人教A版数学必修一《对数与对数运算》(一)教案

合集下载

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。

〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。

〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。

教学重难点:指、对数式的互化。

教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。

这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。

能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。

二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。

其中a 叫做对数的底数,N 叫做真数。

根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。

人教版数学高一教案对数及其运算(一)

人教版数学高一教案对数及其运算(一)

§3.2 对数与对数函数3.2.1 对数及其运算(一)一.教学目标:1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.二.重点与难点:(1)重点:对数式与指数式的互化及对数的性质(2)难点:对数性质的推导三.学法与教具:(1)学法:讲授法、讨论法、类比分析与发现(2)教具:投影仪教学过程[问题情境] 对数,延长了天文学家的生命.“给我空间、时间和对数,我可以创造一个宇宙”,这是16世纪意大利著名学者伽利略的一段话.从这段话可以看到,伽利略把对数与最宝贵的空间和时间相提并论.那么,“对数”到底是什么呢?本节就来探讨这个问题.探究点一 对数的概念问题1 若24=M ,则M 等于多少?若2-2=N ,则N 等于多少?答: M =16,N =14. 问题2 若2x =16,则x 等于多少?若2x =14,则x 等于多少? 答: x 的值分别为4,-2.问题3 满足2x =3的x 的值,我们用log 23表示,即x =log 23,并叫做“以2为底3的对数”.那么满足2x =16,2x =14,4x =8的x 的值如何表示? 答: 分别表示为log 216,log 214,log 48. 小结: 1.在指数函数f (x )=a x (a >0,且a ≠1)中,对于实数集R 内的每一个值x ,在正实数集内都有唯一确定的值y 和它对应;反之,对于正实数集内的每一个确定的值y ,在R 内都有唯一确定的值x 和它对应.幂指数x ,又叫做以a 为底y 的对数.一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”.2.对数log a N (a >0,且a ≠1)的性质(1)0和负数没有对数,即N >0;(2)1的对数为0,即log a 1=0;(3)底的对数等于1,即log a a =1.3.常用对数以10为底的对数叫做常用对数.为了简便起见,对数log 10N 简记作lg N .探究点二 对数与指数的关系问题1 当a >0,且a ≠1时,若a x =N ,则x =log a N ,反之成立吗?为什么?答:反之也成立,因为对数表达式x =log a N 不过是指数式a x =N 的另一种表达形式,它们是同一关系的两种表达形式.问题2 在指数式a x =N 和对数式x =log a N 中,a ,x ,N 各自的地位有什么不同?答问题3 若a b =N ,则b =log a N ,二者组合可得什么等式?答:对数恒等式:a =N .问题4 当a >0,且a ≠1时,log a (-2),log a 0存在吗?为什么?由此能得到什么结论? 答:不存在,因为log a (-2),log a 0对应的指数式分别为a x =-2,a x =0,x 的值不存在,由此能得到的结论是:0和负数没有对数.问题5 根据对数定义,log a 1和log a a (a >0,a ≠1)的值分别是多少?答:log a 1=0,log a a =1.∵对任意a >0且a ≠1,都有a 0=1, ∴化成对数式为log a 1=0; ∵a 1=a ,∴化成对数式为log a a =1.小结: 对数log a N (a >0,且a ≠1)具有下列性质:(1)0和负数没有对数,即N >0;(2)1的对数为0,即log a 1=0;(3)底的对数等于1,即log a a =1.例1 求log 22, log 21, log 216, log 212. 解: 因为21=2,所以log 22=1;因为20=1,所以log 21=0;因为24=16,所以log 216=4;因为2-1=12,所以log 212=-1. 小结: log a N =x 与a x =N (a >0,且a ≠1,N >0)是等价的,表示a ,x ,N 三者之间的同一种关系,可以利用其中两个量表示第三个量.因此,已知a ,x ,N 中的任意两个量,就能求出另一个量. 跟踪训练1 将下列指数式写成对数式:(1)54=625; (2)2-6=164; (3)3a =27; (4)⎝⎛⎭⎫13m =5.73. 解: (1)log 5625=4;(2)log 2164=-6;(3)log 327=a ;(4)log 135.73=m . 例2 计算:(1)log 927; (2)log 4381; (3)log 354625.解:(1)设x =log 927,则9x =27,32x =33,∴x =32. (2)设x =log 4381,则⎝⎛⎭⎫43x =81,3=34,∴x =16.(3)令x =log 354625,∴⎝⎛⎭⎫354x =625,5=54,∴x =3.小结:要求对数的值,设对数为某一未知数,将对数式化为指数式,再利用指数幂的运算性质求解.跟踪训练2 求下列各式中的x 的值:(1)log 64x =-23; (2)log x 8=6; (3)lg 100=x . 解: (1)x =(64) -23=(43) -23=4-2=116.(2)x 6=8,所以x =(x 6) 16=816=(23) 16=212= 2.(3)10x =100=102,于是x =2.探究点三 常用对数问题 阅读教材96页下半页,说出什么叫常用对数?常用对数如何表示?答:以10为底的对数叫做常用对数.通常把底10略去不写,并把“log”写成“lg”,并把log 10N 记做lg N .如果以后没有指出对数的底,都是指常用对数.如“100的对数是2”就是“100的常用对数是2”.例3 求lg 10,lg 100,lg 0.01.解:因为101=10,所以lg 10=1;因为102=100,所以lg 100=2;因为10-2=0.01,所以lg 0.01=-2.小结:由本例题可以看出,对于常用对数,当真数为10n (n ∈Z )时,lg 10n =n ;当真数不是10的整数次方时,常用对数的值可通过查对数表或使用科学计算器求得.跟踪训练3 求下列各式中的x 的值:(1)log 2(log 5x )=0;(2)log 3(lg x )=1; (3)log (2-1)13+22=x .解: (1)∵log 2(log 5x )=0. ∴log 5x =20=1,∴x =51=5.(2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1 000.(3)∵log (2-1)13+22=x ,∴(2-1)x =13+22=1(2+1)2=12+1=2-1, ∴x =1.当堂检测1.若log (x +1)(x +1)=1,则x 的取值范围是( B ) A.x >-1B.x >-1且x ≠0C.x ≠0D.x ∈R 解析:由对数函数的定义可知x +1≠1,x +1>0即x >-1且x ≠0.2.已知log 12x =3,则x 13=__12______.解析:∵log 12x =3,∴x =(12)3, ∴x 13=12. 3.已知a 12=49(a >0),则log 23a =__4______.解析:由a 12=49(a >0),得a =(49)2=(23)4, 所以log 23a =log 23(23)4=4. 4.将下列对数式写成指数式:(1)log 16=-4;(2)log 2128=7;(3)lg 0.01=-2.解:(1)⎝⎛⎭⎫12-4=16;(2)27=128; (3)10-2=0.01.课堂小结:1.掌握指数式与对数式的互化a b =N ⇔log a N =b .2.对数的常用性质有:负数和0没有对数,log a 1=0,log a a =1.3.对数恒等式有:a log a N =N ,log a a n =n .4.常用对数:底数为10的对数称为常用对数,记为lg N .。

