2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

合集下载

中考数学复习之线段和差最值之阿氏圆问题,附练习题含参考答案

中考数学复习之线段和差最值之阿氏圆问题,附练习题含参考答案

中考数学复习线段和差最值系列之阿氏圆问题在前面的“胡不归”问题中,我们见识了“kP A+PB ”最值问题,其中P 点轨迹是直线,而当P 点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.所谓“阿氏圆”,是指由古希腊数学家阿波罗尼奥斯提出的圆的概念,在平面内,到两个定点距离之比等于定值(不为1)的点的集合叫做圆.如下图,已知A 、B 两点,点P 满足PA :PB=k (k ≠1),则满足条件的所有的点P 构成的图形为圆.下给出证明法一:首先了解两个定理(1)角平分线定理:如图,在△ABC 中,AD 是∠BAC 的角平分线,则AB DBAC DC=.证明:ABD ACDS BD SCD =,ABD ACDS AB DE AB SAC DF AC ⨯==⨯,即AB DBAC DC=(2)外角平分线定理:如图,在△ABC 中,外角CAE 的角平分线AD 交BC 的延长线于点D ,则AB DBAC DC=.证明:在BA 延长线上取点E 使得AE=AC ,连接BD ,则△ACD ≌△AED (SAS ),CD=ED 且AD 平分∠BDE ,则DB AB DE AE =,即AB DBAC DC=.接下来开始证明步骤:FEDCBAABCDE如图,PA :PB=k ,作∠APB 的角平分线交AB 于M 点,根据角平分线定理,MA PAk MB PB ==,故M 点为定点,即∠APB 的角平分线交AB 于定点;作∠APB 外角平分线交直线AB 于N 点,根据外角平分线定理,NA PAk NB PB==,故N 点为定点,即∠APB 外角平分线交直线AB 于定点;又∠MPN=90°,定边对定角,故P 点轨迹是以MN 为直径的圆.法二:建系不妨将点A 、B 两点置于x 轴上且关于原点对称,设A (-m ,0),则B (m ,0),设P (x ,y ),PA=kP B ,即:()()()()()()22222222222222222122102201x m y k x m k y kx y m k m x k m m k mx y x m k ++=-+-+-++-=++-+=-解析式满足圆的一般方程,故P 点所构成的图形是圆,且圆心与AB 共线. 那么这个玩意和最值有什么关系呢?且来先看个例子:例:如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC 于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DP【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,故转化方法与之前有所不同,如下,提供两种思路. 法一:构造相似三角形注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB 最小值,直接连BM 即可. 【问题剖析】(1)这里为什么是12PA ?答:因为圆C 半径为2,CA=4,比值是1:2,所以构造的是12PA ,也只能构造12PA .(2)如果问题设计为PA+kPB 最小值,k 应为多少? 答:根据圆C 半径与CB 之比为2:3,k 应为23. 【小结】此类问题都是构造好的图形搭配恰当的比例,构造相似转化线段即可解决. 法二:阿氏圆模型对比一下这个题目的条件,P 点轨迹是圆,A 是定点,我们需要找出另一个定点M 使得PM:PA=1:2,这不就是把“阿氏圆”的条件与结论互换了一下嘛!而且这种问题里,给定的圆的位置、定点A 的位置、线段的比例等,往往都是搭配好的! P 点轨迹圆的圆心C 点和A 点在直线AC 上,故所求M 点在AC 边上,考虑到PM :PA=1:2,不妨让P 点与D 点重合,此时DM=12DA =1,即可确定M 点位置.已知PA 、圆确定PB已知PA 、PB 之比确定圆如果对这个结果不是很放心,不妨再取个特殊的位置检验一下,如下图,此时PM=3,PA=6,亦满足PM:PA=1:2.【小结】法二其实是开了上帝视角,在已知其是阿氏圆的前提下,通过特殊点找出所求M 点位置,虽不够严谨,却很实用.练习题1.如图,在ABC∆中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是.2.如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则12 PD PC-的最大值为_______.3.如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD﹣12PC的最大值为.A BCDAB CDP4.如图,在△ABC中,CB=4,AB=2AC,则△ABC面积的最大值为.5.如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+2PN的取值范围为.6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接P A,PB,则P A+14PB的最小值为.7.如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则13P A+PB的最小值为.8.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+12PC的最小值为.9.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是弧AB上一动点,则PC+12PD的最小值为.10.如图所示的平面直角坐标系中,A(0,4),B(4,0),P是第一象限内一动点,OP=2,连接AP、BP,则BP+12AP的最小值是.11.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则P A+PB的最小值为.12.如图,P为菱形ABCD内一点,且P到A、B两点的距离相等,若∠C=60°,CD=4,则PB+12PD的最小值为.13.如图,在⊙O 中,点A 、点B 在⊙O 上,∠AOB =90°,OA =6,点C 在OA 上,且OC =2AC ,点D 是OB 的中点,点M 是劣弧AB 上的动点,则CM +2DM 的最小值为 .14. 如图,已知抛物线y=ax 2+bx+c(a≠0)过A 、B 两点,OA=1,OB=5,抛物线与y 轴交于点C ,点C 的纵坐标与点B 的横坐标相同,抛物线的顶点为D.(1) 抛物线的解析式为_________________,顶点D 的坐标为__________.(2) 如图,已知⊙A 的半径为2,点M 是⊙A 上一动点,连接CM 、MB ,则13CM+BM 是否存在最小值?若存在,说明在何处取得最小值;若不存在,请说明理由.参考答案2.5 4.1635.6-6.2 8.5 9.13214.(1)y=x 2-6x+5 D(3,-4)(2)AH=13AM ,当H 、M 、B 13CM+BM 取最小值.。

中考数学几何模型之阿氏圆最值模型(解析版)

中考数学几何模型之阿氏圆最值模型(解析版)

中考数学几何模型:阿氏圆最值模型名师点睛拨开云雾开门见山在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.【模型来源】“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.A B P O【模型建立】如图1 所示,⊙O 的半径为R,点A、B 都在⊙O 外,P为⊙O上一动点,已知R=25 OB,连接PA、PB,则当“PA+25PB”的值最小时,P 点的位置如何确定?解决办法:如图2,在线段OB 上截取OC使OC=25R,则可说明△BPO与△PCO相似,则有25PB=PC。

故本题求“PA+25PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C 三点共线时,“PA+PC”值最小。

