5最值系列之阿氏圆问题
最值问题阿氏圆ppt课件
BC
3值 42 4 2 4 10
3
3
3
过关检测
学习从来无捷径,循序渐进登高峰
三角形相似 • 得到去除系数k的线段,结合两点之间线段最短进行求解
解析: 连接CP,在CB上取点D使CD=1 则△PCD∽△BCP AP+½BP=AP+PD 当A、P、D三点共线时,AP+PD的值最小 最小值= AC2 CD2 37
2 37 3
∵AC = 4,CD = 3,在CB上取一点M,使得CM = 2 CD = 4
阿氏圆结论与证明
当P在在圆上运动时,PA、PB的的比值始终保持不变 构造子母型相似
P
O
P2
A
P1
B
模型使用步骤
P
P2
O
A
P1
B
确定模型五步骤:
①圆心
②圆上动点 ③圆外固定点
④以圆心所在角为公共角
⑤子交点(位置需要自己找)在圆心与圆外固定点连线上
• 确定动点的运动轨迹,以及轨迹的圆心和半径 • 找到比例为k的边,构成母三角形,标出两边的夹角 • 利用标出两边的夹角,构造一个线段,长度比半径成比例k,构造出子三角形,母子
阿氏圆
• 一动点P到两定点A、B的距 离之比等于定比m:n,则P点的 轨迹是以定比m:n内分和外分 定线段AB的两个分点的连线 为直径的圆,称为阿波罗尼 斯圆,简称阿氏圆
• 专门解决(AP+mBP,m≠1)最小值问题
• 与胡不归模型区别: 胡不归(动点在直线上);阿氏圆(动点在圆上)
内分点:当点P在线段AB上时,P就是AB的内分点 外分点:当点P在线段AB的延长线上时,P就是AB的外 分点
5最值系列之阿氏圆问题
P
A
B
O
下给出证明 法一:首先了解两个定理 (1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则 AB = DB .
AC DC
A
E F
B
D
C
证明: S ABD = BD , S ABD = AB DE = AB ,即 AB = DB
(k2 −1)( x2 + y2 ) − (2m + ) 2k2m x + (k2 −1)m2 = 0
x2 + y2 − 2m + 2k2m x + m2 = 0 k2 −1
解析式满足圆的一般方程,故 P 点所构成的图形是圆,且圆心与 AB 共线.
2
那么这个玩意和最值有什么关系呢?且来先看个例子:
A
D
A
D
P
BM
C
BM
C
P
6
A
D
P
B
C
【分析】当 P 点运动到 BC 边上时,此时 PC=2,根据题意要求构造 1 PC ,在 BC 上取 M 2
使得此时 PM=1,则在点 P 运动的任意时刻,均有 PM= 1 PC ,从而将问题转化为求 PD-PM 2
的最大值.
A
D
A
D
P
BM
C
P
BM
C
连接 PD,对于△PDM,PD-PM<DM,故当 D、M、P 共线时,PD-PM=DM 为最大值.
不同,如下,提供两种思路.
法一:构造相似三角形 注意到圆 C 半径为 2,CA=4,连接 CP,构造包含线段 AP 的△CPA,在 CA 边上取点 M 使 得 CM=2,连接 PM,可得△CPA∽△CMP,故 PA:PM=2:1,即 PM= 1 PA .
中考数学最值—阿氏圆问题(解析+例题)
中考数学最值——阿氏圆问题(点在圆上运动)(PA+k·PB型最值)【问题背景】与两个定点距离之比为一个不为0的常数的点的轨迹是一个圆,这个圆为阿氏圆。
这个定理叫阿波罗尼斯定理。
【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。
②两点之间线段最短。
③连接直线外一点和直线上各点的所有线段中,垂线段最短。
【模型分析】①条件:已知A、B为定点,P为 O上一动点,OPOB=k(0<k<1)。
②问题:P在何处时,PA+k·PB的值最小。
③方法:连接OP,OB,在OB上取点C,使OCOP =k,可得△POC∽△BOP,所以CPPB=OPOB=k,所以得CP=k·PB。
所以PA+k·PB=PA+CP≥AC,当P为AC与 O的交点时,PA+k·PB的最小值为AC。
总结:构造母子三角形相似若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算。
【经典例题】已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.(1)求12AP BP+的最小值为。
(2)求13AP BP+的最小值为。
【巩固训练】练习1:如图,点A、B在⊙O 上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB 上,且OD=4,动点P在⊙O 上,则2PC+PD的最小值为;练习2:如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是__________。
练习3:Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.练习4:如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.练习5:如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+21PC 的最小值为_________.练习6:如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是圆上动点,求2PB+PC 的最小值.值。
专题05 阿氏圆求最小值(解析版)
中考数学压轴题--二次函数第5节阿氏圆求最小值内容导航方法点拨点P 在直线上运动的类型称之为“胡不归”问题;点 P 在圆周上运动的类型称之为“阿氏圆”问题,“阿氏圆”又称“阿波罗尼斯圆”,已知平面上两点 A、B,则所有满足 PA=k·PB(k≠1)的点 P 的轨迹是一个圆,这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。
如图 1 所示,⊙O 的半径为 r,点 A、B 都在⊙O 外,P 为⊙O 上一动点,已知 r=k·OB,连接 PA、PB,则当“PA+k·PB”的值最小时,P 点的位置如何确定?如图2,在线段 OB 上截取 OC 使 OC=k·r,则可说明△BPO 与△PCO 相似,即 k·PB=PC。
故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与 A 与 C 为定点,P 为动点,故当 A、P、C 三点共线时,“PA+PC”值最小。
如图3所示:【破解策略详细步骤解析】例题演练例1.如图,在平面直角坐标系中,抛物线y=x2+4x的顶点为点A(1)求点A的坐标;(2)点B为抛物线上横坐标等于﹣6的点,点M为线段OB的中点,点P为直线OB下方抛物线上的一动点.当△POM的面积最大时,过点P作PC⊥y轴于点C,若在坐标平面内有一动点Q满足PQ=,求OQ+QC的最小值;【解答】解:(1)∵y=x2+4x=(x+2)2﹣4,∴A(﹣2,﹣4);(2)如图1,过P作PH⊥x轴交OB于H,作PG⊥BC于G,过M作MD⊥y轴交y轴于D,∵点B为抛物线上横坐标等于﹣6的点,∴B(﹣6,12),∴直线AB解析式为y=﹣2x设P(m,m2+4m),则H(m,﹣2m),PH=﹣2m﹣(m2+4m)=﹣m2﹣6m∵点M为线段OB的中点,∴M(﹣3,6),∴MD=3∵PH∥y轴∴∠PHG=∠MOD∵PG⊥BC MD⊥y轴∴∠PGH=∠MDO∴△PGH∽△MDO∴=,即PG•MO=PH•MD=3(﹣m2﹣6m)=﹣3m2﹣18m,∴S△POM=PG•MO=﹣9m=﹣(m+3)2+∵﹣<0,∴当m=﹣3时,S△POM的值最大,此时P(﹣3,﹣3),在PC上取点T,使得PT=,连接QT,OT,∵PC=3,PQ=∴==∵∠QPT=∠CPQ∴△QPT∽△CPQ∴==,即TQ=QC,∴OQ+QC=OQ+TQ≥OT∵OT===∴OQ+QC的最小值为;练1.1如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2或4,经检验x=4是分式方程的增根,∴m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.练1.2如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+AE′的最小值.【解答】解:(1)把点A(8,0)代入抛物线y=ax2﹣6ax+6,得64a﹣48a+6=0,∴16a=﹣6,a=﹣,∴y=﹣x2+x+6与y轴交点,令x=0,得y=6,∴B(0,6).设AB为y=kx+b过A(8,0),B(0,6),∴,解得:,∴直线AB的解析式为y=﹣x+6.(2)∵E(m,0),∴N(m,﹣m+6),P(m,﹣m2+m+6).∵PE∥OB,∴△ANE∽△ABO,∴=,∴=,解得:AN=.∵PM⊥AB,∴∠PMN=∠NEA=90°.又∵∠PNM=∠ANE,∴△NMP∽△NEA.∵=,∴,∴PM=AN=×=12﹣m.又∵PM=﹣m2+m+6﹣6+m=﹣m2+3m,∴12﹣m=﹣m2+3m,整理得:m2﹣12m+32=0,解得:m=4或m=8.∵0<m<8,∴m=4.(3)①在(2)的条件下,m=4,∴E(4,0),设Q(d,0).由旋转的性质可知OE′=OE=4,若△OQE′∽△OE′A.∴=.∵0°<α<90°,∴d>0,∴=,解得:d=2,∴Q(2,0).②由①可知,当Q为(2,0)时,△OQE′∽△OE′A,且相似比为===,∴AE′=QE′,∴BE′+AE′=BE′+QE′,∴当E′旋转到BQ所在直线上时,BE′+QE′最小,即为BQ长度,∵B(0,6),Q(2,0),∴BQ==2,∴BE′+AE′的最小值为2.练1.3如图1,在平面直角坐标系中,抛物线y=x2+x+3与x轴交于A、B两点(点A在点B 的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P.连接AC.(1)求点P的坐标及直线AC的解析式;(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为α(0°<α<90°),连接F A、FC.求AF+CF的最小值;【解答】解:(1)在抛物线y=x2+x+3中,当x=0时,y=3,∴C(0,3),当y=3时,x1=0,x2=2,∴P(2,3),当y=0时,x1=﹣4,x2=6,B(﹣4,0),A(6,0),设直线AC的解析式为y=kx+3,将A(6,0)代入,得,k=﹣,∴y AC=﹣x+3,∴点P坐标为P(2,3),直线AC的解析式为y AC=﹣x+3;(2)在OC上取点H(0,),连接HF,AH,则OH=,AH===,∵==,=,且∠HOF=∠FOC,∴△HOF∽△FOC,∴=,∴HF=CF,∴AF+CF=AF+HF≥AH=,∴AF+CF的最小值为;练1.4如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y =x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、P A,当点P运动到某一位置时,PC+P A 的值最小,请求出这个最小值,并说明理由.