4.3.2对数的运算教学设计-2024-2025学年高一上学期数学人教A版(2019)必修第一册

4.3.2对数的运算教学设计-2024-2025学年高一上学期数学人教A版(2019)必修第一册
- 思考预习问题:学生针对提出的问题,进行独立思考,记录自己的理解和疑问。
- 提交预习成果:学生将预习成果(如笔记、思维导图、问题等)提交至在线平台或老师处。
教学方法/手段/资源:
- 自主学习法:学生自主阅读和思考,培养自主学习能力。
- 信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
- 反馈作业情况:及时批改作业,给予学生反馈和指导。
学生活动:
- 完成作业:学生认真完成老师布置的课后作业,巩固学习效果。
- 拓展学习:学生利用老师提供的拓展资源,进行进一步的学习和思考。
- 反思总结:学生对自己的学习过程和成果进行反思和总结,提出改进建议。
教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
教学方法/手段/资源:
- 讲授法:通过详细讲解,帮助学生理解对数的定义、性质和运算法则。
- 实践活动法:设计小组讨论,让学生在实践中掌握对数的运算技能。
- 合作学习法:通过小组讨论等活动,培养学生的团队合作意识和沟通能力。
作用与目的:
- 帮助学生深入理解对数的定义、性质和运算法则,掌握对数的运算技能。
- 提供一些拓展性的题目,鼓励学生进行深入研究和探索,如对数函数的图像分析、对数运算的数学证明等。
作业反馈:
- 及时批改学生的作业,给出明确的评分和评价。
- 在批改过程中,注意指出学生作业中的错误和不足之处,并提供改进建议。
- 对于学生作业中的亮点和优秀表现,给予肯定和鼓励。
- 通过面对面的交流或书面反馈,将作业批改结果告诉学生,并与他们讨论改进的方法。
- 数学教科书和配套练习册,作为教学的主要材料。
- 计算器,用于辅助计算和对数的运算练习。

对数的运算性质教案

对数的运算性质教案

对数的运算性质教案篇一:对数的运算性质(公开课教案)2.7.2 对数的运算性质教学目标(一)教学知识点1. 对数的基本性质.2. 对数的运算性质.(二) 能力训练要求1. 进一步熟悉对数的基本性质.2. 熟练运用对数的运算性质.3. 掌握化简,求值的技巧. 教学重点对数运算性质的应用.教学难点化简,求值技巧.教学方法启发引导法教学过程.一、复习回顾上节课,我们学习对数的定义,由对数的定义可得:Nab?N?b?log (a?0且a?1,N?0)a本节课,我们将在这基础上,结合幂的运算性质,推导出对数的运算性质.二、讲授新课1 . 对数的基本性质a? 1 (a?0且a?1)由对数的定义可得:loga1?0 loga把b?logaN 代入ab?N 可得alog形式。

aN?N(a?0且a?1,N?0)上式称为对数恒等式,通过上式可将任意正实数N转化为以a 为底的指数bb把a?N 代入b?logaN 可得b?logaa (a?0且a?1)通过上式可将任意实数b转化为以a为底的对数形式。

例如:2?aloga2?logaa2(a?0且a?1)2 . 对数的运算性质接下来我们用指对数互化的思想,结合指数的运算性质来推导有关对数的运算性质。

指数的运算性质ap?aq?ap?q在上式中设ap?M,aq?N 则有MN?ap?q 将指数式转化为对数式可得:p?log M q?logN p?q?logMNaaa∴logM?loagN?alaoMgN(M?0 N?0 a?0且a?1)这就是对数运算的加法法则,用语言描述为:两个同底对数相加,底不变,真数相乘。

请同学们猜想:两个同底对数相减,结果又如何?logaM?logaN?logaMN证明如下:∵logaMN?Mloa?laNog?Nlo gaNM?log?N?)laoNg aNM?loNg ?logaa对数运算的减法法则:两个同底对数相减,底不变,真数相除。

根据上述运算法则,多个同底对数相加,底不变,真数相乘,N1?loagN2???即logalaoNgN?laNo1gN?2N n若N1?N2???NN?MM?则上式可化为nlogaloMgann?N?若将n的取值范围扩展为实数集R,上式是否还会成立?M?下证nlogaloMgan(M?0 a?0且a?1 n?R)pM?p 则有M?a 证明:设loga∴Mn?anp ∴logaMn?npnM?nloMg (M?0 a?0且a?1 n?R)即logaa对数的乘法法则:M的n次方的对数会等于M的对数的n倍。

高中数学《对数的概念与运算性质》教学设计

高中数学《对数的概念与运算性质》教学设计

《对数与对数运算》(第一课时)(人教A版普通高中课程标准实验教科书数学必修1第二章第二节)一、教学内容解析《对数与对数运算》选自人教A版高中数学必修一第二章,共分两小节,第一小节主要内容是对数的概念、对数式与指数式的互化,第二小节内容是对数的运算性质,本课时为第一小节内容.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成为当务之急.苏格兰数学家纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.与传统教科书相比,教材从具体问题引进对数概念,加强了对数的实际应用与数学文化背景,强调“对数源于指数”以及指数运算与对数运算的互逆关系,将对数安排在指数运算及指数函数之后进行学习,实现对数与原有知识体系的对接,有利于学生学习时发现与论证对数的运算性质.基于以上分析,本课时的教学重点是:对数概念的理解以及指数式与对数式的互化.二、教学目标设置1.感受引入对数的必要性,理解对数的概念;2.能够说出对数与指数的关系,能根据定义进行互化和求值;3.感受数学符号的抽象美、简洁美.本课时落实以上三个教学目标:通过“推断化石年代”和“解指数方程”两个实例,认识到引入对数,研究对数是基于实际需求的。

