量为m 的滑块,滑块两侧分别与劲度系数均为k的弹簧相连,两弹簧的另一端与固定壁相连.滑块原来静止,弹簧处于自然长度.滑块上有指针,可通过标尺测出滑块的位移,然后通过控制系统进行制导.设某段时间内导弹沿水平方向运动,指针向左偏离O 点的距离为s ,则这段时间内导弹的加速度( ).(A )方向向左,大小为mks(B )方向向右,大小为mks(C )方向向左,大小为m2ks(D )方向向右,大小为m2ks18.竖直向上飞行的子弹,达到最高点后又返回原处,设整个运动过程中,子弹受到的阻力与速率成正比,则整个运动过程中,加速度的变化是( ). (A )始终变小 (B )始终变大(C )先变大后变小 (D )先变小后变大19.如图所示,自由下落的小球,从它接触竖直放置的弹簧开始,到弹簧被压缩到最短的过程中,小球的速度和所受外力的合力变化情况是( ).(A )合力变小,速度变小 (B )合力变小,速度变大(C )合力先变小后变大,速度先变大后变小 (D )合力先变大后变小,速度先变小后变大20.如图所示.质量为M 的框架放在水平地面上,一轻质弹簧上端固定在框架上,下端挂一个质量为m 的小球,小球上下振动时,框架始终没有跳起,当框架对地面的压力为零的瞬间,小球加速度的大小为( ). (A )g(B )mg )m M (-(C )0 (D )mg )m M (+21.如图所示,一轻绳绕过轻滑轮,绳的一端挂一个质量为60kg 的物体,另一端有一个质量也为60kg 的人拉住绳子站在地上,现人由静止开始沿绳子向上爬,在人向上爬的过程中( ).(A )物体和人的高度差不变 (B )物体和人的高度差减小 (C )物体始终静止不动(D )人加速、匀速爬时物体和人的高度差变化情况不同22.如图所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m 的小球,下列关于杆对球的作用力F 的判断中,正确的是( ).(A )小车静止时,F =mgcosθ方向沿斜杆向上 (B )小车静止时,F =mgcosθ方向垂直斜杆向上 (C )小车向右以加速度a 运动时,θsin mg F =(D )小车向左以加速度a 运动时,22)mg ()ma F +=(,方向斜向左上方,与竖直方向的夹角为ga arctan =α23.如图所示,在光滑水平而上有一质量为M 的斜劈,其斜面倾角为α,一质量为m 的物体放在其光滑斜面上,现用一水平力F 推斜劈,恰使物体m 与斜劈间无相对滑动,则斜劈对物块m 的弹力大小为( ).(A )mgcosα (B )αcos mg (C )αcos )m M (mF+ (D )αsin )m M (mF+24.人站在地面上,先将两腿弯曲,再用力蹬地,就能跳离地面,人能跳起离开地面的原因是( ).(A )人对地球的作用力大于地球对人的引力 (B )地面对人的作用力大于人对地面的作用力 (C )地面对人的作用力大于地球对人的引力(D )人除受地面的弹力外,还受到一个向上的力25.如图所示,物体A 放在水平桌面上,被水平细绳拉着处于静止状态,则( ). (A )A 对桌面的压力和桌面对A 的支持力总是平衡的(B )A 对桌面的摩擦力的方向总是水平向右的 (C )绳对A 的拉力小于A 所受桌面的摩擦力(D )A 受到的重力和桌面对A 的支持力是一对作用力与反作用力26.如图所示,木块m 和M 叠放在光滑的斜面上,放手后它们以共同的加速度沿斜面加速下滑.斜面的倾角为α,m 和M 始终保持相对静止,它们的质量也分别以m 和M 表示.那么m 给M 的静摩擦力f 及m 对M 的压力N 的大小分别为( ).(A )f =mgsinαcosα,水平向右,N =mgcos2α (B )f =mgsinαcosα,水平向左,N =mgcos2α (C )f =0,N =mgsin2α (D )f =0,N =mgsin2α二、双项选择题(27~30题仅有两个选项正确)27.如图所示,物体A 放在固定的斜面B 上,在A 上施加一个竖直向下的恒力F ,下列说法中正确的有( ).(A )若A 原来是静止的,则施加力F 后,A 仍保持静止 (B )若A 原来是静止的,则施加力F 后,A 将加速下滑(C )若A 原来是加速下滑的,则施加力F 后,A 的加速度不变 (D )若A 原来是加速下滑的,则施加力F 后,A 的加速度将增大 28.关于牛顿第二定律,正确的说法是( ). (A )物体的质量跟外力成正比,跟加速度成反比 (B )加速度的方向一定与合外力的方向一致(C )物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比(D )由于加速度跟合外力成正比,整块砖的重力加速度一定是半块砖重力加速度的2倍 29.如图所示,质量不等的木块A 和B 的质量分别为m 1和m 2,置于光滑的水平面上.当水平力F 作用于左端A 上,两物体一起作匀加速运动时,A 、B 间作用力大小为F 1.当水平力F 作用于右端B 上,两物体一起作匀加速运动时,A 、B 间作用力大小为F 2,不正确的说法有( ).(A )在两次作用过程中,物体的加速度的大小相等 (B )在两次作用过程中,F 1+F 2<F (C )在两次作用过程中,F 1+F 2=F (D )在两次作用过程中,2121m m F F30.如图所示,两上下底面平行的滑块重叠在一起,置于固定的、倾角为θ的斜面上,滑块A 、B 的质量分别为M 、m ,A 与斜面间的动摩擦因数为μ1,B 与A 之间的动摩擦因数为μ2.已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块上B 受到的摩擦力( ). (A )等于零 (B )方向沿斜面向上 (C )大小等于μ1mgcosθ (D )大小等于μ2mgcosθ。