【解答】解:(1)直线y=﹣5x+5,x=0时,y=5∴C(0,5)y=﹣5x+5=0时,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点∴解得:∴抛物线解析式为y=x2﹣6x+5当y=x2﹣6x+5=0时,解得:x1=1,x2=5∴B(5,0)(2)如图1,过点M作MH⊥x轴于点H∵A(1,0),B(5,0),C(0,5)∴AB=5﹣1=4,OC=5∴S△ABC=AB•OC=×4×5=10∵点M为x轴下方抛物线上的点∴设M(m,m2﹣6m+5)(1<m<5)∴MH=|m2﹣6m+5|=﹣m2+6m﹣5∴S△ABM=AB•MH=×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8∴S四边形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18∴当m=3,即M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18(可以直接利用点M是抛物线的顶点时,面积最大求解)(3)如图2,在x轴上取点D(4,0),连接PD、CD∴BD=5﹣4=1∵AB=4,BP=2∴∵∠PBD=∠ABP∴△PBD∽△ABP∴==,∴PD=AP∴PC+P A=PC+PD∴当点C、P、D在同一直线上时,PC+P A=PC+PD=CD最小∵CD=∴PC+P A的最小值为练1.5如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B在点A的左侧),与y 轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q为⊙H上的一个动点,求AQ+EQ的最小值.【解答】解:(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x﹣),把C(0,﹣3)代入得到a=.故抛物线的解析式为y=x2+x﹣3.(2)在Rt△AOC中,tan∠OAC==,∴∠OAC=60°,∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y=x﹣1,由题意P(m,m2+m﹣3),H(m,m﹣1),F(m,0),∵FH=PH,∴1﹣m=m﹣1﹣(m2+m﹣3)解得m=﹣或(舍弃),∴当FH=HP时,m的值为﹣.(3)如图,∵PF是对称轴,∴F(﹣,0),H(﹣,﹣2),∵AH⊥AE,∴∠EAO=60°,∴EO=OA=3,∴E(0,3),∵C(0,﹣3),∴HC==2,AH=2FH=4,∴QH=CH=1,在HA上取一点K,使得HK=,此时K(﹣,﹣),∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,∴=,∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴==,∴KQ=AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值==.。
最值模型之阿氏圆(解析版)
最值模型之阿氏圆“PA+k·PB”型的最值问题是近几年中考考查的热点更是难点。
1.当k值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“饮马问题”模型来处理,即可以转化为轴对称问题来处理;2.当k取任意不为1的正数时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路。
此类问题的处理通常以动点P所在图像的不同来分类,一般分为2类研究。
即点P在直线上运动和点P 在圆上运动。
点P在圆周上运动的类型称之为“阿氏圆”问题。
模型建立:PA+k∙PB的最小值。
阿氏圆钥匙:构造母子三角形相似阿氏圆口诀:两定一动阿氏圆,母子相似很简单。
第一步:确动点的运动轨迹(圆),以点0为圆心、r为半径画圆;(若圆已经画出则可省略这一步)第二步:连接动点至圆心0(将系数不为1的线段的固定端点与圆心相连接),即连接OP,OB。
第三步:计算这两条线段长度的比k;第四步:在0B上取点C,使得OC=k∙OP;OCOP=OPOB=k, ∠O=∠O,可得△POC∽△BOP可得:OCOP=PCPB=k, PC=k∙PB第五步:则PA+k∙PB≥PA+PC≥AC,即当A,P,C三点共线时可得最小值。
[提升:若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成1k,再构造△相似进行计算.]1如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的EF上任意一点,连接BP,CP,则12BP+CP的最小值是 17 .思路引领:在AB 上取一点T ,使得AT =1,连接PT ,PA ,CT .证明△PAT ∽△BAP ,推出PT PB=AP AB=12,推出PT =12PB ,推出12PB +CP =CP +PT ,根据PC +PT ≥TC ,求出CT 即可解决问题.答案详解:在AB 上取一点T ,使得AT =1,连接PT ,PA ,CT .∵PA =2.AT =1,AB =4,∴PA 2=AT •AB ,∴PA AT =AB PA,∵∠PAT =∠PAB ,∴△PAT ∽△BAP ,∴PT PB =AP AB =12,∴PT =12PB ,∴12PB +CP =CP +PT ,∵PC +PT ≥TC ,在Rt △ACT 中,∵∠CAT =90°,AT =1,AC =4,∴CT =AT 2+AC 2=17,∴12PB +PC ≥17,∴12PB +PC 的最小值为17.故答案为17.一、选择题(共1小题)1如图,在△ABC 中,∠A =90°,AB =AC =4,点E 、F 分别是边AB 、AC 的中点,点P 是以A 为圆心、以AE 为半径的圆弧上的动点,则12PB +PC 的最小值等于()A.4B.32C.17D.15试题分析:在AB 上截取AQ =1,连接AP ,PQ ,CQ ,证明△APQ ∽△ABP ,可得PQ =12PB ,则12PB +PC =PC +PQ ,当C 、Q 、P 三点共线时,PC +PQ 的值最小,求出CQ 即为所求.答案详解:解:在AB 上截取AQ =1,连接AP ,PQ ,CQ ,∵点E 、F 分别是边AB 、AC 的中点,点P 是以A 为圆心、以AE 为半径的圆弧上的动点,∴AP AB=12,∵AP =2,AQ =1,∴AQ AP =12,∵∠PAQ =∠BAP ,∴△APQ ∽△ABP ,∴PQ =12PB ,∴12PB +PC =PC +PQ ≥CQ ,在Rt △ACQ 中,AC =4,AQ =1,∴QB =AC 2+AQ 2=17,∴12PB +PC 的最小值17,故选:C .二、填空题(共7小题)2如图,在Rt △ABC 中,∠C =90°,AC =9,BC =4,以点C 为圆心,3为半径做⊙C ,分别交AC ,BC 于D ,E 两点,点P 是⊙C 上一个动点,则13PA +PB 的最小值为 17 .试题分析:在AC 上截取CQ =1,连接CP ,PQ ,BQ ,证明△ACP ∽△PCQ ,可得PQ =13AP ,当B 、Q 、P 三点共线时,13PA +PB 的值最小,求出BQ 即为所求.答案详解:解:在AC 上截取CQ =1,连接CP ,PQ ,BQ ,∵AC =9,CP =3,∴CP AC=13,∵CP =3,CQ =1,∴CQ CP=13,∴△ACP ∽△PCQ ,∴PQ =13AP ,∴13PA +PB =PQ +PB ≥BQ ,∴当B 、Q 、P 三点共线时,13PA +PB 的值最小,在Rt △BCQ 中,BC =4,CQ =1,∴QB =17,∴13PA +PB 的最小值17,故答案为:17.3如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,D 、E 分别是边BC 、AC 上的两个动点,且DE =4,P 是DE 的中点,连接PA ,PB ,则PA +14PB 的最小值为 1452 .试题分析:如图,在CB 上取一点F ,使得CF =12,连接PF ,AF .利用相似三角形的性质证明PF =14PB ,根据PF +PA ≥AF ,利用勾股定理求出AF 即可解决问题.答案详解:解:如图,在CB 上取一点F ,使得CF =12,连接PF ,AF .∵∠DCE =90°,DE =4,DP =PE ,∴PC =12DE =2,∵CF CP =14,CP CB =14,∴CF CP =CP CB,∵∠PCF =∠BCP ,∴△PCF ∽△BCP ,∴PF PB =CF CP =14,∴PF =14PB ,∴PA +14PB =PA +PF ,∵PA +PF ≥AF ,AF =CF 2+AC 2=12 2+62=1452,∴PA +14PB ≥1452,∴PA +14PB 的最小值为1452,故答案为1452.4如图,在⊙O 中,点A 、点B 在⊙O 上,∠AOB =90°,OA =6,点C 在OA 上,且OC =2AC ,点D 是OB 的中点,点M 是劣弧AB 上的动点,则CM +2DM 的最小值为 410 .试题分析:延长OB 到T ,使得BT =OB ,连接MT ,CT .利用相似三角形的性质证明MT =2DM ,求CM +2DM 的最小值问题转化为求CM +MT 的最小值.求出CT 即可判断.答案详解:解:延长OB 到T ,使得BT =OB ,连接MT ,CT .∵OM =6,OD =DB =3,OT =12,∴OM 2=OD •OT ,∴OMOD =OT OM,∵∠MOD =∠TOM ,∴△MOD ∽△TOM ,∴DM MT =OM OT=12,∴MT =2DM ,∵CM +2DM =CM +MT ≥CT ,又∵在Rt △OCT 中,∠COT =90°,OC =4,OT =12,∴CT =OC 2+OT 2=42+122=410,∴CM +2DM ≥410,∴CM +2DM 的最小值为410,∴答案为410.5如图所示,∠ACB =60°,半径为2的圆O 内切于∠ACB .P 为圆O 上一动点,过点P 作PM 、PN 分别垂直于∠ACB 的两边,垂足为M 、N ,则PM +2PN 的取值范围为6-23≤PM +2PN ≤6+23 .试题分析:PM +2PN =212PM +PN ,作MH ⊥PN ,HP =12PM ,确定HN 的最大值和最小值.答案详解:解:作MH⊥NP于H,作MF⊥BC于F,∵PM⊥AC,PN⊥CB,∴∠PMC=∠PNC=90°,∴∠MPN=360°-∠PMC-∠PNC-∠C=120°,∴∠MPH=180°-∠MPN=60°,∴HP=PM•cos∠MPH=PM•cos60°=12PM,∴PN+12PM=PN+HP=NH,∵MF=NH,∴当MP与⊙O相切时,MF取得最大和最小,如图1,连接OP,OG,OC,可得:四边形OPMG是正方形,∴MG=OP=2,在Rt△COG中,CG=OG•tan60°=23,∴CM=CG+GM=2+23,在Rt△CMF中,MF=CM•sin C=(2+23)×32=3+3,∴HN=MF=3+3,=2HN=6+23,PM+2PN=212PM+PN如图2,由上知:CG=23,MG=2,∴CM=23-2,∴HM=(23-2)×32=3-3,=2HN=6-23,∴PM+2PN=212PM+PN∴6-23≤PM+2PN≤6+23.6如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD-12PC 的最大值为237 .试题分析:连接PB ,在BC 上取一点G ,使得BG =2,连接PG ,DG ,过点D 作DH ⊥BC 交BC 的延长线于H .利用相似三角形的性质证明PG =12PC ,再根据PD -12PC =PD -PG ≤DG ,求出DG ,可得结论.答案详解:解:连接PB ,在BC 上取一点G ,使得BG =2,连接PG ,DG ,过点D 作DH ⊥BC 交BC 的延长线于H .∵PB =4,BG =2,BC =8,∴PB 2=BG •BC ,∴PB BG=BC PB ,∵∠PBG =∠CBP ,∴△PBG ∽△CBP ,∴PG PC =PB BC =12,∴PG =12PC ,∵四边形ABCD 是菱形,∴AB ∥CD ,AB =CD =BC =8,∴∠DCH =∠ABC =60°,在Rt △CDH 中,CH =CD •cos60°=4,DH =CD •sin60°=43,∴GH =CG +CH =6+4=10,∴DG =GH 2+DH 2=102+(43)2=237,∵PD -12PC =PD -PG ≤DG ,∴PD -12PC ≤237,∴PD -12PC 的最大值为237.7如图,在△ABC 中,BC =6,∠BAC =60°,则2AB +AC 的最大值为421 .