第22讲第五章 材料力学(五)
材料力学第五章梁弯曲时的位移
实例3 :均布载荷
分析受均布载荷作用下梁的位移。
材料力学第五章梁弯曲时 的位移
在材料力学的第五章中,我们将学习有关梁在弯曲时的位移。掌握梁的基本 知识、位移方程和位移计算方法,以及梁的挠度与转角关系。
梁的基本知识
1 定义
梁是一种长条形结构,承受着沿其长度方向的外部力。
2 类型
常见的梁包括简支梁、悬臂梁和受力梁。
3 材料
梁可以由不同类型的材料制成,例如钢、木材或混凝土。
梁的位移方程
1 弯曲位移
2 挠度
3 转角
梁在弯曲时,沿梁的长度方 向发生位移。
挠度是梁的中点相对于其自 由状态的偏移量。
转角是指梁在弯曲时端部角 度的变化。
简支梁的位移计算方法
1
载荷和反力
计算简支梁上的载荷和反力分布。
2
弯矩方程
使用弯矩方程推导出简支梁的位移方程。
3
边界条件
应用适当的边界条件来解决位移方程中的未知量。
悬臂梁的位移计算方法
加载和支座反力
确定悬臂梁上的加载和支座反力。
弯曲力矩方程
通过推导弯曲力矩方程来解决悬臂 梁的位移问题。
解决边界条件
应用边界条件来计算悬臂梁的位移。
受力梁的位移计算方法
1
截面转动方程
2
推导出受力梁的截面转动方程。
3
确定力的分布
分析受力梁上的力分布,包括集中力和均布 力。
边界条件和位移方程
应用边界条件,求解受力梁的位移方程。ຫໍສະໝຸດ 梁的挠度与转角关系挠度
挠度是梁在弯曲时沿其长度方向上的位移。
转角
转角是梁在弯曲时端部偏离初始位置的角度。
关系公式
挠度和转角之间存在一定的关系,可以通过公式计算。
材料力学第五章
F l a x
l
材料力学
第五章 梁的剪力图与弯矩图
梁的横截面上位于横截面 内的内力FS是与横截面左右两 侧的两段梁在与梁轴相垂直方 向的错动(剪切)相对应,故称 为剪力;梁的横截面上作用在 纵向平面内的内力偶矩是与梁 的弯曲相对应,故称为弯矩。
材料力学
第五章 梁的剪力图与弯矩图
为使无论取横截面左边或右边为分离体,求得同一横
截面上的剪力和弯矩其正负号相同,剪力和弯矩的正负号
要以其所在横截面处梁的微段的变形情况确定,如下图。
材料力学
第五章 梁的剪力图与弯矩图
综上所述可知: (1) 横截面上的剪力——使截开部分梁产生顺时针方向
转动为正;产生逆时针方向转动为负。
(2) 横截面上的弯矩——作用在左侧面上使截开部分 逆时针方向转动,或者作用在右侧截面上使截开部分顺时 针方向转动者为正;反之为负。
图d,e所示梁及其约束力不能单独利用平衡方程确定, 称为超静定梁。
材料力学
第五章 梁的剪力图与弯矩图
§5.2 梁的内力及其与外力的相互关系
Ⅰ. 梁的剪力和弯矩(梁的横截面上的两种内力)
图a所示跨度为l的简支梁其
约束力为:
FA
Fl
l
a,
FB
Fa l
梁的左段内任一横截面m-
m上的内力,由m-m左边分离
杆件:某一方向尺寸远大于其它方向尺寸的构件。 直杆:杆件的轴线为直线。 杆的可能变形为:
轴向拉压—内力为轴力。如拉、撑、活塞杆、钢缆、柱。
扭转 —内力为扭矩。如各种传动轴等。
(轴)
弯曲 —内力为弯矩。如桥梁、房梁、地板等。(梁)
材料力学
梁的分类
F
q
第五章 梁的剪力图与弯矩图
材料力学第五章
y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力
?
