九年级数学上册第三章圆的基本性质教材分析教案

合集下载

人教版九年级上册《圆的有关性质》教案

人教版九年级上册《圆的有关性质》教案

人教版九年级上册《圆的有关性质》教案
《人教版九年级上册《圆的有关性质》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!
课题:圆的有关性质
教材:人教版九年义务教育初三几何
教学目的:理解圆的定义,掌握点与圆的位置关系,培养学生用数形结合思想方法分析解决问题的能力
教学重点、难点:圆的定义的理解
教学关键:理解两点:①在圆上的点,都满足到定点(圆心)的距离等于定长(半径);
②满足到定点(圆心)的距离等于定长(半径)的点,在以定点为圆心,定长为半径的圆上。

教学过程:
一、复习旧知:
1、角平分线及中垂线的定义(用集合的观点解释)
2、在一张透明纸上画半径分别1,3.5cm的圆,同桌的两个同学将所画的圆的大小分别进行比较(分别对应重合)。

并回答:这些圆为什么能够分别重合?并体会圆是怎样形成的?
二、讲授新课:
1、让学生拿出准备好的木条照课本演示圆的形成,用圆规再次演示圆的形成。

分析归纳圆定义:
在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点随之旋转所形成的图形叫做圆,其中固定的端点叫做圆心,线段叫做半径。

注意:“在平面内”不能忽略,以点O为圆心的圆,记作:“⊙O”,读作:圆O
2、进一步观察,体会圆的形成,结合园的定义,分析得出:
①圆上各点到定点(圆心)的距离等于定长(半径)
②到定点的距离等于定长的点都在以定点为圆心,
定长为半径的圆上。

由此得出圆的定义:
圆是到定点的距离等于定长的点的集合。

例如,到平面上一点O距离为1.5cm的点的集合是以O为圆心,半径为1.5cm的一个圆。

人教版九年级上册《圆的有关性质》教案这篇文章共1810字。

九上第三章圆的基本性质全章教案

九上第三章圆的基本性质全章教案

解:因为圆周上的各点到圆心的距离都相等,车子行驶起来比较平稳.定点、定长学生在了解的基础上观察下图,引入点和圆的位置关系:请学生口答,然A A 1O 与2O 的半径分别是1O 与2O 是等圆,则O 的半径AB 是弦,C 是AB 上一OC ⊥OA ,。

求(1)A ∠的度数;()的长。

(四种以上方法)见作业本3.1圆(2)教学目标①学生经历不在同一直线上的三点确定一个圆的探索过程②了解不在同一直线上的三点确定一个圆,以及过不在同一直线上的三点作圆的方法,了解并辨认三角形的外接圆、三角形的外心等概念 ③会画过不在同一条直线上的三点作圆教学重点、工具③尺规教学难点教学过程车床工人告诉了我们什么?问题:车间工人能将一个如图所示的破损的圆盘复原,你知道用什么办法吗?(根据学生的预习情况进行衔接教学) ——指出标题——指出讨论1:“三个点的位置在什么地 方?”讨论2:“三个点为什么会不在同 一直线上?”讨论3:“画一个圆需要知道什么”探索:为什么一定要三个点?1:经过一个已知点A 能作多少个圆?结论:经过一个已知点A 能作无数个圆!2:经过两个已知点A,B 能作多少个圆?结论:经过两个已知点A,B 能作无数个圆!讨论1:把这些圆的圆心用光滑线连接是什么图形?讨论2:这条直线的位置能确定吗?怎样画这条直线? 3:经过三个已知点A 、B 、C 能作多少个圆? 讨论1:怎样找到这个圆的圆心? 讨论2:这个圆的圆心到点A 、B 、C 的距离相等吗? 为什么?即OA=OB=OC结论:不在同一直线上的三个点确定一个圆初步应用:1:现在你知道了怎样要将一个如图所示的破损的圆盘 复原了吗?方法:找圆弧所在圆的圆心连线段的垂直平分线,其 交点即为圆心。

2:已知△ABC,概念教学,外内接三角形.举例、1:⊙O 是△角形,点O 2:三角形的外心是△ABC 三条边的垂直平分线的交点.试一试1:画出过以下三角形的顶点的圆,并比较圆心的位置?2:练一练a :下列命题不正确的是 ( ) A.过一点有无数个圆. B.过两点有无数个圆.C.弦是圆的一部分.D.过同一直线上三点不能画圆. b :三角形的外心具有的性质是 ( ) A.到三边的距离相等. B.到三个顶点的距离相等. C.外心在三角形的外. D.外心在三角形内.知识小结1:不在同一直线上的三点确定一个圆。

人教版九年级数学上册圆的有关性质说课稿

人教版九年级数学上册圆的有关性质说课稿
可能存在的学习障碍有:
1.对圆的定义和性质的理解不够深入,容易混淆半径、直径等基本概念。
2.圆周角定理、圆心角定理的推导过程较为复杂,学生难以理解。
Hale Waihona Puke 3.弦的性质和圆的切线性质在实际问题中的应用能力较弱。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设生活情境,让学生了解圆在实际生活中的应用,如车轮、地球等,从而激发学生的学习兴趣。
2.小组讨论:组织学生进行小组讨论,共同解决练习中的难题,培养学生的合作能力和解决问题的能力。
3.实践活动:布置一些实际操作任务,如测量圆形物体的半径、直径,验证圆周角定理等,让学生在实际操作中加深对知识的理解。
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.让学生自我评价:鼓励学生总结本节课所学的内容,反思自己的学习过程,找出自己的优点和不足。
2.提供有效反馈:针对学生的自我评价,给予肯定和鼓励,同时指出需要改进的地方,并提出具体建议。
3.组织课堂讨论:让学生分享自己的学习心得和经验,互相借鉴,共同提高。
(五)作业布置
课后作业布置如下:
1.巩固练习:布置一些与课堂练习类似的题目,让学生在课后独立完成,巩固所学知识。
2.探究性问题:设计一些具有挑战性的探究性问题,鼓励学生进行深入思考,培养学生的创新能力和解决问题的能力。
然而,学生的学习习惯存在一定差异。部分学生可能在学习过程中缺乏耐心,对复杂的推导过程容易产生抵触情绪;还有部分学生可能过于依赖教师,缺乏自主学习的能力和习惯。
(二)学习障碍
在学习本节课之前,学生已经具备了以下前置知识或技能:
1.平面几何的基本知识,如点、线、面的关系,角的性质等。

九上数学《圆的概念(教案)》

九上数学《圆的概念(教案)》

九上数学《圆的概念(教案)》一、教学目标:知识与技能:1. 理解圆的定义,掌握圆的基本性质;2. 学会使用圆规和量角器画圆;3. 了解圆与直线、圆与圆的位置关系。

过程与方法:1. 通过观察、操作、探究等活动,培养学生的动手能力和观察能力;2. 利用几何画板或实物模型,引导学生直观地理解圆的概念和性质;3. 学会用圆的方程表示圆,并运用圆的性质解决实际问题。

