人教a版必修1学案:2.2.1对数与对数运算(1)(含答案)
人教A版数学必修1课件:2.2.1对数及对数运算(1)
(1)54=625
(2) 2
6
1 64
1 m (3) ( ) 5.73 3
(5)
(4)
log 1 16 4
2
lg 0.01 2 (6) ln10 2.303
典 例 分 析 例2 求下列各式中x的值
(1)
(3) lg100
2 log 64 x 3
(2) (4)
log x 8 6
为底的对数叫自然对数(naturallogarithm),
为了简便,N的自然对数简记作lnN。
3. 几个常用的结论 (1)负数与零没有对数 (2) loga 1 0 (3) loga a 1 (4)对数恒等式:a 请同学们记下!
loga N
N
典 例 分 析
例1.将下列指数式化为对数式,对数式化为指数式.
4. 特殊的两种对数:
5.几个常用结论: 课后作业(自主学习册) 今日上交 P63 Ⅰ类题 P64Ⅱ类题 P64Ⅲ类题
若2x=15,则x= 若3x=8,则x=
2
3
3
7
4 若3x=9,则x= log 2 15
log 3 8
2
已知底数和幂的值,如何求指数呢?
1. 对数的定义
一般地,如果 a N a 0, a 1, 那么数 x叫做以a为底N的对数, 记作 ,a N x log
x
其中a叫做对数的底数,N叫做真数. 思考1:那么如何记忆呢?
§2.2.1 对数及对数运算
第一课时 对数
学习目标
1. 理解对数的定义. 2. 掌握指数式与对数式互换互化.(重点) 3.特殊的两种对数及常用结论.(重点)
新 课 引 入 练习:
人教A版必修一第二章2.2.1对数与对数运算重难点题型(举一反三)(含解析)
2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1 对数的概念与基本性质】2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln . 3.对数与指数的关系当0>a ,且1≠a 时,N x N a a xlog =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ; (2)01log =a )1,0(≠>a a 且; (3))1,0(1log ≠>=a a a a 且. 【知识点2 对数的运算性质】 1.2.abb c c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0). 3.知识拓展(1)可用换底公式证明以下结论:①a b b a log 1log =;②1log log log =⋅⋅a c b c b a ;③b b a na n log log =;④b nm b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1 对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是( ) A .(﹣∞,5) B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【变式1-1】(2019秋•龙岩期末)若对数式log (t ﹣2)3有意义,则实数t 的取值范围是( ) A .[2,+∞) B .(2,3)∪(3,+∞)C .(﹣∞,2)D .(2,+∞)【变式1-2】在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【考点2 对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【考点3 解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【考点4 对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg+()lg1(2)lg52+lg8+lg5lg20+(lg2)2【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【考点5 利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【考点6 用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【考点7 与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【变式7-3】已知2lg=lgx+lgy,求.【考点8 对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a+log(c﹣b)a=2loga•log(c﹣b)a.(c+b)【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3+log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1 对数的概念与基本性质】2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln . 3.对数与指数的关系当0>a ,且1≠a 时,N x N a a xlog =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ; (2)01log =a )1,0(≠>a a 且; (3))1,0(1log ≠>=a a a a 且. 【知识点2 对数的运算性质】 1.2.abb c c a log log log =(a >0,且a ≠1;c >0,且c≠1;b >0). 3.知识拓展(1)可用换底公式证明以下结论:①a b b a log 1log =;②1log log log =⋅⋅a c b c b a ;③b b a na n log log =;④b nm b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1 对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是( ) A .(﹣∞,5) B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可. 【答案】解:要使对数式b =log (a ﹣2)(5﹣a )有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)3有意义,则实数t的取值范围是()A.[2,+∞)B.(2,3)∪(3,+∞)C.(﹣∞,2)D.(2,+∞)【分析】根据对数式log(t﹣2)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【答案】解:要使对数式log(t﹣2)3有意义,须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.【变式1-2】在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2 对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3 解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;(2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N >0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵,∴,化为33x=3﹣2,∴3x=﹣2,得到;(5)∵,∴,∴2﹣x=24,解得x=﹣4.【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4 对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg+()lg1(2)lg52+lg8+lg5lg20+(lg2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2+(lg2+lg5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5 利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;(3)(log43+log83)(log32+log92)=(+)(+)=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6 用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816 的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a,lg3=b,∴(1)lg12=2lg2+lg3=2a+b;(2)log224=+log23=3+;(3)log34==;(4)=lg3﹣3lg2=b﹣3a.【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点7 与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【分析】(1)由lgx+lg(4y)=2lg(x﹣3y),推导出=9,再由x﹣y==,能求出结果.(2)log830==,由此能求出结果.【答案】解:(1)∵lgx+lg(4y)=2lg(x﹣3y),∴,解得=9,∴x﹣y===4.(2)∵lg2=a,lg3=b,∴log830===.【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=,从而解得.【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,故=,故=()=(3+)﹣2.【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.【答案】解:由得x>y>0,即>1,则由2lg=lgx+lgy,得lg()2=lgxy,即()2=xy,即(x﹣y)2=4xy,即x2﹣2xy+y2=4xy,即x2﹣6xy+y2=0,即()2﹣6()+1=0,则==3+2或=3﹣2(舍),则=(3+2)=(3﹣2)﹣1=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点8 对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【分析】(1)令3x=4y=6z=k,利用指对数互化求出x、y、z,由对数的运算性质求出、、,由对数的运算性质化简与,即可得到关系值;(2)由换底公式求出P,由对数函数的性质判断P的取值范围,找出与它最接近的2个整数,利用对数的运算性质化简P与这2个整数的差,即可得到答案;(3)由(1)得3x、4y、6z,由于3个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这3个数大小关系.【答案】解:(1)令3x=4y=6z=k,由x、y、z均为正数得k>1,则x=log3k,y=log4k,z=log6k,∴,,,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a+log(c﹣b)a=2loga•log(c﹣b)a.(c+b)【分析】依题意,利用对数换底公式log(c+b)a=,log(c﹣b)a=证明左端=右端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a=+====2log(c+b)a•log(c﹣b)a.∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3+log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【分析】(1)利用指数与对数运算性质可得P,Q.(2)2a=5b=m,且=2,利用对数换底公式可得a=,b=,代入解出即可得出.【答案】解:(1)P=×+﹣1=2+﹣1=.Q==log39=2.(2)2a=5b=m,且=2,∴a=,b=,∴=2,可得lgm=,∴m=.【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣=0,∴y=16;∵•log 5x=﹣1,∴,解得,x=;故P===3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。
最新精编高中人教A版必修一高中数学2.2.1对数与对数运算习题和答案
2.2.1对数与对数运算班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若,,,,则正确的是A. B. C. D.2.函数的定义域为A. B.C. D.3.已知,,则的值为A. B. C. D.4.若,且,则满足的值有A.0个B.1个C.3个D.无穷多个5.解方程),得.6.已知,,则.(请用表示结果)7.计算下列各题:(1);(2).8.已知,,方程至多有一个实根,求实数的值.【能力提升】某工厂从1949年的年产值100万元增加到40年后1989年的500万元,如果每年年产值增长率相同,则每年年产值增长率是多少?(ln(1+x)≈x,取lg 5=0.7,ln 10=2.3)答案【基础过关】1.B【解析】因为,Q=lg2+lg5=lg10=1,,N=1n1=0,所以Q=M.2.A【解析】因为,所以,因为对数函数在(0,+∞)上是减函致.所以0<4x-3<1,所以.所以函数的定义域为.3.C【解析】∵ab=M,∴.又∵,∴.4.A【解析】令m=lg0.3,则,∴m<0,而.故满足的x值不存在.5.4【解析】由题意得①,在此条件下原方程可化为,∴,即,解得x=-2或x=4,经检验x=-2不满足条件①,所以x=4.【备注】误区警示:解答本题容易忽视利用真数大于0检验结果,从而导致出现增根的错误.6.【解析】.【备注】方法技巧:给条件求对数值的计算方法解答此类问题通常有以下方案:(1)从条件入手,从条件中分化出要求值的对数式,进行求值;(2)从结论入手,转化成能使用条件的形式;(3)同时化简条件和结论,直到找到它们之间的联系.7.(1)原式=. (2)原式====.8.由f(-1)=-2得,1-(lg a+2)+lg b=-2,∴,∵,即a=10b.又∵方程f(x)=2x至多有一个实根,即方程至多有一个实根,∴,即,∵,∴lg b=1,b=10,从而a=100,故实数a,b的值分别为100,10.【能力提升】设每年年产值增长率为x,根据题意得100(1+x)40=500,即(1+x)40=5,两边取常用对数,得40lg(1+x)=lg 5,即lg(1+x)==×0.7.由换底公式,得=.由已知条件ln(1+x)≈x,得x≈ln(1+x)=×ln 10==0.040 25≈4%.所以每年年产值增长率约为4%.。
人教A版必修1导学案 必修1 2.2.1对数及对数运算(第1课时)
必修1高一数学第一章§ 2.2.1 对数与对数运算(1)【学习目标】:① 理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系 .【教学重点、难点】:重点:对数式与指数式的互化及对数的性质; 难点:推导对数性质【教学过程】:一、新课讲解:1、对数的概念一般地,若(0,1)x a N a a =>≠且,那么数x 叫做以a 为底N 的______,记作log a x N =a 叫做________________,N 叫做______________(注意:底数a >0,且a ≠1;真数N>0) 举例:x 01.11318=写成对数形式:x = 1.0118log 13,读作x 是以 1.01为底,1318的对数. 2416=写成对数形式:42log 16=,读作2是以4为底,16的对数.2、对数式与指数式的互化在对数的概念中,要注意:(1)底数的限制a >0,且a ≠1(2)log x a a N N x =⇔=指数式⇔对数式幂底数←a →对数底数指 数←x →对数幂 ←N →真数3、例题讲解:指数式与对数式互化例1(P63例1)将下列指数式化为对数式,对数式化为指数式.(1)54=625 (2)61264-=(3)1() 5.733m = (4)12log 164=- (5)10log 0.012=- (6)log 10 2.303e =(课本64页#1)练习1:将下列指数式与对数式互化:(1)328=,(2) 1122-=;(3)3log 92=;(4)21log 24=-。
4、对数的性质:问题:① 把a 0=1,a 1=a (a >0,且a ≠1)如何写成对数式?②负数和零有没有对数? ③根据对数的定义,log a N a=? 小结:log log 10, log 1, a N a a a aN === 负数和零没有对数。
5、常用对数和自然对数 ① 以10为底的对数称为常用对数,10log N 常记为___________② 以无理数e=2.71828…为底的对数称为自然对数,log e N 常记为__________.6、例题讲解例2:(课本63页)求下列各式中x 的值(1)642log 3x =-(2)log 86x = (3)lg100x = (4)2ln e x -= 分析:将对数式化为指数式,再利用指数幂的运算性质求出x .7.巩固提高:求下列各式的值:(1)5log 25; (2)lg1000; (3)15log 15;(4)9log 81; (5) 2.5log 6.25。
人教版高中数学必修一学案:《对数函数》(含答案)