试题分析:由2AB +AC =2AB +12AC 得12AC =AE ,再将AB +AE 转化成一条线段BP ,可证出∠P 是定角,从而点P 在△PBC 的外接圆上运动,当BP 为直径时,BP 最大解决问题.答案详解:解:∵2AB +AC =2AB +12AC ,∴求2AB +AC 的最大值就是求2AB +12AC 的最大值,过C 作CE ⊥AB 于E ,延长EA 到P ,使得AP =AE ,∵∠BAC =60°,∴EA =12AC =AP ,∴AB +12AC =AB +AP ,∵EC =3AE ,PE =2AE ,由勾股定理得:PC =7AE ,∴sin P =CE CP =3AE 7AE=217,∴∠P 为定值,∵BC =6是定值,∴点P 在△CBP 的外接圆上,∵AB +AP =BP ,∴当BP 为直径时,AB +AP 最大,即BP ',∴sin P '=sin P =BC BP '=217,解得BP '=221,∴AB +AP =221,∴2AB +AC =2(AB +AP )=421,故答案为:421.8如图,边长为4的正方形,内切圆记为圆O ,P 为圆O 上一动点,则2PA +PB 的最小值为25 .试题分析:2PA +PB =2PA +22PB ,利用相似三角形构造22PB .答案详解:解:设⊙O 半径为r ,OP =r =12BC =2,OB =2r =22,取OB 的中点I ,连接PI ,∴OI =IB =2,∵OP OI =22=2,OB OP =222=2,∴OP OI =OB OP,∠O 是公共角,∴△BOP ∽△POI ,∴PI PB =OI OP=22,∴PI =22PB ,∴AP +22PB =AP +PI ,∴当A 、P 、I 在一条直线上时,AP +22PB 最小,作IE ⊥AB 于E ,∵∠ABO =45°,∴IE =BE =22BI =1,∴AE =AB -BE =3,∴AI =32+12=10,∴AP +22PB 最小值=AI =10,∵2PA +PB =2PA +22PB ,∴2PA +PB 的最小值是2AI =2×10=25.故答案是25.三、解答题(共8小题)1如图,在6×6的正方形网格中,A 、B 、C 、D 均为小正方形的顶点,请仅用无刻度的直尺作图,保留作图痕迹.(1)在图1中作出AC 边上的点E ,使得AE =3CE ;(2)在图2中作出BC 边上的点F (不与点B 重合),使得BD =DF ;(3)在图3中作出AB 边上的点G ,使得tan ∠ACG =12.试题分析:(1)如图1中,取格点M ,N ,连接MN 交AC 于点E ,点E 即为所求.(2)如图2中,取格点T ,连接AT 交BC 于点F ,连接DF ,点F 即为所求.(3)如图3中,取格点R ,连接AR ,得到AR 的中点J ,连接CJ 交AB 于点G ,点G 即为所求.答案详解:解:(1)如图1中,点E即为所求.(2)如图2中,点F即为所求.(3)如图3中,点G即为所求.2已知,AB是⊙O的直径,AB=42,AC=BC.(1)求弦BC的长;(2)若点D是AB下方⊙O上的动点(不与点A,B重合),以CD为边,作正方形CDEF,如图1所示,若M 是DF的中点,N是BC的中点,求证:线段MN的长为定值;(3)如图2,点P是动点,且AP=2,连接CP,PB,一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,到达点B后停止运动,求点Q 的运动时间t的最小值.试题分析:(1)AB是⊙O的直径,AC=BC可得到△ABC是等腰直角三角形,从而得道答案;(2)连接AD、CM、DB、FB,首先利用△ACD≌△BCF,∠CBF=∠CAD,证明D、B、F共线,再证明△CMB是直角三角形,根据直角三角形斜边上的中线等于斜边的一半,即可得证;(3)“阿氏圆”的应用问题,以A为圆心,AP为半径作圆,在AC上取点M,使AM=1,连接PM,过M作MH⊥AB于H,连接BM交⊙A于P',先证明PM=PC2,PC2+BP最小,即是PM+BP最小,此时P、B、M共线,再计算BM的长度即可.答案详解:解:(1)∵AB是⊙O的直径,∴∠ABC=90°,∵AC=BC,∴△ABC是等腰直角三角形,∠CAB=45°,∵AB=42,∴BC=AB•sin45°=4;(2)连接AD、CM、DB、FB,如图:∵△ABC 是等腰直角三角形,四边形CDEF 是正方形,∴CD =CF ,∠DCF =∠ACB =90°,∴∠ACD =90-∠DCB =∠BCF ,又AC =BC ,∴△ACD ≌△BCF (SAS ),∴∠CBF =∠CAD ,∴∠CBF +∠ABC +∠ABD =∠CAD +∠ABC +∠ABD=∠DAB +∠CAB ++∠ABC +∠ABD=∠DAB +45°+45°+∠ABD ,而AB 是⊙O 的直径,∴∠ADB =90°,∴∠DAB +∠ABD =90°,∴∠CBF +∠ABC +∠ABD =180°,∴D 、B 、F 共线,∵四边形CDEF 是正方形,∴△DCF 是等腰直角三角形,∵M 是DF 的中点,∴CM ⊥DF ,即△CMB 是直角三角形,∵N 是BC 的中点,∴MN =12BC =2,即MN 为定值;(3)以A 为圆心,AP 为半径作圆,在AC 上取点M ,使AM =1,连接PM ,过M 作MH ⊥AB 于H ,连接BM 交⊙A 于P ',如图:一动点Q 从点C 出发,以每秒2个单位的速度沿线段CP 匀速运动到点P ,再以每秒1个单位的速度沿线段PB 匀速运动到点B ,∴Q 运动时间t =PC 2+BP ,∵AM =1,AP =2,AC =BC =4,∴AM AP =AP AC=12,又∠MAP =∠PAC ,∴△MAP ∽△PAC ,∴PM PC =AM AP =12,∴PM =PC 2,∴PC 2+BP 最小,即是PM +BP 最小,此时P 、B 、M 共线,即P 与P '重合,t =PC 2+BP 最小值即是BM 的长度,在Rt △AMH 中,∠MAH =45°,AM =1,∴AH =MH =22,∵AB =42,∴BH=AB-AH=722,Rt△BMH中,BM=BH2+MH2=5,∴点Q的运动时间t的最小值为5.3阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合PAPB=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设OPOD=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+23BD的最小值.试题分析:(1)在OD上取点M,使得OM:OP=OP:OD=k,利用相似三角形的性质以及两点之间线段最短解决问题即可.(2)利用(1)中结论计算即可.答案详解:解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得CM=OC2+OM2=m2+(kr)2=m2+k2r2.(2)∵AC=m=4,CDBC=23,在CB上取一点M,使得CM=23CD=43,∴AD+23BD的最小值为42+43 2=4103.4如图1,⊙O的半径为r(r>0),若点P'在射线OP上,满足OP'⋅OP=r2,则称点P'是点P关于⊙O的“反演点”.(1)若点A关于⊙O的“反演点”是本身,那么点A与⊙O的位置关系为B.A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外(2)如图1,若⊙O的半径为4,点P'是点P关于⊙O的“反演点”,且PP'=6,过点P的直线与⊙O相切于点Q,求PQ长.(3)如图2,若⊙O的半径为4,点Q在⊙O上,点A在⊙O内,且OA=2,点Q'、A'分别是点Q、A关于⊙O的“反演点”,过点A'作A'B⊥A'O且A'B=A'O,连接BQ',Q'A',求BQ'+12Q'A'的最小值.试题分析:(1)因为OA2=r2,所以OA=r,从而得出点A在圆上;(2)连接OQ,根据OP′•OP=r2得出OP′的值,洁儿根据勾股定理求得PQ;(3)可证得△AOQ′∽△Q′OA′,从而得出AQ′=12A'Q',进而得出当B、Q′、A共线时,BQ′+12A'Q'最小,进一步求得结果.答案详解:解:(1)由题意得:OA2=r2,∴OA=r,∴点A在⊙O上,故答案为:B;(2)如图1,连接OQ,∵点P'是点P关于⊙O的“反演点”,∴OP′•OP=r2,∴OP′•(OP′+6)=16,∴OP′=2,∴OP=8,∵PQ是⊙O的切线,∴OQ⊥PQ,∴∠PQO =90°,∴PQ =OP 2-OQ 2=82-42=43;如图2,∵点Q '、A '分别是点Q 、A 关于⊙O 的“反演点”,∴点Q 在⊙O 上,OQ 2=OA •OA ′,∴OQ OA '=OA OQ ,OA ′=8,∴∠O 为公共角,A ′B =8,AA ′=6,∴△AOQ ′∽△Q ′OA ′,∴AQ 'A 'Q '=OA OQ =12,∴AQ ′=12A 'Q ',∴BQ ′+12A 'Q '=AQ ′+BQ ′,∴当B 、Q ′、A 共线时,BQ ′+12A 'Q '最小,最小为AB ,∵AB =A 'A 2+A 'B 2=10,∴BQ ′+12Q 'A ' 最小=10.5【根底巩固】(1)如图,在△ABC 中,D 为AB 上一点,∠ACD =∠B .求证:AC 2=AD •AB .【尝试应用】(2)如图2,在菱形ABCD 中,E ,F 分别为BC ,DC 上的点,且∠EAF =12∠BAD ,射线AE 交DC 的延长线于点M ,射线AF 交BC 的延长线于点N .若AF =4,CF =2,AM =10.求:①CM 的长;②FN 的长.【拓展进步】(3)如图3,在菱形ABCD 中,AB =6,∠B =60°,以点B 为圆心作半径为3的圆,其中点P 是圆上的动点,请直接写出PD +12PC 的最小值.试题分析:(1)证明△ADC ∽△ACB ,得出AD AC =AC AB ,则可得出结论;(2)①连接AC ,证明△FAC ∽△FMA ,从而得出AF CF =FM AF =AM AC ,进一步求得结果;②可证明△NAC ∽△AMC ,从而AC CM =AN AM ,进而求得结果;(3)在BC 上截取BE =32,可证得△PBE ∽△CBP ,进而得出PE =12PC ,从而PD +12PC =PD +PE ,当D 、P 、E 共线时,PD +PE 最小=DE ,此时P 在P ′处,然后解斜三角形CDE ,进一步求得结果.答案详解:(1)证明:如图1,∵∠ACD =∠B ,∠A =∠A ,∴△ADC ∽△ACB ,∴AD AC =AC AB ,∴AC 2=AD •AB .(2)①解:如图2,连接AC ,∵四边形ABCD 是菱形,∴AB ∥CD ,∠BAC =∠CAD =12∠BAD ,∵∠EAF =12∠BAD ,∴∠BAC =∠EAF ,即∠BAM +∠MAC =∠MAC +∠CAF ,∴∠BAM =∠CAF ,∵AB ∥CD ,∴∠BAM =∠M ,∴∠CAF =∠M ,∵∠AFC =∠MFA ,∴△FAC ∽△FMA ,∴AF CF =FM AF =AM AC ,∵AF =4,CF =2,AM =10,∴42=FM 4=10AC ,∴FM =8,AC =5,∴CM =FM -CF =8-2=6,②∵四边形ABCD 是菱形,∴ADB ∥BC ,∠BAC =∠CAD =12∠BAD ,∵∠EAF =12∠BAD ,∴∠CAD =∠EAF ,即∠DAN +∠NAC =∠NAC +∠CAM ,∴∠DAN =∠CAM ,∵AD ∥BC ,∴∠DAN =∠N ,∴∠CAM =∠N ,由①知:∠CAF =∠M ,∴△NAC ∽△AMC ,∴AC CM =AN AM ,即56=AN 10,∴AN =253,∴FN =AN -AF =253-4=133;(3)如图3,在BC 上截取BE =32,∵BE BP =BP BC=12,∠PBE =∠CBE ,∴△PBE ∽△CBP ,∴PE PC =PB BC =12,∴PE =12PC ,∴PD +12PC =PD +PE ,∴当D 、P 、E 共线时,PD +PE 最小=DE ,此时P 在P ′处,作DF ⊥BC ,交BC 的延长线于F ,在Rt △CDF 中,CD =BC =6,∠DCF =60°,∴CF =6•cos60°=3,DF =6•sin60°=33,在Rt △DEF 中,DF =33,EF =CE +CF =6-32+3=152,∴DE =(33)2+152 2=3372,∵PD +12PC 最小=3372.6如图,在平面直角坐标系中,抛物线y =14x 2-32x -4与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A 、B 、C 的坐标;(2)如图1,连接BC ,点D 是抛物线上一点,若∠DCB =∠ABC ,求点D 的坐标;(3)如图2,若点P 在以点O 为圆心,OA 长为半径作的圆上,连接BP 、CP ,请你直接写出12CP +BP 的最小值.