情感态度价值观:1. 激发学生对数学的兴趣和好奇心,培养学生的审美情感;2. 培养学生合作交流、归纳总结的能力;3. 渗透转化思想,培养学生的逻辑思维能力。

二、教学重点与难点:重点:1. 圆的定义及其基本性质;2. 圆的方程及其应用。

难点:1. 圆的位置关系的理解;2. 圆的方程的求解。

三、教学方法:情境教学法、问题驱动法、合作学习法、直观演示法。

四、教学准备:教师准备:教材、PPT、圆规、量角器、几何画板、实物模型等。

学生准备:笔记本、尺子、圆规、量角器等。

五、教学过程:1. 导入新课:利用生活中的实例,如车轮、地球等,引导学生思考圆的特征,引发对圆的兴趣。

2. 自主学习:让学生自学教材,了解圆的定义和基本性质,归纳圆的特征。

3. 课堂讲解:讲解圆的定义、圆心和半径的概念,引导学生掌握圆的基本性质;通过PPT或板书,展示圆的性质示意图,帮助学生直观理解。

4. 动手实践:让学生使用圆规和量角器画圆,观察和总结画圆的方法和技巧。

5. 合作交流:分组讨论圆与直线、圆与圆的位置关系,引导学生用圆的性质解释实际问题。

6. 课堂小结:总结本节课所学内容,强调圆的定义、性质和位置关系的重要性。

7. 课后作业:布置有关圆的练习题,巩固所学知识,提高运用能力。

六、教学反思:课后,教师应认真反思本节课的教学效果,从学生的掌握情况、课堂互动、教学方法等方面进行总结,发现问题并及时调整教学策略,以提高教学质量。

七、课堂评价:1. 学生课堂表现评价:观察学生在课堂上的参与程度、提问回答、合作交流等情况,评价学生的学习态度和效果。

数学九年级上《圆的基本性质》教案

数学九年级上《圆的基本性质》教案

圆【知识框架】【基础知识】1、 圆:在平面内到定点的距离等于定长的点的集合。

思考下列问题“画圆需要几个条件,如何画圆”(圆心和半径;圆心确定圆的位置,半径确定圆的大小) 2、 过不在同一直线上的三点确定一个圆。

思考问题“如何画这个圆”;(作两条边的中垂线,以两条中垂线的交点为圆心,交点到顶点的距离为半径画圆) 3、 圆的有关概念:弧、弦、弦心距、圆心角、圆周角、直径等 4、 圆的基本性质:(1)圆既是轴对称图形,又是中心对称图形;经过圆心的直线都是它的对称轴;(2)垂径定理:①垂直于弦的直径平分弦,并且平分这条弦所对的弧;②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧; ③弦的中垂线经过圆心,并且平分弦所对的弧;④平分弦所对的弧的直径垂直于弦,并且平分弦所对的另一条弧;5、 基本图形:∠A+∠C=180;∠B+∠ADC=180,AB ∥CD∠1=∠B 弧AC=弧BD【计算相关】1. 直角三角形外接圆半径直角三角形外接圆圆心在直角三角形斜边的中点上,直角三角形外接圆半径是直角三角形斜边的一半 r=2a2. 等边三角形外接圆半径半径r ,等边三角形边长的一半2a,弦心距d 构成一个有30°角 的Rt △ r 2=d 2+(2a )2r ,d ,2a三者中,知道其中一或两个量,可求出其余的量,即d :2a:r=1:3:23. 正方形外接圆半径两半径,正方形的一边构成一个等腰直角三角形 r=22a 即r :r :a=1:1:2 4. 垂径定理半径r ,弦心距d ,半弦2a构成一个直角三角形 r 2=d 2+(2a )2 r ,d ,2a 三者中,知道其中两个量,可求出第三个量或列方程(垂径定理在圆中求线段长度是应用最多的一个定理) 5. 弧长与扇形面积l=180R n π S=3602R n π S=21lR l ,n ,R ,S 四者知二,可求其余 6. 圆锥侧面积与全面积圆锥侧S=πrl 圆锥全面积S=πrl+πr 2圆锥中高线h ,底面半径r ,母线l 三者构成一直角三角形,所以h 2+r 2=l 2圆锥当中的等量关系:圆锥侧面积S=圆锥展开后扇形S圆锥底面周长C=圆锥展开后扇形弧长l圆锥母线l=圆锥展开后扇形半径R∵圆锥底面周长C=圆锥展开后扇形弧长l ∴C=2πr=l=180ln π ∴n=360⨯lr圆锥的侧面展开图是扇形,该扇形的圆心角n= 360⨯lr7. 圆心角,圆周角,弧度的计算 圆心角m 弧度=2圆周角圆心角,圆周角,弧度三者中知其一,可得其余的量(用到的定理有圆心角定理,圆周角定理,垂径定理)8. 点与圆的位置关系 9. 点在弧上 【作图】10. 三角形外接圆的画法:三角形外接圆圆心是三角形三边中垂线的交点。

浙教版九年级数学上册 第三章圆的基本性质 教材分析教案

浙教版九年级数学上册 第三章圆的基本性质 教材分析教案

浙教版九年级数学上册第三章圆的基本性质教材分析教案“第章圆的基本性质”教材分析圆属于空间与图形这部分内容,在前面学生已经学习了直线形图形的有关的性质,会借助于变换、坐标、证明等手段去认识图形的性质,并在小学的基础上,学生已经积累了大量有关圆的经验,本章是在此基础上,对圆的概念及其有关的性质进行系统的梳理,从圆的概念形成,圆本身的性质,圆中的量之间的关系以及圆中有关量的计算等方3.13.23.33.43.5弧长及扇形的面积课时3.6圆锥的侧面积和全面积课时复习、评估课时,机动使用课时,合计课时一、教科书内容和课程教学目标⑴本章知识结构框图如下:“垂经定理”;借助于圆的旋转不变性去探索圆中弧、弦、弦心距、圆心角之间的关系.而且由对称性可以尝试用其他的方法来验证有关的结论.在探索圆周角和圆心角之间的关系时,主要是归结为同弧上圆周角与圆心角的关系(即圆周角定理),让学生形成分类讨论的思想.弧长、扇形的面积、圆锥的侧面积和全面积的计算公式不是直接给出的,而是让学生去进行探索、类比、归纳.弧长的公式是类比圆的周长公式而归纳得出,扇形的面积公式是类比圆的面积公式而得;圆锥的侧面积是通过其侧面展开图是一个扇形,而由扇形的计算公式而得出的.因此,“弧长及扇形的面积、圆锥的侧面积和全面积”这两节不仅仅要求学生会计算,而且应该使他们理解公式的意义,理解算法的意义.二、本章编写特点⑴体现数学来源于生活,展示丰富多彩的几何世界人们生活在三维空间中,丰富多彩的图形世界给“空间与图形”的学习提供了大量现实有趣的素材.其中包含了大量与圆有关的现实物体、现实问题等内容,反映数学在建筑、机械、艺术等方面的广泛应用,体现数学丰富的文化价值的内容,既可以很好地⑵的条件,它不仅仅是一个画圆的问题,而是使学生体会到在画圆中所体现的归纳的思想.②通过折纸,让学生探索圆的对称性,并在此基础上,让学生再通过折纸探索出圆的有关性质(垂径定理)等有关内容.③利用圆的旋转不变性探索圆中弧、弦、圆心角之间的关系.而在探索圆周角和圆心角之间的关系时,主要是归结为同弧上圆周角与圆心角的关系.④利用“合作学习”“做一做”等让学生自己探索有关的结论,比如通过学生自己合作,把圆锥沿母线剪开、铺平,并探索出圆锥侧面积和全面积的计算公式等等.整个设计意图,不仅在于引导学生观察和自觉分析生活现实和数学现实中的圆的现象,自觉总结圆的有关性质并自觉地应用到现实之中,逐步形成正确的数学观,并通过圆进一步丰富学生的数学活动经验和体验,在学习中有意识地培养学生积极的情感、态度,认识数学丰富的人文价值,促进观察、分析、归纳、概括等一般能力和审美意识的发展.从而进一步培养学生探究习惯、把握和研究“空间与图形”的水平.⑶转换学习方式,强调学生的动手操作和主动参与学习方式的转变是课程改革的一个重要目标,与其他数学内容相比,“空间与图方式”衔接前两个学段,就要深入了解前面两个学段数学中“空间与图形”的内容、要求,了解它们与这一部分内容的联系与区别.⑵在教学中要注意如下几点:①要使学生从事观察、测量、折叠、平移、旋转、推理等活动,帮助他们有意识地积累活动经验,获得成功的体验.教学中,应鼓励学生动手、动口、动脑,并进行同伴之间的合作交流.②充分利用现实生活和数学中的素材,使学生探索与圆有关的概念和性质.尽可能地设计具有挑战性的情景,激发学生求知、探索的欲望.③本章的一个特点是由圆的旋转不变性、轴对称性导出圆的有关性质(如圆心角定理、垂径定理等),体现了利用运动观点来研究图形的思想和方法.也让学生通过本章的学习,体验用运动观点来研究图形的思想和方法.因此,在圆的对称性、圆周角与圆心角的关系等内容中,要有意识地满足学生多样化的学习要求.④在观察、探究和推理活动中,使学生有意识地归纳数学思想方法,发展学生的有条理地思考,并能清晰地表达自己的发现.教学中,教师一方面应充分运用好课本已提⑤⑥⑦)。