第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力
材料力学性能_第五章
展的复合力学参量。
精品文档
§5.3 疲劳裂纹(liè 扩展 wén)
36
二、疲劳裂纹扩展速率
lg(da/dN)~lg△K曲线
I区(初始段) △K≤△Kth: da/dN值很小,裂纹不扩展。 △K>△Kth: △K↑,da/dN↑,裂纹扩展 但不快。 I区所占寿命不长。 II区(主要(zhǔyào)段) △K↑,da/dN较大,裂纹亚稳扩展,是决 定疲劳裂纹扩展寿命的主要段。 III区(最后段) △K↑,da/dN↑↑,裂纹失稳扩展。
从而在破坏前就被修理(xiūlǐ)或报废。
精品文档
§5.3 疲劳裂纹 扩展 (liè wén)
34
一、疲劳裂纹扩展曲线
高频疲劳试验机;
固定裂纹预制长度a0、应力比r和应 力幅△σ; 作a~N曲线,曲线斜率da/dN为裂 纹扩展速率。 裂纹达到ac,da/dN无限大,裂 纹失稳扩展,试样最后断裂。 若改变应力△σ1增加到△σ2则裂纹
材料力学 性能 (cái liào lì xué)
第五章 材料(cáiliào)在变动载荷下 的力学性能
精品文档
第五章 材料在变动(biàndòng)载荷下的力学性能
5-1 金属疲劳现象(xiànxiàng)及特点
5-2 疲劳曲线及基本(jīběn)疲劳力学性能
有时在疲劳区的后部,还可看到沿扩展方向的疲劳台阶
(高应力作用)。 3、瞬断区
一般在疲劳源的对侧。脆性材料为结晶状断口;韧性材料有放射状 纹理;边缘为剪切唇。
精品文档
§5.1 金属(jīnshǔ)疲劳现象及特点
16
2024Al合金(héjīn)疲劳条纹
材料力学 第五章ppt课件
s
A
(对称面)
2 Ey E2 EI z M ( d A ) y d A y d A M z A A
s
A
EIz
A
2 Iz y A 轴 惯 性矩 d
1 Mz EI z
M y s x I z
… …(3)
杆的抗弯刚度。
. . . . . . ( 4 )
d4
64
d
Iz d3 W z ym a x 32
4 D 4 空心圆 I ( 1 a ) z
d D
ad
64
D
3 I D 4 z W ( 1 a ) z y max 32
11
三、常见截面的IZ和WZ:
3 bh 矩形 Iz 12
b b
2 Iz bh W z y 6 m ax
§5-3 横力弯曲时梁横截面上的正应力 一、正应力近似公式:
M y s x I z . . . . . . ( 4 )
二、横截面上最大正应力:
M s max Wz
… …(5)
I z W z 抗 弯 截 面 模 量 。 y m a x
10
三、常见截面的IZ和WZ:
圆 Iz
M 60 4 1 s 10 92 . 6 MP 1 max
M 67 . 5 4 max s 10 104 . 2 MP max W 6 . 48 z
120 M
求曲率半径
qL 8
+
2
EI 5 . 832 z 200 10 194 . 4 m 1 M 60 1
力状态。
材料力学第五章
xC
Sy A
n
x C
Ai
i 1
n
Ai
i 1
n
yC
Sx A
i 1 n
y C
Ai
Ai
i 1
第五章 平面图形的几何性质
270
30
y [例1] 已知:图形尺寸如图
Ⅱ
所示。
求:图形的形心。
50
C2
Ⅰ
C C1
yc
z
解:1、将图形分解为 简单图形的组合
第五章 平面图形的几何性质
静矩与形心坐标之间的关系
S y
zdA
A
S z
ydA
A
Sy AzC
Sz AyC
yC
Sz A
ydA
A
A
zC
Sy A
zdA
A
A
已知静矩可以确定图形的形心坐标 已知图形的形心坐标可以确定静矩
第五章 平面图形的几何性质
构件截面的图形往往是由矩形、圆形等简单图形 组成,称为组合图形。
xc
A
G
A At g
, yc
A
G
A At g
由于是均质等厚度,t、 、g为常量,故上式可改写为
xdA
ydA
xc
A
A
, yc
A
A
第五章 平面图形的几何性质
1. 静矩的定义
对 z 轴静矩 对 y 轴静矩
Sz
ydA
A
Sy
材料力学第五章
FSC
q0 x q ( x) l
是否可以将梁上的分布荷载全部用静力等效后的 合力代替来求截面C的内力?