根据底数、指数与幂之间的关系,通过“知二求一”的分析,引导学生借助指数函数图象,分析问题中幂指数的存在性,以及为了表示指数的准确值,引入了对数符号,从而引出对数概念.通过图示连线,对指数式和对数式中各字母进行对比分析,来认识对数与指数的相互联系;利用指数式与对数式的互化,来帮助学生理解对数概念,体会转化思想在对数计算中的作用.对数源于指数,本课时中,对数问题往往回归本源,转化为指数问题来解决,因而要在理解对数概念的基础上学会互化和求值.恰当的数学符号,对数学发展起着巨大的推动作用,对数符号抽象而简洁,学生需要在不断的学习中逐渐体验对数符号的重要性.三、学生学情分析1.认知基础从运算的角度来讲,加、乘、乘方运算中只有乘方的逆运算对数运算还没有学习.从函数的角度来说,高一的学生刚刚学习了集合、函数的概念、函数的表示方法和函数的一般性质,对函数有了初步的认识,在此基础上又学习了指数运算和指数函数,了解了研究函数的一般方法,经历过从特殊到一般,具体到抽象的研究过程,之后将在学习对数的基础上继续学习对数函数.2.问题诊断对数的概念对于学生来说,是全新的.形式地进行指数式与对数式之间的互化是容易的,在真正理解对数概念的基础上进行解题是有一定难度的,表现在两个方面:(1)不能将对数与普通的数平等对待,不理解对数的概念,只能够进行表面上的形式转换;(2)不能把“对数的实质是指数”应用在数学问题的解决中.基于以上分析,本节的教学难点是:(1)对数概念的理解;(2)对数的常用性质的概括.为了突破第一个难点,要在引入对数概念时,通过不同的实例,让学生感受到为什么要学习对数,是基于研究指数的需求才引入对数,因此对数的实质是指数;在形成概念时,要引导学生明确“对数是数”这一事实;在引入对数概念后,学生通过自主举例,具体感知个例,从对数概念外延的角度进行理解.本节的第二个难点是:“0和负数没有对数”这一性质的深入认识.在教学中最明显的例证是涉及到求定义域时,看到对数符号,不能如同看到分母一样,瞬间闪现出真数要大于0的限制,因此应该在学习对数伊始,就打好“0和负数没有对数”的认识基础.为了突破第二个难点,不要急于将现成的结论抛出,可以让学生在自主举例(感受个例)的基础上,尝试思考(分析通例)对数中的底数和真数可以取什么样的数,引导学生思考是不是所有的实数都有对数,哪些数有对数?为什么?通过互化和求值的练习,让学生逐渐地从内涵和外延两方面加深对数概念的理解.四、教学策略分析本节教学中,学习对数概念的过程就是认识的辨证发展过程:从实践到认识:通过具体情境,具体问题,具体对数的体验感知,遵循从具体到抽象的过程,来建立对数概念,从概念内涵的角度学习;再实践:形成概念之后,遵循从一般到特殊的思路,进行自主举例,感知个例,从概念外延的角度加深概念理解;再认识:理性分析通例(思考底数和真数的范围),又从特殊到一般进行概念的再认识;循环往复:在随后的练习巩固中,认识两种特殊的对数(常用对数和自然对数)和两种特殊的对数值(1的对数和底数的对数),来获得基于对数概念的运算性质,从而丰富学生对于对数概念的认知.突破难点的策略为:旧知新悟,适度模仿,归纳概括,自主举例.五、教学过程设计1.对数概念的形成1.1创设情境,引发思考【实际情境】网上的一则消息:有驴友挖到几枚恐龙蛋,送到权威机构做了碳14同位素鉴定,结果是白垩纪的恐龙蛋化石,现坐等博物馆上门收购.生物死亡后,它机体内原有的碳14含量,每经过大约6000年,会衰减为原来的一半,这个时间称为“半衰期”,研究人员常常根据机体内碳14的含量来推断生物体的年代,其中半衰次数x与碳14的含量P间的关系为:1()2x P.但是,当生物组织内的碳14含量低于千分之一时(这里我们按11024来计算),一般的放射性探测器就测不到碳14了.众所周知,恐龙生活在距今大约一亿年前的地球上,那么用碳14同位素法能推断出恐龙蛋化石的年代吗?问题1:(1)经过1次半衰期,碳14的含量会变为原来的多少?3次呢?(2)经过几次半衰期,一般的放射性探测器就测不到碳14了呢?(3)用碳14同位素法能推断出恐龙蛋化石的年代吗?【预设的答案】12,18;10;不能【设计意图】对数概念不是凭空产生的,用考古鉴定这一实例,让学生感受“求指数”这样的问题是客观存在的,是源于实际生活的.【数学情境】解方程:(1)2x=2;(2)2x=3;(3)2x=4.【设计意图】创设数学情境,通过指数方程的实例,让学生感受在数学学习中,“求指数”这样的问题也是存在的,有必要研究这一类问题.问题2:以上几个问题的共同特征是什么?【活动预设】引导学生归纳概括出问题的共同特征:已知底数和幂,求指数x .1.2探究典例,形成概念活动:解方程:(1)2x =2; (2)2x =3; (3)2x =4.【活动预设】感受在求指数的过程中,有的指数可以直接写出结果,有的指数却不好表示.【设计意图】为引入对数符号表示指数做铺垫.问题3:以引例中的2x =3为例,分析x 的值存在吗?如果存在,符合条件的x 的值有几个?能估计出x 的大致范围吗?【活动预设】(1)根据函数图象,思考等式2x =3中指数x 的存在性,唯一性和大致范围;(2)类比:在学习求方程x 3=2的根时,为了表示底数x ,引入了数学符号:√,表示3次方为2的数;这里,我们引入对数符号来表示指数x ,将x 记作log 23.【设计意图】从引例中的具体问题入手,思考指数x 的存在性,唯一性和大致范围,为了表示指数,引入对数符号,在具体问题中体验用对数符号表示指数的过程.问题4:结合方程2x =3来思考,x =log 23中log 23表示什么?【活动预设】(1)分析log 23表示的含义;(2)感受:以2x =4为例,分析指数x 可以怎样用对数符号表示,以及该符号表示什么. 教师讲授:若a x =N (a >0,a ≠1),那么数x 叫做以a 为底N 的对数,记作:N x a log ,其中a 叫做对数的底数,N 叫做真数.【设计意图】理解具体的对数符号所表示的含义,并且在探究特例的基础上,遵循从具体到抽象的思路,形成对数概念.问题5:指数式与对数式是等价的,但a ,x ,N 在两个式子中的名称一样吗?【预设的答案】此处画上连线图,呈现指数式与对数式之间的关系。

人教版高中数学必修第一册对数与对数运算(一)

人教版高中数学必修第一册对数与对数运算(一)

对数与对数运算(一)三维目标一、知识与技能1.理解对数的概念.2.理解指数式和对数式之间的关系,能熟练地进行对数式和指数式的互化.3.了解自然对数和常用对数的概念以及对数恒等式.二、过程与方法1.通过探究对数的概念以及对数式和指数式之间的关系,明确数学概念的严谨性和科学性,感受化归的数学思想,使学生能用相互转化的观点辩证地看问题.2.通过计算器或计算机的演示,使学生加深对“N>0”的理解,培养学生数学地分析问题的意识.3.通过探究、思考、反思、完善,培养学生理性思维能力.三、情感态度与价值观1.通过具体实例引出对数的概念,使学生感受到数学源于实际生活,激发学生的学习兴趣.2.在教学过程中,通过学生的相互交流,来加深对数概念理解,增强学生数学交流能力,培养学生倾听、接受别人意见的优良品质.3.通过指导学生阅读“对数的发展史”不断了解数学、走进数学,增强学生的数学素养.教学重点1.对数式和指数式之间的关系.2.对数的概念以及对数式和指数式的相互转化. 教学难点对数概念的理解以及对数符号的理解. 教具准备多媒体课件、投影仪、计算器或计算机、打印好的作业. 教学过程一、创设情景,引入新课(多媒体投影我国人口增长情况分析图,并显示如下材料) 截止到1999年底,我国人口约13亿.如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少?(精确到亿)师:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则y =13×1.01x.我们能从这个关系式中算出任意一个年头x 的人口总数.反之,如果问“哪一年的人口数可达到18亿,20亿,30亿……”该如何解决?(生思考,师组织学生讨论得出)由y =1.01x的图象可求出当y =1318、1320、1330时,相应的x 的值,实际上就是从1.01x=1318,1.01x=1320,1.01x=1330……中分别求出x .师:根据指数的有关知识,在关系式1.01x=1318中,要我们求解的量在什么位置?生:在等式左边的指数位置上.师:那么,要求x 的值,也就是让我们求指数式中的哪一个量? 生:求指数x .师:这样,就出现了与前面学习指数时不同的一类问题——已知指数式的底数和幂值,求指数式的指数,这就是我们本节课所要研究的对数问题.(引入新课,书写课题——对数) 二、讲解新课(一)介绍对数的概念合作探究:若1.01x=1318,则x 称作是以1.01为底的1318的对数.你能否据此给出一个一般性的结论?(生合作探究,师适时归纳总结,引出对数的定义并板书) 一般地,如果a x=N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.合作探究:根据对数的概念写出几个对数式,同桌之间互相检查写法是否正确.师:你如何理解“log ”和log a N ? (生探讨,得出如下结论) 知识拓展:符号“log ”与“+,”等符号一样表示一种运算,log a N 是一个整体,表示以a 为底N 的对数,不表示log 、a 、N三者的乘积.读作以a为底N的对数,注意a应写在右下方.(二)概念理解合作探究:对数和指数幂之间有何关系?(生交流探讨得出如下结论)说明:括号内属填空、选择的题目.合作探究:是不是所有的实数都有对数呢?在对数式log a N=b 中,真数N可以取哪些值?为什么?(生讨论,结合指数式加以解释)∵在指数式中幂N=a b>0,∴在对数式中,真数N>0.(师借助计算器或计算机进行示范)可以发现真数为负数时,计算器会提示出错信息.师:条件N>0说明了什么?生:负数与零没有对数.合作探究:根据对数的定义以及对数式和指数式的关系,试求log a1和log a a(a>0,且a≠1)的值.(生根据对数式和指数式之间的关系,得出如下结论)∵对任意a>0且a≠1,都有a0=1,∴log a1=0.同样,∵对任意a>0且a≠1,都有a1=a,∴log a a=1.合作探究:a N a log=N、log a a b=b是否成立?(师生共同讨论,给出如下解释)(1)设a Na log =x ,则log a N =log a x ,所以x =N ,即a Na log =N .(2)∵a b =a b ,∴log a a b=b (对数恒等式).师:对数运算在研究科学和了解自然中起了巨大的作用,其中有两类对数贡献最大,它们就是自然对数和常用对数.(师指导学生阅读课本第57页常用对数和自然对数的概念和记法,然后板书)(三)常用对数通常将以10为底的对数称为常用对数,如log 102、log 1012等,并把对数log 10N 简记为lg N ,如lg2、lg12等.(四)自然对数在科学技术中,常常使用以e (e=2.71828…是一个无理数)为底的对数,这种对数称为自然对数.正数N 的自然对数log e N 一般简记为ln N ,如ln2、ln15等.(五)例题讲解师:我们已经对对数的概念有了一定的理解,你能快速地完成下面练习吗?(投影显示如下例题)【例1】 将下列指数式化为对数式,对数式化为指数式: (1)54=625;(2)2-6=641;(3)(31)m =5.73;(4)log 2116=-4;(5)lg0.01=-2;(6)ln10=2.303.方法引导:进行指数式和对数式的相互转化,关键是要抓住对数与指数幂之间的关系,以及每个量在对应式子中扮演的角色.(生口答,师板书)解:(1)log 5625=4;(2)log 2641=-6;(3)log 315.73=m ;(4)(21)-4=16;(5)10-2=0.01;(6)e2.303=10.【例2】 求下列各式中的x 的值:(1)log 64x =-32;(2)log x 8=6;(3)lg100=x ;(4)-lne 2=x .(师生共同讨论,师板书)解:(1)因为log 64x =-32,所以x =6432-=(43)32-=4-2=161; (2)因为log x 8=6,所以x 6=8,x =861=(23)61=221=2;(3)因为lg100=x ,所以10x=100,10x=102,于是x =2; (4)因为-lne 2=x ,所以lne 2=-x ,e 2=e -x,于是x =-2. 方法小结:在解决对数式求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质求出结果.(六)目标检测课本P 74练习第1,2,3,4题.(生完成,师组织学生进行课堂评价)解答:1.(1)log 28=3;(2)log 232=5;(3)log 221=-1;(4)log 2731=-31.2.(1)32=9;(2)53=125;(3)2-2=41;(4)3-4=811. 3.(1)设x =log 525,则5x =25=52,所以x =2; (2)设x =log 2161,则2x=161=2-4,所以x =-4;(3)设x =lg1000,则10x=1000=103,所以x =3; (4)设x =lg0.001,则10x=0.001=10-3,所以x =-3. 4.(1)1;(2)0;(3)2;(4)2;(5)3;(6)5. 三、课堂小结师:请同学们回顾一下本节课的教学过程,你觉得哪些知识你已经掌握?哪些东西你还没有掌握?(生总结,并互相交流讨论,师投影显示本课重点知识) 1.对数的定义及其记法; 2.对数式和指数式的关系; 3.自然对数和常用对数的概念. 四、布置作业 板书设计2.2.1 对数与对数运算(1)1.对数的定义2.对数式和指数式的关系3.自然对数和常用对数的概念 一、例题解析及学生练习 例1例2二、课堂小结与布置作业。