2.2 对数函数解读对数概念及运算对数是中学数学中重要的内容之一,理解对数的定义,掌握对数的运算性质是学习对数的重点内容.现梳理这部分知识,供同学们参考.一、对数的概念对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2)a log a N =N .例1 计算:log 22+log 51+log 3127+9log 32. 分析 根据定义,再结合对数两个恒等式即可求值.解 原式=1+0+log 33-3+(3log 32)2=1-3+4=2.点评 解决此类问题关键在于根据幂的运算法则将指数式和对数式化为同底数.二、对数的运算法则常用的对数运算法则有:对于M >0,N >0.(1)log a (MN )=log a M +log a N ;(2)log a M N=log a M -log a N ; (3)log a M n =n log a M .例2 计算:lg 14-2lg 73+lg 7-lg 18. 分析 运用对数的运算法则求解.解 由已知,得原式=lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.点评 对数运算法则是进行对数运算的根本保证,同学们必须能从正反两方面熟练应用.三、对数换底公式根据对数的定义和运算法则 可以得到对数换底公式:log a b =log c b log c a(a >0且a ≠1,c >0且c ≠1,b >0). 由对数换底公式又可得到两个重要结论:(1)log a b ·log b a =1;(2)log an b m =m nlog a b . 例3 计算:(log 25+log 4125)×log 32log 35. 分析 在利用换底公式进行化简求值时,一般是根据题中对数式的特点选择适当的底数进行换底,也可选择以10为底进行换底. 解 原式=(log 25+32log 25)×log 322log 35=52log 25×12log 52=54. 点评 对数的换底公式是“同底化”的有力工具,同学们要牢记.通过上面讲解,同学们可以知道对数的定义是对数式和指数式互化的依据,正确进行它们之间的相互转换是解题的有效途径.对数的运算性质,同学们要熟练掌握,在应用过程中避免错误,将公式由“正用”“逆用”逐步达到“活用”的境界.数换底公式的证明及应用设a >0,c >0且a ≠1,c ≠1,N >0,则有log a N =log c N log c a,这个公式称为对数的换底公式,它在对数的运算中有着重要的应用,课本中没有给出证明,现证明如下:证明 记p =log a N ,则a p =N .**式两边同时取以c 为底的对数(c >0且c ≠1)得log c a p =log c N ,即p log c a =log c N .所以p =log c N log c a ,即log a N =log c N log c a. 推论1:log a b ·log b a =1.推论2:log an b m =m nlog a b (a >0且a ≠1,b >0). 例4 (1)已知log 189=a,18b =5,求log 3645的值;(2)求log 23·log 34·log 45·…·log 6364的值.解 (1)因为log 189=a,18b =5,所以lg 9lg 18=a . 所以lg 9=a lg 18,lg 5=b lg 18.所以log 3645=lg (5×9)lg 1829=lg 5+lg 92lg 18-lg 9 =b lg 18+a lg 182lg 18-a lg 18=b +a 2-a. (2)log 23·log 34·log 45·…·log 6364=lg 3lg 2·lg 4lg 3·lg 5lg 4·…·lg 64lg 63=lg 64lg 2=6lg 2lg 2=6. 点评 对数运算法则中,对数式都是同底的,凡不同底的对数运算,都需要用换底公式将底统一,一般统一成常用对数.例5 已知12log 8a +log 4b =52,log 8b +log 4a 2=7,求ab 的值. 解 由已知可得⎩⎨⎧16log 2a +12log 2b =52,13log 2b +log 2a =7, 即⎩⎪⎨⎪⎧ log 2a +3log 2b =15,3log 2a +log 2b =21.解得⎩⎪⎨⎪⎧log 2a =6,log 2b =3. 所以a =26,b =23.故ab =26·23=512.点评 发现底数“4”,“8”与“2”的关系,将底数统一成“2”,解决问题比较简单.此外还有下面的关系式:log N M =log a M log a N =log b M log b N; log a M ·log b N =log a N ·log b M ;log a M log b M =log a N log b N=log a b ;N log a M =M log a N .数函数图象及性质的简单应用对数函数图象是对数函数的一种表达形式,形象显示了函数的性质,为研究它的数量关系提供了“形”的直观性.它是探求解题思路、获得问题结果的重要途径.能准确地作出对数函数的图象是利用平移、对称的变换来研究复杂函数的性质的前提,而数形结合是研究与对数函数的有关问题的常用思想.一、求函数的单调区间例6 画出函数y =log 2x 2的图象,并根据图象指出它的单调区间.解 当x ≠0时,函数y =log 2x 2满足f (-x )=log 2(-x )2=log 2x 2=f (x ),所以y =log 2x 2是偶函数,它的图象关于y 轴对称.当x >0时,y =log 2x 2=2log 2x ,因此先画出y =2log 2x (x >0)的图象为C 1,再作出C 1关于y 轴对称的图象C 2,C 1与C 2构成函数y =log 2x 2的图象,如图所示.由图象可以知道函数y =log 2x 2的单调减区间是(-∞,0),单调增区间是(0,+∞). 点评 作图象时一定要考虑定义域,否则会导致求出错误的单调区间,同时在确定单调区间时,要注意增减区间的分界点,特别要注意区间的开与闭问题.二、利用图象求参数的值例7 若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是[0,1],则a 等于( ) A.13 B. 2 C.22 D .2 解析 当a >1时,f (x )=log a (x +1)的图象如图所示.f (x )在[0,1]上是单调增函数,且值域为[0,1],所以f (1)=1,即log a (1+1)=1,所以a =2,当0<a <1时,其图象与题意不符,故a 的值为2,故选D.答案 D点评 (1)当对数的底数不确定时要注意讨论;(2)注意应用函数的单调性确定函数的最值(值域).三、利用图象比较实数的大小例8 已知log m 2<log n 2,m ,n >1,试确定实数m 和n 的大小关系.解 在同一直角坐标系中作出函数y =log m x 与y =log n x 的图象如图所示,再作x =2的直线,可得m >n .点评 不同底的对数函数图象的规律是:(1)底都大于1时,底大图低(即在x >1的部分底越大图象就越接近x 轴);(2)底都小于1时,底大图高(即在0<x <1的部分底越大图象就越远离x 轴).四、利用图象判断方程根的个数例9 已知关于x 的方程|log 3x |=a ,讨论a 的值来确定方程根的个数.解 因为y =|log 3x |=⎩⎪⎨⎪⎧log 3x , x >1,-log 3x , 0<x <1, 在同一直角坐标系中作出函数与y =a 的图象,如图可知:(1)当a <0时,两个函数图象无公共点,所以原方程根的个数为0;(2)当a =0时,两个函数图象有一个公共点,所以原方程根有1个;(3)当a >0时,两个函数图象有两个公共点,所以原方程根有2个.点评 利用图象判断方程根的个数一般都是针对不能将根求出的题型,与利用图象解不等式一样,需要先将方程等价转化为两端对应的函数为基本函数(最好一端为一次函数),再作图象.若含有参数,要注意对参数的讨论,参数的取值不同,函数图象的位置也就不同,也就会引起根的个数不同. 三类对数大小的比较 一、底相同,真数不同 例10 比较log a 2与log a 33的大小.分析 底数相同,都是a ,可借助于函数y =log a x 的单调性比较大小.解 由(2)6=8<(33)6=9,得2<33.当a >1时,函数y =log a x 在(0,+∞)上是增函数,故log a 2<log a 33;当0<a <1时,函数y =log a x 在(0,+∞)上是减函数,故log a 2>log a 33.点评 本题需对底数a 的范围进行分类讨论,以确定以a 为底的对数函数的单调性,从而应用函数y =log a x 的单调性比较出两者的大小.二、底不同,真数相同例11 比较log 0.13与log 0.53的大小.分析 底数不同但真数相同,可在同一坐标系中画出函数y =log 0.1x 与y =log 0.5x 的图象,借助于图象来比较大小;或应用换底公式将其转化为同底的对数大小问题.解 方法一 在同一坐标系中作出函数y =log 0.1x 与y =log 0.5x 的图象,如右图.在区间(1,+∞)上函数y =log 0.1x 的图象在函数y =log 0.5x 图象的上方,故有log 0.13>log 0.53.方法二 log 0.13=1log 30.1,log 0.53=1log 30.5. 因为3>1,故y =log 3x 是增函数,所以log 30.1<log 30.5<0.所以1log 30.1>1log 30.5. 即log 0.13>log 0.53.方法三 因为函数y =log 0.1x 与y =log 0.5x 在区间(0,+∞)上都是减函数,故log 0.13>log 0.110=-1,log 0.53<log 0.52=-1,所以log 0.13>log 0.53.点评 方法一借助于对数函数的图象;方法二应用换底公式将问题转化为比较两个同底数的对数大小;方法三借助于中间值来传递大小关系.三、底数、真数均不同例12 比较log 323与log 565的大小. 分析 底数、真数均不相同,可通过考察两者的范围来确定中间值,进而比较大小. 解 因为函数y =log 3x 与函数y =log 5x 在(0,+∞)上都是增函数,故log 323<log 31=0,log 565>log 51=0, 所以log 323<log 565. 点评 当底数、真数均不相同时,可找中间量(如1或0等)传递大小关系,从而比较出大小.综上所述,比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论,如例10;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小,如例11;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较,如例12.学对数给你提个醒对数函数是函数的重要内容之一,由于同学们对概念、定义域、值域、图象等知识点掌握得不够好,经常出现解题错误,现将这些错误进行归纳并举例说明.一、忽视0没有对数例13 求函数y =log 3(1+x )2的定义域.错解 对于任意的实数x ,都有(1+x )2≥0,所以原函数的定义域为R .剖析 只考虑到负数没有对数.事实上,由对数的定义可知,零和负数都没有对数. 正解 {x |x ≠-1}二、忽视1的对数为0例14 求函数y =1log 2(2x +3)的定义域. 错解 由2x +3>0,得x >-32, 所以定义域为{x |x >-32}. 剖析 当2x +3=1时,log 21=0,分母为0没有意义,上述解法忽视了这一点.正解 {x |x >-32且x ≠-1}三、忽视底数的取值范围例15 已知log (2x +5)(x 2+x -1)=1,则x 的值是( )A .-4B .-2或3C .3D .-4或5错解 由2x +5=x 2+x -1,化简得x 2-x -6=0,解得x =-2或x =3.故选B.剖析 忽视了底数有意义的条件:2x +5>0且2x +5≠1.当x =-2时,2x +5=1,应舍去,只能取x =3.正解 C四、忽视真数大于零例16 已知lg x +lg y =2lg(x -2y ),求log 2x y的值. 错解 因为lg x +lg y =2lg(x -2y ),所以xy =(x -2y )2,即x 2-5xy +4y 2=0,所以x =y 或x =4y ,即x y =1或x y =4, 所以log 2x y =0,或log 2x y=4. 剖析 错误的原因在于忽视了原式中的三个对数式隐含的条件,x >0,y >0,x -2y >0,所以x >2y >0,所以x =y 不成立.正解 因为lg x +lg y =2lg(x -2y ),所以xy =(x -2y )2,即x 2-5xy +4y 2=0,所以x =y 或x =4y ,因为x >0,y >0,x -2y >0,所以x =y 应舍去,所以x =4y ,即x y=4, 所以log 2x y=4. 五、对数运算性质混淆例17 下列运算:(1)log 28log 24=log 284; (2)log 28=3log 22;(3)log 2(8-4)=log 28-log 24;(4)log 243·log 23=log 2(43×3).其中正确的有( ) A .4个 B .3个C .2个D .1个错解 A剖析 (1)log 28log 24真数8与4不能相除;(3)中log 2(8-4)不能把log 乘进去运算,没有这种运算的,运算log 284=log 28-log 24才是对的;(4)错把log 提出来运算了,也没有这种运算,正确的只有(2).正解 D六、忽视对含参底数的讨论例18 已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,求a 的值.错解 由题意得log a 4-log a 2=log a 2=1,所以a =2.剖析 对数函数的底数含有参数a ,错在没有讨论a 与1的大小关系而直接按a >1解题. 正解 (1)若a >1,函数y =log a x (2≤x ≤4)为增函数,由题意得log a 4-log a 2=log a 2=1,所以a =2,又2>1,符合题意.(2)若0<a <1,函数y =log a x (2≤x ≤4)为减函数,由题意得log a 2-log a 4=log a 12=1, 所以a =12,又0<12<1,符合题意, 综上可知a =2或a =12.巧借对数函数图象解题数形结合思想,就是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合.通过对图形的认识、数形转化,来提高思维的灵活性、形象性、直观性,使问题化难为易、化抽象为具体.它包含“以形助数”和“以数辅形”两个方面.一、利用数形结合判断方程解的范围方程解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.例1 方程lg x+x=3的解所在区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)答案 C解在同一平面直角坐标系中,画出函数y=lg x与y=-x+3的图象(如图所示).它们的交点横坐标x0显然在区间(1,3)内,由此可排除选项A、D.实际上这是要比较x0与2的大小.当x0=2时,lg x0=lg 2,3-x0=1.由于lg 2<1,因此x0>2,从而判定x0∈(2,3).点评本题是通过构造函数用数形结合法求方程lg x+x=3的解所在的区间.数形结合,要在结合方面下功夫.不仅要通过图象直观估计,而且还要计算x0的邻近两个函数值,通过比较其大小进行判断.二、利用数形结合求解的个数例2 已知函数f(x)满足f(x+2)=f(x),当x∈[-1,1)时,f(x)=x,则方程f(x)=lg x的根的个数是________.解析构造函数g(x)=lg x,在同一坐标系中画出f(x)与g(x)的图象,如图所示,易知有4个根.答案 4点评本题学生极易填3,其原因是学生作图不标准,尤其是在作对数函数的图象时没有考虑到当x=10时,y=1.因此,在利用数形结合法解决问题时,要注意作图的准确性.三、利用数形结合解不等式例3 使log2x<1-x成立的x的取值范围是______________________________________.解析构造函数f(x)=log2x,g(x)=1-x,在同一坐标系中作出两者的图象,如图所示,直接从图象中观察得到x∈(0,1).答案(0,1)点评用数形结合的方法去分析解决问题,除了会读图外,还要会画图,绘制图形既是利用数形结合方法的需要,也是培养我们动手能力的需要.数函数常见题型归纳一、考查对数函数的定义例4 已知函数f (x )为对数函数,且满足f (3+1)+f (3-1)=1,求f (5+1)+f (5-1)的值.解 设对数函数f (x )=log a x (a >0,a ≠1),由已知得log a (3+1)+log a (3-1)=1,即log a [(3+1)×(3-1)]=1⇒a =2.所以f (x )=log 2x (x >0).从而得f (5+1)+f (5-1)=log 2[(5+1)×(5-1)]=2.二、考查对数的运算性质例5 log 89log 23的值是( ) A.23 B .1 C.32D .2 解析 原式=log 29log 28·1log 23=23·log 23log 22·1log 23=23. 答案 A三、考查指数式与对数式的互化例6 已知log a x =2,log b x =3,log c x =6,求log abc x 的值.解 由已知,得a 2=x ,b 3=x ,c 6=x ,所以a =x 12,b =x 13,c =x 16. 于是,有abc =x 12+13+16=x 1, 所以x =abc ,则log abc x =1.四、考查对数函数定义域和值域(最值)例7 (江西高考)若f (x )=1log 12(2x +1),则f (x )的定义域为( ) A.⎝⎛⎭⎫-12,0 B.⎝⎛⎦⎤-12,0 C.⎝⎛⎭⎫-12,+∞ D .(0,+∞) 答案 A解析 要使f (x )有意义,需log 12(2x +1)>0=log 121, ∴0<2x +1<1,∴-12<x <0. 例8 已知函数f (x )=2+log 3x (1≤x ≤9),则函数g (x )=f 2(x )+f (x 2)的最大值为________,最小值为________.解析 由已知,得函数g (x )的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9⇒1≤x ≤3.且g (x )=f 2(x )+f (x 2) =(2+log 3x )2+2+log 3x 2=log 23x +6log 3x +6.则当log 3x =0,即x =1时,g (x )有最小值g (1)=6;当log 3x =1,即x =3时,g (x )有最大值g (3)=13.答案 13 6五、考查单调性例9 若函数f (x )=log a x (0<a <1)在区间[a,2a ]上的最大值是最小值的3倍,则a 为( )A.24B.22C.14D.12解析 由于0<a <1,所以f (x )=log a x (0<a <1)在区间[a,2a ]上递减,在区间[a,2a ]上的最大值为f (a ),最小值为f (2a ),则f (a )=3f (2a ),即log a a =3log a (2a )⇒a =24. 答案 A 六、考查对数函数的图象例10 若不等式x 2-log a x <0在(0,12)内恒成立,则a 的取值范围是________. 解析 由已知,不等式可化为x 2<log a x .所以不等式x 2<log a x 在(0,12)内恒成立,可转化为当x ∈(0,12)时, 函数y =x 2的图象在函数y =log a x 图象的下方,如图所示.答案 [116,1) 点评 不等式x 2<log a x 左边是一个二次函数,右边是一个对数函数,不可能直接求解,充分发挥图象的作用,则可迅速达到求解目的.巧比对数大小一、中间值法若两对数底数不相同且真数也不相同时,比较其大小通常运用中间值作媒介进行过渡. 理论依据:若A >C ,C >B ,则A >B .例11 比较大小:log 932,log 8 3. 