初中数学初三数学上册《圆的基本性质》教案、教学设计

初中数学初三数学上册《圆的基本性质》教案、教学设计
-通过问题驱动,引导学生发现圆周角与圆心角的关系,推导圆周角定理。
3.应用与实践教学:
-创设实际问题情境,如计算操场的周长和面积,让学生运用所学知识解决问题。
-设计分层练习,针对不同水平的学生提供不同难度的题目,使每个学生都能得到有效训练。
4.思维能力培养:
-鼓励学生提出自己的观点和疑问,进行小组讨论,培养学生的批判性思维。
-小组内讨论并解决一个涉及圆的复杂几何问题,要求给出解题过程和最终答案。
作业要求:
-请学生认真完成作业,注意书写的规范性和解答的完整性。
-作业完成后,进行自我检查和同伴互评,相互学习,共同提高。
-教师将根据作业完成情况,给予及时反馈,帮助学生发现并改正错误。
5.通过数学软件或实际操作,观察圆的性质,培养学生的直观想象能力。
(二)过程与方法
1.采用问题驱动的教学方法,引导学生通过观察、实验、推理等过程,探索圆的基本性质。
2.利用小组合作学习,让学生在交流、讨论中互相启发,提高解决问题的能力。
3.运用变式教学,让学生从不同角度、不同、学情分析
本章节的学习对象为初三学生,他们在前两年的数学学习中,已经掌握了平面几何的基本知识和技能,对于点、线、面等基本元素有了较为深入的理解。在此基础上,学生对圆的学习具备了一定的认知基础。然而,圆作为一种特殊的几何图形,其性质和运用对学生而言仍存在一定难度。因此,在教学过程中,教师需关注以下几点:
初中数学初三数学上册《圆的基本性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解圆的基本概念,掌握圆的符号表示、半径、直径、圆周等基本元素。
2.学会使用圆规画圆,掌握圆的对称性质,能够运用到实际问题的解决中。
3.掌握圆的基本性质,如圆上任意两点到圆心的距离相等,圆的切线垂直于过切点的半径等。

深入浅出的新人教版九年级数学上册教案:圆的基本性质和应用

深入浅出的新人教版九年级数学上册教案:圆的基本性质和应用

数学是一门非常重要的学科,在我们日常生活中处处可见它的身影,我们需要通过不断学习来不断提高自己的数学技能。

在九年级数学上册中,圆的基本性质和应用是一项非常重要的学科内容。

本文将为大家详细介绍深入浅出的新人教版九年级数学上册教案:圆的基本性质和应用。

一、教学目标1. 熟练掌握圆的定义和性质,能够认识圆的元素和如何确定圆;2. 掌握与圆有关的基本术语,例如圆心、半径等,并能够用这些术语来描述圆。

3. 能够运用圆的性质,解决各种实际问题二、教学内容1. 圆的基本定义和性质(1)定义:圆是由平面上所有与定点距离相等的点组成的图形,定点叫做圆心,定长叫做半径。

(2)性质:① 圆上任意两点之间的距离等于它们到圆心的距离。

② 直径是圆上的最长线段,过圆心,并把圆分成相等的两部分。

③ 角度方向的度量:弧度制。

一周的弧度数是2π弧度。

2. 圆的基本术语(1)圆心:圆的中心点。

(2)半径:定点到圆上任意点的距离。

(3)直径:圆上任意两点的距离。

(4)弧长:弧上的线段的长度。

(5)圆周角:圆心所在的角。

(6)切线:在圆点上的与圆相切的直线。

三、教学方法教授圆的相关知识时,可以使用多种教学方法来帮助学生更好地掌握所学内容。

以下是一些值得推荐的教学方法:1. 讲解课件:讲解课件可以让学生更好地了解圆的相关知识,并通过图片、图表等形式来加强学生的理解和记忆。

2. 案例教学:可以使用实际问题或练习题,让学生运用所学知识解决问题或练习题。

3. 组合教学:组合教学可以让学生通过合作学习,互相解决难点,在彼此的帮助中共同学习,共同进步。

四、教学重点和难点本章教学重点为:1. 熟练掌握圆的定义和性质。

2. 掌握与圆相关的基本术语。

3. 能够运用圆的性质,解决各种实际问题。

本章教学难点为:1. 对于圆的定义和性质需要适当的理解和记忆,切不可混淆。

2. 掌握与圆相关的基本术语。

3. 能够灵活运用圆的相关知识解决实际问题。

五、教学设计在教学过程中,我们可以通过以下教学设计来提高学生的学习效率:1. 利用多媒体和图形素材,生动形象地显示出圆的定义、性质以及相关术语的内涵。

浙教版数学九年级上册3.1《圆》教案2

浙教版数学九年级上册3.1《圆》教案2

浙教版数学九年级上册3.1《圆》教案2一. 教材分析《圆》是浙教版数学九年级上册3.1节的内容,本节课主要让学生掌握圆的定义、圆心和半径的概念,以及圆的性质。

通过学习,学生能够理解圆的基本特征,并能运用圆的性质解决实际问题。

二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识有一定的基础。

但是,对于圆这一概念,学生可能在生活中有所接触,但对其严谨的数学定义和性质可能还不够清晰。

因此,在教学过程中,需要注重引导学生从实际生活中抽象出圆的数学定义,并通过实例让学生感受圆的性质。

三. 教学目标1.知识与技能:理解圆的定义,掌握圆心和半径的概念,了解圆的性质,并能运用圆的性质解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的抽象思维能力和解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学与生活的紧密联系。