2017人教a版数学必修一对数与对数运算教案一

2017人教a版数学必修一对数与对数运算教案一

海南省文昌中学高中数学必修一:221对数与对数运算(一)教案教学目标(一) 教学知识点1. 对数的概念;2.对数式与指数式的互化. (二) 能力训练要求1.理解对数的概念;2.能够进行对数式与指数式的互化;3.培育学生数学应用意识.(三)德育渗透目标1.熟悉事物之间的普遍联系与彼此转化;2.用联系的观点看问题; 3.了解对数在生产、生活实际中的应用. 教学重点 对数的概念. 教学难点 对数概念的理解. 教学进程 一、温习引入:假设2002年我国国民生产总值为a 亿元,若是每一年平均增加8%,那么通过量少年国民生产总值是2002年的2倍?()x %81+=2⇒x =?也是已知底数和幂的值,求指数.你能看得出来吗?如何求呢? 二、新授内容:概念:一般地,若是 ()1,0≠>a a a 的b 次幂等于N ,就是N a b=,那么数 b 叫做以a为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数.b N N a a b =⇔=log例如:1642= ⇔ 216log 4=; 100102=⇔2100log 10=;2421= ⇔212log 4=; 01.0102=-⇔201.0log 10-=. 探讨:1。

是不是所有的实数都有对数?b N a =log 中的N 能够取哪些值? ⑴ 负数与零没有对数(∵在指数式中 N > 0 )2.按照对数的概念和对数与指数的关系,=1log a ? =a a log ? ⑵ 01log =a ,1log =a a ;∵对任意 0>a 且 1≠a , 都有 10=a ∴01log =a 一样易知: 1log =a a ⑶对数恒等式若是把 N a b= 中的 b 写成 N a log , 则有 N aNa =log .⑷常常利用对数:咱们通常将以10为底的对数叫做常常利用对数.为了简便,N 的常常利用对数N 10log 简记作lgN . 例如:5log 10简记作lg5; 5.3log 10简记作.⑸自然对数:在科学技术中常常利用以无理数e=……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数N e log 简记作lnN . 例如:3log e 简记作ln3; 10log e 简记作ln10.(6)底数的取值范围),1()1,0(+∞ ;真数的取值范围),0(+∞. 三、讲解范例:例1.将下列指数式写成对数式: (1)62554= (2)64126=- (3)273=a(4)73.531=m )( 解:(1)5log 625=4; (2)2log 641=-6; (3)3log 27=a ; (4)m =73.5log 31. 例2. 将下列对数式写成指数式:(1)416log 21-=; (2)7128log 2=; (3)201.0lg -=; (4)303.210ln =.解:(1)16)21(4=- (2)72=128; (3)210-=; (4)303.2e =10.例3.求下列各式中的x 的值:(1)32log 64-=x ; (2)68log =x (3)x =100lg (4)x e =-2ln 例4.计算: ⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345.解法一:⑴设 =x 27log 9 则 ,279=x3233=x , ∴23=x ⑵设 =x 81log 43 则()8134=x, 4433=x , ∴16=x⑶令 =x ()()32log 32-+=()()13232log -++, ∴()()13232-+=+x , ∴1-=x⑷令 =x 625log 345, ∴()625534=x, 43455=x , ∴3=x解法二:⑴239log 3log 27log 239399===; ⑵16)3(log 81log 1643344== ⑶()()32log 32-+=()()132log 132-=+-+;⑷3)5(log 625log 334553434==四、练习:(书P64`) 1.把下列指数式写成对数式(1) 32=8; (2)52=32 ; (3)12-=21; (4)312731=-.解:(1)2log 8=3 (2) 2log 32=5 (3) 2log 21=-1 (4) 27log 31=-312.把下列对数式写成指数式(1) 3log 9=2 ⑵5log 125=3 ⑶2log 41=-2 ⑷3log 811=-4 解:(1)23=9 (2)35=125 (3)22-=41 (4) 43-=811 3.求下列各式的值(1) 5log 25 ⑵2log 161⑶lg 100 ⑷lg ⑸lg 10000 ⑹lg 解:(1) 5log 25=5log 25=2 (2) 2log 161=-4 (3) lg 100=2 (4) lg =-2 (5) lg 10000=4 (6) lg =-44.求下列各式的值(1) 15log 15 ⑵4.0log 1 ⑶9log 81 ⑷5..2log ⑸7log 343 ⑹3log 243 解:(1) 15log 15=1 (2) 4.0log 1=0 (3) 9log 81=2 (4) 5..2log =2 (5) 7log 343=3 (6) 3log 243=5 五、课堂小结⑴对数的概念; ⑵指数式与对数式互换; ⑶求对数式的值.。