【技巧总结】计算PA k PB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小,解决步骤具体如下: 1. 如图,将系数不为1的线段两端点与圆心相连即OP ,OB2. 计算出这两条线段的长度比OPk OB = 3. 在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PCk PB=,PC k PB =4. 则=PA k PB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值典题探究 启迪思维 探究重点例题1. 如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,以点C 为圆心,2为半径作圆C ,分别交AC 、BC于D 、E 两点,点P 是圆C 上一个动点,则12PA PB +的最小值为__________.EABC DPMPDCBA【分析】这个问题最大的难点在于转化12PA ,此处P 点轨迹是圆,注意到圆C 半径为2,CA=4,连接CP ,构造包含线段AP 的△CPA ,在CA 边上取点M 使得CM=2,连接PM ,可得△CPA ∽△CMP ,故PA :PM=2:1,即PM=12PA .问题转化为PM+PB ≥BM 最小值,故当B ,P ,M 三点共线时得最小值,直接连BM 即可得13.变式练习>>>1.如图1,在RT △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 的半径为2,点P 为圆上一动点,连接AP ,BP , 求①BP AP 21+,②BP AP +2,③BP AP +31,④BP AP 3+的最小值.[答案]:①=37,②=237,③=3372,④=37例题2. 如图,点C 坐标为(2,5),点A 的坐标为(7,0),⊙C 的半径为10,点B 在⊙C 上一动点,AB OB 55的最小值为________.[答案]:5.变式练习>>>2.如图,在平面直角坐标系xoy 中,A(6,-1),M(4,4),以M 为圆心,22为半径画圆,O 为原点,P 是⊙M 上一动点,则PO+2PA 的最小值为________.[答案]:10.例题3. 如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD 的最小值.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.变式练习>>>3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+PC的最小值为5;PD+4PC的最小值为10.【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB ,PB ,在BD 上取一点E ,使得BE =,连接EC ,作EF ⊥BC 于F .∵PB 2=4,BE •BD =×4=4,∴BP 2=BE •BD ,∴=,∵∠PBE =∠PBD ,∴△PBE ∽△DBP , ∴==,∴PE =PD ,∴PD +4PC =4(PD +PC )=4(PE +PC ),∵PE +PC ≥EC ,在Rt △EFC 中,EF =,FC =,∴EC =,∴PD +4PC 的最小值为10.故答案为5,10.例题4. 如图,已知正方ABCD 的边长为6,圆B 的半径为3,点P 是圆B 上的一个动点,则12PD PC 的最大值为_______.AB CDP【分析】当P 点运动到BC 边上时,此时PC=3,根据题意要求构造12PC ,在BC 上取M 使得此时PM=32,则在点P 运动的任意时刻,均有PM=12PC ,从而将问题转化为求PD-PM 的最大值.连接PD ,对于△PDM ,PD-PM <DM ,故当D 、M 、P 共线时,PD-PM=DM 为最大值152. ABCD P MMPDCBAABCDPMMPDCBA变式练习>>>4.(1)如图1,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.图1 图2【解答】解:(1)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(2)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.例题5. 如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣12x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求12AM+CM它的最小值.【解答】解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2,∴G(﹣2,4);(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣12x﹣6,∴F(a,﹣12a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣12x﹣6,∴AB⊥AC,∴EF为对角线,∴12(﹣4+0)=12(a+a),12(﹣4+p)=12(2a+4﹣12a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=5,AE=25,设AE交⊙E于G,取EG的中点P,∴PE=52,连接PC交⊙E于M,连接EM,∴EM=EH=,∴525PEME==12,∵525MEAE==12,∴PE MEME AE==12,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴PE MEME AE==12,∴PM=12AM,∴12AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=52,∴5(p+2)2=54,∴p=52-或p=﹣32(由于E(﹣2,0),所以舍去),∴P(52-,﹣1),∵C(0,﹣6),∴PC==552,即:12AM+CM=552.变式练习>>>5.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB 于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.达标检测 领悟提升 强化落实1. 如图,在RT △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆与AC 相切,圆C 的半径为2,点P 为圆B 上的一动点,求PC AP 22的最小值.[答案]:5.2. 如图,边长为4的正方形,内切圆记为⊙O ,P 是⊙O 上一动点,则2PA+PB 的最小值为________.[答案]:25.3. 如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是⊙O 上一动点,则2PB+PC 的最小值为________.[答案]37.4. 如图,在Rt △ABC 中,∠C=90°,CA=3,CB=4,C 的半径为2,点P 是C 上的一动点,则12AP PB+的最小值为?5. 如图,在平面直角坐标系中,()2,0A ,()0,2B ,()4,0C ,()3,2D ,P 是△AOB 外部第一象限内的一动点,且∠BPA=135°,则2PD PC +的最小值是多少?[答案]426. 如图,Rt△ABC,∠ACB=90°,AC=BC=2,以C为顶点的正方形CDEF(C、D、E、F四个顶点按逆时针方向排列)可以绕点C自由转动,且CD=,连接AF,BD(1)求证:△BDC≌△AFC;(2)当正方形CDEF有顶点在线段AB上时,直接写出BD+AD的值;(3)直接写出正方形CDEF旋转过程中,BD+AD的最小值.【解答】(1)证明:如图1中,∵四边形CDEF是正方形,∴CF=CD,∠DCF=∠ACB=90°,∴∠ACF=∠DCB,∵AC=CB,∴△FCA≌△DCB(SAS).(2)解:①如图2中,当点D,E在AB边上时,∵AC=BC=2,∠ACB=90°,∴AB=2,∵CD⊥AB,∴AD=BD=,∴BD+AD=+1.②如图3中,当点E,F在边AB上时.BD=CF=,AD==,∴BD+AD=+.(3)如图4中.取AC的中点M.连接DM,BM.∵CD=,CM=1,CA=2,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴BD+AD=BD+DM,∴当B,D,M共线时,BD+AD的值最小,最小值==.7. (1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,P A=3,求PC+PD的最小值;(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+MD 最小时,画出点M的位置,并求出MC+MD的最小值.【解答】解:(1)如图1中,作线段AB的垂直平分线MN交AB于点E,连接EC.线段EC即为所求;∵AB=AC,AE=EC,AD=CD,∴AE=AD,∵AB=AC,∠A=∠A,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE.(2)如图2中,在AD上截取AE,使得AE=.∵P A2=9,AE•AD=×6=9,∴P A2=AE•AD,∴=,∵∠P AE=∠DAP,∴△P AE∽△DAP,∴==,∴PE=PD,∴PC+PD=PC+PE,∵PC+PE≥EC,∴PC+PD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=6,DE=,∴EC==,∴PC+PD的最小值为.(3)如图3中,如图2中,在AD上截取AE,使得AE=9.∵MA2=225,AE•AD=9×25=225,∴MA2=AE•AE,∴=,∵∠MAE=∠DAM,∴△MAE∽△DAM,∴===,∴ME=MD,∴MC+MD=MC+ME,∵MC+ME≥EC,∴MC+MD的最小值为EC的长,在Rt△CDE中,∵∠CDE=90°,CD=18,DE=16,∴EC==2,∴MC+MD的最小值为2.。

初三压轴大题系列—阿波罗尼斯圆(解析版)

初三压轴大题系列—阿波罗尼斯圆(解析版)

初三压轴大题系列—阿波罗尼斯圆(解析版)在平面上,到线段两端距离相等的点,在线段的垂直平分线上,即对于平面内的定点A、B,若平面内有一动点P 满足PA:PB=1,则P点轨迹为一条直线(即线段AB的垂直平分线),如果这个比例不为1,P点的轨迹又会是什么呢?两千多年前的阿波罗尼斯在其著作《平面轨迹》一书中,便已经回答了这个问题。