第二讲:相互作用与牛顿运动定律

第二讲:相互作用与牛顿运动定律

第二讲:相互作用与牛顿运动定律一.物体的平衡1.共点力的平衡例1.如图所示,竖直杆AB在绳AC拉力作用下使整个装置处于平衡状态,若AC加长,使C点左移,AB仍竖直,且处于平衡状态,那么AC绳的拉力T和杆AB受的压力N与原先相比,下列说法正确的是:A. T增大,N减小B. T减小,N增大C. T和N均增大D. T和N均减小例2. 如图所示,小球质量m,用一细线悬挂.现用一大小恒定的力F(F<mg)慢慢将小球拉起,在小球可能的平衡位置中,细线最大的偏角θ是多少?例3.如图所示,绳子a一端固定在杆上C点,另一端通过定滑轮用力拉住,一重物以绳b挂在杆BC上,杆可绕B点转动,杆、绳质量及摩擦不计,重物处于静止.若将绳子a慢慢放下,则下列说法正确的是A. 绳a的拉力F T减小,杆的压力F N增大B. 绳a的拉力F T增大,杆的压力F N增大C. 绳a的拉力F T不变,杆的压力F N减小D. 绳a的拉力F T增大,杆的压力F N不变例4.(2017全国一)如图,柔软轻绳ON的一端O固定,其中间某点M拴一重物,用手拉住绳的另一端N。

初始时,OM竖直且MN被拉直,OM与MN之间的夹角为α(π2α>)。

现将重物向右上方缓慢拉起,并保持夹角α不变。

在OM由竖直被拉到水平的过程中A.MN上的张力逐渐增大B.MN上的张力先增大后减小C.OM上的张力逐渐增大D.OM上的张力先增大后减小例5.如图所示,在绳下端挂一质量为m的物体,用力F拉绳使悬绳偏离竖直方向α角,当拉力F与水平方向的夹角θ多大时F有最小值?最小值是多少?例6.(2012新课标卷)拖把是由拖杆和拖把头构成的擦地工具(如图)。

设拖把头的质量为m,拖杆质量可以忽略;拖把头与地板之间的动摩擦因数为常数μ,重力加速度为g,某同学用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向的夹角为θ。

(1)若拖把头在地板上匀速移动,求推拖把的力的大小。

(2)设能使该拖把在地板上从静止刚好开始运动的水平推力与此时地板对拖把的正压力的比值为λ。

赢在高考全书

赢在高考全书

目录第一部分必考部分专题一直线运动专题二相互作用与牛顿运动定律专题三运动的合成与分解抛体运动专题四圆周运动与万有引力定律专题五功和能专题六带点粒子在电场中的运动专题七直流、交流电路专题八带电粒子在磁场和复合场中的运动专题九电磁感应及综合应用专题十实验基础与创新设计专题十一中学物理思想方法第二部分选考部分专题十二热学专题十三机械振动与机械波专题十四光学、电磁波与相对论初步专题十五动量专题十六原子物理参考答案专题一直线运动【考试说明】【考情分析】匀变速直线运动的规律及v-t图像是高考的热点知识.本专题是学习动力学的基础,高考经常与牛顿运动定律、功能关系以及带电粒子在电场、磁场中的运动相结合进行综合考查.高考中单独考查本专题知识不多,而往往以生活、生产和科技实际为背景,结合电场知识、声波、电磁波传播等知识,组成情景复杂的综合题(如运动形式变化或运动方向变化或两物体相向运动),考查考生的综合分析能力,对运用数学工具的能力也有一定的要求(运用函数、图像、极值处理问题的能力).【知识网络】【基础整合】12(1)任意连续相等的时间内的位移差相等,即 ,推广为x m —x n = ; (2)一段时间内的平均速度等于该段时间中间时刻的瞬时速度,即v t/2= = 。

思想方法3、灵活运用平均速度公式会给解题带来方便。

4、解运动学问题要充分发挥运动示意图和运动的速度图像的作用。

5、初速度为零的匀加速直线运动要注意灵活使用各种比例关系。

6、灵活运用反演法、对称法等特殊方法解题。

7、追及、相遇问题要特别注意临界问题的出现以及临界条件的分析。

基础自测 1、(08高考宁夏卷)甲乙两车在公路上沿同一方向做直线运动,它们的v-t 图象如图所示.两图象在t=t 1时相交于P 点,P 在横轴上的投影为Q ,△OPQ 的面积为S .在t=0时刻,乙车在甲车前面,相距为d .已知此后两车相遇两次,且第一次相遇的时刻为t′,则下面四组t′和d 的组合可能是 ( )A. t′=t 1 ,d=SB. t′=111,24t d S =C. t′111,22t d S ==D. t′=113,24t d S =2、(08扬州调研卷)如图所示的位移(s)—时间(t)图象和速度(v)—时间(t)图象中,给出四条曲线1、2、3、4代表四个不同物体的运动情况,关于它们的物理意义,下列描述正确的是 ( )A .图线1表示物体做曲线运动B .s-t 图象中t 1时刻v 1>v 2C .v-t 图象中0至t 3时间内3和4的平均速度大小相等D .两图象中,t 2、t 4时刻分别表示2、4开始反向运动 3、(08苏北四市调研卷)利用速度传感器与计算机结合,可以自动作出物体运动的图像.某同学在一次实验中得到的运动小车的速度—时间图像如图所示。