高中数学新人教A版必修1课件:第二章基本初等函数2.2.1对数与对数运算(第1课时)对数

高中数学新人教A版必修1课件:第二章基本初等函数2.2.1对数与对数运算(第1课时)对数
• 并非所有指数式都可以直接化为对数式.如(-3)2=9就不能直接 写成log(-3)9=2,只有a>0且a≠1,N>0时,才有ax=N⇔x=logaN.
〔跟踪练习1〕
将下列指数式化为对数式,对数式化为指数式:
(1)42=16;
(2)102=100;
1
(3)42
=2;
(4)log1 32=-5. 2
(3)原式=(alogab) logbc=blogbc=c.
• 『规律方法』 运用对数恒等式时注意事项 • (1)对于对数恒等式alogaN=N要注意格式: • ①它们是同底的;②指数中含有对数情势;③其值为对数的真数. • (2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.
〔跟踪练习3〕 求31+log36-24+log23+103lg3+(19)log34的值. [解析] 原式=3·3 log36-24·2 log23+(10lg3)3+(3 log34)-2 =3×6-16×3+33+4-2 =18-48+27+116=-4176.
• 3.对数与指数的关系
• 当a>0,且a≠1时,ax=N⇔x=____ln_N_______.
• 4.对数的基本性质 • (1)___零___和_负_数______没有对数.
• (2)loga1=_0____(a>0,且a≠1). • (3)logaa=_1____(a>0,且a≠1). • 5.对数恒等式
B.log1 9=-2 3
C.log1 (-2)=9 3
D.log9(-2)=13
[解析] 将(13)-2=9写成对数式为log13 9=-2,故选B.
• 4.若log2(log3x)=0,则x=_3____. • [解析] 由题意得log3x=1,∴x=3.

高一数学人教A版必修1教学教案2-2-1对数与对数运算

高一数学人教A版必修1教学教案2-2-1对数与对数运算

2.2.1 对数运算一、教材分析本节是高中数学新人教版必修1的第二章2.2对数运算的内容二、三维目标1.知识与技能(1).理解对数的概念,了解对数与指数的关系;(2).理解和掌握对数的运算性质;(3).掌握对数的运算性质的正逆转化。

2.过程与方法(1)通过实例了解对数运算,体会引入对数运算的必要性;(2)通过指数运算的观察分析得出对数运算的性质及换底公式;(3)通过分组探究进行活动,掌握对数运算的重要性质。

3.情感、态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质.三、教学重点教学重点:(1)对数运算的性质;(2)换底公式的灵活应用。

四、教学难点教学难点:推导对数的运算性质和换底公式的推导过程。

五、自主梳理1.对数的定义bNa=log其中),1()1,0(+∞∈a与,0(+∞∈N2.指数式与对数式的互化3.重要公式:⑴负数与零没有对数;⑵1log=a,log=aa六、重点领悟1、积、商、幂的对数运算性质:如果 a > 0, a1,M > 0, N > 0 有: 证明:①设a log M=p, a log N=q . 由对数的定义可以得:M=p a ,N=qa . ∴MN= p a q a =q p a + ∴a log MN=p+q , 即证得a log MN=a log M + a log N .②设a log M=p ,a log N=q . 由对数的定义可以得M=p a ,N=qa . ∴q p q p a a a N M -== ∴q p N M a -=log 即证得N M N M a a a log log log -=. ③设alog M=P 由对数定义可以得M=p a , ∴n M =np a ∴a log n M =np , 即证得a log n M =n a log M . 2、换底公式:(),0;10;1,0log log log >≠>≠>=N c c a a aN N c c a 且且(4) 证明:设P N a =log由对数的定义可以得:a N N a N p a p N a N a N c c a c c c c p c c p log log log log log ,log log log log ,==⇒=⇒=⇒=即证得这个公式就叫做换底公式七、探究提升(1)负数和零没有对数;(2)1的对数是零:01log =a ;(3)底数的对数是1:1log =a a : 八、学法引领 例1. 用x a log ,y a log ,z a log 表示下列各式:32log )2(;(1)log zy x z xy a a . 解:(1)zxy a log =a log (xy )a log z=a log x+a log y a log z(2)32log z y x a =a log (2x 3log )z y a -= a log 2x +alog 3log z y a -=2a log x+z y a a log 31log 21-. 例2. 计算 (1)25log 5, (2)1log 4.0, (3))24(log 572⨯, (4)5100lg 解:(1)5log 25= 5log 25=2 (2)4.0log 1=0.(3)2log (74×25)= 2log 74+ 2log 52= 2log 722⨯+ 2log 52 = 2×7+5=19.(4)lg 5100=52lg1052log10512==. 例3.计算:(1);50lg 2lg )5(lg 2⋅+ (2) ;25log 20lg 100+(3) .18lg 7lg 37lg 214lg -+- 解:(1) 50lg 2lg )5(lg 2⋅+=)15(lg 2lg )5(lg 2+⋅+=2lg 5lg 2lg )5(lg 2+⋅+ =2lg )2lg 5(lg 5lg ++=2lg 5lg +=1;(2) 25log 20lg 100+=5lg 20lg +=100lg =2;(3)解法一:lg142lg 37+lg7lg18=lg(2×7)2(lg7lg3)+lg7lg(23×2) =lg2+lg72lg7+2lg3+lg72lg3lg2=0.解法二:lg142lg 37+lg7lg18=lg14lg 2)37(+lg7lg18=lg 01lg 18)37(7142==⨯⨯九、课堂练习1、练习:用表示下列公式:z y x lg ,lg ,lg(1));lg(xyz (2)zxy 2lg ; (3)zxy 3lg ; (4)z y x 2lg 。

人教A版数学必修一教案:§2.2.1对数与对数运算(1)

人教A版数学必修一教案:§2.2.1对数与对数运算(1)

§2.2.1 对数与对数运算第一课时一.教学目标:1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.二.重点与难点:(1)重点:对数式与指数式的互化及对数的性质(2)难点:推导对数性质的三.学法与教具:(1)学法:讲授法、讨论法、类比分析与发现(2)教具:投影仪四.教学过程:1.提出问题思考:(P62思考题)中,哪一年的人口数要达到10亿、20亿、30亿……,该如何解决?即:在个式子中,分别等于多少?象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).1、对数的概念一般地,若,那么数叫做以a为底N的对数,记作叫做对数的底数,N叫做真数.举例:如:,读作2是以4为底,16的对数.,则,读作是以4为底2的对数.提问:你们还能找到那些对数的例子2、对数式与指数式的互化在对数的概念中,要注意:(1)底数的限制>0,且≠1(2)指数式对数式幂底数←→对数底数指数←→对数幂←N→真数说明:对数式可看作一记号,表示底为(>0,且≠1),幂为N的指数工表示方程(>0,且≠1)的解.也可以看作一种运算,即已知底为(>0,且≠1)幂为N,求幂指数的运算.因此,对数式又可看幂运算的逆运算.例题:例1(P63例1)将下列指数式化为对数式,对数式化为指数式.(1)54=645 (2)(3)(4)(5)(6)注:(5)、(6)写法不规范,等到讲到常用对数和自然对数后,再向学生说明.(让学生自己完成,教师巡视指导)巩固练习:P64练习1、23.对数的性质:提问:因为>0,≠1时,则由1、0=1 2、1=如何转化为对数式②负数和零有没有对数?③根据对数的定义,=?(以上三题由学生先独立思考,再个别提问解答)由以上的问题得到①(>0,且≠1)②∵>0,且≠1对任意的力,常记为.恒等式:=N4、两类对数①以10为底的对数称为常用对数,常记为.②以无理数e=2.71828…为底的对数称为自然对数,常记为.以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即.说明:在例1中,.例2:求下列各式中x的值(1)(2)(3)(4)分析:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1)(2)(3)(4)所以课堂练习:P64练习3、4补充练习:1.将下列指数式与对数式互化,有的求出的值.(1)(2)(3)(4)(5)(6)2.求且不等于1,N>0).3.计算的值.4.归纳小结:对数的定义>0且≠1)1的对数是零,负数和零没有对数对数的性质>0且≠1作业:P74习题2.2 A组1、2P75B组 1。