解 由于log 932<log 93=14=log 822<log 83, 所以log 932<log 8 3. 点评 以14为纽带,建立起放缩的桥梁,解题时常通过观察确定中间值的选取. 二、比较法比较法是比较对数大小的常用方法,通常有作差和作商两种策略.理论依据:(1)作差比较:若A -B >0,则A >B ;(2)作商比较:若A ,B >0,且A B>1,则A >B . 例12 比较大小:(1)log 47,log 1221;(2)log 1.10.9,log 0.91.1.解 (1)log 47-log 1221=(log 47-1)-(log 1221-1)=log 474-log 1274=1log 744-1log 7412, 由于0<log 744<log 7412,所以1log 744>1log 7412,即log 47>log 1221. (2)由于log 1.10.9,log 0.91.1都小于零,所以|log 1.10.9||log 0.91.1|=(log 1.10.9)2=(-log 1.10.9)2 =(log 1.1109)2>(log 1.11110)2=1, 故|log 1.10.9|>|log 0.91.1|,所以log 1.10.9<log 0.91.1.点评 将本例(1)推广延伸为:若1<A <B ,C >0,则log A B >log AC (BC ),进而可比较形如此类对数的大小.三、减数法将对数值的大概范围确定后,两边同减去一个数,通过局部比较大小.理论依据:若A -C >B -C ,则A >B .例13 比较大小:log n +2(n +1),log n +1n (n >1).解 因为log n +2(n +1)-1=log n +2n +1n +2>log n +2n n +1>log n +1n n +1=log n +1n -1.所以log n +2(n +1)>log n +1n .点评 将本例推广延伸为:若1<A <B ,C >0,则log A +C (B +C )>log A B ,进而可比较形如此类对数的大小.四、析整取微法将对数的整数部分分别析取出来,通过比较相应小数部分的大小使得问题获解. 理论依据:若A =log a M =k +x ,B =log b N =k +y ,且x >y ,则A >B .例14 比较大小:log 123,log 138. 解 令log 123=-2+x ,log 138=-2+y , 于是2-(-2+x )=3,3-(-2+y )=8,则2-x -3-y =34-89<0,故2-x <3-y . 两边同时取对数,化简得x lg 2>y lg 3,则x y >lg 3lg 2>1,即x >y ,故log 123>log 138. 点评 这种方法便于操作,容易掌握,并且所涉及的知识又都是通性通法,有利于“回归课本,夯实基础”,此法值得深思.例15 对于函数y =f (x ),x ∈D ,若存在一常数c ,对任意x 1∈D ,存在惟一的x 2∈D ,使f (x 1)+f (x 2)2=c ,则称函数f (x )在D 上的均值为c .已知f (x )=lg x ,x ∈[10,100],则函数f (x )=lg x 在[10,100]上的均值为( )A.32B.34C.110D .10 分析 该题通过定义均值的方式命题,以定义给出题目信息,是当前的一种命题趋势.其本质是考查关于对数和指数的运算性质和对定义的理解与转化.解析 首先从均值公式可得lg (x 1x 2)=2c ,所以x 1x 2=102c =100c .因为x 1,x 2∈[10,100],所以x 1x 2∈[100,10 000].所以100≤100c ≤ 10 000.所以1≤c ≤2.从选项看可知成为均值的常数可为32.故选A.答案 A例16 函数y =|log 2x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度b -a 的最小值为( )A .3 B.34 C .2 D.23分析 对函数的性质的分析研究一直是高中数学的重点,尤其是二次函数、指数函数和对数函数等重点函数的形态研究.本题正是以函数y =log 2x 为基础而编制,从定性分析和定量的计算中刻划a ,b 的关系.结合函数的图象(图象是函数性质的立体显示)数形结合易于寻找、确定二者的关系.解析 画出函数图象如图所示.由log 2a =-2得a =14.由log 2b =2得b =4.数形结合知a ∈[14,1],b ∈[1,4].考虑函数定义域,满足值域[0,2]的取值情况可知,当b =1,a =14时,b -a 的最小值为1-14=34.故选B.答案 B解题要学会反思解题中的反思是完善解题思路的有效方法,面对一道较为综合的题,寻找解题思路时,想一步到位,往往不太现实;边解边反思,逐步产生完善、正确的解题思路,却是可行的,请看:题目:已知函数f (x )=log m x -3x +3,试问:是否存在正数α,β,使f (x )在[α,β]上的值域为[log m (β-4),log m (α-4)]?若存在,求出α,β的值;若不存在,说明理由.甲:在[α,β]上的值域为[log m (β-4),log m (α-4)],也就是⎩⎪⎨⎪⎧log mα-3α+3=log m (β-4),log mβ-3β+3=log m(α-4)⇒⎩⎪⎨⎪⎧αβ-5α+3β=9,αβ-5β+3α=9⇒α=β,与α<β矛盾,故不存在.乙:你的解答不全面,你的求解建立在一个条件的基础上,就是函数f (x )是增函数,而题目并没有说明这个函数是增函数呀!丙:没错,应该对m 进行讨论. 设0<α≤x 1<x 2≤β,由于x 1-3x 1+3-x 2-3x 2+3=6(x 1-x 2)(x 1+3)(x 2+3)<0,那么0<x 1-3x 1+3<x 2-3x 2+3.讨论:(1)若0<m <1,则log m x 1-3x 1+3>log m x 2-3x 2+3,即f (x 1)>f (x 2),得f (x )为减函数.(2)若m >1,则log m x 1-3x 1+3<log m x 2-3x 2+3,即f (x 1)<f (x 2),得f (x )为增函数. 若m 存在,当0<m <1时,则 ⎩⎪⎨⎪⎧log mβ-3β+3=log m(β-4),log mα-3α+3=log m(α-4)⇒⎩⎪⎨⎪⎧β2-2β-9=0,α2-2α-9=0. 显然α,β是方程x 2-2x -9=0的两根,由于此方程的两根中一根为正,另一根为负,与0<α<β不符,因此m 不存在;当m >1时,就是甲的解题过程,同样满足条件的α,β不存在.老师:乙和丙实质上是对甲的解法做了个反思.通过你们的讨论可以看出,反思的作用相当大,它可以使思路逐步完善,最终形成完美的解题过程.对数函数高考考点例析对数函数是高中数学函数知识的重要组成部分,关于对数函数的考查在高考中一直占有重要的地位.下面我们针对近几年高考中考查对数函数知识的几个着眼点作一一剖析,希望对大家的学习有所帮助.考点一 判断图象交点个数1.(湖南高考)函数f (x )=⎩⎪⎨⎪⎧4x -4, x ≤1,x 2-4x +3, x >1的图象和函数g (x )=log 2x 的图象的交点个数是( )A .1B .2C .3D .4解析 作出函数f (x )与g (x )的图象,如图所示,由图象可知:两函数图象的交点有3个. 答案 C考点二 函数单调性的考查2.(江苏高考)函数f (x )=log 5(2x +1)的单调增区间是________.解析 函数f (x )的定义域为⎝⎛⎭⎫-12,+∞,令t =2x +1(t >0).因为y =log 5t 在t ∈(0,+∞)上为增函数,t =2x +1在⎝⎛⎭⎫-12,+∞上为增函数,所以函数y =log 5(2x +1)的单调增区间为⎝⎛⎭⎫-12,+∞. 答案 ⎝⎛⎭⎫-12,+∞考点三 求变量范围3.(辽宁高考)设函数f (x )=⎩⎪⎨⎪⎧21-x , x ≤1,1-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解析 当x ≤1时,由21-x ≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).答案 D考点四 比较大小(一)图象法4.(天津高考)设a ,b ,c 均为正数,且2a =log 12a ,⎝⎛⎭⎫12b =log 12b ,⎝⎛⎭⎫12c=log 2c ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 解析由2a>0,∴log 12a >0,∴0<a <1.同理0<b <1,c >1, ∴c 最大在同一坐标系中作出y =2x ,y =⎝⎛⎭⎫12x ,y =log 12x 的图象如图所示, 观察得a <b .∴a <b <c . 答案 A (二)排除法当我们面临的问题不易从正面入手直接挑选出正确的答案或解题过程繁琐时,可以从反面入手,因为选择题的正确答案已在选项中列出,从而逐一考虑所有选项,排除其中不正确的,则剩下的就是正确的答案.5.(全国高考)若a =ln 22,b =ln 33,c =ln 55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c 解析 首先比较a ,b , 即比较3ln 2,2ln 3的大小, ∵3ln 2=ln 8<ln 9=2ln 3, ∴a <b .故排除B 、D. 同理可得c <a . 答案 C (三)媒介法对于直接比较困难时,常插入媒介,以此为桥梁进行比较,常插入0或1.6.(山东高考)下列大小关系正确的是( ) A .0.43>30.4<log 40.3 B .0.43<log 40.3<30.4 C .log 40.3<0.43<30.4 D .log 40.3<30.4<0.43 解析 分析知0<0.43<1,30.4>30=1, log 40.3<log 41=0,故log 40.3<0.43<30.4.故选C. 答案 C (四)特值法对于有些有关对数不等式的选择题,通过取一些符合条件的特殊值验证,往往也能简便求解.7.(青岛模拟)已知0<x <y <a <1,则有( ) A .log a (xy )<0 B .0<log a (xy )<1 C .1<log a (xy )<2 D .log a (xy )>2解析 取x =18,y =14,a =12,代入log a (xy )检验即可得D.答案 D。
高一数学人教A版必修一精品教案:2.2.1对数的概念 Word版含答案最新修正版
课题:§2.2.1对数教学目的:(1)理解对数的概念;(2)能够说明对数与指数的关系;(3)掌握对数式与指数式的相互转化.教学重点:对数的概念,对数式与指数式的相互转化教学难点:对数概念的理解.教学过程:一、引入课题1. (对数的起源)价绍对数产生的历史背景与概念的形成过程,体会引入对数的必要性;设计意图:激发学生学习对数的兴趣,培养对数学习的科学研究精神.2. 尝试解决本小节开始提出的问题.二、新课教学1.对数的概念一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数(Logarithm ),记作:N x a log =a — 底数,N — 真数,N a log — 对数式 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a ax =⇔=log○3 注意对数的书写格式. 思考:○1 1≠; ○2 是否是所有的实数都有对数呢? 设计意图:正确理解对数定义中底数的限制,为以后对数型函数定义域的确定作准备. 两个重要对数:○1 常用对数(common logarithm ):以10为底的对数N lg ;○2 自然对数(natural logarithm ):以无理数 71828.2=e 为底的对数的对数N ln .2. 对数式与指数式的互化 x N a =log ⇔ N a x =对数式 ⇔ 指数式对数底数 ← a → 幂底数对数 ← x → 指数真数 ← N → 幂例1.(教材P 73例1)巩固练习:(教材P 74练习1、2)设计意图:熟练对数式与指数式的相互转化,加深理解对数概念.说明:本例题和练习均让学生独立阅读思考完成,并指出对数式与指数式的互化中应注意哪些问题.3. 对数的性质(学生活动)○1 阅读教材P 73例2,指出其中求x 的依据; ○2 独立思考完成教材P 74练习3、4,指出其中蕴含的结论 对数的性质(1)负数和零没有对数;(2)1的对数是零:01log =a ;(3)底数的对数是1:1log =a a ;(4)对数恒等式:N a N a =log ;(5)n a na =log . 三、归纳小结,强化思想○1 引入对数的必要性;○2 指数与对数的关系;○3 对数的基本性质.四、作业布置教材P 86习题2.2(A 组) 第1、2题,(B 组)第1题.。
人教A版高一数学必修一 2.2.1 对数的运算性质 学案(有答案)
对数的运算性质(学案)一、学习目标1.理解对数的运算性质.(重点)2.能用换底公式将一般对数转化成自然对数或常用对数.(难点)3.会运用运算性质进行一些简单的化简与证明(易混点).二、自主学习教材整理1对数的运算性质阅读教材P 64至P 65“例3”以上部分,完成下列问题.对数的运算性质:如果a >0,且a ≠1,M>0,N >0,那么:(1)log a (M·N )=log a M +log a N ;(2)log a M N=log a M -log a N ; (3)log a M n =nlog a M__(n ∈R ).教材整理2 换底公式阅读教材P 65至P 66“例5”以上部分,完成下列问题.对数换底公式:log a b =log c b log c a(a >0,且a ≠1,b >0,c>0,且c≠1); 特别地:log a b ·log b a =1(a >0,且a ≠1,b >0,且b ≠1).三、合作探究例1.求下列各式的值:(1)lg 14-2lg 73+lg 7-lg 18; (2)2lg 2+lg 32+lg 0.36+2lg 2; (3)log 34273+lg 25+lg 4+7log 72;(4)2log 32-log 3329+log 38-52log 53. 【自主解答】(1)法一; 原式=lg (2×7)-2(lg 7-lg 3)+lg 7-lg (32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.法二; 原式=lg 14-lg ⎝⎛⎭⎫732+lg 7-lg 18=lg 14×7⎝⎛⎭⎫732×18=lg 1=0. (2)原式=2lg 2+lg 32+lg 36-2+2lg 2=2lg 2+lg 32lg 2+lg 3+2lg 2=2lg 2+lg 34lg 2+2lg 3=12. (3)原式=log 33343+lg (25×4)+2=log 33-14+lg 102+2=-14+2+2=154. (4)原式=2log 32-(log 325-log 39)+3log 32-5log 532=2log 32-5log 32+2log 33+3log 32-9=2-9=-7.归纳总结:1.利用对数性质求值的解题关键是化异为同,先使各项底数相同,再找真数间的联系.2.对于复杂的运算式,可先化简再计算;化简问题的常用方法:①“拆”:将积(商)的对数拆成两对数之和(差);②“收”:将同底对数的和(差)收成积(商)的对数.例2.一种放射性物质不断变化为其他物质,每经过一年剩余的质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13(结果保留1个有效数字)?(lg 2≈0.301 0,lg 3≈0.477 1) 【自主解答】 设物质的原有量为a ,经过t 年,该物质的剩余量是原来的13,由题意可得a ·0.75t =13a , ∴⎝⎛⎭⎫34t =13,两边取以10为底的对数得lg ⎝⎛⎭⎫34t =lg 13,∴t(lg 3-2lg 2)=-lg 3, ∴t =-lg 3lg 3-2lg 2≈0.477 12×0.301 0-0.477 1≈4(年). 归纳总结:解对数应用题的步骤例3. (1)已知log 1227=a ,求log 616的值; (2)计算(log 2125+log 425+log 85)(log 52+log 254+log 1258)的值.【自主解答】(1)由log 1227=a ,得3lg 32lg 2+lg 3=a ,∴lg 2=3-a 2a lg 3. ∴log 616=lg 16lg 6=4lg 2lg 2+lg 3=4×3-a 2a 1+3-a 2a=43-a 3+a . (2)法一; 原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28·log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22log 52+2log 522log 55+3log 523log 55=⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13. 法二; 原式=⎝⎛⎭⎫lg 125lg 2+lg 25lg 4+lg 5lg 8lg 2lg 5+lg 4lg 25+lg 8lg 125 =⎝⎛⎭⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝⎛⎭⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5=⎝⎛⎭⎫13lg 53lg 2⎝⎛⎭⎫3lg 2lg 5=13.法三 原式=(log 2153+log 2252+log 2351)·(log 512+log 5222+log 5323)=⎝⎛⎭⎫3log 25+log 25+13log 25(log 52+log 52+log 52)=3×⎝⎛⎭⎫3+1+13log 25·log 52=3×133=13. 归纳总结:1.在利用换底公式进行化简求值时,一般情况下是根据题中所给对数式的具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底.2.在运用换底公式时,还可结合底数间的关系恰当选用一些重要的结论,如log a b ·log b a =1,log a b ·log b c·log c d =log a d ,log a m b n =n mlog a b ,log a a n =n ,等,将会达到事半功倍的效果. 四、学以致用1.求下列各式的值:(1)lg 25+lg 2·lg 50;(2)23lg 8+lg 25+lg 2·lg 50+lg 25. 【解】(1)原式=lg 25+(1-lg 5)(1+lg 5)=lg 25+1-lg 25=1.(2)23lg 8+lg 25+lg 2·lg 50+lg 25=2lg 2+lg 25+lg 2(1+lg 5)+2lg 5 =2(lg 2+lg 5)+lg 2 5+lg 2+lg 2·lg 5=2+lg 5(lg 5+lg 2)+lg 2=2+lg 5+lg 2=3.2.