接下来,让我们站在巨人的肩膀上,一起探究PA:PB=k(k≠1)时P点的轨迹。

对于平面内的定点A、B,若在平面内有一动点P且P满足PA:PB=k(k≠1),则动点P的轨迹就是一个圆,这个圆被称为阿波罗尼斯圆,简称“阿氏圆”,如图所示:借助画板工具我们发现,动点P在运动过程中,PA、PB的长度都在变化,但是PA:PB的比值始终保持不变,接,设,如图所示:由图可以发现在AB上存在点C,在AB延长线上存在点D使得,也就是说,当点P与点C、D重合时,符合条件;当点P不与点C、D重合时,对于任意一点P,连接PA、PB、PC,可得,所以PC为△PAB一条内角平分线,再连接PD,可得,所以PD为△PAB一条外角平分线,所以PC⊥PD,即∠CPD=90º,所以点P的轨迹是以CD为直径的一个圆.当我们遇到平面内一动点到两定点之比为定值且不为1的情况时,可以在过两定点的直线上按定比确定内分点和外分点,并以之为直径做圆从而确定动点的轨迹.如何具体证明P点的轨迹就是一个完整的圆呢?分别取线段AB的内外分点C、D,再取CD中点O,可得,则,由线段位置关系可得AC+BC+BD=AD,则,解得,.又,即,整理得,即,当点P在一个以O为圆心,r为半径的圆上运动时,如图所示:易证:△BOP∽△POA,P.对于任意一个圆,任意一个k的值,我们可以在任意一条直径所在直线上,在同侧适当的位置选取A、B点,则需,就可以构造出上述的A字型相似(详见本专辑的相似模型).例1、如图,正方形ABCD的边长为4,圆B的半径为2,点P是圆B上一动点,则为,的最大值为.【解答】最小值为5,最大值为5【解析】在BC上取一点G,使得BG=1,连接PG、DG,如图所示:PBG=∠PBC,∴△PBG∽△CBP,,△PDG中,DP+PG≥DG,∴当D、G、P共线时,;当点P在DG的延长线时,此时最大值也是DG,最大值为5.例2、如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,点P为弧AB上一动点,求的最小值.当A、P、D的值最小.连接PB、CO,AD与CO相交于点M,如图所示:∵AB=BD=2,BD是⊙O的切线,∴∠ABD=90º,∠BAD=∠D=45º,∵AB是⊙O直径,∴∠APB=90º,∴∠PAB=∠PBA=45º,∴PA=PB,PO⊥AB,∵AC是⊙O的切线,∴AC⊥AB,∴AC∥PO,∠CAO=90º∵AC=PO=1,∴四边形AOPC是平行四边形,而OA=OP,∠CAO=90º,∴四边形AOPC是正方形,PC+PD=PM+PD=DM,∵DM⊥OC,∴由"垂线段最短"可知此时PC+PD的值最小,最小值为.1.如图,在Rt△ABC中,∠ACB=90º,CB=4,CA=6,圆C的半径为2,P为圆C上一动点,连接AP、BP,则的最小值是.【解答】【解析】连接CP,在CB上取一点D,使得CD=1,连接AD,如图所示:易得PCD=∠BCP,∴△PCD ∽△BCP,,当点A、P、D在同一条直线上时,在Rt△ACD中,∵CD=1,CA=6,,.2.,,MO=2,∠POM=90º,Q小值为.OM的中点G,连接PG与圆O的交点就是点Q,连接OQ、QM,如图所示:∵MO=2,,∵圆O的半径,,∵∠MOQ=∠QOG,∴△MOQ ∽△QOG,最小,.3.如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O的最小值是.【解答】5【解析】取点K(1,0),连接OP、PK、BK,如图所示:∵OP=2,OA=4,OK=1,,∵∠POK=∠AOP,∴△POK ∽△AOP,。

中考数学最值—阿氏圆问题(解析+例题)

中考数学最值—阿氏圆问题(解析+例题)

中考数学最值——阿氏圆问题(点在圆上运动)(PA+k·PB型最值)【问题背景】与两个定点距离之比为一个不为0的常数的点的轨迹是一个圆,这个圆为阿氏圆。

这个定理叫阿波罗尼斯定理。

【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。

②两点之间线段最短。

③连接直线外一点和直线上各点的所有线段中,垂线段最短。

【模型分析】①条件:已知A、B为定点,P为 O上一动点,OPOB=k(0<k<1)。

②问题:P在何处时,PA+k·PB的值最小。

③方法:连接OP,OB,在OB上取点C,使OCOP =k,可得△POC∽△BOP,所以CPPB=OPOB=k,所以得CP=k·PB。

所以PA+k·PB=PA+CP≥AC,当P为AC与 O的交点时,PA+k·PB的最小值为AC。

总结:构造母子三角形相似若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算。

【经典例题】已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.(1)求12AP BP+的最小值为。

(2)求13AP BP+的最小值为。

【巩固训练】练习1:如图,点A、B在⊙O 上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB 上,且OD=4,动点P在⊙O 上,则2PC+PD的最小值为;练习2:如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是__________。

练习3:Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.练习4:如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.练习5:如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+21PC 的最小值为_________.练习6:如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是圆上动点,求2PB+PC 的最小值.值。

2020中考专题10——最值问题之阿氏圆

2020中考专题10——最值问题之阿氏圆

2020中考专题10——最值问题之阿氏圆班级姓名.【模型解析】“阿氏圆”模型---“PB k PA ⋅+”型最值◆条件:A、B 为定点,P 为⊙O 上一个动点,k OB OP =(10<<k ).◆问题:求PB k PA ⋅+的最小值,并画出点P 的位置.◆方法:连接OP,OB.在OB 上取点C,使k OP OC =.易证得△POC∽△BOP,所以k OBOP PB CP ==,所以PB k CP ⋅=.所以AC CP PA PB k PA ≥+=⋅+,当P 为AC 与⊙O 的交点时,PB k PA ⋅+的最小值为AC.【例题分析】例1.在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,求AD+32BD 的最小值。

例2.问题提出:如图1,在Rt △ABC 中,∠ACB=90°,CB=4,CA=6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP+12BP 的最小值.P尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD=1,则有12CD CP CP CB ==,又∵∠PCD=∠BCP ,∴△PCD ≌△BCP ,12PD BP =,∴PD=12BP ,∴AP+12BP=AP+PD .请你完成余下的思考,并直接写出答案:AP+12BP 的最小值为.自主探索:在“问题提出”的条件不变的情况下,13AP+BP 的最小值为.拓展延伸:已知扇形COD 中,∠COD=90°,OC=6,OA=3,OB=5,点P 是弧CD 上一点,求2PA+PB 的最小值.【巩固训练】1.如图1,在Rt △ABC 中,∠ACB=90°,CB=4,CA=6,圆C 半径为2,点P 为圆上一动点,连接AP ,BP ,AP+21BP 最小值为。