高中数学必修1《对数的运算性质》教案和教案说明

高中数学必修1《对数的运算性质》教案和教案说明

对数的运算性质人教A 版必修1教学目标:1.理解并掌握对数运算性质的内容及推导过程.2.熟练运用对数运算性质解题.教学重点:对数的运算性质及其应用教学难点:运算性质的推导教学方法:互助探究型教学过程设计:一.知识回顾:(投影展示上一节的学习内容)1.对数的定义及对数式与指数式的互化N x N a a x log ,==则若 其中 ),0(),,1()1,0(+∞∈+∞∈N a Y2.几个常用对数。

01log =a , log =a a特别地,负数与零没有对数;3.课堂小测,回顾并检验前面所学知识。

① 计算下列各式的值。

4log 2log 122+)( 8log 2log 222+)( 21log 4log 322+)( ②求下列各式中的x21log )2(25log )1(4-==x x二.授新课:1.引入思考:①6log 4log 2log 222=+对不对?错在那里?应怎么该?②对数究竟满足怎样的运算性质?2.探究活动:主要通过几个个例的分析,让学生找到对数运算的规律,从而大胆的归纳出对数的运算性质. 探究活动一:?log 34log 2log 1222==+)( ?log 48log 2log 2222==+)(?log 121log 4log 3222==+)( 学生讨论并归纳对数的运算性质:log a M+log a N=log a (MN )探究活动二: 将上面的加法改为减法呢?学生讨论并归纳:log a M-log a N=log a (M/N )探究活动三:3log 3log 1222=)( 3log 3log 2232=)( M log log 3a a =n M )( 学生讨论归纳对数的运算性质:log a M n =nlog a M3.教师小结:教师针对学生归纳的情况总结出对数的运算性质,并指出需要注意的地方,即保证对数有意义的条件。

(1)(2)(3)M log n log a a =n M三.对数运算性质的证明:教师引导学生找到证明的突破口,即利用对数式与指数式的互化将对数的运算转化为指数的运算进行证明。

《对数与对数运算》教案(第1课时)

《对数与对数运算》教案(第1课时)

2.2 对数函数 2.2.1 对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持. 三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用. 教学难点:对数概念的理解,对数运算性质的推导及应用. 课时安排 3课时教学过程第1课时 对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? 抽象出:1.(21)4=?(21)x =0.125⇒x=? 2.(1+8%)x =2⇒x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.新知探究 提出问题(对于课本P 572.1.2的例8) ①利用计算机作出函数y=13×1.01x 的图象.②从图象上看,哪一年的人口数要达到18亿、20亿、30亿…? ③如果不利用图象该如何解决,说出你的见解? 即1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,x 分别等于多少? ④你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题①,回忆计算机作函数图象的方法,抓住关键点.对问题②,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题③,定义一种新的运算.对问题④,借助③,类比到一般的情形. 讨论结果:①如图2-2-1-1.图2-2-1-1②在所作的图象上,取点P,测出点P 的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.③1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,要求x 分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若1318=1.01x ,则x 称作以1.01为底的1318的对数.其他的可类似得到,这种运算叫做对数运算.④一般性的结论就是对数的定义:一般地,如果a(a>0,a≠1)的x 次幂等于N,就是a x =N,那么数x 叫做以a 为底N 的对数(logarithm),记作x=log a N,其中a 叫做对数的底数,N 叫做真数. 有了对数的定义,前面问题的x 就可表示了: x=log 1.011318,x=log 1.011320,x=log 1.011330. 由此得到对数和指数幂之间的关系:例如:42=16⇔2=log 416;102=100⇔2=log 10100;421=2⇔21=log 42;10-2=0.01⇔-2=log 100.01①为什么在对数定义中规定a>0,a≠1?②根据对数定义求log a 1和log a a(a>0,a≠1)的值. ③负数与零有没有对数? ④Na alog =N 与log a a b =b(a>0,a≠1)是否成立?讨论结果:①这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21; 若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.综之,就规定了a >0且a≠1. ②log a 1=0,log a a=1.因为对任意a>0且a≠1,都有a 0=1,所以log a 1=0. 同样易知:log a a=1.即1的对数等于0,底的对数等于1.③因为底数a >0且a≠1,由指数函数的性质可知,对任意的b ∈R ,a b >0恒成立,即只有正数才有对数,零和负数没有对数. ④因为a b =N,所以b=log a N,a b =a Na alog =N,即a Na alog =N.因为a b =a b ,所以log a a b =b.故两个式子都成立.(a Na alog =N 叫对数恒等式)思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗? 活动:同学们阅读课本P 68的内容,教师引导,板书. 解答:①常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数log 10N 简记作lgN.例如:log 105简记作lg5;log 103.5简记作lg3.5. ②自然对数:在科学技术中常常使用以无理数e=2.718 28……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数log e N 简记作lnN. 例如:log e 3简记作ln3;log e 10简记作ln10. 应用示例思路1例1将下列指数式写成对数式,对数式写成指数式: (1)54=625;(2)2-6=641;(3)(31)m =5.73; (4)log 2116=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数. 对(2)根据指数式与对数式的关系,-6在指数位置上,-6是以2为底641的对数.对(3)根据指数式与对数式的关系,m 在指数位置上,m 是以31为底5.73的对数. 对(4)根据指数式与对数式的关系,16在真数位置上,16是21的-4次幂. 对(5)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂. 对(6)根据指数式与对数式的关系,10在真数位置上,10是e 的2.303次幂. 解:(1)log 5625=4;(2)log 2641=-6;(3)log 315.73=m; (4)(21)-4=16;(5)10-2=0.01;(6)e 2.303=10. 思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照.解答:若是指数式化为对数式,关键要看清指数是几,再写成对数式.若是对数式化为指数式,则要看清真数是几,再写成幂的形式.最关键的是搞清N 与b 在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据. 变式训练课本P 64练习 1、2.例2求下列各式中x 的值: (1)log 64x=32-;(2)log x 8=6; (3)lg100=x;(4)-lne 2=x. 活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:(1)因为log 64x=-32,所以x=6432-=(2))32(6-⨯=2-4=161.(2)因为log x 8=6,所以x 6=8=23=(2)6.因为x>0,因此x=2. (3)因为lg100=x,所以10x =100=102.因此x=2.(4)因为-lne 2=x,所以lne 2=-x,e -x =e 2.因此x=-2.点评:本题要注意方根的运算,同时也可借助对数恒等式来解. 变式训练求下列各式中的x : ①log 4x=21;②log x 27=43;③log 5(log 10x )=1. 解:①由log 4x=21,得x=421=2;②由log x 27=43,得x 43=27,所以x=2734=81;③由log 5(log 10x )=1,得log 10x=5,即x=105.点评:在解决对数式的求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质算出结果.思路2例1以下四个命题中,属于真命题的是( ) (1)若log 5x=3,则x=15 (2)若log 25x=21,则x=5 (3)若log x 5=0,则x=5 (4)若log 5x=-3,则x=1251 A.(2)(3) B.(1)(3) C.(2)(4) D.(3)(4) 活动:学生观察,教师引导学生考虑对数的定义. 对数式化为指数式,根据指数幂的运算性质算出结果. 对于(1)因为log 5x=3,所以x=53=125,错误;对于(2)因为log 25x=21,所以x=2521=5,正确;对于(3)因为log x 5=0,所以x 0=5,无解,错误; 对于(4)因为log 5x=-3,所以x=5-3=1251,正确. 总之(2)(4)正确. 答案:C点评:对数的定义是对数形式和指数形式互化的依据. 例2对于a >0,a≠1,下列结论正确的是( )(1)若M=N,则log a M=log a N (2)若log a M=log a N,则M=N (3)若log a M 2=log a N 2,则M=N(4)若M=N,则log a M 2=log a N 2 A.(1)(3) B.(2)(4) C.(2) D.(1)(2)(4) 活动:学生思考,讨论,交流,回答,教师及时评价. 回想对数的有关规定.对(1)若M=N,当M 为0或负数时log a M≠log a N,因此错误; 对(2)根据对数的定义,若log a M=log a N,则M=N,正确; 对(3)若log a M 2=log a N 2,则M=±N,因此错误;对(4)若M=N=0时,则log a M 2与log a N 2都不存在,因此错误. 综上,(2)正确. 答案:C点评:0和负数没有对数,一个正数的平方根有两个. 例3计算:(1)log 927;(2)log 4381;(3)log )32((2-3);(4)log 345625.活动:教师引导,学生回忆,教师提问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法.解法一:(1)设x=log 927,则9x =27,32x =33,所以x=23; (2)设x=log 4381,则(43)x =81,34x =34,所以x=16; (3)令x=log )32(+(2-3)=log )32(+(2+3)-1,所以(2+3)x =(2+3)-1,x=-1; (4)令x=log 345625,所以(345)x =625,534x=54,x=3.解法二:(1)log 927=log 933=log 9923=23; (2)log 4381=log 43(43)16=16; (3)log )32(+(2-3)=log )32(+(2+3)-1=-1;(4)log 345625=log 345(345)3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据. 变式训练课本P 64练习 3、4. 知能训练1.把下列各题的指数式写成对数式:(1)42=16;(2)30=1;(3)4x =2;(4)2x =0.5;(5)54=625;(6)3-2=91;(7)(41)-2=16. 解:(1)2=log 416;(2)0=log 31;(3)x=log 42;(4)x=log 20.5;(5)4=log 5625; (6)-2=log 391;(7)-2=log 4116. 2.把下列各题的对数式写成指数式:(1)x=log 527;(2)x=log 87;(3)x=log 43;(4)x=log 731; (5)log 216=4;(6)log 3127=-3;(7)logx3=6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a.解:(1)5x =27;(2)8x =7;(3)4x =3;(4)7x =31;(5)24=16;(6)(31)-3=27;(7)(3)6 =x;(8)x -6=64;(9)27=128;(10)3a =27. 3.求下列各式中x 的值: (1)log 8x=32-;(2)log x 27=43;(3)log 2(log 5x )=1;(4)log 3(lgx )=0.解:(1)因为log 8x=32-,所以x=832-=(23)32-=)32(32-⨯=2-2=41;(2)因为log x 27=43,所以x 43=27=33,即x=(33)34=34=81;(3)因为log 2(log 5x )=1,所以log 5x=2,x=52=25; (4)因为log 3(lgx )=0,所以lgx=1,即x=101=10. 4.(1)求log 84的值;(2)已知log a 2=m,log a 3=n,求a 2m +n 的值.解:(1)设log 84=x,根据对数的定义有8x =4,即23x =22,所以x=32,即log 84=32; (2)因为log a 2=m,log a 3=n,根据对数的定义有a m =2,a n =3,所以a 2m +n =(a m )2·a n =(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用. 拓展提升请你阅读课本75页的有关阅读部分的内容,搜集有关对数发展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下基础. 课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数. 作业课本P 74习题2.2A 组 1、2. 【补充作业】1.将下列指数式与对数式互化,有x 的求出x 的值. (1)521-=51;(2)log 24=x;(3)3x =271; (4)(41)x=64;(5)lg0.000 1=x;(6)lne 5=x. 解:(1)521-=51化为对数式是log 551=21-; (2)x=log 24化为指数式是(2)x=4,即22x=22,2x=2,x=4; (3)3x =271化为对数式是x=log 3271,因为3x =(31)3=3-3,所以x=-3; (4)(41)x =64化为对数式是x=log 4164,因为(41)x =64=43,所以x=-3; (5)lg0.0001=x 化为指数式是10x =0.0001,因为10x =0.000 1=10-4,所以x=-4;(6)lne 5=x 化为指数式是e x =e 5,因为e x =e 5,所以x=5.2.计算51log 53log333+的值.解:设x=log 351,则3x =51,(321)x =(51)21,所以x=log513.所以351log 5log 3333+=513log 35+=515+=556. 3.计算Nc b c b a a log log log ∙∙(a>0,b>0,c>0,N>0).解:Nc b c b a alog log log ∙∙=Nc c b b log log ∙=Nc clog =N.设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备. (设计者:路致芳)。