地震的震级R 与地震释放的能量E 的关系为R =23(lg E -11.4).根据英国天空电视台报道,英格兰南部2007年4月28日发生地震,欧洲地震监测站称,地震的震级为5.0级,而2011年3月11日,日本本州岛发生9.0级地震,那么此次地震释放的能量是5.0级地震释放能量的________倍.【解】 设9.0级地震所释放的能量为E 1,5.0级地震所释放的能量为E 2.由9.0=23(lg E 1-11.4), 得lg E 1=32×9.0+11.4=24.9.同理可得lg E 2=32×5.0+11.4=18.9, 从而lg E 1-lg E 2=24.9-18.9=6.故lg E 1-lg E 2=lg E 1E 2=6,则E 1E 2=106=1 000 000, 即9.0级地震释放的能量是5.0级地震释放能量的1 000 000倍.3.求值:log 225·log 3116·log 519=________. 【解析】 原式=log 252·log 32-4·log 53-2=2lg 5lg 2·-4lg 2lg 3·-2lg 3lg 5=16. 【答案】16五、自主小测1.若a >0,且a ≠1,x ∈R ,y ∈R ,且xy >0,则下列各式不恒成立的是()①log a x 2=2log a x ;②log a x 2=2log a |x |;③log a (xy )=log a x +log a y ;④log a (xy )=log a |x |+log a |y |.A .②④B .①③C .①④D .②③ 2.lg 2516-2lg 59+lg 3281等于() A .lg 2 B .lg 3C .lg 4D .lg 5 3.已知log a 2=m ,log a 3=n ,则log a 18=________.(用m ,n 表示)4.计算(lg 2)2+lg 2·lg 50+lg 25=________.5.已知log 189=a ,18b =5,求log 3645.参考答案1.【解析】 ∵xy >0,∴①中,若x <0,则不成立;③中,若x <0,y <0也不成立,故选B .【答案】 B2.【解析】 lg 2516-2lg 59+lg 3281=lg ⎝⎛⎭⎫2516÷2581×3281=lg 2.故选A .【答案】 A3.【解析】 log a 18=log a (2×32)=log a 2+log a 32=log a 2+2log a 3=m +2n .【答案】 m +2n4.【解析】 原式=(lg 2)2+lg 2·(1+lg 5)+2lg 5=lg 2(1+lg 5+lg 2)+2lg 5=2lg 2+2lg 5=2.【答案】 25.【解】 法一 ∵log 189=a ,18b =5,即log 185=b ,于是log 3645=log 1845log 1836=log 189×5log 1818×2=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a . 法二 ∵log 189=a ,18b =5,即log 185=b .于是log 3645=log 189×5log 181829=log 189+log 1852log 1818-log 189=a +b 2-a . 法三 ∵log 189=a ,18b =5,∴lg 9=alg 18,lg 5=blg 18.∴log 3645=lg 45lg 36=lg 9×5lg 1829=lg 9+lg 52lg 18-lg 9=alg 18+b lg 182lg 18-alg 18=a +b 2-a .。
人教A版必修一第二章2.2.1对数与对数运算重难点题型(举一反三)(含解析)
2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1对数的概念与基本性质】1.对数的概念条件a x=N(a>0,且a≠1)结论记法数x叫做以a为底N的对数,a叫做对数的底数,N叫做真数x=log Na2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把l og N记为lg N.10(2)自然对数:在科学技术中常使用以无理数e=2.71828…为底数的对数,以e为底的对数称为自然对数,log aa nb m=log a n并把log N记为ln N.e3.对数与指数的关系当a>0,且a≠1时,a x=N⇔x=log N.a4.对数的基本性质(1)负数和零没有对数,即N>0;(2)log1=0(a>0,且a≠1);a(3)log a=1(a>0,且a≠1).a【知识点2对数的运算性质】1.运算性质条件a>0,且a≠1,M>0,N>0log(MN)=log M+log Na a a性质logaMN=log M-log Na a2.换底公式log b=logcbac3.知识拓展log M n=n log M(n∈R)a a(a>0,且a≠1;c>0,且c≠1;b>0).(1)可用换底公式证明以下结论:1m①log b=;②log b⋅log c⋅log a=1;③log b n=log b;④loga abc ab⑤log b=-log b.1alog b;aa(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1对数有意义条件】【例1】(2019秋•马山县期中)对数式log(a﹣2)(5﹣a)中实数a的取值范围是()A.(﹣∞,5)C.(2,3)∪(3,5)B.(2,5)D.(2,+∞)【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)3有意义,则实数t的取值范围是()A.[2,+∞)C.(﹣∞,2)B.(2,3)∪(3,+∞)D.(2,+∞)【变式1-2】在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()A.(﹣∞,3] C.(4,+∞)B.(3,4)∪(4,+∞)D.(3,4)【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【考点2对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【考点3解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4)(5)x=;16.【考点4对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2(2)lg52+lg8+lg5lg20+(lg2)2【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).﹣()+lg+()lg1【变式4-2】(2019春•大武口区校级月考)(1)((2))0+()+();【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【考点5利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【考点6用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【考点7与对数有关的条件求值问题】x﹣y的值;【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求(2)已知lg2=a,lg3=b,试用a,b表示log830.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【变式 8-2】2018 秋•渝中区校级期中)令 P =80.25× +( ) ﹣(﹣2018)0,Q =2log 32﹣log 3【变式 7-2】已知 lg (x +2y )+lg (x ﹣y )=lg 2+lgx +lgy ,求 log 8 的值.【变式 7-3】已知 2lg=lgx +lgy ,求 .【考点 8 对数的综合应用】【例 8】设 x 、y 、z 均为正数,且 3x =4y =6z(1)试求 x ,y ,z 之间的关系;(2)求使 2x =py 成立,且与 p 最近的正整数(即求与 P 的差的绝对值最小的正整数);(3)试比较 3x 、4y 、6z 的大小.【变式 8-1】设 a ,b ,c 是直角三角形的三边长,其中 c 为斜边,且 c ≠1,求证:log (c +b )a+log (c ﹣b )a =2log(c +b )a •log (c ﹣b )a .((1)分别求 P 和 Q .+log 38.(2)若 2a =5b =m ,且,求 m .【变式 8-3】已知 2y •log y 4﹣2y ﹣1=0,•log 5x =﹣1,问是否存在一个正整数 P ,使 P =.2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1对数的概念与基本性质】1.对数的概念条件a x=N(a>0,且a≠1)结论记法数x叫做以a为底N的对数,a叫做对数的底数,N叫做真数x=log Na2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把l og N记为lg N.10(2)自然对数:在科学技术中常使用以无理数e=2.71828…为底数的对数,以e为底的对数称为自然对数,log aa nb m=log a n并把log N记为ln N.e3.对数与指数的关系当a>0,且a≠1时,a x=N⇔x=log N.a4.对数的基本性质(1)负数和零没有对数,即N>0;(2)log1=0(a>0,且a≠1);a(3)log a=1(a>0,且a≠1).a【知识点2对数的运算性质】1.运算性质条件a>0,且a≠1,M>0,N>0log(MN)=log M+log Na a a性质logaMN=log M-log Na a2.换底公式log b=logcbac3.知识拓展log M n=n log M(n∈R)a a(a>0,且a≠1;c>0,且c≠1;b>0).(1)可用换底公式证明以下结论:1m①log b=;②log b⋅log c⋅log a=1;③log b n=log b;④loga abc ab⑤log b=-log b.1alog b;aa(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1对数有意义条件】【例1】(2019秋•马山县期中)对数式log(a﹣2)(5﹣a)中实数a的取值范围是()A.(﹣∞,5)C.(2,3)∪(3,5)B.(2,5)D.(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可.【答案】解:要使对数式b=log(a﹣2)(5﹣a)有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)3有意义,则实数t的取值范围是()A.[2,+∞)C.(﹣∞,2)B.(2,3)∪(3,+∞)D.(2,+∞)【分析】根据对数式log(t﹣2)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【答案】解:要使对数式log(t﹣2)3有意义,须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.【变式1-2】在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()A.(﹣∞,3] C.(4,+∞)B.(3,4)∪(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;化成对数式;(2)根据对数和指数之间的关系即可将3﹣3=(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,,化为对数式可得答案.(2)根据4x=5×3x,可得【答案】解:(1)∵log x27=,,∴=27=33=故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N >0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4)(5)x=;16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵(5)∵,∴,∴,化为33x=3﹣2,∴3x=﹣2,得到,∴2﹣x=24,解得x=﹣4.;【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg+()lg1(2)lg52+lg8+lg5lg20+(lg2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2+(lg2+lg5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);.(2)【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.)0+()+();【变式4-2】(2019春•大武口区校级月考)(1)((2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;+)(+)(3)(log43+log83)(log32+log92)=(=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;( lg(3)log 34;(4)lg .【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a ,lg3=b ,∴(1)lg12=2lg 2+lg3=2a +b ;(2)log 224= (3)log 34==+log 23=3+ ; ;(4)=lg3﹣3lg2=b ﹣3a .【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点 7 与对数有关的条件求值问题】【例 7】(2018 秋•龙凤区校级月考)(1)已知 lgx +lg (4y )=2lg (x ﹣3y ),求(2)已知 lg2=a ,lg3=b ,试用 a ,b 表示 log 830.x ﹣ y 的值;【分析】 1)由 lgx + (4y )=2lg (x ﹣3y ),推导出 =9,再由 x ﹣ y = = ,能求出结果.(2)log 830== ,由此能求出结果.【答案】解:(1)∵lgx +lg (4y )=2lg (x ﹣3y ),∴,解得 =9,∴x ﹣ y = = =4.(2)∵lg2=a ,lg3=b ,∴log 830== = .【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式 7-1】(2019 秋•江阴市期中)已知 lgx +lgy =2lg (x ﹣y ),求 .【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,,从而解得.故=故=,=(3+()﹣2.)【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.1【答案】解:由得 x >y >0,即 >1,则由 2lg即(=lgx +lgy ,得 lg ()2=xy ,)2=lgxy ,即(x ﹣y )2=4xy ,即 x 2﹣2xy +y 2=4xy ,即 x 2﹣6xy +y 2=0,即( )2﹣6( )+1=0,则 =则=3+2= 或 =3﹣2(3+2(舍),)= (3﹣2 )﹣=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点 8 对数的综合应用】【例 8】设 x 、y 、z 均为正数,且 3x =4y =6z(1)试求 x ,y ,z 之间的关系;(2)求使 2x =py 成立,且与 p 最近的正整数(即求与 P 的差的绝对值最小的正整数);(3)试比较 3x 、4y 、6z 的大小.【分析】(1)令 3x =4y =6z =k ,利用指对数互化求出 x 、y 、z ,由对数的运算性质求出 、、 ,由对数的运算性质化简与 ,即可得到关系值;(2)由换底公式求出 P ,由对数函数的性质判断 P 的取值范围,找出与它最接近的 2 个整数,利用对数的运算性质化简 P 与这 2 个整数的差,即可得到答案;(3)由(1)得 3x 、4y 、6z ,由于 3 个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这 3 个数大小关系.【答案】解:(1)令 3x =4y =6z =k ,由 x 、y 、z 均为正数得 k >1,则 x =log 3k ,y =log 4k ,z =log 6k ,∴ , , ,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a+log(c﹣b)a=2log(c+b)a•log(c﹣b)a.【分析】依题意,利用对数换底公式log(c+b)a=端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a,log(c﹣b)a=证明左端=右【变式 8-2】2018 秋•渝中区校级期中)令 P =80.25× +( ) ﹣(﹣2018)0,Q =2log 32﹣log 3=+====2log (c +b )a •log (c ﹣b )a .∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.((1)分别求 P 和 Q .+log 38.(2)若 2a =5b =m ,且 ,求 m .【分析】(1)利用指数与对数运算性质可得 P ,Q .(2)2a =5b =m ,且=2,利用对数换底公式可得 a = ,b = ,代入解出即可得出.【答案】解:(1)P =× + ﹣1=2+ ﹣1= .Q ==log 39=2.(2)2a =5b =m ,且=2,∴a =∴∴m =,b = ,=2,可得 lgm = ,. 【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣∴y=16;=0,∵•log5x=﹣1,∴,解得,x=故P=;==3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。
高中数学 2.2.1对数与对数运算(全课时讲练结合)新人教A版必修1
解 :lg 5 100 1 lg102
5
log2 25 log2 47
2 lg10
log2 25 log2 214
5
2
=5+14=19
5
练习(liànxí)课本P68 2
第三十一页,共47页。
练习(liànxí)P68 3.求下列(xiàliè)各式的值:
(1) log2 6 log2 3
【例 1】 计算下列各式的值: (1)lg 14-2lg73+lg 7-lg 18;
(3)lg 52+23lg 8+lg 5·lg 20+(lg 2)2.