图1图2图32.如图2,在Rt △ABC 中,∠B=90°,AB=CB=2,以点B 为圆心作圆B 与AC 相切,点P 为圆B 上任一动点,则PA+22PC 的最小值是。

(完整版)阿波罗尼斯圆问题

(完整版)阿波罗尼斯圆问题

APB阿波罗尼斯圆问题一【问题背景】苏教版《数学必修2》P.112第12题:已知点(,)M x y 与两个定点(0,0),(3,0)O A 的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线.二、【阿波罗尼斯圆】公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius )在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:到两定点距离之比等于已知数的动点轨迹为直线或圆. 如图,点B A ,为两定点,动点P 满足PB PA λ=,则1=λ时,动点P 的轨迹为直线;当1≠λ时,动点P 的轨迹为圆, 后世称之为阿波罗尼斯圆.证:设PB PA m m AB λ=>=,02)(.以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(0m A -),(0m B . 又设),(y x C ,则由PB PA λ=得2222)()(y m x y m x +-=++λ,两边平方并化简整理得)()()()(222222211121λλλλ-=-++--m y x m x ,当1=λ时,0=x ,轨迹为线段AB 的垂直平分线;当1>λ时,22222222)1(4)11(-=-+-λλλλm y m x ,轨迹为以点)0,11(22m -+λλ为圆心,122-λλm 长为半径的圆.上述课本习题的一般化情形就是阿波罗尼斯定理.三、【范例】例1 满足条件BC AC AB 2,2==的三角形ABC 的面积的最大值是 .解:以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(01-A ),(01B ,设),(y x C ,由BC AC 2=得2222121y x y x +-⋅=++)()(,平方化简整理得88316222≤+--=-+-=)(x x x y ,∴22≤y ,则 22221≤⋅⨯=∆y S ABC ,∴ABC S ∆的最大值是22. 变式 在ABC ∆中,边BC 的中点为D ,若AD BC AB 2,2==,则ABC ∆的面积的最大值是 .解:以AB 中点为原点,直线AB 为x 轴建立平面直角坐标系,则),,(01-A ),(01B , 由AD BC CD BD 2,==知,BD AD 2=,D 的轨迹为阿波罗尼斯圆,方程为8322=+-y x )(,设),(y x C ,BC 的中点为D 得)2,21(yx D +,所以点C 的轨迹方程为 8)2(32122=+-+y x )(,即32522=+-y x )(, ∴2432221=≤=⋅⨯=∆y y S ABC ,故ABC S ∆的最大值是24.例2 在平面直角坐标系xOy 中,设点(1,0),(3,0),(0,),(0,2)A B C a D a +,若存在点P ,使得,PA PC PD ==,则实数a 的取值范围是 .解:设(,)P x y =,整理得22(5)8x y -+=,即动点P 在以(5,0)为圆心,为半径的圆上运动. 另一方面,由PC PD =知动点P 在线段CD 的垂直平分线1y a =+上运动,因而问题就转化为直线1y a =+与圆22(5)8x y -+=有交点,所以1a +≤a 的取值范围是[1,1]-.例3 在平面直角坐标系xOy 中,点()03A ,,直线24l y x =-:.设圆的半径为1 ,圆心在l 上.若圆C 上存在点M ,使2MA MO =,求圆心C 的横坐标a 的取值范围.解: 设(),24C a a -,则圆方程为()()22241x a y a -+-+= 又设00(,)M x y ,2MA MO = ()22220000344x y x y ∴+-=+, 即()220014x y ++=这说明M 既在圆()()22241x a y a -+-+=上,又在圆()2214x y ++=上,因而这两个圆必有交点,即两圆相交或相切,2121∴-≤≤+,解得1205a ≤≤,即a 的取值范围是12[0,]5. 例4 已知⊙22:1O x y +=和点(4,2)M . (1)过点M 向⊙O 引切线l ,求直线l 的方程;(2)求以点M 为圆心,且被直线21y x =-截得的弦长为4的⊙M 的方程;(3)设P 为(2)中⊙M 上任一点,过点P 向⊙O 引切线,切点为Q . 试探究:平面内是否存在一定点R ,使得PQPR为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.解:(1)设切线l 方程为)4(2-=-x k y ,易得11|24|2=+-k k ,解得815k ±=,∴切线l 方程为24)y x -=-. (2)圆心到直线12-=x y r ,则9)5(2222=+=r∴⊙M 的方程为9)2()4(22=-+-y x(3)假设存在这样的点),(b a R ,点P 的坐标为),(y x ,相应的定值为λ,根据题意可得122-+=y x PQ ,∴λ=-+--+2222)()(1b y a x y x ,即)22(12222222b a by ax y x y x ++--+=-+λ (*),又点P 在圆上∴9)2()4(22=-+-y x ,即114822-+=+y x y x ,代入(*)式得:[])11()24()28(1248222-++-+-=-+b a y b x a y x λ若系数对应相等,则等式恒成立,∴⎪⎩⎪⎨⎧-=-+=-=-12)11(4)24(8)28(22222b a b a λλλ,解得310,51,522,1,2======λλb a b a 或,∴可以找到这样的定点R ,使得PRPQ为定值. 如点R 的坐标为)1,2(时,比值为2; 点R 的坐标为)51,52(时,比值为310. 四、【练习】1.如图,在等腰ABC ∆中,已知AC AB =,)0,1(-B ,AC 边的中点为)0,2(D ,点C 的轨迹所包围的图形的面积等于 .解:∵AD AB 2=,所以点A 的轨迹是阿波罗尼斯圆,易知其 方程为4)3(22=+-y x ,设),(y x C ,由AC 边的中点为)0,2(D 知),4(y x A --,所以C 的轨迹方程为4)()34(22=-+--y x ,即4)1(22=+-y x ,面积为π4.2.如图,已知平面α⊥平面β,A 、B 是平面α与 平面β的交线上的两个定点,,DA CB ββ⊂⊂,且DA α⊥,CB α⊥,4AD =,8BC =,6AB =,在平面α上有一个动点P ,使得APD BPC ∠=∠,求PAB ∆的面积的最大值. 解:将空间几何体中的线、面、角的关系转化 为平面内点P 所满足的几何条件.DA α⊥ DA PA ∴⊥,∴在PAD Rt ∆中, APAP AD APD 4tan ==∠, 同理8tan BC BPC BP BP∠==, APD BPC ∠=∠AP BP 2=∴ ,这样就转化为题3的题型.在平面α上,以线段AB 的中点为原点,AB 所在的直线为x 轴,建立平面直角坐标系,则)0,3(),0,3(B A -,设),(y x P 0)y =≠ 化简得:16)5(22=++y x ,2216(5)16y x ∴=-+≤,||4y ∴≤, PAB ∆的面积为1||||3||122PAB S y AB y ∆=⋅=≤,当且仅当5,4x y =-=±等号取得,则PAB ∆的面积的最大值是12.AP BDCβα3.圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O 、圆2O 的切线PN PM ,(N M ,分别为切点),使得PN PM 2=.试建立适当的坐标系,并求动点P 的轨迹方程.解:以1O ,2O 的中点O 为原点,1O ,2O 所在直线为x 轴,建立如图所示平面直角坐标系,则)0,2(1-O ,,2(2O ,因为两圆的半径都为1,所以有:)1(212221-=-PO PO ,设P (x,y ),则]1)2[(21)2(2222-+-=-++y x y x , 即33)6(22=+-y x ,此即P 的轨迹方程.4.已知定点)0,0(O ,点M 是圆4)1(22=++y x 上任意一点,请问是否存在不同于O 的定点A 使都为MAMO常数?若存在,试求出所有满足条件的点A 的坐标,若不存在,请说明理由.解:假设存在满足条件的点),(n m A ,设),(y x M ,0>=λMAMO. 则λ=-+-+2222)()(n y m x y x , 又),(y x M 满足4)1(22=++y x ,联立两式得0)3(32)222(222222=++-++-+n m y x m λλλλ ,由M 的任意性知⎪⎩⎪⎨⎧=++-==-+0)3(3020222222222n m y m λλλλ,解得)0,3(A ,21=λ.。