§5-3 剪力和弯矩
例题 解: 1. 确定支反力 Fy 0 FAy FBy 2 F
M
FAy 2. 用截面法研究内力 FSE ME FAy FBy
A
0
FBy 3a Fa 2 F a F 5F FBy FAy 3 3 F 5F F 0 F 2 F F y SE SE 3 3 a 5F 3a M 0 2 F M O E 2 3 2 3Fa ME 2
a
F
b
A
FAY
x1
C x2
l
B
FBY
例题5-3 图示简支梁C点受集中力作用。 试写出剪力和弯矩方程,并画 出剪力图和弯矩图。 解:1.确定约束力 M A=0, M B=0
FS
Fb / l
FAy=Fb/l
FBy=Fa/l
Fa / l
Fab / l
M
2.写出剪力和弯矩方程 =Fb / l 0 x1 a x AC FS x1 M x1 =Fbx1 / l 0 x1 a FS x2 = Fa / l a x2 l CB M x2 =Fal x2 / l a x2 l
FCy
D
FBy 29kN
§5-2
受弯杆件的简化
q =20kN/m F MA Me=5kN· m C A B FAx D E K FBy FAy 1m 3m 1m 1m
AB梁
F F
0.5m
x y
0 0 0
FAx 0
材料力学性能第五章-金属的疲劳
材料力学性能第五章-金属的疲劳一、前言金属是工业中广泛使用的材料之一,而疲劳是金属失效的常见原因。
疲劳现象是指材料在循环加载下,由于应力的交变和变形的累积,导致材料最终发生断裂的失效现象。
由于疲劳是材料失效的高发期之一,因此疲劳强度及其寿命评估在工程实践中极其重要。
本文将对金属疲劳相关的概念、实验方法、疲劳表征和机理等方面进行详细介绍。
二、疲劳相关概念2.1 疲劳应力和疲劳极限疲劳应力是指材料在循环加载下,在一个给定的时间内重复加载的最大应力,其值通常低于材料的屈服强度。
疲劳极限是指材料在循环加载下,在一个给定的时间内可以承受的最大应力,其值也低于材料的屈服强度。
2.2 疲劳曲线疲劳曲线通常是由应力-amplitude循环次数(N)图给出,包括S-N曲线和e-N 曲线。
其中S-N曲线是指材料应力振幅和循环次数之间的关系曲线,其垂直轴是应力振幅,水平轴是循环次数(N)。
e-N曲线是指材料应变振幅和循环次数之间的关系曲线,其垂直轴是应变振幅,水平轴也是循环次数(N)。
三、疲劳实验方法3.1 疲劳试验机疲劳试验机一般分为拉伸疲劳试验机、弯曲疲劳试验机和转子疲劳试验机等。
其中拉伸疲劳试验机主要用于金属杆件、薄壁件等线性部件的疲劳试验。
弯曲疲劳试验机主要用于梁疲劳试验,其挠度和载荷均可调节。
转子疲劳试验机主要用于模拟飞机、发动机等转子叶片的疲劳试验。
3.2 疲劳试验方法常用的疲劳试验方法包括:恒振幅疲劳试验、逐渐增加振幅疲劳试验、多级疲劳试验和积累损伤疲劳试验等。
其中恒振幅疲劳试验是常见的疲劳试验方法,以波形、频率和振幅不变的周期周次循环载入,记录疲劳寿命。
逐渐增加振幅疲劳试验是从小到大逐渐增加载荷振幅的疲劳试验,称为低对高试验。
多级疲劳试验则是将恒定载荷振幅的疲劳试验进行多个不同振幅载荷循环,记录没个载荷级的疲劳寿命,绘制多级S-N曲线。
四、疲劳表征4.1 疲劳极限疲劳极限是材料在循环加载下允许承受的最大应力,疲劳极限的单位是MPa(N/mm^2)。
材料力学 第五章课件
M ym ax Iz
1)当 中性轴为对称轴时( 1)当 中性轴为对称轴时(The cross sections symmetrical about the neutral axis) :
σmax = M WZ
C
ymax
Z
W
=
I y
Z
max
ymax
y
WZ称为抗弯截面系数
( Stresses in Beams)
y
M
?