试题分析:(1)分别令x =0和y =0解方程可得结论;(2)分两种情况:①当点D 在x 轴的上方时,根据等角对等边可得CE =BE ,设OE =a ,根据勾股定理列方程可得a 的值,确定CE 的解析式,联立直线CE 和抛物线的解析式列方程解出可得点D 的坐标;②当点D 在x 轴的下方时,根据内错角相等可得CD 与x 轴平行,C 和D 是对称点,可得点D 的坐标;(3)如图3,根据12PC +BP =PM +PB ,确定当B 、P 、M 三点共线时,12CP +BP 的值最小,根据勾股定理可得BM 的长,可得结论.答案详解:解:(1)当x =0时,y =-4,当y =0时,14x 2-32x -4=0,解得:x 1=8,x 2=-2,∴A (-2,0),B (8,0),C (0,-4);(2)分两种情况:①当点D 在x 轴上方时,如图1,CD 交x 轴于点E ,∵∠DCB =∠ABC ,∴CE =BE ,设OE =a ,则BE =8-a ,Rt △OCE 中,由勾股定理得:a 2+42=(8-a )2,解得:a =3,∴E (3,0),∵C (0,4),设CE 的解析式为:y =kx +b ,则3k +b =0b =-4 ,解得:k =43b =-4 ,∴CE 的解析式为:y =43x -4,∵14x 2-32x -4=43x -4,解得:x 1=0,x 2=343,∴D 343,1009 ;②当点D 在x 轴的下方时,如图2,∵∠DCB =∠ABC ,∴CD ∥x 轴,∴C 和D关于抛物线的对称轴对称,∴D (6,-4);综上,点D 的坐标为343,1009 或(6,-4);(3)如图3,连接OP ,PM ,在y 轴截取OM ,使OM OP =OP OC =12,∵∠POM =∠POC ,∴△POM ∽△COP ,∴PM PC =12,∴PM =12PC ,∴12PC +BP =PM +PB ,当B 、P 、M 三点共线时,12CP +BP 的值最小,在Rt △BOM 中,BM =OB 2+OM 2=82+12=65,即12CP +BP 的最小值是65.7如图,抛物线y =-x 2+bx +c 与直线AB 交于A (-4,-4),B (0,4)两点,直线AC :y =-12x -6交y 轴于点C .点E 是直线AB 上的动点,过点E 作EF ⊥x 轴交AC 于点F ,交抛物线于点G .(1)求抛物线y =-x 2+bx +c 的表达式;(2)连接GB ,EO ,当四边形GEOB 是平行四边形时,求点G 的坐标;(3)①在y 轴上存在一点H ,连接EH ,HF ,当点E 运动到什么位置时,以A ,E ,F ,H 为顶点的四边形是矩形?求出此时点E ,H 的坐标;②在①的前提下,以点E 为圆心,EH 长为半径作圆,点M 为⊙E 上一动点,求12AM +CM 它的最小值.试题分析:(1)利用待定系数法求出抛物线解析式;(2)先利用待定系数法求出直线AB 的解析式,进而利用平行四边形的对边相等建立方程求解即可;(3)①先判断出要以点A ,E ,F ,H 为顶点的四边形是矩形,只有EF 为对角线,利用中点坐标公式建立方程即可;②先取EG 的中点P 进而判断出△PEM ∽△MEA 即可得出PM =12AM ,连接CP 交圆E 于M ,再求出点P 的坐标即可得出结论.答案详解:解:(1)∵点A (-4,-4),B (0,4)在抛物线y =-x 2+bx +c 上,∴-16-4b +c =-4c =4,∴b =-2c =4 ,∴抛物线的解析式为y =-x 2-2x +4;(2)设直线AB 的解析式为y =kx +n 过点A ,B ,∴n =4-4k +n =-4 ,∴k =2n =4 ,∴直线AB 的解析式为y =2x +4,设E (m ,2m +4),∴G (m ,-m 2-2m +4),∵四边形GEOB 是平行四边形,∴EG =OB =4,∴-m 2-2m +4-2m -4=4,∴m =-2∴G (-2,4).(3)①如图1,由(2)知,直线AB 的解析式为y =2x +4,∴设E (a ,2a +4),∵直线AC :y =-12x -6,∴F a ,-12a -6 ,设H (0,p ),∵以点A ,E ,F ,H 为顶点的四边形是矩形,∵直线AB 的解析式为y =2x +4,直线AC :y =-12x -6,∴AB ⊥AC ,∴EF 为对角线,∴EF 与AH 互相平分,∴12(-4+0)=12(a +a ),12(-4+p )=122a +4-12a -6 ,∴a =-2,P =-1,∴E (-2,0).H (0,-1);②如图2,由①知,E (-2,0),H (0,-1),A (-4,-4),∴EH =5,AE =25,设AE 交⊙E 于G ,取EG 的中点P ,∴PE =52,连接PC 交⊙E 于M ,连接EM ,∴EM =EH =5,∴PE ME =525=12,∵ME AE =525=12,∴PEME =ME AE =12,∵∠PEM =∠MEA ,∴△PEM ∽△MEA ,∴PM AM =ME AE =12,∴PM =12AM ,∴12AM +CM 的最小值=PC ,设点P (p ,2p +4),∵E (-2,0),∴PE 2=(p +2)2+(2p +4)2=5(p +2)2,∵PE =52,∴5(p +2)2=54,∴p =-52或p =-32(由于E (-2,0),所以舍去),∴P -52,-1 ,∵C (0,-6),∴PC =-52 2+(-1+6)2=552,即:12AM +CM 的最小值为552.8问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连接AP 、BP ,求AP +12BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有CD CP =CP CB =12,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴PD BP =12,∴PD =12BP ,∴AP +12BP =AP +PD .请你完成余下的思考,并直接写出答案:AP +12BP 的最小值为 37 .(2)自主探索:在“问题提出”的条件不变的情况下,13AP +BP 的最小值为 2337 .(3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是CD 上一点,求2PA +PB 的最小值.试题分析:(1)利用勾股定理即可求出,最小值为AD =37;(2)连接CP ,在CA 上取点D ,使CD =23,则有CD CP =CP CA =13,可证△PCD ∽△ACP ,得到PD =13AP ,即:13AP +BP =BP +PD ,从而13AP +BP 的最小值为BD ;21(3)延长OA 到点E ,使CE =6,连接PE 、OP ,可证△OAP ∽△OPE ,得到EP =2PA ,得到2PA +PB =EP +PB ,当E 、P 、B 三点共线时,得到最小值.答案详解:解:(1)如图1,连接AD ,∵AP +12BP =AP +PD ,要使AP +12BP 最小,∴AP +AD 最小,当点A ,P ,D 在同一条直线时,AP +AD 最小,即:AP +12BP 最小值为AD ,在Rt △ACD 中,CD =1,AC =6,∴AD =AC 2+CD 2=37,AP +12BP 的最小值为37,故答案为:37;(2)如图2,连接CP ,在CA 上取点D ,使CD =23,∴CD CP =CP CA =13,∵∠PCD =∠ACP ,∴△PCD ∽△ACP ,∴PD AP =13,∴PD =13AP ,∴13AP +BP =BP +PD ,∴同(1)的方法得出13AP +BP 的最小值为BD =BC 2+CD 2=2337.故答案为:2337;(3)如图3,延长OA 到点E ,使CE =6,∴OE=OC +CE =12,连接PE 、OP ,∵OA =3,∴OA OP =OP OE =12,∵∠AOP =∠AOP ,∴△OAP ∽△OPE ,∴AP EP =12,∴EP =2PA ,∴2PA +PB =EP +PB ,∴当E 、P 、B 三点共线时,取得最小值为:BE =OB 2+OE 2=13.。
最值问题——阿氏圆
阿波罗尼斯圆
阿氏圆
• 一动点P到两定点A、B的距 离之比等于定比m:n,则P点的 轨迹是以定比m:n内分和外分 定线段AB的两个分点的连线 为直径的圆,称为阿波罗尼 斯圆,简称阿氏圆
• 专门解决(AP+mBP,m≠1)最小值问题
• 与胡不归模型区别: 胡不归(动点在直线上);阿氏圆(动点在圆上)
内分点:当点P在线段AB上时,P就是AB的内分点 外分点:当点P在线段AB的延长线上时,P就是AB的外 分点
阿氏圆结论与证明
当P在在圆上运动时,PA、PB的的比值始终保持不变 构造子母型相似
P
O
P2
A
P1
B
模型使P1
B
确定模型五步骤:
①圆心
②圆上动点 ③圆外固定点
④以圆心所在角为公共角
2 37 3
∵AC = 4,CD = 3,在CB上取一点M,使得CM = 2 CD = 4
BC
3
3
AD + 2 BD的最小值 42 4 2 4 10
3
3
3
过关检测
学习从来无捷径,循序渐进登高峰
⑤子交点(位置需要自己找)在圆心与圆外固定点连线上
• 确定动点的运动轨迹,以及轨迹的圆心和半径 • 找到比例为k的边,构成母三角形,标出两边的夹角 • 利用标出两边的夹角,构造一个线段,长度比半径成比例k,构造出子三角形,母子
三角形相似 • 得到去除系数k的线段,结合两点之间线段最短进行求解
解析: 连接CP,在CB上取点D使CD=1 则△PCD∽△BCP AP+½BP=AP+PD 当A、P、D三点共线时,AP+PD的值最小 最小值= AC2 CD2 37
中考数学几何复习---最值系列之阿氏圆问题