九年级数学专题-阿氏圆最值问题

九年级数学专题-阿氏圆最值问题

1AB +kCD 求最值之阿氏圆问题几何中求线段之和的最值问题是我们在初中阶段十分常见的一种类型题目,常见类型包含“将军饮马问题”、“阿氏圆问题”、“胡不归问题”。

此类题目一般综合性、灵活性、应用性较强,一般学生做起来会感觉比较困难。

通过总结我们不难发现此类题目一般的解法都是通过转换或构造把线段之和问题转化为点到点的距离最小或点到线的距离最小问题。

“阿波罗尼斯圆”:在平面上给定两点B A ,,设P 点在同一平面上且满足,=λPA PB 当0>λ且1≠λ时,P 点的轨迹是个圆,称之为阿波罗尼斯圆。

(1=λ时P 点的轨迹是线段AB 的中垂线)如图:36.0=APBP 为固定值,则此时点P 的运动轨迹为ΘΟ。

证明:设B 点坐标为(0,0);A 点坐标为(m,0);P(x,y).则22+=y x PB ,22+)-(=y m x PA .由λPA PB =得λym x y x =+)-(+2222整理得:0=-2-)+)(-1(222222m λx λm y x λ222222-1(=+-1-(λλm y λλm x 所以当0>λ且1≠λ时,P 点的轨迹是个圆,圆心为)0,-1(22λλm ,半径2-1=λλm r 。

所以此时有λPAPB AO OP OP OB ===所以一定会有△OPB∽△OAP。

在初中阶段我们不要求学生能够证明,只要求学生能够记住这个模型中有这样一对相似三角形,并且能够利用这个固定结论构造这样的相似三角形来解决实际问题就可以了。

2例1:问题提出:如图1,在ABC Rt Δ中,∠ACB=90°,CB=4,CA=6,C Θ的半径为2,P为圆上一动点,连接AP、BP,求BP AP 21+的最小值。

自主探索:在“问题提出”的条件不变的情况下,BP AP +31的最小值为__________;拓展延伸:已知扇形COD 中,∠COD=90°,OC=6,OA=3,OB=5,点P 是弧CD 上一点,求PB AP +2的最小值。