• (3)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2
=2lg 10+(lg 5+lg 2)2
=2+(lg 10)2 =2+1
(2) lg xy2 z
(3) lg xy3 z
=lgx+2lgy-lgz;
=lgx+3lgy-
1 lgz; 2
(4)
x lg y 2 z
1 lg x 2 lg y lg z 2
第三十页,共47页。
例4 计算(jìsuàn)
(1) log2 (25 47 ) (2) lg 5 100
解 : log2 (25 47 )
log2
6 3
log2 2 1
(2) lg 5 lg 2 lg(5 2) lg10 1
(3)
log5 3 log5
1 3
(4) log3 5 log3 15
log
5
(3
1 3
)
log5 1
0
log3
5 15
log3 31 1
第三十二页,共47页。
高中数学第二章2.2对数函数2.2.1对数与对数运算第1课时对数练习(含解析)新人教版必修1
2.2.1 对数与对数运算第一课时对数1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④=-5成立.其中正确命题的个数为( B )(A)1 (B)2 (C)3 (D)4解析:②错误,如(-1)2=1,不能写成对数式;④错误,log3(-5)没有意义.2.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x,则x=100;④若e=ln x,则x=e2.其中正确的是( C )(A)①③ (B)②④ (C)①② (D)③④解析:lg(lg 10)=lg 1=0,①正确;ln(ln e)=ln 1=0,②正确;10=lg x得x=1010,③错误;e=ln x,x=e e,④错误.故选C.3.已知log x9=2,则x的值为( B )(A)-3 (B)3 (C)±3 (D)解析:由log x9=2得x2=9,又因为x>0且x≠1,所以x=3.故选B.4.若log a=c,则下列各式正确的是( A )(A)b=a5c (B)b=c5a (C)b=5a c(D)b5=a c解析:由log a=c得a c=,所以b=a5c.故选A.5.已知log a=m,log a3=n,则a m+2n等于( D )(A)3 (B)(C)9 (D)解析:由已知得a m=,a n=3.所以a m+2n=a m×a2n=a m×(a n)2=×32=.故选D.6.已知log7[log3(log2x)]=0,那么等于( D )(A)(B)(C)(D)解析:由题知log3(log2x)=1,则log2x=3,解得x=8,所以===.故选D.7.已知f(2x+1)=,则f(4)等于( B )(A)log25 (B)log23(C)(D)解析:令2x+1=4,得x=log23,所以f(4)=log23,选B.8.已知x2+y2-4x-2y+5=0,则log x(y x)的值是( B )(A)1 (B)0 (C)x (D)y解析:x2+y2-4x-2y+5=0,则(x-2)2+(y-1)2=0,所以x=2,y=1.log x(y x)=log212=0.故选B.9.已知对数式log(a-2)(10-2a)(a∈N)有意义,则a= .解析:由对数定义知得2<a<5且a≠3,又因为a∈N,所以a=4.答案:410.方程log2(1-2x)=1的解x= .解析:因为log2(1-2x)=1=log22,所以1-2x=2,所以x=-.经检验满足1-2x>0. 答案:-11.已知=,则x= .解析:由已知得log2x=log9=log9=-,所以x==.答案:12.若f(10x)=x,则f(3)= .解析:令10x=3,则x=lg 3,所以f(3)=lg 3.答案:lg 313.计算下列各式:(1)10lg 3-(+e ln 6;(2)+.解:(1)原式=3-()0+6=3-1+6=8.(2)原式=22÷+3-2·=4÷3+×6=+=2.14.(1)已知10a=2,10b=3,求1002a-b的值; (2)已知log4(log5a)=log3(log5b)=1,求的值.解:(1)1002a-b=104a-2b===.(2)由题得log5a=4,log5b=3,则a=54,b=53,所以==5.15.(1)求值:0.1-2 0150+1+; (2)解关于x的方程(log2x)2-2log2x-3=0.解:(1)原式=0.-1++=()-1-1+23+=-1+8+=10.(2)设t=log2x,则原方程可化为t2-2t-3=0,(t-3)(t+1)=0,解得t=3或t=-1,所以log2x=3或log2x=-1,所以x=8或x=.16.()的值为( C )(A)6 (B)(C)8 (D)解析:()=()-1·()=2×4=8.故选C.17.若a>0,=,则lo a等于( B )(A)2 (B)3 (C)4 (D)5解析:因为=,a>0,所以a=()=()3,则lo a=lo()3=3.故选B.18.计算:lo(+)= .解析:因为(-)·(+)=n+1-n=1,所以+=(-)-1,所以原式=-1.答案:-119.已知log x27=,则x的值为.解析:log x27==3·=3×2=6,所以x6=27,所以x6=33,又x>0,所以x=. 答案:20.设x=,y=(a>0且a≠1),求证:z=.证明:由已知得log a x=,①log a y=, ②将②式代入①式,得log a z=, 所以z=.。
【高中数学必修一】2.2.1 对数与对数运算-高一数学人教版(必修1)(解析版)
一、选择题1.将指数式2a =b 写成对数式为A .log 2b =aB .log a b =2C .log 2a =bD .log b 2=a【答案】A【解析】指数式2a =b 所对应的对数式是:log 2b =a .故选A .2.若log a b •log 3a =5,则b =A .a 3B .a 5C .35D .53 【答案】C3.如果log 3x =log 6x ,那么x 的值为A .1B .1或0C .3D .6【答案】A【解析】∵log 3x =log 6x ,36log 1log 1==0,而对数函数3log y x =,6log y x =在x >0时,具有单调性,因此x =1.故选A .4.1411log 9+1511log 3= A .lg3B .–lg3C .1lg3D .–1lg3【答案】C 【解析】原式=191log 4+131log 5=131log 2+131log 5=131log 10=log 310=1lg3.故选C .5.若x =12log 16,则x = A.–4 B .–3 C .3 D .4【答案】A【解析】∵x =12log 16,∴2–x =24,∴–x =4,解得x =–4.故选A .6.log 8127等于A .34B .43C .12D .13【答案】A【解析】log 8127=3lg334lg34=.故选A . 7.计算lg (103–102)的结果为A .1B .32C .90D .2+lg9【答案】D8.若x log 34=1,则4x +4–x 的值为A .3B .4C .174D .103【答案】D【解析】∵x log 34=1,∴43log x =1,则4x =3,∴4x +4–x =3+11033=,故选D . 9.273log 16log 4的值为 A .2 B .32 C .1 D .23【答案】D【解析】原式=164332734433log 2log log 23log log 3==.故选D .二、填空题10.已知log 3(log 2x )=1,那么x 的值为__________.【答案】8【解析】由log 3(log 2x )=1,得log 2x =3,解得x =8.故答案为:8.11.已知lg2=a ,lg3=b ,用a ,b 的代数式表示lg12=__________.【答案】2a +b【解析】lg12=lg (3×4)=lg3+2lg2=2a +b .故答案为:2a +b .12.求值:2log 510+log 50.25–log 39=__________.【答案】0【解析】原式=()25log 100.25⨯–2=25log 5–2=2–2=0.故答案为:0.13.若lg2=a ,lg3=b ,则log 418=__________.(用含a ,b 的式子表示)【答案】22a b a+14.若log 32=log 23x ,则x =__________.【答案】223(log ) 【解析】∵log 32=log 23x ,∴32321log log x =,∴223(log )x =.故答案为:223(log ). 三、解答题15.计算(log 43+log 83)(log 32+log 92)的值.【解析】(log 43+log 83)(log 32+log 92)=lg3lg3lg2lg2lg4lg8lg3lg9⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=lg3lg3lg2lg22lg23lg2lg32lg3⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ =1111524364+++=. 16.解方程:log 2(x –1)+log 2x =1.【解析】∵log 2(x –1)+log 2x =1,∴log 2(x –1)x =1, ∴x (x –1)=2,解得x =–1或x =2,经检验,得x =–1是增根,x =2是原方程的解,∴x =2.17.计算:(1)lg 12–lg 58+lg12.5–log 89•log 34+0.5log 32; (2)0.21log 35-–(log 43+log 83)(log 32+log 92).(2)0.21log 35-–(log 43+log 83)(log 32+log 92) =5÷51log 35–(log 6427+log 649)(log 94+log 92)=15–5362lg3lg2lg2lg3⨯ =15–1512=554. 18.解关于x 的方程:lg (x 2+1)–2lg (x +3)+lg2=0.【解析】∵lg (x 2+1)–2lg (x +3)+lg2=0,∴()2221lg (3)x x ++=0,∴()2221(3)x x ++=1,解得x =–1或x =7,经检验满足条件.∴方程的根为:x =–1或x =7.。
高中数学第二章对数函数2.2.1对数与对数运算第1课时对数学案(含解析)新人教版
§2.2对数函数2.2.1 对数与对数运算第1课时对数学习目标 1.理解对数的概念、掌握对数的性质(重、难点).2.掌握指数式与对数式的互化,能应用对数的定义和性质解方程(重点).知识点1 对数1.对数(1)指数式与对数式的互化及有关概念:(2)底数a的范围是a>0,且a≠1.2.常用对数与自然对数【预习评价】(正确的打“√”,错误的打“×”)(1)根据对数的定义,因为(-2)4=16,所以log(-2)16=4.( )(2)对数式log32与log23的意义一样.( )(3)对数的运算实质是求幂指数.( )提示(1)×因为对数的底数a应满足a>0且a≠1,所以(1)错;(2)×log32表示以3为底2的对数,log23表示以2为底3的对数,所以(2)错;(3)√由对数的定义可知(3)正确.知识点2 对数的基本性质 (1)负数和零没有对数. (2)log a 1=0(a >0,且a ≠1). (3)log a a =1(a >0,且a ≠1). 【预习评价】若log 32x -33=1,则x =________;若log 3(2x -1)=0,则x =________.解析 若log 32x -33=1,则2x -33=3,即2x -3=9,x =6;若log 3(2x -1)=0,则2x -1=1,即x =1. 答案 6 1题型一 对数的定义【例1】 (1)在对数式y =log (x -2)(4-x )中,实数x 的取值范围是________; (2)将下列指数式化为对数式,对数式化为指数式. ①54=625;②log 216=4;③10-2=0.01;④log5125=6.(1)解析 由题意可知⎩⎪⎨⎪⎧4-x >0,x -2>0,x -2≠1,解得2<x <4且x ≠3.答案 (2,3)∪(3,4)(2)解 ①由54=625,得log 5625=4. ②由log 216=4,得24=16. ③由10-2=0.01,得lg 0.01=-2. ④由log5125=6,得(5)6=125.规律方法 指数式与对数式互化的思路(1)指数式化为对数式:将指数式的幂作为真数,指数作为对数,底数不变,写出对数式. (2)对数式化为指数式:将对数式的真数作为幂,对数作为指数,底数不变,写出指数式. 【训练1】 将下列指数式化为对数式,对数式化为指数式:(1)43=64;(2)ln a =b ;(3)⎝ ⎛⎭⎪⎫12m=n ;(4)lg 1000=3.解 (1)因为43=64,所以log 464=3;(2)因为ln a =b ,所以e b=a ;(3)因为⎝ ⎛⎭⎪⎫12m=n ,所以log 12n =m ; (4)因为lg 1 000=3,所以103=1 000. 题型二 利用指数式与对数式的互化求变量的值 【例2】 (1)求下列各式的值.①log 981=________.②log 0.41=________.③ln e 2=________. (2)求下列各式中x 的值. ①log 64x =-23;②log x 8=6;③lg 100=x ;④-ln e 2=x .(1)解析 ①设log 981=x ,所以9x =81=92,故x =2,即log 981=2;②设log 0.41=x ,所以0.4x =1=0.40,故x =0,即log 0.41=0;③设ln e 2=x ,所以e x =e 2,故x =2,即ln e 2=2. 答案 ①2 ②0 ③2(2)解 ①由log 64x =-23得x =64-23=43×(-23)=4-2=116; ②由log x 8=6,得x 6=8,又x >0,即x =816=23×16=2;③由lg 100=x ,得10x=100=102,即x =2; ④由-ln e 2=x ,得ln e 2=-x ,所以e -x=e 2, 所以-x =2,即x =-2.规律方法 对数式中求值的基本思想和方法 (1)基本思想.在一定条件下求对数的值,或求对数式中参数字母的值,要注意利用方程思想求解. (2)基本方法.①将对数式化为指数式,构建方程转化为指数问题. ②利用幂的运算性质和指数的性质计算.【训练2】 利用指数式、对数式的互化求下列各式中x 的值. (1)log 2x =-12;(2)log x 25=2;(3)log 5x 2=2.解 (1)由log 2x =-12,得2-12=x ,∴x =22. (2)由log x 25=2,得x 2=25. ∵x >0,且x ≠1,∴x =5. (3)由log 5x 2=2,得x 2=52,∴x =±5.∵52=25>0,(-5)2=25>0, ∴x =5或x =-5.题型三 利用对数的性质及对数恒等式求值 【例3】 (1)71-log 75;(2)100⎝⎛⎭⎪⎪⎫12lg 9-lg 2; (3)alog ab ·log bc(a ,b 为不等于1的正数,c >0).解 (1)原式=7×7-log 75=77log 75=75. (2)原式=10012lg 9×100-lg 2=10lg 9×1100lg 2=9×1102lg 2 =9×110lg 4=94.(3)原式=(alog ab )log bc=blog bc=c .规律方法 对数恒等式a log a N =N 的应用 (1)能直接应用对数恒等式的直接应用即可.(2)对于不能直接应用对数恒等式的情况按以下步骤求解.【训练3】 (1)设3log 3(2x +1)=27,则x =________.(2)若log π(log 3(ln x ))=0,则x =________. 解析 (1)3log 3(2x +1)=2x +1=27,解得x =13.(2)由log π(log 3(ln x ))=0可知log 3(ln x )=1,所以ln x =3,解得x =e 3. 答案 (1)13 (2)e 3课堂达标1.有下列说法:(1)只有正数有对数;(2)任何一个指数式都可以化成对数式;(3)以5为底25的对数等于±2;(4)3log 3(-5)=-5成立.其中正确的个数为( )A.0B.1C.2D.3解析 (1)正确;(2),(3),(4)不正确. 答案 B2.使对数log a (-2a +1)有意义的a 的取值范围为( ) A.a >12且a ≠1B.0<a <12C.a >0且a ≠1D.a <12解析 由题意知⎩⎪⎨⎪⎧-2a +1>0,a >0,a ≠1,解得0<a <12.答案 B3.方程lg(2x -3)=1的解为________.解析 由lg(2x -3)=1知2x -3=10,解得x =132.答案1324.计算:2log 23+2log 31-3log 77+3ln 1=________.解析 原式=3+2×0-3×1+3×0=0. 答案 05.把下列指数式化为对数式,对数式化为指数式. (1)2-3=18;(2)⎝ ⎛⎭⎪⎫17a =b ;(3)lg 11 000=-3;(4)ln 10=x .解 (1)由2-3=18可得log 218=-3;(2)由⎝ ⎛⎭⎪⎫17a=b 得log 17b =a ;(3)由lg 11 000=-3可得10-3=11 000;(4)ln 10=x 可得e x=10.