四. 教学重难点1.圆的定义及其性质2.圆心和半径的概念3.运用圆的性质解决实际问题五. 教学方法1.情境教学法:通过生活实例引入圆的概念,让学生感受圆的存在。

2.启发式教学法:引导学生观察、思考、交流,发现圆的性质。

3.实践操作法:让学生动手操作,加深对圆的理解。

六. 教学准备1.教学课件:制作课件,展示圆的图片、实例和动画。

2.教学素材:准备一些圆形的物品,如硬币、圆桌等。

3.教学工具:准备黑板、粉笔、直尺、圆规等。

七. 教学过程导入(5分钟)1.展示一些圆形的物品,如硬币、圆桌等,让学生观察并说出它们的共同特点。

2.引导学生思考:如何用数学语言来定义圆?呈现(10分钟)1.介绍圆的定义:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆。

2.讲解圆心和半径的概念:圆心是圆的中心点,半径是圆心到圆上任意一点的距离。

3.展示圆的性质:圆是对称图形,直径所在的直线是圆的对称轴;圆周率π表示圆的周长与直径的比值。

九年级数学上册《圆》教案、教学设计

九年级数学上册《圆》教案、教学设计
(2)关注学生的学习进步,给予鼓励和表扬,提高他们的自信心。
四、教学内容与过程
(一)导入新课
1.教师出示一张白纸,剪下一个圆形,引导学生观察这个圆形与之前学过的图形有什么不同。
2.学生回答后,教师总结圆的特点,如边界上的点到中心点距离相等等,从而引出圆的概念。
3.接着,教师提出问题:“在日常生活中,你们还见过哪些圆形的物体?”让学生举例,从而引导学生认识到圆在生活中的广泛应用。
(1)课堂提问:了解学生对圆的基本概念和性质的理解程度。
(2)作业批改:检查学生对圆的周长和面积公式的掌握程度。
(3)小组讨论:评估学生在合作探究中的表现,包括沟通能力、协作能力等。
6.反馈与调整:根据学生的学习情况和教学评价,及时调整教学策略,以提高教学效果。
(1)针对学生在学习过程中出现的问题,进行有针对性的讲解和指导。
(1)请简述圆的基本概念,包括圆心、半径、直径、圆周率等。
(2)推导并说明圆的周长和面积公式。
2.实践应用题:
(1)一个圆形花坛的半径是5米,计算其周长和面积。
(2)已知一个圆形硬币的直径是2.5厘米,求其周长和面积。
3.提高拓展题:
(1)一个圆形水池的直径为10米,要在水池周围铺设一条宽为1米的环形小路,求这条小路的面积。
九年级数学上册《圆》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握圆的基本概念,理解圆的半径、直径、圆周率等基本属性,并能够运用相关性质进行计算。
2.使学生掌握圆的周长、面积公式,并能熟练计算圆的周长和面积。
3.培养学生运用圆的相关知识解决实际问题的能力,例如在平面几何中涉及圆的问题、实际生活中与圆有关的问题等。
(2)如何计算一个圆形物体的周长和面积?

人教版数学九年级上册24.1《圆(3)》教学设计

人教版数学九年级上册24.1《圆(3)》教学设计

人教版数学九年级上册24.1《圆(3)》教学设计一. 教材分析人教版数学九年级上册第24.1节《圆(3)》主要内容包括:圆的周长和圆的面积的计算。

这部分内容是中学数学中的重要知识,对于学生理解数学的几何图形,以及培养学生解决实际问题的能力具有重要意义。

教材通过引入圆的周长和面积的计算公式,使学生能够更好地理解圆的性质,为后续学习圆的其他性质和应用打下基础。

二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和公理体系有一定的了解。

但是,对于圆的周长和面积的计算,部分学生可能还存在着理解和应用上的困难。

因此,在教学过程中,需要针对学生的实际情况,进行有针对性的讲解和辅导,帮助学生克服学习中的困难。

三. 教学目标1.让学生掌握圆的周长和面积的计算公式。

2.培养学生运用圆的性质解决实际问题的能力。

3.提高学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.圆的周长和面积的计算公式的推导。

2.圆的周长和面积公式的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过探索和思考,得出圆的周长和面积的计算公式。