中考数学几何复习---最值系列之阿氏圆问题在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 构成的图形为圆.下给出证明法一:首先了解两个定理(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则AB DBAC DC=. FEDCBA证明:ABD ACDS BD SCD =,ABD ACDS AB DE AB SAC DF AC ⨯==⨯,即AB DBAC DC=(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则AB DBAC DC=. ABCDE证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DBAC DC=.接下来开始证明步骤:如图,PA:PB=k,作∠APB的角平分线交AB于M点,根据角平分线定理,MA PAkMB PB==,故M点为定点,即∠APB的角平分线交AB于定点;作∠APB外角平分线交直线AB于N点,根据外角平分线定理,NA PAkNB PB==,故N点为定点,即∠APB外角平分线交直线AB于定点;又∠MPN=90°,定边对定角,故P点轨迹是以MN为直径的圆.法二:建系不妨将点A、B两点置于x轴上且关于原点对称,设A(-m,0),则B(m,0),设P(x,y),PA=kPB,即:()()()()()()2222222222222222212210221x m y k x m k yk x y m k m x k mm k mx y x mk++=-+-+-++-=++-+=-解析式满足圆的一般方程,故P点所构成的图形是圆,且圆心与AB共线.那么这个玩意和最值有什么关系呢?且来先看个例子:如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点C为圆心,2为半径作圆C,分别交AC、BC于D、E两点,点P是圆C上一个动点,则12PA PB的最小值为__________.EABCDP【分析】这个问题最大的难点在于转化12PA,此处P点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路.法一:构造相似三角形注意到圆C半径为2,CA=4,连接CP,构造包含线段AP的△CPA,在CA边上取点M使得CM=2,连接PM,可得△CPA∽△CMP,故PA:PM=2:1,即PM=12 PA.问题转化为PM+PB最小值,直接连BM即可.【问题剖析】(1)这里为什么是12 PA?答:因为圆C半径为2,CA=4,比值是1:2,所以构造的是12PA,也只能构造12PA.(2)如果问题设计为PA+kPB最小值,k应为多少?答:根据圆C半径与CB之比为2:3,k应为23.【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.法二:阿氏圆模型对比一下这个题目的条件,P 点轨迹是圆,A 是定点,我们需要找出另一个定点M 使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!已知PA 、圆确定PB已知PA 、PB 之比确定圆而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的!P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,不妨让P点与D 点重合,此时DM=12DA =1,即可确定M 点位置.如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.【练习1】如图,在ABC ∆中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .ABCD【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫+ ⎪⎝⎭,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显.当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.【练习2】如图,已知正方ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,则12PD PC的最大值为_______.AB CDP【分析】当P 点运动到BC 边上时,此时PC=2,根据题意要求构造12PC ,在BC 上取M 使得此时PM=1,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值.。
最值系列之阿氏圆问题
最值系列之阿氏圆问题在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 构成的图形为圆.下给出证明法一:首先了解两个定理(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则AB DB AC DC =.证明:ABD ACD S BD S CD = ,ABD ACD S AB DE AB S AC DF AC⨯==⨯ ,即AB DB AC DC =(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则AB DB AC DC=.证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DB AC DC=.接下来开始证明步骤:如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PA k MB PB ==,故M 点为定点,即∠APB 的角平分线交AB 于定点;作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PA k NB PB==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点;又∠MPN=90°,定边对定角,故P 点轨迹是以MN为直径的圆.法二:建系不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设P (x ,y ),PA=kPB ,即:()()()()()()22222222222222222122102201x m y k x m k y kx y m k m x k m m k m x y x m k ++=-+-+-++-=++-+=-解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线.那么这个玩意和最值有什么关系呢?且来先看个例子:如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB 的最小值为__________.【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路.法一:构造相似三角形注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB 最小值,直接连BM 即可.【问题剖析】(1)这里为什么是12PA ?答:因为圆C 半径为2,CA=4,比值是1:2,所以构造的是12PA ,也只能构造12PA .(2)如果问题设计为PA+kPB 最小值,k 应为多少?答:根据圆C 半径与CB 之比为2:3,k 应为23.【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.法二:阿氏圆模型对比一下这个题目的条件,P 点轨迹是圆,A 是定点,我们需要找出另一个定点M 使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的!P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,不妨让P 点与D 点重合,此时DM=12DA =1,即可确定M 点位置.如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.【练习1】如图,在ABC ∆中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是.【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫+ ⎪⎝⎭,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显.当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.【练习2】如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则12PD PC的最大值为_______.【分析】当P点运动到BC边上时,此时PC=2,根据题意要求构造12PC,在BC上取M使得此时PM=1,则在点P运动的任意时刻,均有PM=12PC,从而将问题转化为求PD-PM的最大值.连接PD,对于△PDM,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值.。
5最值系列之阿氏圆问题
最值系列之阿氏圆问题在前面的“胡不归”问题中,我们见识了“kPA+PB ”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k ≠1),则满足条件的所有的点P 构成的图形为圆.下给出证明法一:首先了解两个定理(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则AB DBAC DC=. FEDCBA证明:ABD ACD S BD S CD =V V ,ABD ACD S AB DE AB S AC DF AC ⨯==⨯V V ,即AB DBAC DC=(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则AB DBAC DC=. ABCDE证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DBAC DC=.接下来开始证明步骤:如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PAk MB PB==,故M 点为定点,即∠APB 的角平分线交AB 于定点;作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PAk NB PB==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点;又∠MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆.法二:建系不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设P (x ,y ),PA=kPB,即:()()()()()()22222222222222222122102201x m y k x m k y kx y m k m x k m m k mx y x m k ++=-+-+-++-=++-+=-解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线.那么这个玩意和最值有什么关系呢?且来先看个例子:如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB 的最小值为__________.EABC DP【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路.法一:构造相似三角形注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB 最小值,直接连BM 即可.【问题剖析】(1)这里为什么是12PA ?答:因为圆C 半径为2,CA=4,比值是1:2,所以构造的是12PA ,也只能构造12PA .(2)如果问题设计为PA+kPB 最小值,k 应为多少? 答:根据圆C 半径与CB 之比为2:3,k 应为23.【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.法二:阿氏圆模型对比一下这个题目的条件,P 点轨迹是圆,A 是定点,我们需要找出另一个定点M 使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!已知PA 、圆确定PB已知PA 、PB 之比确定圆而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的!P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,不妨让P 点与D 点重合,此时DM=12DA =1,即可确定M 点位置.如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.【练习1】如图,在ABC ∆中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .ABCD【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫+ ⎪⎝⎭,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显.当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.【练习2】如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则12PD PC的最大值为_______.AB CDP【分析】当P点运动到BC边上时,此时PC=2,根据题意要求构造12PC,在BC上取M使得此时PM=1,则在点P运动的任意时刻,均有PM=12PC,从而将问题转化为求PD-PM的最大值.连接PD,对于△PDM,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值.。