课堂小结1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a ab =b ;(2)a log a N =N .2.在关系式a x=N 中,已知a 和x 求N 的运算称为求幂运算,而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化基础过关1.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =10;④若e =ln x ,则x =e 2.其中正确的是( ) A.①③ B.②④ C.①②D.③④解析 lg(lg 10)=lg 1=0,ln(ln e)=ln 1=0,故①②正确;若10=lg x ,则x =1010,故③错误;若e =ln x ,则x =e e,故④错误. 答案 C2.log a b =1成立的条件是( ) A.a =b B.a =b 且b >0 C.a >0,a ≠1D.a >0,a =b ≠1解析 由log a b =1得a >0,且a =b ≠1. 答案 D3.设a =log 310,b =log 37,则3a -b 的值为( )A.107B.710C.1049D.4910解析 3a -b=3a÷3b=3log 310÷3log 37=10÷7=107.答案 A4.若log (1-x )(1+x )2=1,则x =________. 解析 由题意知1-x =(1+x )2, 解得x =0或x =-3.验证知,当x =0时,log (1-x )(1+x )2无意义, 故x =0时不合题意,应舍去.所以x =-3. 答案 -35.若log 3(a +1)=1,则log a 2+log 2(a -1)=________.解析 由log 3(a +1)=1得a +1=3,即a =2,所以log a 2+log 2(a -1)=log 22+log 21=1+0=1. 答案 16.将下列指数式化成对数式,对数式化成指数式. (1)35=243;(2)2-5=132;(3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)⎝ ⎛⎭⎪⎫13-4=81;(4)27=128.7.求下列各式中的x 的值. (1)log x 27=32;(2)log 2x =-23;(3)log x (3+22)=-2; (4)log 5(log 2x )=0; (5)x =log 2719.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log x (3+22)=-2,得3+22=x -2, ∴x =(3+22)-12=2-1.(4)由log 5(log 2x )=0,得log 2x =1.∴x =21=2. (5)由x =log 2719,得27x=19,即33x=3-2, ∴x =-23.能力提升8.对于a >0且a ≠1,下列说法正确的是( )(1)若M =N ,则log a M =log a N ;(2)若log a M =log a N ,则M =N ;(3)若log a M 2=log a N 2,则M =N ;(4)若M =N ,则log a M 2=log a N 2.A.(1)(2)B.(2)(3)(4)C.(2)D.(2)(3)解析 (1)中若M ,N 小于或等于0时,log a M =log a N 不成立;(2)正确;(3)中M 与N 也可能互为相反数且不等于0;(4)中当M =N =0时不正确. 答案 C9.已知log 3(log 5a )=log 4(log 5b )=0,则a b的值为( ) A.1 B.-1 C.5D.15解析 由log 3(log 5a )=0得log 5a =1,即a =5,同理b =5,故a b=1. 答案 A 10.方程3log 2x =127的解是________. 解析 3log 2x =3-3,∴log 2x =-3,x =2-3=18.答案 1811.若正数a ,b 满足2+log 2a =3+log 3b =log 6(a +b ),则1a +1b=________.解析 设2+log 2a =3+log 3b =log 6(a +b )=k ,则a =2k -2,b =3k -3,a +b =6k ,即4a =2k,27b =3k ,所以108ab =6k,∴108ab =a +b ,∴108=1a +1b.答案 10812.(1)若f (10x)=x ,求f (3)的值; (2)计算23+log 23+35-log 39.解 (1)令t =10x,则x =lg t ,∴f (t )=lg t ,即f (x )=lg x ,∴f (3)=lg 3. (2)23+log 23+35-log 39=23·2log 23+353log 39 =23×3+359=24+27=51.13.(选做题)若log 2(log 12(log 2x ))=log 3(log 13(log 3y ))=log 5(log 15(log 5z ))=0,试确定x ,y ,z 的大小关系.解 由log 2(log 12(log 2x ))=0,得log 12(log 2x )=1,log 2x =12,x =212=(215)130.由log 3(log 13(log 3y ))=0,得log 13(log 3y )=1,log 3y =13,y =313=(310)130.由log 5(log 15(log 5z ))=0,得log 15(log 5z )=1,log 5z =15,z =515=(56)130.∵310>215>56,∴y >x >z .。
人教版高中数学必修一学案:《对数与对数运算》(含答案)
2.2.1 对数与对数运算(二)自主学习1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么,(1)log a (MN )=______________;(2)log a M N=____________;(3)log a M n =__________(n ∈R ).2.对数换底公式:________________________.对点讲练正确理解对数运算性质【例1】 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( )①log a x + log a y =log a (x +y ); ②log a x -log a y =log a (x -y );③log a x y=log a x ÷log a y ; ④log a (xy )=log a x ·log a y . A .0个 B .1个 C .2个 D .3个规律方法 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件.使用运算性质时,应牢记公式的形式及公式成立的条件.变式迁移1 (1)若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( )A .log a x =-log a 1xB .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x(2)对于a >0且a ≠1,下列说法中正确的是( )①若M =N ,则log a M =log a N ;②若log a M =log a N ,则M =N ;③若log a M 2=log a N 2,则M =N ;④若M =N ,则log a M 2=log a N 2.A .①③B .②④C .②D .①②③④对数运算性质的应用【例2】 计算:(1)log 535-2log 573+log 57-log 51.8; (2)2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1.变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514; (2)(lg 5)2+lg 2·lg 50.换底公式的应用【例3】 设3x =4y =36,求2x +1y的值.规律方法 换底公式的本质是化同底,这是解决对数问题的基本方法.解题过程中换什么样的底应结合题目条件,并非一定用常用对数、自然对数.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 142=a ,用a 表示log 27.1.对于同底的对数的化简要用的方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成两对数的和(差).2.对于常用对数的化简要创设情境充分利用“lg 5+lg 2=1”来解题.3.对于多重对数符号对数的化简,应从内向外逐层化简求值.4.要充分运用“1”的对数等于0,底的对数等于“1”等对数的运算性质.5.两个常用的推论:(1)log a b ·log b a =1;(2)log am b n =n mlog a b (a 、b >0且均不为1).课时作业一、选择题1.lg 8+3lg 5的值为( )A .-3B .-1C .1D .32.已知lg 2=a ,lg 3=b ,则log 36等于( )A.a +b aB.a +b bC.a a +bD.b a +b3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg a b 2的值等于( ) A .2 B.12 C .4 D.144.若2.5x =1 000,0.25y =1 000,则1x -1y等于( ) A.13 B .3 C .-13D .-3 5.计算2log 525+3log 264-8log 71的值为( )A .14B .8C .22D .27二、填空题6.设lg 2=a ,lg 3=b ,那么lg 1.8=______________.7.已知log 63=0.613 1,log 6x =0.386 9,则x =____________.三、解答题8.求下列各式的值:(1)12lg 3249-43lg 8+lg 245; (2)(lg 5)2+2lg 2-(lg 2)2.9.已知log 189=a,18b =5,试用a ,b 表示log 365.2.2.1 对数与对数运算(二) 答案自学导引1.(1)log a M +log a N (2)log a M -log a N(3)n log a M2.log a b =log c b log c a对点讲练【例1】 A [对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的.] 变式迁移1 (1)A(2)C [在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立. 在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有 M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立.]【例2】 解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2log 55=2.(2)原式=lg 2(2lg 2+lg 5)+(lg 2-1)2=lg 2(lg 2+lg 5)+1-lg 2=lg 2+1-lg 2=1.变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514; (2)(lg 5)2+lg 2·lg 50.解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7) =1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=(lg 5)2+lg 2·(lg 2+2lg 5)=(lg 5)2+2lg 5·lg 2+(lg 2)2=(lg 5+lg 2)2=1.【例3】 解 由已知分别求出x 和y .∵3x =36,4y =36,∴x =log 336,y =log 436,由换底公式得:x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364 =log 36(32×4)=log 3636=1.变式迁移3 解 (1)利用换底公式,得lg 4lg 3·lg 8lg 4·lg m lg 8=2, ∴lg m =2lg 3,于是m =9.(2)由对数换底公式,得log 27=log 27log 22=log 2712=2log 27=2(log 214-log 22) =2(1a -1)=2(1-a )a. 课时作业1.D [lg 8+3lg 5=lg 8+lg 53=lg 1 000=3.]2.B [log 36=lg 6lg 3=lg 2+lg 3lg 3=a +b b.] 3.A [由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12, ∴⎝⎛⎭⎫lg a b 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b=22-4×12=2.] 4.A [由指数式转化为对数式:x =log 2.51 000,y =log 0.251 000,则1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13.] 5.C6.a +2b -12解析 lg 1.8=12lg 1.8 =12lg 1810=12lg 2×910=12(lg 2+lg 9-1)=12(a +2b -1). 7.2解析 由log 63+log 6x=0.613 1+0.386 9=1.得log 6(3x )=1.故3x =6,x =2.8.解 (1)方法一 原式=12(5 lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5) =52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5) =12lg 10=12. 方法二 原式=lg 427-lg 4+lg 7 5 =lg 42×757×4=lg(2·5)=lg 10=12. (2)方法一 原式=(lg 5+lg 2)(lg 5-lg 2)+2lg 2=lg 10·lg 52+lg 4=lg ⎝⎛⎭⎫52×4=lg 10=1. 方法二 原式=(lg 10-lg 2)2+2lg 2-lg 22=1-2lg 2+lg 22+2lg 2-lg 22=1.9.解 ∵18b =5,∴log 185=b,又∵log 189=a ,∴log 365=log 185lg 1836=b log 18(18×2) =b 1+log 182=b 1+log 18189 =b 1+(1-log 189)=b 2-a.。
高中数学人教版A版必修一学案:第二单元 2.2.1 第2课时 对数的运算 Word版含答案