2.运用多媒体教学,直观展示圆的性质和计算过程,帮助学生更好地理解和掌握知识。

3.采用分组合作的学习方式,让学生在讨论和交流中,提高解决问题的能力。

六. 教学准备1.多媒体教学设备。

2.圆的相关教具。

3.练习题。

七. 教学过程1.导入(5分钟)通过复习平面几何的基本知识,如点、线、面的性质,引出圆的周长和面积的计算。

2.呈现(10分钟)利用多媒体展示圆的周长和面积的计算过程,引导学生思考如何推导出这两个公式。

3.操练(15分钟)学生分组讨论,每组尝试推导出圆的周长和面积的计算公式。

教师在旁边辅导,解答学生的疑问。

4.巩固(5分钟)学生独立完成教材上的相关练习题,教师及时批改,指出错误并讲解。

5.拓展(5分钟)利用圆的周长和面积公式,解决实际问题,如计算自行车轮胎的周长和面积,估算圆桌的面积等。

九年级数学上人教版《 圆的性质》教案

九年级数学上人教版《 圆的性质》教案

《圆的性质》教案一、教学目标1.知识与技能:掌握圆的基本性质,包括圆心角、弧、弦之间的关系,垂径定理及其推论,圆周角定理及其推论等。

2.过程与方法:通过观察、猜想、验证、推理等活动,培养学生的探究能力和逻辑思维能力。

3.情感态度与价值观:让学生感受数学的美,体验数学的价值,培养学生的合作精神和创新意识。

二、教学重难点1.教学重点:掌握圆的基本性质及其应用。

2.教学难点:垂径定理及其推论,圆周角定理及其推论的理解和应用。

三、教学方法采用启发式教学法、讨论式教学法和探究式教学法相结合的教学方法。

通过实例、问题、图片等直观材料,引导学生观察、猜想、验证、推理,从而得出结论。

同时,注重学生的参与和合作,让学生在讨论和探究中互相学习、互相帮助。

四、教具准备多媒体课件、圆规、直尺等。

五、教学过程(一)导入新课通过回顾圆的概念和性质,引出本节课的主题——圆的性质。

同时,展示一些与圆有关的图片或动画,激发学生的学习兴趣和探究欲望。

(二)学习新课1.圆心角、弧、弦之间的关系(1)通过观察、猜想、验证等活动,让学生自主探究圆心角、弧、弦之间的关系。

(2)通过实例进行讲解,让学生更好地理解圆心角、弧、弦之间的关系。

(3)通过练习进行巩固和提高。

2.垂径定理及其推论(1)通过观察、猜想、验证等活动,让学生自主探究垂径定理及其推论。

(2)通过实例进行讲解,让学生更好地理解垂径定理及其推论。

(3)通过练习进行巩固和提高。

3.圆周角定理及其推论(1)通过观察、猜想、验证等活动,让学生自主探究圆周角定理及其推论。

(2)通过实例进行讲解,让学生更好地理解圆周角定理及其推论。

(3)通过练习进行巩固和提高。

同时,强调圆周角定理的应用价值,例如在解决实际问题中的应用。

(三)巩固练习通过设计一些具有代表性的练习题,让学生进一步巩固和提高对圆的性质的理解和应用能力。

同时,注重学生的参与和合作,让学生在讨论和探究中互相学习、互相帮助。

(四)课堂小结通过回顾本节课所学内容,总结圆的性质及其应用,强调重点和难点。

人教版九年级上册《圆的有关性质》教案

人教版九年级上册《圆的有关性质》教案

人教版九年级上册《圆的有关性质》教案一、教学目标1.理解圆的相关术语,如圆心、半径、直径等;2.掌握圆的基本性质,如圆心角、半径垂直弦等;3.能够应用圆的相关性质解决问题;4.培养学生分析、解决问题的能力。

二、教学内容1.圆的定义和相关术语;2.圆心角、圆弧、弦和它们的关系;3.弧长、扇形的性质;4.正多边形内接于圆的性质。

三、教学重点1.圆的定义和相关术语;2.圆心角、圆弧、弦和它们的关系。

四、教学难点1.弧长、扇形的性质;2.正多边形内接于圆的性质。

五、教学方法1.演示法;2.实验法;3.课堂讨论法;4.问题解决法。

六、教学步骤1.引入(5分钟):通过介绍子午线和赤道的关系,向学生引出圆的定义。

同时,引导学生认识圆的相关术语,如圆心、半径、直径等。

2.示例(10分钟):通过投影仪展示一张圆的图片,向学生展示圆的形状及其相关量的表示方法。

引导学生找出其中的圆心、半径、直径等术语,并解释其中的数学意义。

3.理论(20分钟):讲解圆心角、圆弧、弦等概念及它们的关系。

通过具体示例演示如何求弦长、弧长、扇形的面积等。

4.实验(15分钟):让学生分成小组,在纸上绘制不同大小的圆,并探究圆的半径、直径、弦、圆心角、圆弧长度等相互关系。

通过实验,加深对圆的相关概念的认识。

5.讨论(15分钟):让学生就正多边形内接于圆的性质进行小组讨论。

教师引导学生思考为什么正三角形、正四边形等正多边形的顶点能够在一个圆上,如何求出正多边形的内角和,以及内接于圆的正多边形面积与圆周长的关系等问题。

6.总结(5分钟):小结本节课的知识点和要点。

引导学生再次回顾圆的定义和相关术语,圆心角、圆弧、弦等概念及它们的关系,并表扬本课表现优异的同学。

七、教学评估1.小组实验:学生用纸笔绘制圆,并找出其中的圆心、半径、直径、弦、圆心角、圆弧长度等,进行实验记录和探究。

2.课堂讨论:学生在小组内进行讨论,分享正多边形内接于圆的性质的理解和应用。

第三章圆的基本性质大单元教学设计浙教版九年级数学上册

第三章圆的基本性质大单元教学设计浙教版九年级数学上册

8.探索弧长计算公式及扇形的面积计算公式,并能利用公式解决问题。
内容分析
本章的主要内容有:圆的定义、弦、弧、弦心距、圆心角、圆周角、扇形和三角形的外接 圆等有关概念.圆属于空间与图形这部分内容,在前面学生已经学习了直线形图形的有关
的性质,会借助于变换、坐标、证明等手段去认识图形的性质,并在小学的基础上,学
学生的数学运用能
力.
1. 经历探 索扇 形面积 1.扇形的概念和扇 推导扇形面积计算
计算公式的过程,培养 形面积的计算公式. 公式的过程.掌握扇
学生的探索能力.
2.弧长与扇形面积 形面积计算公式,会
2. 了解扇 形面 积公式 的关系.
用公式解决问题.
后,能用公式解决问
题,训练学生的数学运
用能力.
图形旋转后的图形的 并且还知道要确定 旋转中心的距离相
作法.
一个三角形旋转后 等,对应点与旋转中
的位置。
心的连线所成的角
垂径定理 2 圆心角 2
彼此相等的性质.
1.通过实验观察,让学 1.了解圆是轴对称 使学生掌握垂径定
生理解圆的轴对称性; 图形,过圆心的任意 理、记住垂径定理的
2.掌握垂径定理,理解 一条直线(或直径所 题设和结论.
其探索和证明过程; 在的直线)都是它的 对垂径定理的探索
运 用垂径 定理 解决有 对称轴.
和证明,在解决问题
关的计算和证明问题. 2.通过猜想,证明, 时想到用垂径定理.
形成垂径定理.
研 究垂径 定理 的逆定 研究垂径定理及其 证明垂径定理,会运
理.
逆定理.
用垂径定理及其逆
2.运用垂径定理的逆 2.解决有关弦的问 定理解决问题.
定理解决问题.

浙教版数学九年级上册3.1《圆》教学设计3

浙教版数学九年级上册3.1《圆》教学设计3

浙教版数学九年级上册3.1《圆》教学设计3一. 教材分析浙教版数学九年级上册3.1《圆》是本册教材中的重要内容,主要让学生掌握圆的定义、圆的性质、圆的方程等基本知识。

本节课的内容是在学生已经学习了平面几何的基础上进行学习的,对于学生来说,具有一定的挑战性。

教材通过实例引入圆的概念,引导学生探究圆的性质,并通过实际问题解决让学生感受圆的应用价值。

二. 学情分析九年级的学生已经具备了一定的几何知识,对于平面几何中的线段、角度等概念有一定的了解。

但是,对于圆的概念和性质,大部分学生可能是初次接触,需要通过实例和探究活动来理解和掌握。

另外,学生可能对于圆的方程感到陌生,需要通过具体的例子和操作来理解。

三. 教学目标1.理解圆的定义和性质,能够运用圆的知识解决实际问题。

2.掌握圆的方程,能够运用圆的方程解决几何问题。

3.培养学生的观察能力、操作能力和解决问题的能力。

四. 教学重难点1.圆的定义和性质的理解。

2.圆的方程的掌握和运用。

五. 教学方法1.实例引入:通过具体的实例引入圆的概念,让学生感受圆的存在和应用。

2.探究活动:学生进行小组探究,让学生通过自主学习、合作交流来理解和掌握圆的性质。

3.讲解示范:教师通过讲解和示范,让学生掌握圆的方程的推导和运用。

4.练习巩固:通过布置相关的练习题,让学生巩固所学知识,并及时给予反馈和指导。

六. 教学准备1.教学课件:制作相关的教学课件,展示圆的性质和方程的推导过程。

2.练习题:准备相关的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过具体的实例,如车轮、地球等,引入圆的概念,引导学生思考圆的特点和应用。