第2章 牛顿运动定律

第2章 牛顿运动定律

1 2 v = Rg sin α 2
v = 2Rg sin α
τ
例3、由地面沿铅直方向发射质量为 的宇宙飞船。 由地面沿铅直方向发射质量为m 的宇宙飞船。 求宇宙飞船能脱离地球引力所需的最小初速度。( 。(不 求宇宙飞船能脱离地球引力所需的最小初速度。(不 计空气阻力及其它作用力地球的质量为M 10 计空气阻力及其它作用力地球的质量为 = 5.98 × 24 kg,地球半径为 = 6378 km) ,地球半径为R )
v R R ∵ds = vdt = Rdα ∴dt = dα
法向分量: 法向分量: − mg sin α = m N
(2) ) A
m
R
α N α mg
代入( 代入(1)式有: 式有:
0
vdv = Rg cosα dα v α ∫ vdv = ∫ Rg cosα dα
0
v
n
2Rg sin α 代入( )式得: 代入(2)式得: N = mg sin α + m = 3mg sin α R
§2-1 牛顿运动定律
一、牛顿第一定律(惯性定律) 任何物体都将保持静止或匀速直线运动的状态, 任何物体都将保持静止或匀速直线运动的状态, 直到其它物体所作用的力迫使它改变这种状态为止。 直到其它物体所作用的力迫使它改变这种状态为止。 数学形式: 数学形式: 说明: 说明: (1) 惯性: 任何物体保持其运动状态不变的性质。质 惯性: 任何物体保持其运动状态不变的性质。 量是物体惯性大小的量度。 量是物体惯性大小的量度。 (2) 其它物体的作用力是迫使物体改变运动状态的原因。 其它物体的作用力是迫使物体改变运动状态的原因。 (3) 惯性系:牛顿定律成立的参考系。 惯性系:牛顿定律成立的参考系。

乔佳林学案《相互作用与牛顿运动定律训练精选题组》(含答案)(3)

乔佳林学案《相互作用与牛顿运动定律训练精选题组》(含答案)(3)

乔佳林学案相互作用与丢的运动定律训练精选题组大连市物理名师工作室 门贵宝一.单选题1.如图5所示,质量为m 的小球被水平绳AO 和与竖直方向成θ角的轻弹簧系着处于静止状态,现用火将绳AO 烧断,在绳AO 烧断的瞬间,下列说法正确的是( A )A.弹簧的拉力θcos mg F = B.弹簧的拉力θsin mg F = C.小球的加速度为零 D.小球的加速度θsin g a =2..滑滑梯是小孩子很喜欢的娱乐活动.如右图所示,一个小孩正在滑梯上匀速下滑,则( C )A .小孩所受的重力与小孩所受的弹力大小相等B .小孩所受的重力与小孩所受的摩擦力大小相等C .小孩所受的弹力和摩擦力的合力与小孩所受的重力大小相等D .小孩所受的重力和弹力的合力大于小孩所受的摩擦力大小3..两倾斜的滑杆上分别套有A 、B 两个圆环,两圆环上分别用细线悬吊着一个物体,如右图所示.当它们都沿滑杆向下滑动时,A 的悬线与滑杆垂直,B的悬线竖直向下,则( D )A .A 圆环与滑杆有摩擦力B .B 圆环与滑杆无摩擦力C .A 圆环做的是匀速运动D .B 圆环做的是匀速运动4..如图所示,一小球用轻绳悬于O 点,用力F 拉住小球,使悬线保持偏离竖直方向75角且小球始终处于平衡状态。

为了使F 有最小值,F 与竖直方向的夹角θ应该是 ( C ) A .90度 B .45度 C .15度 D .0度5..固定在水平面上的光滑半球,半球半径为R ,球心O 的正上方固定一个小定滑轮,细线一端栓一小球,置于半球面上的A 点,另一端绕过定滑轮,如图所示,现缓慢地将小球从A 点拉到B 点,则在此过程中,小球对半球的压力大小N 、细线的拉力大小T 的变化情况是( C )6.一直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑。

AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环由一根质量可忽略、不可伸长的细绳相连,并在图示位置平衡。