(完整版)专题:阿氏圆与线段和最值问题(含答案),推荐文档

(完整版)专题:阿氏圆与线段和最值问题(含答案),推荐文档

专题:阿氏圆与线段和最值问题以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下:阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m(≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP+BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB上取点D ,使CD =1,则有==,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴=,∴PD =BP ,∴AP+BP =AP+PD .请你完成余下的思考,并直接写出答案:AP+BP 的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP 的最小值为.(3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A+PB 的最小值.【分析】(1)利用勾股定理即可求出,最小值为AD =;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2P A,得到2P A+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2P A,∴2P A+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.【点评】此题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出△PCD ∽△ACP和△OAP∽△OPE,也是解本题的难点.例题2、问题背景如图1,在△ABC中,BC=4,AB=2AC.问题初探请写出任意一对满足条件的AB与AC的值:AB=,AC=.问题再探如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决求△ABC的面积的最大值.【分析】问题初探:设AC=x,则AB=2x,根据三角形三边间的关系知2x﹣x<4且2x+x >4,解之得出x的范围,在此范围内确定AC的值即可得出答案;问题再探:设CD=a、AD=b,证△DAC∽△DBA得==,据此知,解之可得;问题解决:设AC=m、则AB=2m,根据面积公式可得S△ABC=2m,由余弦定理可得cosC,代入化简S△ABC=,结合m的取值范围,利用二次函数的性质求解可得.【解答】解:问题初探,设AC=x,则AB=2x,∵BC=4,∴2x﹣x<4且2x+x>4,解得:<x<4,取x=3,则AC=3、AB=6,故答案为:6、3;问题再探,∵∠CAD=∠B,∠D=∠D,∴△DAC∽△DBA,则==,设CD=a、AD=b,∴,解得:,即CD=;问题解决,设AC=m、则AB=2m,根据面积公式可得S△ABC=AC?BCsinC=2msinC=2m,由余弦定理可得cosC=,∴S△ABC=2m=2m===由三角形三边关系知<m<4,所以当m=时,S△ABC取得最大值.【点评】本题主要考查三角形三边关系、相似三角形的判定与性质及二次函数的应用,解题的关键是熟练掌握相似三角形的判定与性质、三角形的面积公式、余弦定理及二次函数的性质.例题3、如图,已知AC=6,BC=8,AB=10,⊙C的半径为 4,点 D 是⊙C上的动点,连接AD,BD,则12AD BD的最小值为_________【解答】210例题4、在△ABC中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P是⊙A上的动点,连接PB,PC,则3PC+2PB的最小值为___________【解答】21练习1.如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O上运动,则AP+BP的最小值是.【分析】如图,取点K(1,0),连接OP、PK、BK.由△POK∽△AOP,可得==,推出PK=PA,在△PBK中,PB+PK≥BK,推出PB+P A=PB+PK的最小值为BK的长.【解答】解:如图,取点K(1,0),连接OP、PK、BK.∵OP=2,OA=4,OK=1,∴==,∵∠POK=∠AOP,∴△POK∽△AOP,∴==,∴PK=P A,∴PB+P A=PB+PK,在△PBK中,PB+PK≥BK,∴PB+P A=PB+PK的最小值为BK的长,∵B(4,4),K(1,0),∴BK==5.故答案为5.【点评】本题考查坐标与图形的性质、相似三角形的判定和性质、三角形的三边关系、两点之间的距离公式等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.2.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+PC的最小值等于.【分析】在BC上截取BE=1,连接BP,PE,由正方形的性质可得BC=4=CD,BP=2,EC=3,可证△PBE∽△CBP,可得PE=PC,即当点D,点P,点E三点共线时,PD+PE 有最小值,即PD+PC有最小值,【解答】解:如图,在BC上截取BE=1,连接BP,PE,∵正方形ABCD的边长为4,⊙B的半径为2,∴BC=4=CD,BP=2,EC=3∵,且∠PBE=∠PBE∴△PBE∽△CBP∴∴PE=PC∴PD+PC=PD+PE∴当点D,点P,点E三点共线时,PD+PE有最小值,即PD+PC有最小值,∴PD+PC最小值为DE==5故答案为:5【点评】本题考查了正方形的性质,圆的有关知识,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为;PD+4PC的最小值为.【分析】①如图,连接PB、在BC上取一点E,使得BE=1.只要证明△PBE∽△CBP,可得==,推出PD+PC=PD+PE,再根据三角形的三边关系PE+PD≤DE即可解决问题;②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.只要证明△PBE∽△DBP,可得==,推出PE=PD,推出PD+4PC=4(PD+PC)=4(PE+PC),根据三角形的三边关系PE+PC≤EC即可解决问题;【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE?BC=4,∴PB2=BE?BC,∴=,∵∠PBE=∠CBP,∴△PBE∽△CBP,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE?BD=×4=4,∴BP2=BE?BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.【点评】本题考查轴对称最短问题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会根据相似三角形解决问题,属于中考填空题中的压轴题.4.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【分析】如图当A、P、D共线时,PC+PD最小,根据PC+PD=PM+PD=DM=AD﹣AM即可计算.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.【点评】本题考查切线的性质、轴对称﹣最短问题、正方形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是找到点P的位置,学会通过特殊点探究问题,找到解题的突破口,属于中考常考题型.5.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C.(1)试判断⊙C与AB的位置关系,并说明理由;(2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF;(3)点E是AB边上任意一点,在(2)的情况下,试求出EF+F A的最小值.【分析】(1)结论:相切.作CM⊥AB于M.,只要证明CM=4,即可解决问题;(2)由CF=4,CD=2,CA=8,推出CF2=CD?CA,推出=,由∠FCD=∠ACF,即可推出△FCD∽△ACF;(3)作DE′⊥AB于E′,交⊙C于F′.由△FCD∽△ACF,可得==,推出DF=AC,推出EF+AF=EF+DF,所以欲求EF+AF的最小值,就是要求EF+DF 的最小值;【解答】(1)解:结论:相切.理由:作CM⊥AB于M.在Rt△ACM中,∵∠AMC=90°,∠CAM=30°,AC=8,∴CM=AC=4,∵⊙O的半径为4,∴CM=r,∴AB是⊙C的切线.(2)证明:∵CF=4,CD=2,CA=8,∴CF2=CD?CA,∴=,∵∠FCD=∠ACF,∴△FCD∽△ACF.(3)解:作DE′⊥AB于E′,交⊙C于F′.∵△FCD∽△ACF,∴==,∴DF=AC,∴EF+AF=EF+DF,∴欲求EF+AF的最小值,就是要求EF+DF的最小值,当E与E′,F与F′重合时,EF+DF的值最小,最小值=DE′=AD=3.【点评】本题考查圆综合题、切线的判定和性质、相似三角形的判定和性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,正确切线的证明方法,学会正确寻找相似三角形解决问题,学会利用垂线段最短解决问题,属于中考压轴题.6.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连结AP,BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB 上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2P A+PB的最小值,画出示意图并写出求解过程.【分析】(1)由等边三角形的性质可得CF=6,AF=6,由勾股定理可求AD的长;(2)在AB上截取BF=1,连接PF,PC,由,可证△ABP∽△PBF,可得PF=AP,即AP+PC=PF+PC,则当点F,点P,点C三点共线时,AP+PC的值最小,由勾股定理可求AP+PC的值最小值;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,由,可得△AOP∽△POF,可得PF=2AP,即2PA+PB=PF+PB,则当点F,点P,点B三点共线时,2AP+PB的值最小,由勾股定理可求2PA+PB的最小值.【解答】解:(1)解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=12,AF⊥BC,∠ACB=60°∴CF=6,AF=6∴DF=CF﹣CD=6﹣3=3∴AD==3∴AP+BP的最小值为3(2)如图,在AB上截取BF=1,连接PF,PC,∵AB=9,PB=3,BF=1∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴∴PF=AP∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF===5∴AP+PC的值最小值为5,(3)如图,延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴∴PF=2AP∴2P A+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=4,FM=4∴MB=OM+OB=4+3=7∴FB==∴2P A+PB的最小值为.【点评】此题是圆的综合题,主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.7.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B 上的一个动点,那么PD+的最小值为,PD﹣的最大值为.【分析】(1)如图1中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出==,推出PG=PC,推出PD+PC=DP+PG,由DP+PG≥DG,当D、G、P 共线时,PD+PC的值最小,最小值为DG==5.由PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5;(2)如图3中,在BC上取一点G,使得BG=4.解法类似(1);(3)如图4中,在BC上取一点G,使得BG=4,作DF⊥BC于F.解法类似(1);【解答】解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD?sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.【点评】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.8.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在(2)的前提下,y轴上是否存在一点H,使∠AHF=∠AEF?如果存在,求出此时点H的坐标,如果不存在,请说明理由.【分析】(1)把A、B点的坐标分别代入代入y=﹣x2+bx+c得关于b、c的方程组,然后解方程组求出b、c,从而得到抛物线的解析式;(2)先利用待定系数法求出直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),根据平行四边形的判定,当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,从而得到﹣x2﹣2x+4﹣(2x+4)=4,然后解方程即可得到此时G 点坐标;(3)先确定C(0,﹣6),再利用勾股定理的逆定理证明△BAC为直角三角形,∠BAC =90°,接着根据圆周角定理,由∠AHF=∠AEF可判断点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),由于E(﹣2,0),F(﹣2,﹣5),则M(﹣2,﹣),然后根据HM=EF得到22+(t+)2=×52,最后解方程即可得到H点的坐标.【解答】解:(1)把A(﹣4,﹣4),B(0,4)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+m,把A(﹣4,﹣4),B(0,4)代入得,解得,∴直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),∵OB∥GE,∴当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,∴﹣x2﹣2x+4﹣(2x+4)=4,解得x1=x2=﹣2,此时G点坐标为(﹣2,4);(3)存在.当x=0时,y=﹣x﹣6=﹣6,则C(0,﹣6),∵AB2=42+82=80,AC2=42+22=20,BC2=102=100,∴AB2+AC2=BC2,∴△BAC为直角三角形,∠BAC=90°,∵∠AHF=∠AEF,∴点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),∵G(﹣2,4),∴E(﹣2,0),F(﹣2,﹣5),∴M(﹣2,﹣),∵HM=EF,∴22+(t+)2=×52,解得t1=﹣1,t2=﹣4,∴H点的坐标为(0,﹣1)或(0,﹣4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和平行四边形的判定;会利用待定系数法求函数解析式;会利用勾股定理的逆定理证明直角三角形,能运用圆周角定理判断点在圆上;理解坐标与图形的性质,记住两点间的距离公式.9.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式.(2)由△PNM∽△ANE,推出=,列出方程即可解决问题.(3)在y轴上取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′?OB=×3=4,∴OE′2=OM′?OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.【点评】本题考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+E′B的最小值,属于中考压轴题.。