2.呈现(10分钟)展示圆的性质,如圆的直径、半径、圆心等,并通过实物或图片进行说明。

引导学生观察和理解圆的性质。

3.操练(15分钟)学生进行小组探究,让学生通过自主学习、合作交流来理解和掌握圆的性质。

可以给出一些实际问题,让学生运用圆的性质来解决。

九年级上册圆的基本性质教案

九年级上册圆的基本性质教案
然后把此结论归纳成命题的形式:
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.
垂径定理的几何语言
∵CD为直径,CD⊥AB(OC⊥AB)
∴EA=EB,AC=BC,ADB,如图,用直尺和圆规求作这条弧的中点.(先介绍弧中点概念)
作法:
⒈连结AB.
⒉作AB的垂直平分线CD, 交弧AB于点E.
②分别作AB、AC的垂直平分线,并交于一点O,O为圆心;
③连结OA,以OA为半径画圆即可.
2.精心的判一判
(1)过两点可以作无数个圆()
(2)经过三点一定可以做一个圆()
(3)顶点都在圆上的三角形叫做圆的外接三角形()
(4)任意一个三角形一定有一个外接圆,并且只有一个外接圆()
(5)任意一个圆一定有一个内接三角形,并且只有一个内接三角形()
注:弦长、半径、弦心距三个量中已知两个,就可以求出第三个.
五、目标训练,及时反馈
1.已知⊙0的半径为13,一条弦的AB的弦心距为5,则这条弦的弦长等于.
答案:24
2.如图,AB是⊙0的中直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是()
A.∠COE=∠DOEB.CE=DEC.OE=BED.BD=BC
③半径相等的两个圆能够完全重合,我们把半径相等的两个圆叫做
等圆.例如,图中的⊙O1和⊙O2是等圆.
圆心相同,半径不相等的圆叫做同心圆.(学生画同心圆)
完成课本第58页的做一做.
三、 点和圆的位置关系
同学们看过奥运会的射击比赛吗?射击的靶子是由许多圆组成的,射击的成绩是由击中靶子不同位置所决定的;右图是一位运动员射击10发子弹在靶上留下的痕迹.你知道这个运动员的成绩吗?请同学们算一算.(击中最里面的圆的成绩为10环,依次为9、8、…、1环).这一现象体现了平面上的点与圆的位置关系,如何判断点与圆的位置关系呢?我们知道圆上的所有点到圆心的距离都等于半径,若点在圆上,那么这个点到圆心的距离等于半径,若点在圆外,那么这个点到圆心的距离大于半径,若点在圆内,那么这个点到圆心的距离小于半径.

九年级数学第三章《圆》教材分析

九年级数学第三章《圆》教材分析

九年级数学第三章《圆》的教材分析一、教学内容1.本单元数学的主要内容.(1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.(2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,•圆和圆的位置关系.(3)正多边形和圆.(4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.二、教学目标1.知识与技能(1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.(2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.(3)进一步认识和理解正多边形和圆的关系和正多边的有关计算.(4)熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法(1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.•了解概念,理解等量关系,掌握定理及公式.(2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流.(3)在探索圆周角和圆心角之间的关系的过程中,•让学生形成分类讨论的数学思想和归纳的数学思想.(4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,•使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.(5)探索弧长、扇形的面积、•圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.三、教学重点1.平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,•所对的弦也相等及其运用.3.在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半及其运用.4.半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆.6.直线L 和⊙O 相交⇔d<r ;直线L 和圆相切⇔d=r ;直线L 和⊙O 相离⇔d>r 及其运用.7.圆的切线垂直于过切点的半径及其运用.8.•经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等,•这一点和圆心的连线平分两条切线的夹角及其运用.10.两圆的位置关系:d 与r 1和r 2之间的关系:外离⇔d>r 1+r 2;外切⇔d=r 1+r 2;相交⇔│r 2-r 1│<d<r 1+r 2;内切⇔d=│r 1-r 2│;内含⇔d<│r 2-r 1│.11.正多边形和圆中的半径R 、边心距r 、中心角θ之间的等量关系并应用这个等量关系解决具体题目.12.n °的圆心角所对的弧长为L=180n R π,n °的圆心角的扇形面积是S 扇形=2360n R π及其运用这两个公式进行计算. 13.圆锥的侧面积和全面积的计算.四、教学难点1.垂径定理的探索与推导及利用它解决一些实际问题.2.弧、弦、圆心有的之间互推的有关定理的探索与推导,•并运用它解决一些实际问题.3.有关圆周角的定理的探索及推导及其它的运用.4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用.6.直线和圆的位置关系的判定及其应用.7.切线的判定定理与性质定理的运用.8.切线长定理的探索与运用.9.圆和圆的位置关系的判定及其运用.10.正多边形和圆中的半径R 、边心距r 、中心角θ的关系的应用.11.n 的圆心角所对的弧长L=180n R π及S 扇形=2360n R π的公式的应用. 12.圆锥侧面展开图的理解。

浙教版数学九年级上册《3.1 圆》教案2

浙教版数学九年级上册《3.1 圆》教案2

浙教版数学九年级上册《3.1 圆》教案2一. 教材分析《浙教版数学九年级上册》第三单元《圆》是整个初中数学的重要内容,也是九年级上学期的重点和难点。

本节内容主要介绍了圆的定义、性质、圆的方程以及圆与直线的关系等。

通过本节的学习,使学生掌握圆的基本概念和性质,能够解决一些与圆有关的问题,为高中数学打下基础。

二. 学情分析九年级的学生已经具备了一定的几何知识,如平面几何图形的性质、三角形、四边形等。

但是,对于圆的概念和性质,部分学生可能还比较陌生。

因此,在教学过程中,需要结合学生的实际情况,由浅入深,循序渐进地进行教学。

三. 教学目标1.知识与技能:使学生掌握圆的定义、性质、圆的方程以及圆与直线的关系等基本知识。

2.过程与方法:通过观察、思考、讨论等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:圆的定义、性质、圆的方程以及圆与直线的关系。

2.难点:圆的性质和圆与直线的关系的运用。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识圆,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生思考,培养学生解决问题的能力。

3.合作学习法:分组讨论,共同解决问题,培养学生的团队合作精神。

4.练习法:通过课堂练习和课后作业,巩固所学知识。

六. 教学准备1.教具:黑板、粉笔、多媒体设备等。

2.学具:笔记本、尺子、圆规等。

七. 教学过程1.导入(5分钟)利用多媒体展示生活中的圆形物体,如地球、篮球等,引导学生认识圆,并提出问题:“什么是圆?圆有哪些特点?”2.呈现(10分钟)讲解圆的定义、性质和圆的方程,通过示例和练习,使学生掌握圆的基本知识。

3.操练(10分钟)分组讨论:如何用圆规画一个圆?并互相展示成果。

课堂练习:求解一些与圆有关的问题,如圆的周长、面积等。

4.巩固(10分钟)讲解圆与直线的关系,如相切、相交等,并通过示例和练习,使学生掌握圆与直线的关系。

人教版九上数学圆教案优秀6篇

人教版九上数学圆教案优秀6篇

人教版九上数学圆教案优秀6篇依据实际教学内容和进度编写教案,有助于提高课堂教学的有效性,教案的详细撰写是提高教学效果的关键,教师应投入更多精力,以下是本店铺精心为您推荐的人教版九上数学圆教案优秀6篇,供大家参考。