O
z x
σ =E
ρ
?
应力分布规律
y
直梁纯弯曲时横截面上任意一点的正应力, 直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离 成正比 待解决问题 中性轴的位置 中性层的曲率半径ρ 中性层的曲率半径ρ
?
( Stresses in Beams)
横截面的 对称轴
横截面
σ Eε E = = ρ
yc max
M
yt max 和 ycmax
直
接代入公式 z
yt max
y
My σ= Iz
求得相应的最大正应力
( Stresses in Beams)
( Stresses in Beams)
变 形 几 何 关 系 物 理 关 系 静 力 关 系 的分布规律 变形的分布规律 观察变形 提出假设
假设 假设
ε=
y
ρ
( Stresses in Beams)
3、物理关系(Physical relationship)
Hooke’s Law 所以
σ = Eε
Neutral surface Symmetrical axis of Cross Section Fig 5-3 5Neutral axis
材料力学第五章扭转应力
建筑工业中的应用
建筑结构中的梁、柱等构件在承受扭矩时会产生扭转应力。
在建筑设计过程中,工程师需要考虑材料的抗扭性能,合理 设计梁、柱等构件的截面尺寸和连接方式,以确保建筑结构 的稳定性和安全性。
学习有限元分析方法,掌 握如何利用计算机软件进 行结构分析,提高解决实 际问题的能力。
ABCD
结合实际工程问题,分析 不同材料的抗扭性能,以 及如何优化设计以提高结 构的稳定性。
关注相关领域的最新研究 进展,了解材料力学在工 程实践和科学研究中的应 用。
THANKS
感谢观看
扭转应力的计算公式
计算公式
扭转应力的大小可以通过以下公式计算:$tau = frac{T}{A}$,其中$tau$是扭转应 力,$T$是扭矩,$A$是物体的截面面积。
截面面积
截面面积是指物体横截面的面积,通常用于计算物体在扭矩作用下的扭转应力。
扭转应力的单位和符号
单位
扭转应力的单位是帕斯卡(Pa),在国际单位制中,1Pa=1N/m²。
弹性模量
弹性模量是材料在弹性变形范围内,抵抗外力作用的能力, 它反映了材料的刚度。对于同一材料,弹性模量越大,抵抗 扭转变形的能力越强,因此,弹性模量越大,扭转应力也越 大。
总结
在材料力学中,弹性模量是影响材料扭转应力的关键因素之 一。高弹性模量的材料具有较高的抵抗扭转变形的能力,因 此会产生较大的扭转应力。
剪切模量对扭转应力的影响
剪切模量
剪切模量是指在剪切应力作用下,材料抵抗剪切变形的刚度。剪切模量的大小与材料的剪切应力成正比,即剪切 模量越大,材料抵抗剪切变形的能力越强,因此,扭转应力也越大。
材料力学笔记(第五章)
材料力学(土)笔记第五章 梁弯曲时的位移1.梁的位移——挠度及转角为研究等直梁在对称弯曲时的位移取梁在变形前的轴线为x 轴,梁横截面的铅垂对称轴为y 轴而xy 平面即为梁上荷载作用的纵向对称平面梁发生对称弯曲变形后,其轴线将变成在xy 平面内的曲线1AC B度量梁变形后横截面位移的两个基本量是挠度:横截面形心(即轴线上的点)在垂直于x 轴方向的线位移ω转角:横截面对其原来位置的角位移θ 梁变形后的轴线是一条光滑的连续曲线,且横截面仍与该曲线保持垂直因此横截面的转角θ也就是曲线在该点处的切线与x 轴之间的夹角度量等直梁弯曲变形程度的是曲线的曲率梁的变形还受到支座约束的影响通常就用这两个位移量来反映梁的变形情况梁轴线弯曲成曲线后,在x 轴方向也将发生线位移 