(2021年整理)对数与对数运算(第一课时)教学设计

(2021年整理)对数与对数运算(第一课时)教学设计

(完整)对数与对数运算(第一课时)教学设计编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)对数与对数运算(第一课时)教学设计)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)对数与对数运算(第一课时)教学设计的全部内容。

《对数与对数运算(第一课时)》教学设计华南师范大学陈嘉韵教材新课标人教版高中教材数学必修1课题 2.2.1对数与对数运算第一课时教学目标(一)知识与能力1.理解对数的概念,了解对数与指数的关系;2.理解和掌握对数的性质;3.掌握对数式与指数式的关系。

(二)过程与方法通过与指数式的比较,引出对数定义与性质(三)情感、态度和价值观1。

对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;2.通过对数的运算法则的学习,培养学生的严谨的思维品质;3.在学习过程中培养学生探究的意识;4.让学生理解平均之间的内在联系,培养分析、解决问题的能力。

教学内容分析教学重点对数式与指数式的互化以及对数性质教学难点推导对数性质教学模式讲练结合教学主题掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握教学程序(对数教学目标)—对数的文化意义、对数概念(讲一讲)-对数式与指数式转化(做一做)—例题(讲一讲)、习题(做一做)—两种特殊的对数(讲一讲)—求值(做一做)-评价、小结—作业。

教学过程(一)(说一说)对数的文化意义教师:对数发明是17世纪数学史上的重大事件,为什么呢?大家一起来看一下投影:恩格斯说,对数的发明与解析几何的创立、微积分的建立是17世纪数学史上的3大成就。

伽利略说,给我空间、时间及对数,我可以创造一个宇宙。

人教A版高中数学必修一教案 2.2.1对数与对数运算(1)

人教A版高中数学必修一教案 2.2.1对数与对数运算(1)

2.2.1(1)对数与对数运算(教学设计)教学目的:1、理解对数的概念、了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并青春期技能。

2、通过实例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。

3、掌握对数的重要性质,通过练习,使学生感受到理论与实践的统一。

4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。

教学重点:对数的概念;对数式与指数式的相互转化。

教学难点:对数概念的理解;对数性质的理解。

教学过程:一、复习回顾,新课引入:引例1:一尺之锤,日取其半,万世不竭。

(1)取5次,还有多长?(答:1/32)(2)取多少次,还有0.125尺?(答:10.1252x=(),则x=?引例2:2002年我国GDP 为a 亿元,如果每年平均增长8%,那么经过多少年GDP 是2002年的2倍? 略解:(1+8%)x =2,则x=?二、师生互动,新课讲解:1.定义一般地,如果N a x =(0>a ,且1≠a ),那么数x 叫做以a 为底N 的对数(logarithm ),记作N x a log =,其中a 叫做对数的底数,N 叫做真数.(解答引例)问:以4为底16的对数是2,用等式怎么表达?讨论:按照对数的定义,以4为底16的对数是2,可记作216log 4=;同样从对数的定义出发,可写成1642=.2.对数式与指数式的互化当0>a ,且1≠a 时,如果N a x =,那么N x a log =;如果N x a log =,那么N a x =.即N a x =等价于N x a log =,记作当0>a ,且1≠a 时,N a x =⇔N x a log =.负数和零没有对数3.两个重要的对数(常用对数和自然对数)通常我们将以10为底的对数叫做常用对数(common logarithm ),并且把N 10log 记作N lg .在科学技术中常使用以无理数 597182818284.2=e 为底数的对数,以e 为底的对数称为自然对数(naturallogarithm ),并且把N e log 记作N ln .例1:将下列指数式化为对数式,对数式化为指数式(1)62554=;(2)64126=-;(3)373=a ;(4)73.5)31(=m (5)416log 21-=;(6)7128log 2=;(7)a =27log 3;(8)201.0lg -= 变式训练1:(课本P64练习 NO :1;2)例2(课本P63例2):求下列各式中x 的值。