学习重点物理力学与运动

学习重点物理力学与运动

学习重点物理力学与运动学习重点:物理力学与运动物理力学是物理学的基础学科之一,主要研究物体的运动以及与之相关的力和相互作用。

在学习物理力学时,我们需要掌握一些重点内容,如牛顿运动定律、运动学方程、动量守恒定律等。

以下是对这些重点内容的详细介绍。

一、牛顿运动定律牛顿运动定律是物理力学的核心概念之一,包括三个定律:1.第一定律:当物体所受合力为零时,物体将保持匀速直线运动或静止状态。

2.第二定律:物体所受合力等于质量乘以加速度,即F=ma,其中F为合力,m为物体质量,a为加速度。

3.第三定律:任何两个物体之间的相互作用力大小相等、方向相反。

理解牛顿运动定律的关键是要能够将力与运动的关系相互联系起来,通过实际问题的求解来加深对定律的理解。

二、运动学方程运动学方程描述了物体在运动过程中的位置、速度和加速度之间的关系。

常用的运动学方程有:1.位移-时间关系:s = ut + 1/2at²,其中s为位移,u为初速度,t为时间,a为加速度。

2.速度-时间关系:v = u + at,其中v为最终速度,u为初速度,t为时间,a为加速度。

3.加速度-时间关系:v²= u²+ 2as,其中v为最终速度,u为初速度,s为位移,a为加速度。

利用运动学方程可以解决物体运动中的各种问题,包括求解位移、速度、加速度、时间等。

三、动量守恒定律动量守恒定律是描述系统总动量守恒的基本原理。

在没有外力作用下,一个封闭系统的总动量保持不变。

动量的定义为p=mv,其中p为动量,m为物体质量,v为物体速度。

如果一个系统中的物体相互作用,它们之间的动量之和不变。

应用动量守恒定律可以解决各种碰撞、爆炸等问题,对于理解物体之间的相互作用与运动变化有着重要作用。

综上所述,学习重点物理力学与运动的内容包括牛顿运动定律、运动学方程和动量守恒定律。

牢固掌握这些内容可以帮助我们理解物体的运动规律,解决各种与力学和运动相关的问题。

大学物理 第二章牛顿运动定律

大学物理 第二章牛顿运动定律
gravitational force
赵 承 均
万有引力定律 任意两质点相互吸引,引力的大小与两者质量乘积成正比, 任意两质点相互吸引,引力的大小与两者质量乘积成正比,与其距离的 平方成反比,力的方向沿着两质点连线的方向。 平方成反比,力的方向沿着两质点连线的方向。
r m1m2 r F = −G 3 r r
赵 承 均
&& mx = p sin ωt
o
v Fx
x
x
即:
m
dv = p sin ωt dt
重 大 数 理 学 院
r r F ( t ) = ma ( t ) r & = mv ( t ) r && ( t ) = mr
此微分形式表明:力与加速度成一一对应关系。 此微分形式表明:力与加速度成一一对应关系。
赵 承 均
牛顿第二定律适用于质点,或通过物理简化的质点。 牛顿第二定律适用于质点,或通过物理简化的质点。 牛顿第二定律适用于宏观低速情况, 牛顿第二定律适用于宏观低速情况,而在微观 ( l ≤ 1 0 − 1 0 m 情况与实验有很大偏差。 高速 ( v ≥ 1 0 − 2 c ) 情况与实验有很大偏差。 牛顿第二定律适用于惯性系,而对非惯性系不成立。 牛顿第二定律适用于惯性系,而对非惯性系不成立。
赵 承 均
牛顿第二定律 在力的作用下物体所获得的加速度的大小与作用力的大小成正比, 在力的作用下物体所获得的加速度的大小与作用力的大小成正比, 与物体的质量成反比,方向与力的方向相同。 与物体的质量成反比,方向与力的方向相同。
r r F = ma
在国际单位中,质量的单位为kg(千克),长度的单位为m 在国际单位中,质量的单位为kg(千克),长度的单位为m(米), kg ),长度的单位为 时间的单位为s ),这些是基本单位。力的单位为N 牛顿), 这些是基本单位 ),是 时间的单位为s(秒),这些是基本单位。力的单位为N(牛顿),是导 出单位: 出单位: =1kg× 1N =1kg×1m/s2

牛顿力学三定律牛顿力学三定律介绍

牛顿力学三定律牛顿力学三定律介绍

牛顿力学三定律牛顿力学三定律介绍三大定律分别是:牛顿第一运动定律、牛顿第二运动定律、牛顿第三运动定律。

一、牛顿三大定律1.牛顿第一运动定律牛顿第一运动定律,又称惯性定律。

第一定律说明了力的含义:力是改变物体运动状态的原因。

表述为:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。

2.牛顿第二运动定律牛顿第二运动定律:第二定律指出了力的作用效果:力使物体获得加速度。

表述是:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。

3.牛顿第三运动定律牛顿第三运动定律:第三定律揭示出力的本质:力是物体间的相互作用。

表述是:相互作用的两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。

二、牛顿三大定律的影响牛顿运动定律是建立在绝对时空以及与此相适应的超距作用基础.上的所谓超距作用,是指分离的物体间不需要任何介质,也不需要时间来传递它们之间的相互作用.也就是说相互作用以无穷大的速度传递。