5最值系列之阿氏圆问题
最值系列之阿氏圆问题在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 构成的图形为圆.下给出证明法一:首先了解两个定理(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则AB DBAC DC=. FEDCBA证明:ABD ACDS BD SCD =,ABD ACDS AB DE AB SAC DF AC ⨯==⨯,即AB DBAC DC=(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则AB DBAC DC=.ABC DE证明:在BA延长线上取点E使得AE=AC,连接BD,则△ACD≌△AED(SAS),CD=ED且AD平分∠BDE,则DB ABDE AE=,即AB DBAC DC=.接下来开始证明步骤:如图,PA:PB=k,作∠APB的角平分线交AB于M点,根据角平分线定理,MA PAk MB PB==,故M点为定点,即∠APB的角平分线交AB于定点;作∠APB外角平分线交直线AB于N点,根据外角平分线定理,NA PAkNB PB==,故N点为定点,即∠APB外角平分线交直线AB于定点;又∠MPN=90°,定边对定角,故P点轨迹是以MN为直径的圆.法二:建系不妨将点A、B两点置于x轴上且关于原点对称,设A(-m,0),则B(m,0),设P(x,y),PA=kPB,即:()()()()()()22222222222222222122102201x m y k x m k y kx y m k m x k m m k m x y x m k ++=-+-+-++-=++-+=-解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线. 那么这个玩意和最值有什么关系呢?且来先看个例子:如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DP【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路.法一:构造相似三角形注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB 最小值,直接连BM 即可.【问题剖析】(1)这里为什么是12PA ?答:因为圆C 半径为2,CA=4,比值是1:2,所以构造的是12PA ,也只能构造12PA .(2)如果问题设计为PA+kPB 最小值,k 应为多少? 答:根据圆C 半径与CB 之比为2:3,k 应为23.【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.法二:阿氏圆模型对比一下这个题目的条件,P 点轨迹是圆,A 是定点,我们需要找出另一个定点M 使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!已知PA 、圆确定PB已知PA 、PB 之比确定圆而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的!P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,不妨让P 点与D 点重合,此时DM=12DA =1,即可确定M 点位置.如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.【练习1】如图,在ABC ∆中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .ABCD【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫+ ⎪⎝⎭,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显.当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.【练习2】如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则12PD PC的最大值为_______.AB CDP【分析】当P点运动到BC边上时,此时PC=2,根据题意要求构造12PC,在BC上取M使得此时PM=1,则在点P运动的任意时刻,均有PM=12PC,从而将问题转化为求PD-PM的最大值.连接PD,对于△PDM,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值.。
5最值系列之阿氏圆问题
最值系列之阿氏圆问题在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 构成的图形为圆.下给出证明法一:首先了解两个定理(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则AB DBAC DC=.证明:ABD ACDS BD SCD =,ABD ACDS AB DE AB SAC DF AC ⨯==⨯,即AB DBAC DC=FEDCBA(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则AB DBAC DC=.证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DBAC DC=.接下来开始证明步骤:如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PAk MB PB==,故M 点为定点,即∠APB 的角平分线交AB 于定点; 作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PAk NB PB==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点;又∠MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆.ABCDE法二:建系不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设P (x ,y ),PA=kPB ,即:()()()()()()22222222222222222122102201x m y k x m k y kx y m k m x k m m k mx y x m k ++=-+-+-++-=++-+=-解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线. 那么这个玩意和最值有什么关系呢?且来先看个例子:如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.【分析】这个问题最大的难点在于转化12PA,此处P点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路.法一:构造相似三角形注意到圆C半径为2,CA=4,连接CP,构造包含线段AP的△CPA,在CA边上取点M使得CM=2,连接PM,可得△CPA∽△CMP,故PA:PM=2:1,即PM=12PA.问题转化为PM+PB最小值,直接连BM即可.【问题剖析】(1)这里为什么是12PA?EABCDP答:因为圆C 半径为2,CA=4,比值是1:2,所以构造的是12PA ,也只能构造12PA .(2)如果问题设计为PA+kPB 最小值,k 应为多少? 答:根据圆C 半径与CB 之比为2:3,k 应为23.【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.法二:阿氏圆模型对比一下这个题目的条件,P 点轨迹是圆,A 是定点,我们需要找出另一个定点M 使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的!P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,不妨让P 点与D 点重合,此时DM=12DA =1,即可确定M 点位置.已知PA 、圆确定PB已知PA 、PB 之比确定圆如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.【练习1】如图,在ABC ∆中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫+ ⎪⎝⎭,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显. 当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.ABCD【练习2】如图,已知正方ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.【分析】当P 点运动到BC 边上时,此时PC=2,根据题意要求构造12PC ,在BC 上取M 使得此时PM=1,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值.AB CDP。
初中数学最值系列之阿氏圆问题