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。

阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。

【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。

即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。

【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。

但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。

知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。

【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。

①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。

专题:阿氏圆与线段和最值问题(含答案)

专题:阿氏圆与线段和最值问题(含答案)

专题:阿氏圆与线段和最值问题以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下: 阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP +BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有==,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴=,∴PD =BP ,∴AP +BP =AP +PD .请你完成余下的思考,并直接写出答案:AP +BP 的最小值为 .(2)自主探索:在“问题提出”的条件不变的情况下,AP +BP 的最小值为 . (3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A +PB 的最小值.【分析】(1)利用勾股定理即可求出,最小值为AD =;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2P A,得到2P A+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2P A,∴2P A+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.【点评】此题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出△PCD ∽△ACP和△OAP∽△OPE,也是解本题的难点.例题2、问题背景如图1,在△ABC中,BC=4,AB=2AC.问题初探请写出任意一对满足条件的AB与AC的值:AB=,AC=.问题再探如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决求△ABC的面积的最大值.【分析】问题初探:设AC=x,则AB=2x,根据三角形三边间的关系知2x﹣x<4且2x+x >4,解之得出x的范围,在此范围内确定AC的值即可得出答案;问题再探:设CD=a、AD=b,证△DAC∽△DBA得==,据此知,解之可得;问题解决:设AC=m、则AB=2m,根据面积公式可得S△ABC=2m,由余弦定理可得cos C,代入化简S△ABC=,结合m的取值范围,利用二次函数的性质求解可得.【解答】解:问题初探,设AC=x,则AB=2x,∵BC=4,∴2x﹣x<4且2x+x>4,解得:<x<4,取x=3,则AC=3、AB=6,故答案为:6、3;问题再探,∵∠CAD=∠B,∠D=∠D,∴△DAC∽△DBA,则==,设CD=a、AD=b,∴,解得:,即CD=;问题解决,设AC=m、则AB=2m,根据面积公式可得S△ABC=AC•BC sin C=2m sin C=2m,由余弦定理可得cos C=,∴S△ABC=2m=2m===由三角形三边关系知<m<4,所以当m=时,S△ABC取得最大值.【点评】本题主要考查三角形三边关系、相似三角形的判定与性质及二次函数的应用,解题的关键是熟练掌握相似三角形的判定与性质、三角形的面积公式、余弦定理及二次函数的性质.例题3、如图,已知AC=6,BC=8,AB=10,⊙C的半径为 4,点D 是⊙C上的动点,连接AD,BD,则12AD BD的最小值为_________【解答】例题4、在△ABC中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P是⊙A上的动点,连接PB,PC,则3PC+2PB的最小值为___________【解答】21练习1.如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O上运动,则AP+BP的最小值是.【分析】如图,取点K(1,0),连接OP、PK、BK.由△POK∽△AOP,可得==,推出PK=P A,在△PBK中,PB+PK≥BK,推出PB+P A=PB+PK的最小值为BK的长.【解答】解:如图,取点K(1,0),连接OP、PK、BK.∵OP=2,OA=4,OK=1,∴==,∵∠POK=∠AOP,∴△POK∽△AOP,∴==,∴PK=P A,∴PB+P A=PB+PK,在△PBK中,PB+PK≥BK,∴PB+P A=PB+PK的最小值为BK的长,∵B(4,4),K(1,0),∴BK==5.故答案为5.【点评】本题考查坐标与图形的性质、相似三角形的判定和性质、三角形的三边关系、两点之间的距离公式等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.2.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+PC的最小值等于.【分析】在BC上截取BE=1,连接BP,PE,由正方形的性质可得BC=4=CD,BP=2,EC=3,可证△PBE∽△CBP,可得PE=PC,即当点D,点P,点E三点共线时,PD+PE 有最小值,即PD+PC有最小值,【解答】解:如图,在BC上截取BE=1,连接BP,PE,∵正方形ABCD的边长为4,⊙B的半径为2,∴BC=4=CD,BP=2,EC=3∵,且∠PBE=∠PBE∴△PBE∽△CBP∴∴PE=PC∴PD+PC=PD+PE∴当点D,点P,点E三点共线时,PD+PE有最小值,即PD+PC有最小值,∴PD+PC最小值为DE==5故答案为:5【点评】本题考查了正方形的性质,圆的有关知识,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为;PD+4PC的最小值为.【分析】①如图,连接PB、在BC上取一点E,使得BE=1.只要证明△PBE∽△CBP,可得==,推出PD+PC=PD+PE,再根据三角形的三边关系PE+PD≤DE即可解决问题;②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.只要证明△PBE∽△DBP,可得==,推出PE=PD,推出PD+4PC=4(PD+PC)=4(PE+PC),根据三角形的三边关系PE+PC≤EC即可解决问题;【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBP,∴△PBE∽△CBP,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.【点评】本题考查轴对称最短问题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会根据相似三角形解决问题,属于中考填空题中的压轴题.4.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【分析】如图当A、P、D共线时,PC+PD最小,根据PC+PD=PM+PD=DM=AD﹣AM即可计算.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.【点评】本题考查切线的性质、轴对称﹣最短问题、正方形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是找到点P的位置,学会通过特殊点探究问题,找到解题的突破口,属于中考常考题型.5.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C.(1)试判断⊙C与AB的位置关系,并说明理由;(2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF;(3)点E是AB边上任意一点,在(2)的情况下,试求出EF+F A的最小值.【分析】(1)结论:相切.作CM⊥AB于M.,只要证明CM=4,即可解决问题;(2)由CF=4,CD=2,CA=8,推出CF2=CD•CA,推出=,由∠FCD=∠ACF,即可推出△FCD∽△ACF;(3)作DE′⊥AB于E′,交⊙C于F′.由△FCD∽△ACF,可得==,推出DF=AC,推出EF+AF=EF+DF,所以欲求EF+AF的最小值,就是要求EF+DF 的最小值;【解答】(1)解:结论:相切.理由:作CM⊥AB于M.在Rt△ACM中,∵∠AMC=90°,∠CAM=30°,AC=8,∴CM=AC=4,∵⊙O的半径为4,∴CM=r,∴AB是⊙C的切线.(2)证明:∵CF=4,CD=2,CA=8,∴CF2=CD•CA,∴=,∵∠FCD=∠ACF,∴△FCD∽△ACF.(3)解:作DE′⊥AB于E′,交⊙C于F′.∵△FCD∽△ACF,∴==,∴DF=AC,∴EF+AF=EF+DF,∴欲求EF+AF的最小值,就是要求EF+DF的最小值,当E与E′,F与F′重合时,EF+DF的值最小,最小值=DE′=AD=3.【点评】本题考查圆综合题、切线的判定和性质、相似三角形的判定和性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,正确切线的证明方法,学会正确寻找相似三角形解决问题,学会利用垂线段最短解决问题,属于中考压轴题.6.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连结AP,BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB 上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2P A+PB的最小值,画出示意图并写出求解过程.【分析】(1)由等边三角形的性质可得CF=6,AF=6,由勾股定理可求AD的长;(2)在AB上截取BF=1,连接PF,PC,由,可证△ABP∽△PBF,可得PF=AP,即AP+PC=PF+PC,则当点F,点P,点C三点共线时,AP+PC的值最小,由勾股定理可求AP+PC的值最小值;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,由,可得△AOP∽△POF,可得PF=2AP,即2P A+PB=PF+PB,则当点F,点P,点B三点共线时,2AP+PB的值最小,由勾股定理可求2P A+PB的最小值.【解答】解:(1)解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=12,AF⊥BC,∠ACB=60°∴CF=6,AF=6∴DF=CF﹣CD=6﹣3=3∴AD==3∴AP+BP的最小值为3(2)如图,在AB上截取BF=1,连接PF,PC,∵AB=9,PB=3,BF=1∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴∴PF=AP∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF===5∴AP+PC的值最小值为5,(3)如图,延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴∴PF=2AP∴2P A+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=4,FM=4∴MB=OM+OB=4+3=7∴FB==∴2P A+PB的最小值为.【点评】此题是圆的综合题,主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.7.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B 上的一个动点,那么PD+的最小值为,PD﹣的最大值为.【分析】(1)如图1中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出==,推出PG=PC,推出PD+PC=DP+PG,由DP+PG≥DG,当D、G、P 共线时,PD+PC的值最小,最小值为DG==5.由PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5;(2)如图3中,在BC上取一点G,使得BG=4.解法类似(1);(3)如图4中,在BC上取一点G,使得BG=4,作DF⊥BC于F.解法类似(1);【解答】解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.【点评】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.8.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在(2)的前提下,y轴上是否存在一点H,使∠AHF=∠AEF?如果存在,求出此时点H的坐标,如果不存在,请说明理由.【分析】(1)把A、B点的坐标分别代入代入y=﹣x2+bx+c得关于b、c的方程组,然后解方程组求出b、c,从而得到抛物线的解析式;(2)先利用待定系数法求出直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),根据平行四边形的判定,当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,从而得到﹣x2﹣2x+4﹣(2x+4)=4,然后解方程即可得到此时G 点坐标;(3)先确定C(0,﹣6),再利用勾股定理的逆定理证明△BAC为直角三角形,∠BAC =90°,接着根据圆周角定理,由∠AHF=∠AEF可判断点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),由于E(﹣2,0),F(﹣2,﹣5),则M(﹣2,﹣),然后根据HM=EF得到22+(t+)2=×52,最后解方程即可得到H点的坐标.【解答】解:(1)把A(﹣4,﹣4),B(0,4)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+m,把A(﹣4,﹣4),B(0,4)代入得,解得,∴直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),∵OB∥GE,∴当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,∴﹣x2﹣2x+4﹣(2x+4)=4,解得x1=x2=﹣2,此时G点坐标为(﹣2,4);(3)存在.当x=0时,y=﹣x﹣6=﹣6,则C(0,﹣6),∵AB2=42+82=80,AC2=42+22=20,BC2=102=100,∴AB2+AC2=BC2,∴△BAC为直角三角形,∠BAC=90°,∵∠AHF=∠AEF,∴点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),∵G(﹣2,4),∴E(﹣2,0),F(﹣2,﹣5),∴M(﹣2,﹣),∵HM=EF,∴22+(t+)2=×52,解得t1=﹣1,t2=﹣4,∴H点的坐标为(0,﹣1)或(0,﹣4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和平行四边形的判定;会利用待定系数法求函数解析式;会利用勾股定理的逆定理证明直角三角形,能运用圆周角定理判断点在圆上;理解坐标与图形的性质,记住两点间的距离公式.9.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式.(2)由△PNM∽△ANE,推出=,列出方程即可解决问题.(3)在y轴上取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.【点评】本题考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+E′B的最小值,属于中考压轴题.。