人教版九上数学圆教案篇1教学目标1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径和直径的关系2、进一步理解轴对称图形的特征,体会圆的对称性。

3、在折纸找圆心验证圆是轴对称图形等活动,发展空间观念。

教材分析重点理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。

难点在折纸的过程中体会圆的特征教具教学圆规电化教具课件一、创设情境:亮亮借助光盘画了一个圆,剪出了一个圆纸片,这个圆的圆心在哪里呢?他很快找出来了。

你有办法找出来吗?二、探索活动:1、引导学生开展折纸活动,找到圆心。

(1)自己动手找到圆心。

(2)汇报交流找圆心的过程,并说出这样做的想法。

2、通过折纸你发现了什么?理解圆的对称性。

(1)欣赏美丽的轴对称图形。

(2)再折纸,体会圆的轴对称性,画出圆的对称轴。

(3)圆有无数条对称轴。

对称轴是直径所在的直线。

3、通过折纸你还发现了什么?理解同一个圆里直径和半径的关系。

(1)边折纸边观察思考同一个圆里的半径有什么特点?(2)边折纸边观察思考,同一圆里的直径与半径有什么关系?(3)引导学生用字母表示一个圆的直径与半径的关系。

三、课堂练习。

1、让学生独立完成试一试做完后交流汇报。

2、完成练一练进一步巩固圆的半径与直径的关系。

3、完成填一填让学生独立观察思考并试着填一填,有困难的向老师或同桌请教。

汇报交流,说答题根据。

4、完成书后第3题。

四、课堂小结。

引导学生小结本节内容。

学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。

教学中通过折纸观察思考,找到答案。

交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。

欣赏美丽的对称图形引导学生对以学过的轴对称图形进行整理,进一步理解轴对称图形的特征,在对比中发现这些轴对称图形的不同特点,从而突出圆具有很好的轴对称性。

人教版九年级数学上册教案_24.1圆的基本性质

人教版九年级数学上册教案_24.1圆的基本性质
(4)弦的性质:直径是圆中最长的弦,且平分弦;
(5)弧的性质:等弧对等弦,等弦对等弧;
3.圆与三角形的关系:圆的半径、直径与三角形的三边关系;
4.圆的周长与面积公式及其应用。
二、核心素养目标
1.培养学生的空间观念与几何直观:通过学习圆的基本性质,使学生能够理解圆的几何特征,建立清晰的圆的概念,提高对平面图形的认识和理解;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解圆的基本概念。圆是平面上所有与一个固定点(圆心)距离相等的点的集合。圆是几何图形中最特殊的图形之一,它在日常生活和科学技术中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了圆在实际中的应用,比如圆轮的平稳滚动,以及它如何帮助我们解决问题。
五、教学反思
在今天的教学中,我发现学生们对圆的基本性质有了初步的认识,但确实存在一些理解和掌握上的难点。在导入新课的时候,通过日常生活中的圆形物体为例,成功引起了学生们的兴趣,这是一个不错的开始。
课堂上,当我解释圆的对称性和圆周角定理时,我发现部分学生看起来有些困惑。我意识到,仅仅通过理论讲解可能还不够,下次我可以尝试使用更多的教具或实物来直观展示,比如通过折叠圆纸片来让学生更直观地感受圆的轴对称和中心对称。
在新课讲授的过程中,我尽量用简单明了的语言解释概念,并通过案例分析让学生们看到圆在实际中的应用。但在讲解重点难点时,我觉得还可以做得更好。可能需要设计一些更有针对性的问题,引导学生逐步思考,帮助他们更好地理解和消化这些知识点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“第3章圆的基本性质”教材分析
圆属于空间与图形这部分内容,在前面学生已经学习了直线形图形的有关的性质,会借助于变换、坐标、证明等手段去认识图形的性质,并在小学的基础上,学生已经积累了大量有关圆的经验,本章是在此基础上,对圆的概念及其有关的性质进行系统的梳理,从圆的概念形成,圆本身的性质,圆中的量之间的关系以及圆中有关量的计算等方面,加强对圆的认识.
圆是一种特殊的图形,它对于培养学生的数学能力,形成数学的思想方法具有重要的价值.由于圆既是中心对称图形又是轴对称图形,学生可以通过多种方式来认识它,这样有助于培养学生的数学能力.同时,圆的有关性质的探索是通过多种方法进行的,这样有助于学生形成基本的数学思想和方法.这些基本的数学思想方法有:
⑴对称思想:圆的轴对称性、中心对称性.
⑵推理思想:由对称性及其他方法来验证圆的有关结论.
⑶分类归纳思想:将圆周角和圆心角之间的关系归结为同弧上圆周角与圆心角的关系,让学生形成分类讨论的思想.
⑷算法思想:弧长、扇形的面积、圆锥的侧面积和全面积的计算公式不是直接给出的,而是让学生去进行探索、类比、归纳.不仅仅要求学生会计算,而且应该理解公式及其算法的意义.
本章教学时间约需15课时,具体安排如下:
3.1圆2课时
3.2圆的对称性 2课时
3.3圆心角 2课时
3.4圆周角 2课时
3.5弧长及扇形的面积 2课时
3.6圆锥的侧面积和全面积 1课时
复习、评估3课时,机动使用1课时,
合计15课时
一、教科书内容和课程教学目标
⑴本章知识结构框图如下:
①通过日常生活中的实例,让学生感受圆是生活中大量存在的图形.
②理解圆及其有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆的位置关系.
③探索如何过一点、两点和不在同一直线上的三点作圆.
④使学生经历探索圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征.
⑤认识圆的轴对称性和中心对称性.
⑥了解三角形的外心.
⑦会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积.
⑶本章教材分析
本章主要学习圆的定义、弦、弧、弦心距、圆心角、圆周角、扇形和三角形的外接圆等有关概念.
在“圆”这一节,主要是让学生通过圆的形成归纳出圆的定义.虽然在小学阶段,学生已经具有了圆的有关的知识,但还没有抽象出“平面上到定点的距离等于定长的所有点组成的图形叫做圆”的概念.通过探索如何过一点、两点和不在同一条直线上的三点作圆,使学生认识到“不在同一条直线上的三个点确定一个圆”这一确定圆的条件,它不仅仅是一个画圆的问题,而是使学生体会到在画圆中所体现的归纳的思想.另外,也使学生初步了解三角形的外心等有关知识.本节主要使学生体会圆的概念的形成过程.圆是一种特殊的图形,它既是中心对称图形又是轴对称图形,这一点在前面学习对称性时,学生已经有所了解.本章安排圆的对称性主要是借助于圆的轴对称性,去探索“垂经定理”;借助于圆的旋转不变性去探索圆中弧、弦、弦心距、圆心角之间的关系.而且由对称性可以尝试用其他的方法来验证有关的结论.在探索圆周角和圆心角之间的关系时,主要是归结为同弧上圆周角与圆心角的关系(即圆周角定理),让学生形成分类讨论的思想.