最值系列之阿氏圆问题在前面的“胡不归”问题中,我们见识了“kPA+PB ”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k ≠1),则满足条件的所有的点P 构成的图形为圆.下给出证明法一:首先了解两个定理(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则AB DBAC DC=. FEDCBA证明:ABD ACDS BD SCD =,ABD ACDS AB DE AB SAC DF AC ⨯==⨯,即AB DBAC DC=(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则AB DBAC DC=. ABCDE证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DBAC DC=.接下来开始证明步骤:如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PAk MB PB==,故M 点为定点,即∠APB 的角平分线交AB 于定点;作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PAk NB PB==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点;又∠MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆.法二:建系不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设P (x ,y ),PA=kPB,即:()()()()()()22222222222222222122102201x m y k x m k y kx y m k m x k m m k mx y x m k ++=-+-+-++-=++-+=-解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线.那么这个玩意和最值有什么关系呢?且来先看个例子:如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB 的最小值为__________.EABC DP【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路.法一:构造相似三角形注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB 最小值,直接连BM 即可.【问题剖析】(1)这里为什么是12PA答:因为圆C 半径为2,CA=4,比值是1:2,所以构造的是12PA ,也只能构造12PA .(2)如果问题设计为PA+kPB 最小值,k 应为多少? 答:根据圆C 半径与CB 之比为2:3,k 应为23.【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.法二:阿氏圆模型对比一下这个题目的条件,P 点轨迹是圆,A 是定点,我们需要找出另一个定点M 使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!已知PA 、圆确定PB已知PA 、PB 之比确定圆而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的!P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,不妨让P 点与D 点重合,此时DM=12DA =1,即可确定M 点位置.如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.【练习1】如图,在ABC ∆中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .ABCD【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫+ ⎪⎝⎭,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显.当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.【练习2】如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则12PD PC的最大值为_______.AB CDP【分析】当P点运动到BC边上时,此时PC=2,根据题意要求构造12PC,在BC上取M使得此时PM=1,则在点P运动的任意时刻,均有PM=12PC,从而将问题转化为求PD-PM的最大值.连接PD,对于△PDM,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值.。
最值问题——阿氏圆
最值之阿氏圆问题一、方法突破在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P构成的图形为圆.“阿氏圆”的一些性质:(1)PA MA NAk PB MB NB===.应用:根据点A、B的位置及k的值可确定M、N及圆心O.(2)△OBP∽△OPA,即OB OPOP OA=,变形为2OP OA OB=⋅.应用:根据圆心及半径和A、B其中一点,可求A、B另外一点位置.(3)OP OB PAk OA OP PB===.应用:已知半径及A、B中的其中一点,即可知道PA:PB的值.N例1:常规(1)如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,C半径为2,P为圆上一动点,连结AP,BP,则AP+12BP的最小值为______________;13AP+BP的最小值为______________(2)如图2,已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是弧CD上一点,则2PA+PB的最小值为_______________(3)如图3,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为ABˆ上一动点,则√22PC+PD的最小值为_______________图1 图2 图3例2:拓展例3:提升(1)如图,在△ABC 中,∠B ﹦90°,AB ﹦CB ﹦2,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则2PA PC +的最小值是 .A(2)如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则32PB PD +的最小值为.(3)在平面直角坐标系中,A (2,0),B (0,2),C (4,0),D (3,2),P 是△AOB 外部的第一象限内一动点,且∠BPA ﹦135°,则2PD ﹢PC 的最小值是 ______ .例4:正方形ABCD 中,AB=2√2,点M 是BC 中点,点P 是正方形内一点,连接PC ,PM ,当点P 移动时,始终保持∠MPC=45°,连接BP ,点E ,F 分别是AB ,BP 中点,求3BP+2EF 的最小值为_________________CDAPE B例5:如图,在△ABC中,BC=4,AB=2AC,则△ABC的面积的最大值为____________例6:如图,直线l:y=−3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2−2ax+ a+4(a<0)经过点B,交x轴正半轴于点C.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;(3)将点A绕原点旋转得点A',连接CA'、BA',在旋转过程中,一动点M从点B出发,沿线段BA' 以每秒3个单位的速度运动到A',再沿线段A'C以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?例7:如图,抛物线y=ax2+bx+c (a<0,a、b、c为常数)与x轴交于A、C两点,与y轴).交于B点,A (−6,0),C (1,0),B (0,163(1)求该抛物线的函数关系式与直线AB的函数关系式;(2)已知点M (m,0)是线段OA上的一个动点,过点M作x轴的垂线l,分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰二角形时,动点M相应位置记为点M',将OM' 绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i :探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,NP始终保持NB不变,若存在,试求出P点坐标:若不存在,请说明理由;ii :试求出此旋转过程中,(NA+3NB)的最小值.4二、知识巩固1.如图,在Rt ABC ∆中,90C ∠=︒,9AC =,4BC =,以点C 为圆心,3为半径做C ,分别交AC ,BC 于D ,E 两点,点P 是C 上一个动点,则13PA PB +的最小值为 .2.如图,O 与y 轴、x 轴的正半轴分别相交于点M 、点N ,O 半径为3,点(0,1)A ,点(2,0)B ,点P 在弧MN 上移动,连接PA ,PB ,则3PA PB +的最小值为3.如图,在ABC ∆中,6BC =,60BAC ∠=︒,则2AB AC +的最大值为 .(3题图) (4题图) 4.【新知探究】新定义:平面内两定点A ,B ,所有满足(PAk k PB=为定值)的P 点形成的图形是圆,我们把这种圆称之为“阿氏圆”【问题解决】如图,在ABC ∆中,4CB =,2AB AC =,则ABC ∆面积的最大值为 .5.如图,已知菱形ABCD的边长为8,60B∠=︒,圆B的半径为4,点P是圆B上的一个动点,则12PD PC−的最大值为.三、真题演练1.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作B,点P是B上一动点,连接PD、PC,则12PD PC+的最小值为.2.如图,扇形AOB中,90AOB∠=︒,6OA=,C是OA的中点,D是OB上一点,5OD=,P是AB上一动点,则12PC PD+的最小值为.3.如图所示的平面直角坐标系中,(0,4)A,(4,0)B,P是第一象限内一动点,2OP=,连接AP、BP,则12BP AP+的最小值是.4.阅读以下材料,并按要求完成相应的任务. 已知平面上两点A 、B ,则所有符合(0PAk k PB=>且1)k ≠的点P 会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆. 阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x 轴,y 轴上分别有点(,0)C m ,(0,)D n ,点P 是平面内一动点,且OP r =,设OPk OD=,求PC kPD +的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD 上取点M ,使得::OM OP OP OD k ==;第二步:证明kPD PM =;第三步:连接CM ,此时CM 即为所求的最小值. 下面是该题的解答过程(部分):解:在OD 上取点M ,使得::OM OP OP OD k ==, 又POD MOP ∠=∠,POM DOP ∴∆∆∽. 任务:(1)将以上解答过程补充完整.(2)如图2,在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,D 为ABC ∆内一动点,满足2CD =,利用(1)中的结论,请直接写出23AD BD +的最小值.5.如图,在ABC ∆ 与DEF ∆中,90ACB EDF ∠=∠=︒,BC AC =,ED FD =,点D 在AB 上.(1)如图1,若点F 在AC 的延长线上,连接AE ,探究线段AF 、AE 、AD 之间的数量关系,并证明你的结论;(2)如图2,若点D 与点A 重合,且AC =4DE =,将DEF ∆绕点D 旋转,连接BF ,点G 为BF 的中点,连接CG ,在旋转的过程中,求32CG BG +的最小值;(3)如图3,若点D 为AB 的中点,连接BF 、CE 交于点M ,CE 交AB 于点N ,且::7:9:10BC DE ME =,请直接写出NDCN的值.6.在ABC ∆中,90CAB ∠=︒,AC AB =.若点D 为AC 上一点,连接BD ,将BD 绕点B 顺时针旋转90︒得到BE ,连接CE ,交AB 于点F .(1)如图1,若75ABE ∠=︒,4BD =,求AC 的长;(2)如图2,点G 为BC 的中点,连接FG 交BD 于点H .若30ABD ∠=︒,猜想线段DC 与线段HG 的数量关系,并写出证明过程;(3)如图3,若4AB =,D 为AC 的中点,将ABD ∆绕点B 旋转得△A BD '',连接A C '、A D ',当A D C '+'最小时,求A BC S '.7.如图,抛物线y=ax2+bx+c与x轴交于0),B两点(点B在点A的左侧),与y轴交于点C,且OB=3OAOC,∠OAC的平分线AD交y轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线的一个动点,过点P作PF⊥x轴垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,12HC为半径作⊙H,点Q为⊙H上的一个动点,求1AQ+EQ的最小值.。