第2课时 对数的运算 学习目标 1.掌握对数的运算性质,能运用运算性质进行对数的有关计算(重点).2.了解换底公式,能用换底公式将一般对数化为自然对数或常用对数(重点).预习教材P64-P65,完成下面问题:知识点1 对数的运算性质 若a >0且a ≠1,M >0,N >0,则有:(1)log a (M ·N )=log a M +log a N .(2)log a M N=log a M -log a N . (3)log a M n =n log a M (n ∈R ).【预习评价】 (正确的打“√”,错误的打“×”)(1)积、商的对数可以化为对数的和、差.( )(2)log a (xy )=log a x ·log a y .( )(3)log a (-2)3=3log a (-2).( )提示 (1)√ 根据对数的运算性质可知(1)正确;(2)× 根据对数的运算性质可知log a (xy )=log a x +log a y ;(3)× 公式log a M n =n log a M (n ∈R )中的M 应为大于0的数.知识点2 换底公式log a b =log c b log c a(a >0,且a ≠1;c >0,且c ≠1;b >0). 【预习评价】(1)log 35·log 56·log 69=________.(2)若log 34×log 48×log 8m =log 416,则m =________.解析 (1)原式=lg 5lg 3·lg 6lg 5·lg 9lg 6=lg 9lg 3=2lg 3lg 3=2. (2)原方程可化为lg 4lg 3×lg 8lg 4×lg m lg 8=lg m lg 3=2,即lg m =2lg 3=lg 9,∴m =9. 答案 (1)2 (2)9题型一 利用对数的运算性质化简、求值【例1】 计算下列各式的值:(1)12lg 3249-43lg 8+lg 245; (2)lg 25+23lg 8+lg 5×lg 20+(lg 2)2.解 (1)法一 原式=12(5lg 2-2lg 7)-43×32lg 2+12(2lg 7+lg 5) =52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5)=12lg 10 =12. 法二 原式=lg 427-lg 4+lg 75=lg 42×757×4=lg(2·5)=lg 10=12. (2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3.规律方法 利用对数运算性质化简与求值的原则和方法(1)基本原则:①正用或逆用公式,对真数进行处理,②选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.(2)两种常用的方法:①“收”,将同底的两对数的和(差)收成积(商)的对数;②“拆”,将积(商)的对数拆成同底的两对数的和(差).【训练1】 计算下列各式的值:(1)(lg 5)2+2lg 2-(lg 2)2; (2)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27. 解 (1)原式=(lg 5)2+lg 2(2-lg 2)=(lg 5)2+(1+lg 5)lg 2=(lg 5)2+lg 2·lg 5+lg 2=(lg 5+lg 2)·lg 5+lg 2=lg 5+lg 2=1.(2)原式=lg 3+45lg 3+910lg 3-12 lg 34lg 3-3lg 3=⎝⎛⎭⎫1+45+910-12lg 3(4-3)lg 3=115.题型二 利用换底公式化简、求值 【例2】 (1)(log 43+log 83)(log 32+log 92)=________. (2)已知log 189=a,18b =5,用a ,b 表示log 3645的值.(1)解析 原式=⎝⎛⎭⎫lg 3lg 4+lg 3lg 8⎝⎛⎭⎫lg 2lg 3+lg 2lg 9=⎝⎛⎭⎫lg 32lg 2+lg 33lg 2·⎝⎛⎭⎫lg 2lg 3+lg 22lg 3=5lg 36lg 2×3lg 22lg 3=54. 答案 54 (2)解 法一 ∵log 189=a,18b =5,∴log 185=b .于是log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b1+log 18189=a +b 2-a . 法二 ∵log 189=a,18b =5,∴log 185=b .于是log 3645=log 18(9×5)log 181829=log 189+log 1852log 1818-log 189=a +b 2-a . 法三 ∵log 189=a,18b =5,∴lg 9=a lg 18,lg 5==b lg 18.∴log 3645=lg 45lg 36=lg (9×5)lg 1829=lg 9+lg 52lg 18-lg 9=a lg 18+b lg 182lg 18-a lg 18=a +b 2-a . 规律方法 利用换底公式化简与求值的思路【训练2】 (1)已知log 1227=a ,求log 616的值;(2)计算(log 2125+log 425+log 85)(log 52+log 254+log 1258)的值.解 (1)由log 1227=a ,得3lg 32lg 2+lg 3=a , ∴lg 2=3-a 2alg 3. ∴log 616=lg 16lg 6=4lg 2lg 2+lg 3=4×3-a 2a 1+3-a 2a=4(3-a )3+a . (2)法一 原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28·⎝⎛⎭⎫log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55=⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13. 法二 原式=⎝⎛⎭⎫lg 125lg 2+lg 25lg 4+lg 5lg 8⎝⎛⎭⎫lg 2lg 5+lg 4lg 25+lg 8lg 125 =⎝⎛⎭⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝⎛⎭⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5=⎝⎛⎭⎫13lg 53lg 2⎝⎛⎭⎫3lg 2lg 5=13.法三 原式=(log 2153+log 2252+log 2351)·(log 512+log 5222+log 5323)=⎝⎛⎭⎫3log 25+log 25+13log 25(log 52+log 52+log 52)=3×⎝⎛⎭⎫3+1+13log 25·log 52=3×133=13. 题型三 利用对数式与指数式的互化解题【例3】 (1)设3a =4b =36,求2a +1b的值; (2)已知2x =3y =5z ,且1x +1y +1z=1,求x ,y ,z . 解 (1)法一 由3a =4b =36,得a =log 336,b =log 436,由换底公式得1a =log 363,1b=log 364, ∴2a +1b=2log 363+log 364=log 3636=1. 法二 由3a =4b =36,两边取以6为底数的对数,得a log 63=b log 64=log 636=2,∴2a =log 63,1b =12log 64=log 62, ∴2a +1b=log 63+log 62=log 66=1. (2)令2x =3y =5z =k (k >0),∴x =log 2k ,y =log 3k ,z =log 5k ,∴1x =log k 2,1y =log k 3,1z=log k 5, 由1x +1y +1z=1,得log k 2+log k 3+log k 5=log k 30=1, ∴k =30,∴x =log 230=1+log 215,y =log 330=1+log 310,z =log 530=1+log 56.规律方法 利用对数式与指数式互化求值的方法(1)在对数式、指数式的互化运算中,要注意灵活运用定义、性质和运算法则,尤其要注意条件和结论之间的关系,进行正确的相互转化. (2)对于连等式可令其等于k (k >0),然后将指数式用对数式表示,再由换底公式可将指数的倒数化为同底的对数,从而使问题得解.【训练3】 已知3a =5b =M ,且1a +1b=2,则M =________. 解析 由3a =5b =M ,得a =log 3M ,b =log 5M ,故1a +1b=log M 3+log M 5=log M 15=2, ∴M =15.答案 15课堂达标1.lg 2516-2lg 59+lg 3281等于( ) A .lg 2B .lg 3C .lg 4D .lg 5 解析 lg2516-2lg 59+lg 3281=lg ⎝⎛⎭⎫2516÷2581×3281=lg 2.故选A . 答案 A 2.已知a =log 32,那么log 38-2log 36用a 表示是( )A .a -2B .5a -2C .3a -(1+a )2D .3a -a 2解析 原式=log 323-2log 32-2log 33=log 32-2=a -2.答案 A3.若log a b ·log 3a =4,则b 的值为________.解析 log a b ·log 3a =lg b lg a ·lg a lg 3=lg b lg 3=4,所以lg b =4lg 3=lg 34,所以b =34=81. 答案 814.已知2m =5n =10,则1m +1n=________. 解析 因为m =log 210,n =log 510,所以1m +1n=log 102+log 105=lg 10=1. 答案 15.求下列各式的值:(1)lg 14-2lg 73+lg 7-lg 18; (2)2lg 2+lg 32+lg 0.36+2lg 2. 解 (1)法一 原式=lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.法二 原式=lg 14-lg ⎝⎛⎭⎫732+lg 7-lg 18=lg 14×7⎝⎛⎭⎫732×18=lg 1=0. (2)原式=2lg 2+lg 32+lg 36-2+2lg 2=2lg 2+lg 32(lg 2+lg 3)+2lg 2=2lg 2+lg 34lg 2+2lg 3=12. 课堂小结1.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.2.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质.(2)根据不同的问题选择公式的正用或逆用.(3)在运算过程中避免出现以下错误:①log a N n =(log a N )n ,②log a (MN )=log a M ·log a N ,③log a M ±log a N =log a (M ±N ).。
高中数学 第二章 基本初等函数 2.2.1 对数与对数运算(第1课时)对数课时作业(含解析)新人教A
第1课时对数A 级 基础巩固一、选择题1.下列指数式与对数式互化不正确的一组是( B ) A .e 0=1与ln1=0 B .log 39=2与912 =3 C .8-13 =12与log 812=-13D .log 77=1与71=7[解析] log 39=2化为指数式为32=9,故选B . 2.将对数式log 5b =2化为指数式是( C ) A .5b=2 B .b 5=2 C .52=bD .b 2=5[解析]∵log 5b =2,∴b =52,故选C . 3.已知log 12x =3,则x 13=( C )A .18B .14C .12D .32[解析]∵log 12x =3,∴x =(12)3=18,∴x 13 =(18)13 =12.4.(12)-1+log 0.54的值为( C )A .6B .72C .8D .37[解析] (12)-1+log 0.54=(12)-1·(12)log 0.54=(12)-1·(12)log 124=2×4=8.5.方程2log 3x =14的解是( A )A .x =19B .x =33C .x = 3D .x =9[解析]∵2log 3x =2-2,∴log 3x =-2,∴x =3-2=19.6.已知f (e x)=x ,则f (3)=( B ) A .log 3e B .ln3 C .e 3D .3e[解析] 令e x=3,∴x =ln3,∴f (3)=ln3,故选B . 二、填空题7.若log π[log 3(ln x )]=0,则x =__e 3__. [解析] 由题意,得log 3(ln x )=1, ∴ln x =3,∴x =e 3.8.log 2 -1(2+1)+ln1-lg 1100=__1__.[解析] 设log 2 -1(2+1)=x ,则(2-1)x =2+1=12-1=(2-1)-1,∴x =-1;设lg 1100=y ,则10y =1100=10-2,∴y =-2; 又ln1=0,∴原式=-1+0-(-2)=1. 三、解答题9.求下列各式的值:(1)log 464; (2)log 31; (3)log 927. [解析] (1)设log 464=x ,则4x=64, ∵64=43,∴x =3,∴log 464=3. (2)设log 31=x ,则3x=1, ∵1=30,∴x =0, ∴log 31=0.(3)设log 927=x ,则9x=27即32x=33,∴2x =3即x =32,∴log 927=32.B 级 素养提升一、选择题1.在b =log (3a -1)(3-2a )中,实数a 的取值X 围是( B ) A .a >32或a <13B .13<a <23或23<a <32C .13<a <32D .23<a <32[解析] 要使式子b =log (3a -1)(3-2a )有意义,则 ⎩⎪⎨⎪⎧3a -1>03a -1≠13-2a >0,即13<a <23或23<a <32,故选B .2.log 5[log 3(log 2x )]=0,则x -12等于( C )A .66 B .39C .24D .23[解析]∵log 5[log 3(log 2x )]=0,∴log 3(log 2x )=1, ∴log 2x =3,∴x =23=8,∴x -12 =8-12 =18=122=24,故选C .3.若log a 3=2log 230,则a 的值为( B ) A .2 B .3 C .8D .9[解析]∵log a 3=2log 230=20=1,∴a =3,故选B .4.已知lg a =2.31,lg b =1.31,则b a等于( B ) A .1100 B .110 C .10D .100[解析]∵lg a =2.31,lg b =1.31,∴a =102.31,b =101.31,∴b a =101.31102.31=10-1=110. 二、填空题5.若log a 2=m ,log a 3=n ,则a2m +n=__12__.[解析]∵log a 2=m ,∴a m=2,∴a 2m=4, 又∵log a 3=n ,∴a n=3, ∴a2m +n=a 2m ·a n=4×3=12.6.log 333=__3__.[解析] 令log333=x ,∴(3)x=33=(3)3, ∴x =3,∴log 333=3.三、解答题7.求下列各式中的x : (1)log x 27=32;(2)log 2x =-23;(3)log x (3+22)=-2; (4)log 5(log 2x )=0; (5)x =log 2719.[解析] (1)由log x 27=32,得x 32 =27,∴x =2723 =9.(2)由log 2x =-23,得x =2-23 =322.(3)由log x (3+22)=-2,得3+22=x -2, ∴x =(3+22)-12 =2-1.(4)由log 5(log 2x )=0,得log 2x =1,∴x =21=2.(5)由log 2719=x ,得27x=19,33x =3-2,∴3x =-2,∴x =-23.8.求下列各式中x 的值: (1)x =log224;(2)x =log 93; (3)log x 8=-3;(4)log 12x =4.[解析] (1)由已知得(22)x=4, ∴2-x2 =22,-x2=2,x =-4.(2)由已知得9x =3,即32x=312.∴2x =12,x =14.(3)由已知得x -3=8, 即(1x )3=23,1x =2,x =12. (4)由已知得x =(12)4=116.9.设x =log 23,求23x-2-3x2x -2-x 的值.[解析] 由x =log 23,得2-x=13,2x =3,∴23x-2-3x2x -2-x =2x 3-2-x 32x -2-x=(2x )2+1+(2-x )2=32+1+(13)2=919.。
高一数学 人教A版必修一精品教案:2.2.2对数函数(1) Word版含答案
课题:§2.2.2对数函数(一)教学过程: 一、引入课题1.(知识方法准备)○1 学习指数函数时,对其性质研究了哪些内容,采取怎样的方法? 设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法——借助图象研究性质.○2 对数的定义及其对底数的限制. 设计意图:为讲解对数函数时对底数的限制做准备. 2.(引例) 教材P 81引例系P t 215730log=,生物死亡年数t 都有唯一的值与之对应,从而t 是P 的函数” .(进而引入对数函数的概念)二、新课教学(一)对数函数的概念1.定义:函数0(log >=a x y a ,且)1≠a 叫做对数函数(logarithmic function )其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:x y 2log 2=,5log 5xy = 都不是对数函数,而只能称其为对数型函数. ○2 对数函数对底数的限制:0(>a ,且)1≠a . 巩固练习:(教材P 68例2、3)(二)对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究:○1 在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机)(1) x y 2log = (2) x y 21log =(3) x y 3log = (4) x y 31log =2○3 思考底数a 是如何影响函数x y alog =的.(学生独立思考,师生共同总结) 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大. (三)典型例题例1.(教材P 83例7). 解:(略) 说明:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理解.巩固练习:(教材P 85练习2). 例2.(教材P 83例8) 解:(略)说明:本例主要考察学生利用对数函数的单调性“比较两个数的大小”的方法,熟悉对数函数的性质,渗透应用函数的观点解决问题的思想方法. 注意:本例应着重强调利用对数函数的单调性比较两个对数值的大小的方法,规范解题格式. 巩固练习:(教材P 85练习3). 例2.(教材P 83例9) 解:(略)说明:本例主要考察学生对实际问题题意的理解,把具体的实际问题化归为数学问题. 注意:本例在教学中,还应特别启发学生用所获得的结果去解释实际现象. 巩固练习:(教材P 86习题2.2 A 组第6题). 三、归纳小结,强化思想本小节的目的要求是掌握对数函数的概念、图象和性质.在理解对数函数的定义的基础上,掌握对数函数的图象和性质是本小节的重点. 四、作业布置1. 必做题:教材P 86习题2.2(A 组) 第7、8、9、12题. 2. 选做题:教材P 86习题2.2(B 组) 第5题.。
高中数学2.2.1.1对 数(人教A版必修1)讲解
1 27
=-3,
log6216=3写成指数式为63=216.