除了上述基本观点以外,在牛顿的时代,人们了解的相互作用。

如万有引力、磁石之间的磁力以及相互接触物体之间的作用力,都是沿着相互作用的物体的连线方向,而且相互作用的物体的运动速度都在常速范围内。

三、牛顿三大定律的相关知识1.牛顿运动定律中的各定律互相独立,且内在逻辑符合自洽一致性。

其适用范围是经典力学范围,适用条件是质点、惯性参考系以及宏观、低速运动问题。

牛顿运动定律阐释了牛顿力学的完整体系,阐述了经典力学中基本的运动规律,在各领域上应用广泛。

2.牛顿运动定律是力学中重要的定律,是研究经典力学甚至物理学的基础,阐述了经典力学中基本的运动规律。

该定律的适用范围为由牛顿第-运动定律所给出惯性参考系,并使人们对物理问题的研究和物理量的测里有意义。

3.牛顿运动定律只适用宏观问题。

当考察的物体的运动线度可以和该物体的德布罗意波相比拟时,由粒子运动不确定性关系式可知,该物体的动里和位置已不能同时准确获知,故牛顿动力学方程缺少准确的初始条件而无法求解,即经典的描述方法由于粒子运动不确定性关系时已经失效或者需要修改。

2024届高考物理强基计划专题讲座课件:牛顿运动定律

2024届高考物理强基计划专题讲座课件:牛顿运动定律
衡或抵消。 (3)作用力和反作用力属于同一种性质的力。
返回 退出
二、力学中的常见力
1. 万有引力(universal gravitation)
存在于任何 两个物体间的相互吸引力。
牛顿万有引力定律:
F
G
m1m2 r2
其中m1和m2为两个质点的引力质量,r为两个质点
的距离,G叫做引力常量。
G 6.672 59 1011 N m2 / kg2
合外力的大小成正比,与物体的质量成反比,加速
度的方向与合外力的方向相同。
数学形式: F ma

F
dp
m
dv
讨论
dt dt
(1)力是产生加速度的原因。
(2)惯性质量:平动惯性大小的量度
(3)瞬时性,矢量性
分量式: Fx=max , Fy=may , Fz =maz 或 Ft=mat , Fn=man (自然坐标系) (4)在惯性系中成立
FT
2m1m2 m1 m2
(a
g)
讨论
当a =-g时,ar=0,T=0,即滑 a1 轮、质点都成为自由落体,两 个物体之间没有相对加速度。
FT
m1 a2
m1 g
y
FT
m2
m2 g
O
返回 退出
例1-10 一个质量为m、悬线长度为l 的摆锤,挂在架 子上,架子固定在小车上,如图所示。求在下列情况
下悬线的方向(用摆的悬线与竖直方向所成的角表示)
v 2Rg cos
圆轨道的作用力
FN
m
v2 R
mg cos
3mg cos
返回 退出
2. 变力作用下的单体问题 例1-12 计算一小球在水中竖直沉降的速度。已知小 球的质量为m,水对小球的浮力为Fb,水对小球的粘 性力为Fv= -Kv,式中K是和水的黏性、小球的半径有 关的一个常量。

相互作用与牛顿运动定律

相互作用与牛顿运动定律

相互作用与牛顿运动定律知识梳理力是物体与物体间的相互作用,这是我们对力最基本的认识,围绕这一基本观点,本专题从几个不同的角度进行探究,通过这些探究明确力的基本特性,并且能应用基本规律解决常见的力学问题.牛顿运动定律是力学的基石,也是每年高考的重点,牛顿第一、第二、第三定律是解决力学问题的基本工具,在本专题中,对运动和力的关系、物体运动的加速度与物体所受外力的关系、物体运动的加速度与物体的质量关系进行具体的探究,指出它们间的定量关系,利用这些关系进行实际应用.一、物体与物体间的相互作用1.力学中常见的三种力.(1)重力产生的条件:由于地球的吸引而产生的,重力不是万有引力,只有在忽略地球自转的条件下才可以认为重力等于万有引力.重力大小:G=mg,在地面附近一般认为任何一个物体的重力均为一个恒定不变的量,其大小和方向不随其运动状态和地理位置的变化而发生变化.重力方向:总是竖直向下.(2)弹力产生条件:相互接触的两个物体由于发生弹性形变而产生.弹力大小:对像弹簧这类弹性很好的物体而言,弹力的大小为F=kx(k 为弹簧的劲度系数),对一般发生弹性形变的物体而言,其弹力大小可以利用物体学的其它规律解答.弹力方向:挤压形变时其方向为垂直支持面指向被支持物,拉伸形变时其方向沿绳子指向绳子的收缩方向.(3)摩擦力产生条件:相互挤压的两个接触不光滑的物体间如果存在相对运动或相对运动趋势会产生摩擦力,摩擦力存在静摩擦力和滑动摩擦力两类.摩擦力大小:对滑动摩擦力而言,大小为f=卩N (滑动摩擦力),对静摩擦力而言,其大小和方向均是变化的,但静摩擦力存在最大值,可以利用其它物体规律计算静摩擦力的大小.摩擦力的方向:滑动摩擦力的方向可以与运动的方向相反,也可以与运动方向相同,它阻碍物体间的相对运动;而静摩擦力的方向在某个物理过程中也可以发生变化.2.力的一般处理方法.(1)力的合成与分解:求几个已知力的合力是力的合成,求一个力的几个分力是力的分解,力的合成与力的分解均遵循力的平行四边形定则.(2)力的平行四边形定则:表示合力的线段为表示两个分力的线段组成的平行四边形的对角线(合力与分力的大小之间满足F1-F2W F W F1+F2).(3)物体的受力分析方法:选定合适的研究对象,对物体进行受力分析,画出物体受力简图,这是力学中研究物体受力和运动的一种常见的方法.3.物体的平衡状态和受力的平衡条件.(1)物体的平衡状态:物体在外力作用下保持匀速直线运动或静止状态.(2)平衡条件:处于平衡状态的物体所受外力的合力为零,可以利用力的平行四边形定则进行相关的计算.二、牛顿运动定律1 .牛顿第一定律.(1)惯性:物体保持运动状态不变的性质,惯性是物体的固有属性,与其它的外界因素无关,只与物体的质量有关.(2 )运动状态及其变化:物体的运动状态是指物体运动速度的大小和方向,物体作匀速运动时,其运动状态是不变的;物体运动速度发生变化,就是运动状态发生了变化(3)定律的表述:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