但在小变形情况下,梁的挠度远小于跨长,梁变形后的轴线是一条平坦的曲线横截面形心沿x 轴方向的线位移与挠度相比属于高阶微量,可略去不记因此在选定坐标后,梁变形后的轴线可表达为()f x ω=式中,x 为梁在变形前轴线上任一点的横坐标;ω为该点的挠度梁变形后的轴线称为挠曲线,在线弹性范围内,也称为弹性曲线上述表达式则称为挠曲线(或弹性曲线)方程由于挠曲线为一平坦曲线,故转角θ可表达为''tan ()f x θθω≈== 称为转角方程即挠曲线上任一点处的切线斜率'ω可足够精确地代表该点处横截面的转角θ 由此可见,求得挠曲线方程后,就能确定梁任一横截面挠度的大小,指向及转角的数值 正值的挠度向下,负值的挠度向上正值的转角为逆时针转向,负值的转角为顺时针方向2.梁的挠曲线近似微分方程及其积分为求得梁的挠曲线方程,利用曲率κ与弯矩M 间的物理关系,即 1M EIκρ== 式中曲率κ为度量挠曲线弯曲程度的量,是非负的这是梁在线弹性范围内纯弯曲情况下的曲率表达式在横力弯曲时,梁横截面上除弯矩M 外尚有剪力S F 但工程用梁,其跨长l 一般均大于横截面高度的10倍剪力S F 对于梁位移的影响很小,可略去不计,故该式子依然适用式中的M 和ρ均为x 的函数,即1()()()M x x x EIκρ== 在数学中,平面曲线的曲率与曲线方程导数间的关系有'''23/21()(1)x ωρω=±+ 取x 轴向右为正,y 轴向下为正时曲线凸向上时''ω为正,凸向下时为负而按弯矩的正、负号规定,梁弯曲后凸向下时为正,凸向上为负,符号相反于是得到 '''23/2()(1)M x EIωω=-+ 由于梁的挠曲线为一平坦曲线,因此,'2ω与1相比十分微小可以略去不计故上式可近似的写为 ''()M x EIω=-上式略去了剪力S F 的影响,并略去了'2ω项 故称为梁的挠曲线近似微分方程若为等截面直梁,其弯曲刚度EI 为一常量,上式可改写为''()EI M x ω=-对于等直梁,上式进行积分,并通过由梁的变形相容条件给出的边界条件确定积分常数 即可求得梁的挠曲线方程当全梁各横截面上的弯矩可用单一的弯矩方程表示时,梁的挠曲线近似微分方程仅有一个 将上式的两端各乘以dx ,经积分一次,得'1()EI M x dx C ω=-+⎰再积分一次,即得12[()]EI M x dx dx C x C ω=-++⎰两式子中积分常数1C 、2C 可通过挠曲线的边界条件确定例如在简支梁中,左右铰支座处的挠度均等于零在悬臂梁中,固定端处的挠度和转角均等于零确定积分常数1C 、2C 后,就分别得到梁的转角方程和挠曲线方程从而可以确定任一横截面的转角和挠度1C 和2C 的几何意义 由于以x 为自变量,在坐标原点即0x =处的定积分恒等于零因此,积分常数'100x C EI EI ωθ===,20C EI ω=式中,0θ和0ω分别表示坐标原点处截面的转角和挠度若梁上的荷载不连续即分布荷载在跨度中间的某点处开始或结束,以及集中荷载或集中力偶作用处梁的弯矩需分段写出,各段梁的挠曲线近似微分方程也随之不同在对各段梁的近似微分方程积分时,均将出现两个积分常数为确定这些积分常数,除需利用支座处的约束条件外还需利用相邻两段梁在交界处位移的连续条件例如左、右两段梁在交界处的截面应具有相等的挠度和转角不论是约束条件和连续条件,均发生在各段挠曲线的边界处故均成为边界条件,即弯曲位移中的变形相容条件遵循两个原则①对各段梁,都是从同一坐标原点到截面之间的梁段上的外力列出弯矩方程所以后一段梁的弯矩方程包括前一段的弯矩方程的新增的()x a -项②对()x a -项的积分,以()x a -作为自变量于是由x a =处的连续条件,就能得到两段梁上相应的积分常数分别相等的结果 对于弯矩方程需分为任意几段的情况,只要遵循上述规则同样可以得到各梁段上相应的积分常数分别相等的结果从而简化确定积分常数的运算3.