最值系列之阿氏圆问题
最值系列之阿氏圆问题所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 构成的图形为圆.下给出证明法一:首先了解两个定理(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则AB DBAC DC=. FEDCBA证明:ABD ACDS BD SCD =,ABD ACDS AB DE AB SAC DF AC ⨯==⨯,即AB DBAC DC=(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则AB DBAC DC=. ABCDE证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DBAC DC=.接下来开始证明步骤:如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PAk MB PB==,故M 点为定点,即∠APB 的角平分线交AB 于定点;作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PAk NB PB==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点;又∠MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆.法二:建系不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设P(x ,y ),PA=kPB ,即:()()()()()()22222222222222222122102201x m y k x m k y kx y m k m x k m m k m x y x m k ++=-+-+-++-=++-+=-解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线. 那么这个玩意和最值有什么关系呢?且来先看个例子:如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB 的最小值为__________.EABC DP【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路.法一:构造相似三角形注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB 最小值,直接连BM 即可.【问题剖析】(1)这里为什么是12PA答:因为圆C 半径为2,CA=4,比值是1:2,所以构造的是12PA ,也只能构造12PA .(2)如果问题设计为PA+kPB 最小值,k 应为多少?答:根据圆C 半径与CB 之比为2:3,k 应为23.【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决.法二:阿氏圆模型对比一下这个题目的条件,P 点轨迹是圆,A 是定点,我们需要找出另一个定点M 使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!已知PA 、圆确定PB已知PA 、PB 之比确定圆而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的!P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,不妨让P点与D 点重合,此时DM=12DA =1,即可确定M 点位置.如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.【练习1】如图,在ABC ∆中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .ABCD【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫+ ⎪⎝⎭,故求23AD BD +最小值即可.考虑到D 点轨迹是圆,A 是定点,且要求构造23AD ,条件已经足够明显.当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在23DM DA =.问题转化为DM+DB 的最小值,直接连接BM ,BM 长度的3倍即为本题答案.【练习2】如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则12PD PC的最大值为_______.AB CDP【分析】当P点运动到BC边上时,此时PC=2,根据题意要求构造12PC,在BC上取M使得此时PM=1,则在点P运动的任意时刻,均有PM=12PC,从而将问题转化为求PD-PM的最大值.连接PD,对于△PDM,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值.。
垂线段最短(王五、阿氏圆)问题
垂线段最短(王五、阿氏圆)问题垂线段最短(王五、阿氏圆)问题
介绍
垂线段最短问题是一个经典的几何问题,研究的是如何在给定的线段上找到一点,使得该点到线段的垂线段最短。
王五解法
王五提出了一种简单而直接的解法。
按照他的方法,我们可以通过以下步骤找到垂线段最短的点:
1. 找到给定线段的中点。
2. 以中点为圆心,在线段上画一个直径的半圆。
3. 连接线段两端点与圆的切点。
4. 找到连接线段两端点与圆心的中垂线。
5. 该中垂线与线段的交点即为垂线段最短的点。
王五解法的优点在于它简单明了,不需要复杂的计算或推导,而且适用于任何长度的线段。
阿氏圆解法
阿氏圆解法是另一种常见的解法,它基于一种几何概念,即给
定一点和一条直线,过该点作直线的两条垂线,垂足所在的直线叫
做阿氏直线。
根据阿氏圆解法,我们可以通过以下步骤找到垂线段最短的点:
1. 找到给定线段的中点。
2. 以中点为圆心,在线段上画一个直径的圆。
3. 连接线段两端点与圆心。
4. 找到连接线段两端点与圆心的中垂线。
5. 该中垂线与原始线段交点所在的阿氏直线即为垂线段最短的点。
阿氏圆解法的优点在于它利用了阿氏直线的概念,可以直观地
找到垂线段最短的点。
总结
垂线段最短问题是一个经典的几何问题,王五解法和阿氏圆解法都提供了简单而直接的解决方案。
王五解法通过连接线段两端点与圆的切点找到最短点,而阿氏圆解法则利用了阿氏直线的概念来确定最短点。
根据具体情况,可以选择适合的解法来解决垂线段最短问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最值系列之阿氏圆问题
所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.
如下图,已知A 、B 两点,点P 满足PA :PB=k (k≠1),则满足条件的所有的点P 构成的图形为圆.
下给出证明
法一:首先了解两个定理
(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则
AB DB
AC DC
=
. F
E
D
C
B
A
证明:
ABD ACD
S BD S
CD =
,ABD ACD
S AB DE AB S
AC DF AC ⨯=
=⨯,即AB DB
AC DC
=
(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则
AB DB
AC DC
=
. A
B
C
D
E
证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DB
AC DC
=
. 接下来开始证明步骤:
如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PA
k MB PB
==,故M 点为定点,即∠APB 的角平分线交AB 于定点;
作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PA
k NB PB
==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点;
又∠MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆.
法二:建系
不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设
P (x ,y ),PA=kPB
,即:
()()()()()()22
2222
2
2222222
2
22
12210
2201
x m y k x m k y k
x y m k m x k m m k m
x y x m k ++=-+-+-++-=++-+=-
解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线. 那么这个玩意和最值有什么关系呢?且来先看个例子:
如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交
AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则1
2
PA PB +的最小值为__________.
E
A
B
C D
P
【分析】这个问题最大的难点在于转化1
2
PA ,此处P 点轨迹是圆,故转化方法与之前有所
不同,如下,提供两种思路. 法一:构造相似三角形
注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使
得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=1
2
PA .
问题转化为PM+PB 最小值,直接连BM 即可. 【问题剖析】
(1)这里为什么是1
2
PA ?
答:因为圆C 半径为2,CA=4,比值是1:2,所以构造的是12PA ,也只能构造1
2
PA .
(2)如果问题设计为PA+kPB 最小值,k 应为多少? 答:根据圆C 半径与CB 之比为2:3,k 应为
2
3
. 【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决. 法二:阿氏圆模型
对比一下这个题目的条件,P 点轨迹是圆,A 是定点,我们需要找出另一个定点M 使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!
已知PA 、圆确定PB
已知PA 、PB 之比确定圆
而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的! P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,
不妨让
P 点与D 点重合,此时DM=1
2
DA =1,即可确定M 点位置.
如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.
【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.
【练习1】如图,在ABC ∆中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .
A
B
C
D
【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫
+ ⎪⎝⎭
,故求23AD BD +最小值即可.
考虑到D 点轨迹是圆,A 是定点,且要求构造2
3
AD ,条件已经足够明显.
当D 点运动到AC 边时,DA=3,此时在线段CD 上取点M 使得DM=2,则在点D 运动过程中,始终存在2
3
DM DA =
.。