人教A版数学必修一教案:对数与对数运算

人教A版数学必修一教案:对数与对数运算

§2.2.1 對數與對數運算第一課時一.教學目標:1.知識技能:①理解對數的概念,瞭解對數與指數的關係;②理解和掌握對數的性質;③掌握對數式與指數式的關係 .2. 過程與方法:通過與指數式的比較,引出對數定義與性質 .3.情感、態度、價值觀(1)學會對數式與指數式的互化,從而培養學生的類比、分析、歸納能力.(2)通過對數的運算法則的學習,培養學生的嚴謹的思維品質 .(3)在學習過程中培養學生探究的意識.(4)讓學生理解平均之間的內在聯繫,培養分析、解決問題的能力.二.重點與難點:(1)重點:對數式與指數式的互化及對數的性質(2)難點:推導對數性質的三.學法與教具:(1)學法:講授法、討論法、類比分析與發現(2)教具:投影儀四.教學過程:1.提出問題思考:(P 62思考題)13 1.01x y =⨯中,哪一年的人口數要達到10億、20億、30億……,該如何解決? 即:1820301.01, 1.01, 1.01,131313x x x ===在個式子中,x 分別等於多少? 象上面的式子,已知底數和冪的值,求指數,這就是我們這節課所要學習的對數(引出對數的概念).1、對數的概念一般地,若(0,1)x a N a a =>≠且,那麼數x 叫做以a 為底N 的對數,記作log a x N =a 叫做對數的底數,N 叫做真數.舉例:如:24416,2log 16==则,讀作2是以4為底,16的對數.1242=,則41log 22=,讀作12是以4為底2的對數. 提問:你們還能找到那些對數的例子2、對數式與指數式的互化在對數的概念中,要注意:(1)底數的限制a >0,且a ≠1(2)log x a a N N x =⇔=指數式⇔對數式冪底數←a →對數底數指 數←x →對數冪 ←N →真數說明:對數式log a N 可看作一記號,表示底為a (a >0,且a ≠1),冪為N 的指數工表示方程xa N =(a >0,且a ≠1)的解. 也可以看作一種運算,即已知底為a (a >0,且a ≠1)冪為N ,求冪指數的運算. 因此,對數式log a N 又可看冪運算的逆運算.例題:例1(P 63例1)將下列指數式化為對數式,對數式化為指數式. (1)54=645 (2)61264-=(3)1() 5.733m = (4)12log 164=- (5)10log 0.012=- (6)log 10 2.303e = 注:(5)、(6)寫法不規範,等到講到常用對數和自然對數後,再向學生說明.(讓學生自己完成,教師巡視指導)鞏固練習:P 64 練習 1、23.對數的性質:提問:因為a >0,a ≠1時,log x N a a N x =⇔=則 由1、a 0=1 2、a 1=a 如何轉化為對數式②負數和零有沒有對數?③根據對數的定義,log a N a =?(以上三題由學生先獨立思考,再個別提問解答)由以上的問題得到① 011,a a a == (a >0,且a ≠1)② ∵a >0,且a ≠1對任意的力,10log N 常記為lg N .恒等式:log a N a=N4、兩類對數① 以10為底的對數稱為常用對數,10log N 常記為lg N .② 以無理數e=2.71828…為底的對數稱為自然對數,log e N 常記為ln N .以後解題時,在沒有指出對數的底的情況下,都是指常用對數,如100的對數等於2,即lg1002=.說明:在例1中,10log 0.010.01,log 10ln10e 应改为lg 应改为.例2:求下列各式中x 的值(1)642log 3x =- (2)log 86x = (3)lg100x = (4)2ln e x -= 分析:將對數式化為指數式,再利用指數冪的運算性質求出x . 解:(1)2223()323331(64)(4)4416x --⋅--=====(2)111166366628,()(8)(2)2x x =====所以 (3)21010010,2x x ===于是(4)222ln ,ln ,e x x e e -=-==-x 由得即e所以2x =-課堂練習:P 64 練習3、4補充練習:1. 將下列指數式與對數式互化,有x 的求出x 的值 .(1)125-=(2)x = (3)1327x = (4)1()644x = (5)lg0.0001x = (6)5ln e x =2.求log log log ,a b c b c N a ⋅⋅∈+的值(a,b,c R 且不等於1,N >0).3.計算31log 53的值.4.歸納小結:對數的定義log (b N a a N b a =⇔=>0且a ≠1)1的對數是零,負數和零沒有對數對數的性質 log 1a a = a >0且a ≠1log a N a N =作業:P 74 習題 2.2 A 組 1、2P 75 B 組 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点
对数式与指数式的互化及对数的性质
难点
对数式与指数式的互化及对数的性质




教学内容
教学环节与活动设计
一.提出问题
思考:(P72思考题) 中,哪一年的人口数要达到10亿、20亿、30亿……,该如何解决?
即: 在个式子中, 分别等于多少?
象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).
1
教学Leabharlann 设计教学内容
教学环节与活动设计
指数式 对数式
幂底数← →对数底数
指 数← →对数
幂 ←N→真数
说明:对数式 可看作一记号,表示底为 ( >0,且 ≠1),幂为N的指数工表示方程 ( >0,且 ≠1)的解. 也可以看作一种运算,即已知底为 ( >0,且 ≠1)幂为N,求幂指数的运算. 因此,对数式 又可看幂运算的逆运算.
以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即 .
说明:在例1中, .
2




教学内容
教学环节与活动设计
例2:求下列各式中x的值
(1) (2) (3) (4)
分析:将对数式化为指数式,再利用指数幂的运算性质求出x.
解:(1)
(2)
(3)
(4)
所以
课堂练习:P64练习3、4
①如何转化为对数式
②负数和零有没有对数?
③根据对数的定义, =?
(以上三题由学生先独立思考,再个别提问解答)
由以上的问题得到
① ( >0,且 ≠1)
② ∵ >0,且 ≠1对任意的力, 常记为 .
恒等式: =N
4、两类对数① 以10为底的对数称为常用对数, 常记为 .② 以无理数e=2.71828…为底的对数称为自然对数, 常记为 .
例1(P63例1)
将下列指数式化为对数式,对数式化为指数式.
(1)54=645 (2) (3)
(4) (5) (6)
注:(5)、(6)写法不规范,等到下面讲到常用对数和自然对数后,再向学生说明.
(让学生自己完成,教师巡视指导)
巩固练习:P64练习 1、2
3.对数的性质:
提问:因为 >0, ≠1时,
则由1、 0=1 2、 1=




对数的定义 >0且 ≠1)
1的对数是零,负数和零没有对数
对数的性质 >0且 ≠1
课后
反思
3
河北武邑中学课堂教学设计
备课人
授课时间
课题
对数与对数运算(一)




知识与技能
①理解对数的概念,了解对数与指数的关系;
②理解和掌握对数的性质;③掌握对数式与指数式的关系; . 学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.
过程与方法
启发引导,充分发挥学生的主体作用
情感态度价值观
通过对数的运算法则的学习,培养学生的严谨的思维品质 .
二.解决问题
1、对数的概念
一般地,若 ,那么数 叫做以a为底N的对数,记作
叫做对数的底数,N叫做真数.
举例:如: ,读作2是以4为底,16的对数.
,则 ,读作 是以4为底2的对数. 提问:你们还能找到那些对数的例子
2、对数式与指数式的互化
在对数的概念中,要注意:
(1)底数的限制 >0,且 ≠1
(2)
相关文档
最新文档