牛顿运动定律专题复习专题二牛顿运动定律的应用与图像

牛顿运动定律专题复习专题二牛顿运动定律的应用与图像

牛顿运动定律的应用第一部分牛顿运动定律的应用一、知识要点梳理二分类例与练(两类问题):如图所示,一个人用与水平方向成=角的斜向下的推力F推一个质量为20 kg的箱子匀速前进,如图(a)所示,箱子与水平地面间的动摩擦因数为=0.40.求:(1)推力F的大小;(2)若该人不改变力F的大小,只把力的方向变为与水平方向成角斜向上去拉这个静止的箱子,如图(b)所示,拉力作用2.0 s后撤去,箱子最多还能运动多长距离?(g取10 )。

(超重与失重):某人站在一台秤上,当他猛地下蹲的过程中,台秤读数(不考虑台秤的惯性)()A.先变大后变小,最后等于他的重力B.变大,最后等于他的重力C.先变小,后变大,最后等于他的重力D.变小,最后等于他的重力1、如图所示,物体从光滑斜面上的A点由静止开始下滑,经过B点后进入水平面(设经过B点前后速度大小不变),最后停在C点。

每隔0.2秒钟通过速度传感器测量物体的瞬时速度,下表给出了部分测量数据。

求:(重力加速度g=10)(1)斜面的倾角;(2)物体与水平面之间的动摩擦因数;(3)t=0.6s时的瞬时速度v。

【变式1】质量为0. 5 kg的物体在与水平面成角的拉力F作用下,沿水平桌面向右做直线运动.经过0.5s,速度由0. 6 m/s变为0. 4 m/s,已知物体与桌面间的动摩擦因数=0.1,求作用力F的大小。

2、有一行星探测器,质量为1800 kg,现将探测器从某一行星的表面竖直升空,探测器的发动机推力恒定。

发射升空后9s末,发动机因发生故障突然熄火。

图是从探测器发射到落回地面全过程的速度图象,已知该行星表面没有大气,若不考虑探测器总质量的变化。

求:(1)该行星表面附近的重力加速度大小;(2)发动机正常工作时的推力;(3)探测器落回星球表面时的速度。

【变式2】在倾角为的长斜面上有一带风帆的滑块从静止开始沿斜面下滑,滑块的质量为m,它与斜面间的动摩擦因数为,帆受到的空气阻力与滑块下滑的速度的大小成正比,即。

相互作用与牛顿运动定律

相互作用与牛顿运动定律

高三物理培优专题------相互作用与牛顿运动定律【试题演练】1. 【2014·湖南五市十校联考】如下图,质量为M=5kg的箱子B置于光滑水平面上,箱子底板上放一质量为m2=1kg的物体C,质量为m1=2kg的物体A经跨过定滑轮的轻绳与箱子B相连,在A加速下落的过程中,C与箱子B始终保持相对静止。

不计定滑轮的质量和一切阻力,取g=10m/s2,以下不准确的是(d )A.物体A处于失重状态B.物体A的加速度大小为2.5m/s2C.物体C对箱子B的静摩擦力大小为2.5ND.轻绳对定滑轮的作用力大小为30N2.【2014·山西高三四校联考】如图(a)所示,用一水平外力F拉着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F,物体做变加速运动,其加速度a随外力F变化的图像如图(b)所示,若重力加速度g取10m/s2。

根据图(b)中所提供的信息能够计算出(bc)A.加速度从2m/s2增加到6m/s2的过程中物体的速度变化量B.斜面的倾角C.物体的质量D.加速度为6m/s2时物体的速度2014年高考试题1.【2014·北京卷】伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促动了人类科学理解的发展。

利用如下图的装置做如下实验:小球从左侧斜面的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升。

斜面上先后铺垫三种粗糙水准逐渐降低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3,[学科网根据三次实验结果的比照,能够得到的最直接的结论是(a)A.假如斜面光滑,小球将上升到与O点等高的位置B.假如小球不受力,它将一直保持匀速运动或静止状态C.假如小球受到力的作用,它的运动状态将发生改变D.小球受到的力一定时,质量越大,它的加速度越小2.【2014·山东卷】如图,用两根等长轻绳将木板悬挂在竖直木桩上等高的两点,制成一简易秋千。