按叠加原理计算梁的挠度和转角梁在微小变形条件下,其弯矩与荷载成线性关系 在线弹性范围内,挠曲线的曲率与弯矩成正比当挠度很小时,曲率与挠度间呈线性关系梁的挠度和转角均与作用在梁上的荷载成线性关系在这种情况下梁在几项荷载(如集中力、集中力偶或分布力)同时作用下某一横截面的挠度或转角 就分别等于每项荷载单独作用下该截面的挠度或转角的叠加,即为叠加原理 已知梁在每项荷载单独作用下的挠度和转角表则按叠加原理来计算梁的最大挠度和最大转角将较为方便4.奇异函数·梁挠曲线的初参数方程5.梁的刚度校核·提高梁的刚度的措施5.1 梁的刚度校核对于梁的挠度,其许可值通常用许可挠度与跨长之比值[]l ω作为标准 梁的刚度条件可表达为 max[]ll ωω≤ max []θθ≤ 一般土建工程中的构件,强度要求是主要的刚度要求一般处于从属地位但当对构件的位移限制很严,或按强度条件所选用的构件截面过于单薄时刚度条件也可能起控制作用5.2 提高梁的刚度的措施由梁的位移表可见梁的位移(挠度和转角)除了与梁的支承和荷载情况有关还与其弯曲刚度EI 成反比,与跨长l 的n 次幂成正比减小梁的位移,可采取下列措施①增大梁的弯曲刚度EI②调整跨长和改变结构5.梁内的弯曲应变能当梁弯曲时,梁内将积蓄应变能梁在线弹性变形过程中弯曲应变能V ε在数值上等于作用在梁上的外力所作的功W梁在纯弯曲时各横截面上的弯矩M 为常数,并等于外力偶矩e M当梁处于线弹性范围内e EI EI θρ=== θ与e M 呈线性关系直线下的三角形面积就代表外力偶所作的功W ,即12e W M θ=从而得纯弯曲时梁的弯曲应变能 12e V M εθ=即得2222e M l M l V EI EIε== 横力弯曲时,梁内应变能包含两个部分:与弯曲变形相应的弯曲应变能和与切应变形相应的剪切应变能对于弯曲应变能,取长为dx 的梁段,其相邻两横截面的弯矩应分别为()M x 和()()M x dM x +在计算微段的应变能时,弯矩的增量为一阶无穷小,可略去不计 计算器弯曲应变能为2()2M x dV dx EIε= 全梁的弯曲应变能则可通过积分求得为2()2l M x V dx EIε=⎰ 式中,()M x 为梁任一横截面上的弯矩表达式 当各段梁的弯矩表达式不同时,积分需分段进行梁的剪切应变能远小于弯曲应变能,可略去不计。
材料力学I第五章ppt课件
11
第五章 梁弯曲时的位移
例题5-1 试求图示等直梁的挠曲线方程和转角方程,
6
第五章 梁弯曲时的位移
从几何方面来看,平面曲线的曲率可写作
1
x
1
w w2
3/ 2
1/为非负值的量,而w“是q = w' 沿
x方向的变化率,是有正负的。
w
1 w2
3/ 2
M x
EI
由于梁的挠曲线为一平坦的曲线,上式中的w2与1相比可略
去,于是得挠曲线近似微分方程 w M x
7
EI
第五章 梁弯曲时的位移
第五章 梁弯曲时的位移
§5-1 梁的位移——挠度和转角
梁的横截面形心(即轴线AB上的点)在垂直于x轴方向的 线位移w称为挠度(deflection),横截面对其原来位置的角
位移q 称为横截面的转角(angle of rotation)。
1
第五章 梁弯曲时的位移
挠曲线(deflection curve)为一平坦而光滑的曲线,它 可以表达为: w=f(x),此式称为挠曲线方程。
由于梁变形后的横截面仍与挠曲线保持垂直,故横截面 的转角θ也就是挠曲线在该相应点的切线与x轴之间的夹角, 从而有转角方程:
q tanq w f x
2
第五章 梁弯曲时的位移
(a)
(b)
直梁弯曲时的挠度和转角这两个位移不但与梁的弯曲
变形程度(挠曲线曲率的大小)有关,也与支座约束的条件
材料力学第五章
例5-2 求图5-9所示简支梁各截面内力,并作内力图。 (a)
(c) (d)
(b)
图5-9
(e)
解 (1)求约束力。注意固定铰 A 处 FAx 0 ,故梁 AB 受力如图 5-9(a) 所示。
材料力学
第五章 弯曲内力与强度计算
一 平面弯曲的概念与实例
二 梁的内力——剪力与弯矩
三
剪力图与弯矩图
四
载荷集度、剪力与弯矩间的关系
五
纯弯曲时梁横截面上的正应力
六
梁的弯曲正应力强度条件及其应用
七
弯曲切应力
八
提高梁的弯曲强度的措施
第一节 平面弯曲的概念与实例
直杆在垂直于其轴线的外力或位于其轴线所在平面内的外力偶作用下, 杆的轴线将由直线变成曲线,这种变形称为弯曲。承受弯曲变形为主的杆 件通常称为梁。
(a)
(b) (c)
图5-12
解 (1)由静力平衡方程求出支座约束力。
FA
Me L
(方向向上)
FB
Me L
(方向向下)
(2)列剪力方程和弯矩方程。
FS ( x)
FA
Me L
(0 x L)
(a)
由于力偶在任何方向的投影皆等于零,所以无论在梁的哪一个横截面上,
剪力总是等于支座约束力 FA (或 FB )。所以在梁的整个跨度内,只有一个剪 力方程式(a)。
设 a x2 a b ,左段受力如图 5-9(c)所示。 由平衡方程求得
FS2 FAy F 0
材料力学第五章__弯曲应力
矩(中性轴以下或以上面积对中性轴的静矩)
的比值(Iz/S),因此工程中经常采用的最大
剪应力的计算公式为:
max
bIz
FS / Smax
整理课件
3.圆截面梁的剪应力
整理课件
假设
1.假设AB弦上各点的剪 应力作用线都通过k点。
2.假设AB弦上各点剪应 力的垂直分量τy相等, 亦即假设τy沿AB弦均 匀分布。
整理课件
1、矩形截面梁弯曲剪应力
初等剪应力理论是由俄罗斯工程师茹拉夫斯基( 1844-1850)设计木梁时提出。 1856年圣维南提出精确剪应力理论。 1.矩形截面梁的剪应力 分析步骤: 1.提出假设; 2.在假设的基础上推导公式; 3.找出剪应力沿截面高度分布的规律。
整理课件整理课件来自理课件P yz Q
x
整理e课件
h
e Hh R
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
*§5.5 关于弯曲理论 的基本假设
自学
整理课件
§5.6 提高弯曲强度的 措施
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
整理课件
F
S
S
* z
整理课件
I zb
整理课件
整理课件
工字钢截面:
max
Q Af
min
Af —腹板的面积。
max
结论: 翼缘部分max«腹板上的max,只计算 腹板上的max。
铅垂剪应力主要腹板承受(95~97%),且
max≈ min
故工字钢最大剪应力
材料力学(5)
A
Iz
∫ ∫∫ z dydz = ∫ y dA = ∫∫ z dydz
2 2 2 A
则分别定义为图形对 y 轴和 z 轴的惯性矩(也称为 二次矩) 惯性矩性质: 惯性矩性质:当一个平面图形是由若干个简单图 形组成时,可以先算出每一个简单图形对某一轴 的惯性矩,然后求其总和,即等于整个图形对同 一轴的惯性矩。
z o y x
5-1 梁纯弯曲时的正应力
正应力计算公式的使用条件和范围