答案:log3
1 27
=-3
63=216
1.对数logaN中规定a>0且a≠1的原因
a不能取的值
原因
a<0
N取某些值时,logaN不存在,如根据指数的运
算性质可知,不存在实数x使(- 1 )x=2成立,
2
所以
log (
1)2
不存在,所以a不能小于0.
2.指数式与对数式互化在函数求值问题中的应用 利用指数式与对数式的关系,可以将对数运算转化为指数运算. 例如,(1)利用指数运算性质讨论对数运算性质; (2)给出指 数式(对数式)的条件求对数(幂)的值等问题.
【典例训练】
1.若f(10x)=x,则f(2)=________.
2.将下列指数式化为对数式,对数式化为指数式:
【阅卷人点拨】通过阅卷后分析,对解答本题的常见错误及解 题启示总结如下:(注:此处的①见解析过程)
常
在判断第(4)个说法时,常会忽视①处M=N=0,即
见 选B 真数等于零时对数无意义的情况,而导致判断说
错
法(4)正确.实质是对对数的定义理解不准确,对
误
数与指数的关系掌握不好造成的.
解 (1)判断一个说法错误时常用举反例的方法,而举反例的 题 关键是问题要考虑全面. 启 (2)学会利用指数式与对数式的关系理解对数的概念,尤 示 其要注意对数的底数和真数的取值范围.
2
a不能取的值
原因
N≠0时,不存在实数x使ax=N,无法定义logaN.
a=0 N=0时,任意非零实数x,有ax=N成立,logaN不 确定.
N≠1,logaN不存在.
[教案精品]新课标高中数学人教A版必修一全册教案2.2.1对数与对数运算(一(可打印修改)
(3)由 log2 (log5x) = 0 得 log5x = 20 = 1.
∴x = 5.
【小结】(1)对数式与指数式的互化是求真数、底数的重要手段.
(2)第(3)也可用对数性质求解.如(3)题由 log2(log5x) = 0 及对数性质 loga1=0. 知 log5x = 1,又 log55 = 1. ∴x = 5.
幂底数← a →对数底数
掌握指数式与对数式的互
通过本环
化、而且要明确对数运算是指 节的教学,培
数运算的逆运算.
养学生的用联
系的关点观察
问题.
指 数← x →对数
幂 ←N→真数
说明:对数式 loga N 可看作一记号,表 示底为 a ( a >0,且 a ≠1),幂为 N 的指数
工表示方程 ax N ( a >0,且 a ≠1)的解.
(3) lg100 x
(4) ln e2 x
例 2 分析:将对数式化为
指数式,再利用指数幂的运算
性质求出 x.
解:(1)
x
2
(64) 3
(43
)
2 3
3( 2 )
4 3
42
1
16
课本 P74 练习第 1,2,3,4 题.
(2) x6 8,
1
1
所以(x6 )6 (8)6
1
1
(23 )6 22 2
的角色.
的互化,提高
(生口答,师板书)
运算能力.
解:(1)log5625=4;
(2)log2 1 =-6; 64
(3)log 1 5.73=m;
3
(4)( 1 )-4=16; 2
(5)10-2=0.01;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.求 x 的值: 2 (1)x=log 4; (2)x=log9 3; 2
(3)x=71-log75;
1 (4)logx8=-3; (5)log x=4. 2
§ 2.2 对数函数 2.2.1 对数与对数运算(一)
答案
自学导引 1.以 a 为底 N 的对数 x=logaN 对数的底数 真数 2.(1)零 (2)1 (3)没有对数 3.常用对数 自然对数 lgN lnN 4.等价于 5.N 对点讲练 【例 1】解 (1)由题意有 x-10>0,∴x>10,即为所求. x+2>0, (2)由题意有 x-1>0且x-1≠1,
课时作业 一、选择题 1.下列指数式与对数式互化不正确的一组是( ) 1 1 1 1 A.100=1 与 lg1=0B.27- = 与 log27 =- 3 3 3 3 1 1 C.9 =3 与 log3 =9D.log55=1 与 51=5 2 2 6 2.指数式 b =a (b>0,b≠1)所对应的对数式是( ) A.log6a=aB.log6b=a C.logab=6D.logba=6 3.若 logx( 5-2)=-1,则 x 的值为( ) A. 5-2B. 5+2 C. 5-2 或 5+2D.2- 5 4.如果 f(10x)=x,则 f(3)等于( ) 3 10 A.log310B.lg3C.10 D.3 1 5.21+ · log25 的值等于( ) 2 5 5 A.2+ 5B.2 5C.2+ D.1+ 2 2 二、填空题 6.若 5lgx=25,则 x 的值为________. + 7.设 loga2=m,loga3=n,则 a2m n 的值为________. 2.7782 8.已知 lg6≈0.7782,则 10 ≈________. 三、解答题 9.求 10lg3-10log51+πlogπ2 的值.
2log29 9 (2)原式=2(log29-log25)= = . 2log25 5 1 1 变式迁移 3 解 原式= 5+3 log3 2 5 11 = 5+(3log3 ) 52 1 6 5 = 5+ = . 5 5 课时作业 1.C 2.D 3.B 4.B [方法一 令 10x=t,则 x=lgt, ∴f(t)=lgt,f(3)=lg3. 方Байду номын сангаас二 令 10x=3,则 x=lg3, ∴f(3)=lg3.] 1 1 1 5.B [21+ log25=2×2 log25=2×(2log5 2) 2 2 2 1 =2×5 =2 5.] 2 6.100 [∵5lgx=52,∴lgx=2, ∴x=102=100.] 7.12 解析 ∵loga2=m,loga3=n, ∴am=2,an=3, + ∴a2m n=a2m· an=(am)2· an=22×3=12. 8.600 解析 102.7782≈102×10lg6=600. 9.解 原式=3-10×0+2=5. 2 10.解 (1)由已知得: x=4, 2 1 x ∴2- x=22,- =2,x=-4. 2 2 1 (2)由已知得:9x= 3,即 32x=3 . 2 1 1 ∴2x= ,x= . 2 4 7 (3)x=7÷ 7log75=7÷ 5= . 5 - (4)由已知得:x 3=8, 13 1 3 1 即 x =2 ,x=2,x=2. 14 1 (5)由已知得:x= 2 =16.
§2.2 对数函数 2.2.1 对数与对数运算(一)
自主学习 1.理解对数的概念,能进行指数式与对数式的互化. 2.了解常用对数与自然对数的意义. 3.理解对数恒等式并能用于有关对数的计算. 1 . 如 果 ax = N(a>0 , 且 a≠1) , 那 么 数 x 叫 做 ______________________ , 记 作 ________________,其中 a 叫做________________,N 叫做________. 2.对数的性质有: (1)1 的对数为________;(2)底的对数为________;(3)零和负数________________. 3 . 通 常 将 以 10 为 底 的 对 数 叫 做 ________________ , 以 e 为 底 的 对 数 叫 做 ________________,log10N 可简记为________,logeN 简记为________________. 4.若 a>0,且 a≠1,则 ax=N________logaN=x. 5.对数恒等式:alogaN=________(a>0 且 a≠1). 对点讲练 对数式有意义的条件 【例 1】求下列各式中 x 的取值范围: (1)log2(x-10); (2)log(x-1)(x+2); (3)log(x+1)(x-1)2.
规律方法 在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大 于零且不等于 1. 变式迁移 1 在 b=log(a-2)(5-a)中,实数 a 的取值范围是( ) A.a>5 或 a<2 B.2<a<5 C.2<a<3 或 3<a<5 D.3<a<4 对数式与指数式的互化 【例 2】将下列对数形式化成指数形式或将指数形式转化为对数形式: 1-2 1 (1)54=625; (2)log 8=-3; (3) 4 =16; (4)log101000=3. 2
22 (3)由 log5(log2x)=0,得 log2x=1, ∴x=21=2. 1 1 - (4)由 x=log27 ,得 27x= ,即 33x=3 2, 9 9 2 ∴x=- . 3 1x 1 (5)由 x=log 16,得 2 =16, 2 - 即 2 x=24, ∴x=-4. 【例 3】解 (1)原式=7· 7log75=7×5=35.
规律方法 指数和对数运算是一对互逆运算, 在解题过程中, 互相转化是解决相关问题 x 的重要途径.在利用 a =N⇔x=logaN 进行互化时,要分清各字母分别在指数式和对数式中 的位置. 变式迁移 2 将下列对数式化为指数式求 x 值: 3 2 1 1 (1)logx27= ; (2)log2x=- ; (3)log5(log2x)=0; (4)x=log27 ; (5)x=log 16. 2 3 9 2
x>-2, 即 ∴x>1 且 x≠2. x>1且x≠2,
2 x-1 >0, (3)由题意有 x+1>0且x+1≠1,
解得 x>-1 且 x≠0,x≠1. 5-a>0 变式迁移 1 C [由题意得a-2>0 a-2≠1 ,
∴2<a<5 且 a≠3.] 【例 2】解 (1)∵54=625,∴log5625=4. 1-3 1 (2)∵log 8=-3,∴ 2 =8. 2 1-2 1 (3)∵ 4 =16,∴log416=-2. (4)∵log101000=3,∴103=1000. 3 变式迁移 2 解 (1)由 logx27= , 2 3 得 x =27, 2 2 ∴x=27 =32=9. 3 2 2 (2)由 log2x=- ,得 2- =x, 3 3 ∴x= 1 3 3 = 2 . 2
对数恒等式的应用 【例 3】计算: (1)71+log75; 1 (2)4 (log29-log25). 2
1 变式迁移 3 计算:3log3 5+( 3)log3 . 5
1.一般地,如果 a(a>0 且 a≠1)的 x 次幂等于 N,即 ax=N,那么 x 叫做以 a 为底 N 的 对数,记作 logaN=x,其中 a 叫做对数的底数,N 叫做真数. 2.利用 ax=N⇔x=logaN (其中 a>0 且 a≠1,N>0)可以进行指数式与对数式的互化. 3.对数恒等式:alogaN=N(a>0 且 a≠1).