某次维修时将两轻绳剪去一小段,但仍保持等长且悬挂点不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二相互作用与牛顿第运动定律包括力的概念、力的分类、力的合成与分解、受力分析的方法、共点力作用下力的平衡等。

[知识要点复习]一、相互作用1. 力的概念:力是物体对物体的作用(1)力不能脱离物体独立存在(力的性质)(2)力的相互性、受力物体和施力物体总是成对出现,施力物体也是受力物体。

(3)力是矢量,既有大小,又有方向,可以用“力的图示”形象表示。

(4)力的效果:使物体发生形变或改变其运动状态。

2. 重力(1)产生:由于地球的吸引而产生。

(2)大小:G=mg,g一般取9.8m/s2,粗略计算中可认为g=10m/s2,地球上不同位置g值一般有微小差异,一般的g值在两极比在赤道处大,在地势低处比地势高处大。

(3)方向:竖直向下3. 弹力(1)产生条件:“直接接触”+“弹性形变”(2)弹力的方向:由物体发生形变方向判断:绳沿绳的方向,支持力和压力都垂直于支持面(或被压面),若支持面是曲面时则垂直于切线方向。

由物体的运动情况结合动力学知识判断。

(3)弹力的大小一般的弹力与弹性形变的程度有关,形变越大,弹力越大,具体大小由运动情况判断;弹簧弹力的大小:f=kx;k是劲度系数,单位N/m,x是弹簧形变量的长度。

4. 摩擦力(1)产生条件:“相互接触且有弹力”+“接触面粗糙”+“有相运动或相对运动趋势”。

(2)摩擦力的方向a. 滑动摩擦力的方向:沿着接触面与物体的相对滑动方向相反。

[注意相对运动(以相互作用的另一物体为参照物)和运动(以地面为参照物)的不同]b. 静摩擦力的方向:沿着接触面与物体的相对运动趋势方向相反。

(3)摩擦力的大小a. 滑动摩擦力的大小f=μN,μ是滑动摩擦系数,仅与材料、接触面的粗糙程度有关,无单位。

N 是正压力,它不一定等于重力。

b. 静摩擦力的大小0<f ≤f m ,f m 与正压力成正比,在正压力一定时f m 是一定值,它比同样正压力下的滑动摩擦力大,粗略运算中可以认为相等;静摩擦力的大小可以根据平衡条件或牛顿定律进行计算。

5. 合力与分力,一个力如果它产生的效果跟几个力共同作用所产生的效果相同,这个力就叫做那几个力的合力,那几个力就叫做这个力的分力,由于合力与分力产生的效果相同,一般情况下合力与分力可以相互替代。

6. 力的合成与分解求几个力的合力叫力的合成,求一个力的分力叫力的分解。

运算法则:平行四边形法则,见图(A ),用表示两个共点力F 1和F 2的线段为邻边作平行四边形,那么这两个邻边之间的对角线就表示合力F 的大小和方向。

三角形定则:求两个互成角度的共点力F 1、F 2的合力,可以把表示F 1、F 2的线段首尾相接地画出,见图(B ),把F 1、F 2的另外两端连接起来,则此连线就表示合力F 的大小、方向。

三角形定则是平行四边形定则的简化,本质相同。

正交分解法,这是求多个力的合力常用的方法,根据平行四边形定则,把每一个力都分解到互相垂直的两个方向上,分别求这两个方向上的力的代数和F x ,F y ,然后再求合力。

7. 共点力a. 共点力,几个力作用于同一点或它们的延长线交于同一点,这几个力就叫共点力。

b. 共点力作用下物体的平衡条件:当共点力的合力为零时,物体处于平衡状态(静止、匀速运动或匀速转动) 二、牛顿运动定律(一)牛顿第一定律(即惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

(1)理解要点:①运动是物体的一种属性,物体的运动不需要力来维持。

②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。

③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。

④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。

(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。

①惯性是物体的固有属性,与物体的受力情况及运动状态无关。

②质量是物体惯性大小的量度。

③由牛顿第二定律定义的惯性质量m=F/a 和由万有引力定律定义的引力质量mF r G M 2/严格相等。

④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。

(二)牛顿第二定律1. 定律内容物体的加速度a跟物体所受的合外力F成正比,跟物体的质量m成反比。

合=2. 公式:F m a合理解要点:是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失;①因果性:F合都是矢量,方向严格相同;②方向性:a与F合是该时刻作用在该物体上的合外力。

③瞬时性和对应性:a为某时刻某物体的加速度,F合(三)力的平衡1. 平衡状态;指的是静止或匀速直线运动状态。

特点:a=0。

F0。

2. 平衡条件;共点力作用下物体的平衡条件是所受合外力为零,即∑=3. 平衡条件的推论(1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向;(2)物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点力;(3)物体在三个共点力作用下处于平衡状态时,图示这三个力的有向线段必构成闭合三角形。

(四)牛顿第三定律两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线=-'。

上,公式可写为F F、、(在国际制单位中)(五)力学基本单位制:k g m s①确定研究对象;②分析研究对象的受力情况画出受力分析图并找出加速度方向;③建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余分解到两坐标轴上;④分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;⑤统一单位,计算数值。