正应力公式是在纯弯曲情况下导出的。但是按弹性力 学理论与工程实践表明:在有些情况下,横力弯曲的 正应力分布规律与纯弯曲的完全相同;在有些情况下 虽略有差异,但是当梁跨度与截面高度之比大于5时, 误差是非常小的。所以,该公式应用于横力弯曲的正 应力计算有足够的精度,完全可以应用于横力弯曲时 的正应力计算。 对于具有纵向对称截面的梁,包括不对称于中性轴的 截面(即无横向对称面,如T字型截面),正应力公式 都可以使用。 正应力公式不适用于非对称弯曲的情况。 当梁的材料不服从胡克定律时,正应力公式不适用。 正应力公式只适用于直梁。但可近似地用于曲率半径 较梁高大得多的曲梁。对变截面梁也可近似地应用。
平行移轴公式:截面对任一轴的惯性矩, 平行移轴公式 等于它对平行于该轴的形心轴的惯性矩, 加上截面面积与两轴间距离平方的乘积。
5-2 惯性矩计算
T字型截面对其形心轴(z轴)的惯性矩为:
I z = I zI + I zII
y
矩形Ⅰ和矩形Ⅱ对 z 轴的惯性矩 可以通过平行移轴公式写成如下形式:
z1
a
b
E
5-1 梁纯弯曲时的正应力
(三)静力学关系(续3)
Mz = ∫A yσdA = ML(e)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 剪切和挤压
一、剪切的实用计算
(一)剪切的概念
力学模型如图所示。
(1)受力特征。
构件上受到一对大小相等、方向相反,作用线相距很近,且与构件轴线垂直的力作用。
(2)变形特征。
构件沿两力的分界面有发生相对错动的趋势。
(3)剪切面。
构件将发生相对错动的面。
(4)剪力Q 剪切面上的内力,其作用线与剪切面平行。
(二)剪切实用计算
(1)名义剪应力。
假定剪应力沿剪切面是均匀分布的,若A Q 为剪切面面积,Q 为剪力,则
)185(-=Q
A Q τ (2)许用剪应力。
按实际构件的受力方式,用试验的方法求得名义剪切极限应力再除以安全系数n 。
(3)剪切强度条件。
剪切面上的工作剪应力不得超过材料的许用剪应力
)195]([-≤=
ττQ
A Q 【真题解析】5—12 (2005年真题)要用冲床在厚度为t 的钢板上冲出一圆孔,则冲力大小( )。
(A)与圆孔直径的平方成正比
(B)与圆孔直径的平方根成正比
(C)与圆孔直径成正比
(D)与圆孔直径的三次方成正比
解:在钢板上冲断的圆孔板,如图所示。
设冲力为F,剪力为Q,钢板的剪切强度极限为瓦,圆孔直径为d,则有,故冲力
答案:(C)
2014—62真题
二、挤压的实用计算
(一)挤压的概念
(1)挤压。
两构件相互接触的局部承压作用。
(2)挤压面。
两构件间相互接触的面。
(3)挤压力Pbs承压接触面上的总压力。
(二)挤压实用计算
(1)名义挤压应力。
假设挤压力在名义挤压面上均匀分布,即
式中A bs——名义挤压面面积。
当挤压面为平面时,名义挤压面面积等于实际的承压接触面面积;当挤压面为曲面时,名义挤压面面积取为实际承压接触面在垂直挤压力方向的投影面积。
(2)许用挤压应力。
根据直接试验结果,按照名义挤压应力公式计算名义极限挤压应力,再除以安全系数。
(3)挤压强度条件。
挤压面上的工作挤压应力不得超过材料的许用挤压应力,即
【真题解析】5—15
(2006年真题)如图所示,插销穿过水平放置平板上的圆孔,在其下端受有一拉力P,该插销的剪切面积和挤压面积分别为( )。
解:插销中心部分有向下的趋势,插销帽周边部分受平板支撑有向上的趋势,故插销的剪切面积是一个圆柱面积πdh,而捅销帽与平板的接触面积就是挤压面积,为一个圆环面积答案:(B)。