弧长、扇形的面积、圆锥的侧面积和全面积的计算公式不是直接给出的,而是让学生去进行探索、类比、归纳.弧长的公式是类比圆的周长公式而归纳得出,扇形的面积公式是类比圆的面积公式而得;圆锥的侧面积是通过其侧面展开图是一个扇形,而由扇形的计算公式而得出的.因此,“弧长及扇形的面积、圆锥的侧面积和全面积”这两节不仅仅要求学生会计算,而且应该使他们理解公式的意义,理解算法的意义.
二、本章编写特点
⑴体现数学来源于生活,展示丰富多彩的几何世界
人们生活在三维空间中,丰富多彩的图形世界给“空间与图形”的学习提供了大量现
实有趣的素材.其中包含了大量与圆有关的现实物体、现实问题等内容,反映数学在建筑、机械、艺术等方面的广泛应用,体现数学丰富的文化价值的内容,既可以很好地体现圆作为联系数学与现实生活、科技发展的桥梁作用,也可以很好地呈现它丰富的数学内涵.在本章内容的呈现中,充分体现从生活中的立体图形到平面图形,立足学生已有的生活经验、初步的数学活动经历以及已经掌握的有关数学内容,分别从观察和分析生活中大量存在的圆入手,来探索一种特殊的曲线形——圆的有关性质.学生在已有的大量的空间与图形经验的基础上,通过折纸、对称、平移、旋转、推理等认识图形的性质.在本章设计中,在探索圆的垂径定理、弧、弦、圆心角的关系、圆周角和圆心角之间的关系时,充分利用多种方式来认识、验证有关圆的性质.
⑵从学生的已有知识和经验出发,引导学生探索发现圆的性质等知识,培养学生的探究习惯
本章在内容的编排上都力图提供生动有趣、便于学生活动、交流的问题情境,并通过深入观察、分析、探究等活动,进一步丰富学生对圆的正确理解和准确把握,形成有关对圆比较全面的认识.
《数学课程标准》(实验稿)对圆的性质的要求是:使学生经历探索圆的性质.即通过实例去探索,以达到理解的目的.比如,①通过探索如何过一点、两点和不在同一直线上的三点作圆,使学生认识到“不在同一条直线上的三个点确定一个圆”这一确定圆的条件,它不仅仅是一个画圆的问题,而是使学生体会到在画圆中所体现的归纳的思想.②通过折纸,让学生探索圆的对称性,并在此基础上,让学生再通过折纸探索出圆的有关性质(垂径定理)等有关内容.③利用圆的旋转不变性探索圆中弧、弦、圆心角之间的关系.而在探索圆周角和圆心角之间的关系时,主要是归结为同弧上圆周角与圆心角的关系.④利用“合作学习”“做一做”等让学生自己探索有关的结论,比如通过学生自己合作,把圆锥沿母线剪开、铺平,并探索出圆锥侧面积和全面积的计算公式等等.
整个设计意图,不仅在于引导学生观察和自觉分析生活现实和数学现实中的圆的现象,自觉总结圆的有关性质并自觉地应用到现实之中,逐步形成正确的数学观,并通过圆进一步丰富学生的数学活动经验和体验,在学习中有意识地培养学生积极的情感、态度,认识数学丰富的人文价值,促进观察、分析、归纳、概括等一般能力和审美意识的发展.从而进一步培养学生探究习惯、把握和研究“空间与图形”的水平.
⑶转换学习方式,强调学生的动手操作和主动参与
学习方式的转变是课程改革的一个重要目标,与其他数学内容相比,“空间与图形”
的教学更容易激起学生学习数学的热情.在本章的编写中,注意从学生已有的生活经验和已有的知识出发,给学生提供“现实的、有意义的、富有挑战性的”学习材料,提供充分的数学活动和交流的机会,引导他们在“做数学”的活动中,在自主探索的过程中获得知识和技能,掌握基本的数学思想方法.
《数学课程标准》中指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式”.本章非常重视向学生提供充分从事数学活动的机会.课本通过“合作学习”“探究活动”“想一想”“做一做”等栏目中安排了大量的数学活动题材,其中一些重要的数学概念及数学方法,都是需要学生通过数学活动获得.例如,圆的定义、圆的对称性、圆锥的侧面积等等.学生在亲身体验和探索中认识数学解决问题,理解和掌握数学知识和方法.并通过与他人的合作,学会交流思想,学会表达自己的观点,学会质疑,学会倾听,学会尊重他人,学会评价信息.这种“过程”会改变数学学习的过程和结果,对促进学生的发展具有非常重要的意义.另外,通过这些“探究点”,它可以帮助学生认识图形,丰富直观,验证学生的空间想象能力.
三、教学建议
⑴注意与前两个学段的衔接
这一部分知识与前两个学段联系密切,大多数图形、概念在前两个学段都接触过,要衔接前两个学段,就要深入了解前面两个学段数学中“空间与图形”的内容、要求,了解它们与这一部分内容的联系与区别.
⑵在教学中要注意如下几点:
①要使学生从事观察、测量、折叠、平移、旋转、推理等活动,帮助他们有意识地积累活动经验,获得成功的体验.教学中,应鼓励学生动手、动口、动脑,并进行同伴之间的合作交流.
②充分利用现实生活和数学中的素材,使学生探索与圆有关的概念和性质.尽可能地设计具有挑战性的情景,激发学生求知、探索的欲望.
③本章的一个特点是由圆的旋转不变性、轴对称性导出圆的有关性质(如圆心角定理、垂径定理等),体现了利用运动观点来研究图形的思想和方法.也让学生通过本章的学习,体验用运动观点来研究图形的思想和方法.因此,在圆的对称性、圆周角与圆心角的关系等内容中,要有意识地满足学生多样化的学习要求.
④在观察、探究和推理活动中,使学生有意识地归纳数学思想方法,发展学生的有条理地思考,并能清晰地表达自己的发现.教学中,教师一方面应充分运用好课本已提供
的丰富的素材,另一方面也应该选取一些学生身边的、熟悉的材料,丰富教学内容,以帮助学生对圆的概念的认识和圆的性质的理解.
⑤从学习方式上,通过合作学习、探究活动这种形式,促进学生相互交流,从而最大限度获得数学能力的培养和体验数学思想.教学中应积极鼓励学生,当学生在探究过程中遇到困难时,应给予诱导启发,或给予必要的阶梯.让学生在这过程中体验如何学会学习,千万不能包办代替,过早给学生答案.应鼓励合作学习,从多角度思考,采用多种解决问题的办法,创造积极合作、讨论氛围.
⑥评价时要关注学生思考方式的多样化,注重对学生观察、操作、探索圆的性质、推理等活动进行评价,包括学生在活动中的主动性、参与程度、与同学合作与交流的意识、思考与表达的条理性等;比如,对有关圆的概念的评价应侧重于通过实例是否理解概念;对于圆的有关性质的评价应看学生是否借助于具体的思考方法去理解.对与圆有关的计算的评价,着重看学生是否懂得了基本的算理.
⑦在日常教学中,不仅仅关注学生是否计算或推出某个结论,而且应该关注学生在各种数学活动中的情感和态度,特别是学生在小组活动中的表现.对于学生在探索过程中出现的新的方法、新的思想,教师要及时帮助学生解决问题过程中的创意.
(徐鸿斌)。

相关文档
最新文档