3. 解决共点力作用下物体的平衡问题思路(1)确定研究对象:若是相连接的几个物体处于平衡状态,要注意“整体法”和“隔离法”的综合运用;(2)对研究对象受力分析,画好受力图;(3)恰当建立正交坐标系,把不在坐标轴上的力分解到坐标轴上。

建立正交坐标系的原则是让尽可能多的力落在坐标轴上。

(4)列平衡方程,求解未知量。

4. 求解共点力作用下物体的平衡问题常用的方法(1)有不少三力平衡问题,既可从平衡的观点(根据平衡条件建立方程求解)——平衡法,也可从力的分解的观点求解——分解法。

两种方法可视具体问题灵活运用。

(2)相似三角形法:通过力三角形与几何三角形相似求未知力。

对解斜三角形的情况更显优势。

(3)力三角形图解法,当物体所受的力变化时,通过对几个特殊状态画出力图(在同一图上)对比分析,使动态问题静态化,抽象问题形象化,问题将变得易于分析处理。

5. 处理临界问题和极值问题的常用方法涉及临界状态的问题叫临界问题。

临界状态常指某种物理现象由量变到质变过渡到另一种物理现象的连接状态,常伴有极值问题出现。

如:相互挤压的物体脱离的临界条件是压力减为零;存在摩擦的物体产生相对滑动的临界条件是静摩擦力取最大静摩擦力,弹簧上的弹力由斥力变为拉力的临界条件为弹力为零等。

临界问题常伴有特征字眼出现,如“恰好”、“刚刚”等,找准临界条件与极值条件,是解决临界问题与极值问题的关键。

【例题分析】例1.如图所示,竖直放置的轻弹簧一端固定在地面上,另一端与斜面体P相连,P与斜放在其上的固定挡板MN接触且处于静止状态,则此时斜面体的受力情况有几种?分别受到哪几个力的作用?例2.如图2-2所示是滑水板运动的示意图。

运动员在快艇的水平牵引下,脚踏倾斜滑板在水上匀速滑行。

已知运动员与滑板总质量为m=60 kg,不计滑板与水之间的摩擦,当滑板与水平面夹角θ=30°时,求快艇对运动员的牵引力F和水对滑板的支持力F N的大小。

(g取10 m/s2)例3.一质量为m的小物体在水平推力F的作用下,静止在质量为M的梯形木块的左上方,梯形木块在水平地面上保持静止,如图所示,下列说法正确的是 ( )A.小物体可能仅受三个力的作用B.梯形木块与小物体间的弹力可能为零C.地面与梯形木块间的摩擦力大小为FD.地面对梯形木块的支持力小于(m+M)g例 4.(2011·江苏高考)如图所示,长为L、内壁光滑的直管与水平地面成 30°角固定放置。

将一质量为m的小球固定在管底,用一轻质光滑细线将小球与质量M=km的小物块相连,小物块悬挂于管口。

现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球在转向过程中速率不变。

(重力加速度为g)求:(1)小物块下落过程中的加速度大小;2(2)小球从管口抛出时的速度大小;(3)试证明小球平抛运动的水平位移总小于L2随堂练习1.如图所示,甲、乙两人在冰面上“拔河”。

两人中间位置处有一分界线,约定先使对方过分界线者为赢。

若绳子质量不计,冰面可看成光滑,则下列说法正确的是()A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利2.如图,粗糙的水平地面上有一斜劈,斜劈上一物块正在沿斜面以速度v 0匀速下滑,斜劈保持静止,则地面对斜劈的摩擦力( )A .等于零B .不为零,方向向右C .不为零,方向向左D .不为零,v 0较大时方向向左,v 0较小时方向向右3.如图所示,足够长的传送带与水平面夹角为θ,以速度v 0逆时针匀速转动,在传送带的上端轻轻放置一个质量为m 的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则下列选项中能客观地反映小木块的速度随时间变化关系的是( )4.如图所示,将两相同的木块a 、b 置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳系于墙壁。

开始时a 、b 均静止,弹簧处于伸长状态,两细绳均有拉力,a 所受摩擦力F fa ≠0,b 所受摩擦力F fb =0,现将右侧细绳剪断,则剪断瞬间( )A .F fa 大小不变B .F fa 方向改变C .F fb 仍然为零D .F fb 方向向右5.杂技演员在进行“顶杆”表演时,用的是一根质量不计的长直竹杆,设竹杆始终保持竖直。

质量为30 kg 的演员(可视为质点)自杆顶由静止开始下滑,滑到杆底端时速度正好是零。

已知竹杆底部与下面顶杆人肩部有一传感器,传感器显示顶杆人肩部所受压力的情况如图所示,g 取10 m/s 2,求:(1)杆上的人在下滑过程中的最大速度;(2)竹杆的长度。

专题检测 一、选择题1.如图,轻杆A 端用光滑水平铰链装在竖直墙面上,B 端用水平绳结在墙C 处并吊一重物P ,在水平向右的力F 缓缓拉起重物P 的过程中,杆AB 所受压力的变化情况是( )A .变大B .变小C .先变小再变大D .不变2.放在水平地面上的一物块,受到方向不变的水平推力F 的作用,F 的大小与时间t 的关系和物块速度v 与时间t 的关系如图2所示。

相关文档
最新文档