微专题16 阿波罗尼斯圆问题梳理及其运用答案

微专题16 阿波罗尼斯圆问题梳理及其运用答案

微专题161.答案:(-∞,0]∪⎣⎡⎭⎫43,+∞.解析:设M (x ,y ),则由2MA=MB得2(x -1)2+y 2= (x -4)2+y 2,化简得x 2+y 2=4,设直线l :y=k (x -1)-2,则|-k -2|1+k 2≤2,整理得3k 2-4k ≥0,解得k ≤0或k ≥43.2.答案:[0,125].解析:因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为MA =2MO ,所以x 2+(y -3)2= 2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以圆心M 在以D (0,-1)为圆心,2为半径的圆上.由题意得,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则2-1≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.所以圆心C 的横坐标a 的取值范围为[0,125].3.答案:{22,-22}. 解析:设P (x ,x +m ),则由P A PB =12可知(x -1)2+(x +m )2(x -4)2+(x +m )2=14,化简得到2x 2+2mx +m 2-4=0,由题意可知Δ=4m 2-4×2×(m 2-4)=0,即m 2=8,则实数m 的取值集合为{22,-22}.4.答案:52.解析:记12PB =PC ,那么PC PB =12,其中B (2,0),下面研究点C 的位置.设C (a ,b ),P (cos θ,sin θ),则由PC PB =12得 错误!=12,化简得(4-8a )cos θ-8b sin θ+4a 2+4b 2-1=0①,由于①式对任意θ都成立,则⎩⎨⎧4-8a =0,b =0,4a 2+4b 2-1=0,解得C (12,0).因此,P A +12PB =P A +PC ≥AC =52.5.答案:⎝⎛⎭⎫53,73. 解析:如图,设AB =3,AC =1,AD =k ,以点C 为原点,线段AC 所在直线为x 轴建立直角坐标系xCy ,则点A 的坐标为(1,0),因为AB =3,所以点B 在以点A 为圆心,3为半径的圆上,圆的方程为(x -1)2+y 2=9(*).设D (x ,y ),由CD =2DB 得B (32x ,32y ),代入(*)式得(32x -1)2+(32y )2=9,化简得(x -23)2+y 2=4,所以r -13<k <13+r ,从而53<k <73.6.答案:l 22(1-k 2).解析:如图,以B 为原点,BD 为x 轴建立直角坐标系xBy .设A (x ,y ),y >0.因AD =kAC =kAB ,故AD 2=k 2AB 2,于是(x -l )2+y 2=k 2(x 2+y 2).所以y 2=-(1-k 2)x 2+2lx -l 21-k 2=错误!≤k 2l2(1-k 2)2,于是,y max =kl1-k 2,(S △ABD )max =kl 22(1-k 2),所以,(S △ABC )max=1k(S △ABD )max =l 22(1-k 2).7.答案:2+ 3. 解析:易知点B 的轨迹是阿波罗尼斯圆,记圆与线段AC 的交点为F ,圆心为D ,则AB BC =AFFC=m ,从而BF 为∠ABC 的平分线,即∠ABF =∠CBF =π6,此时∠BCD =∠BFC +∠CBF =5π12,∠CAB =π12,∠ACB =7π12.在△ABC 中,由正弦定理得m =AB BC =sin ∠ACB sin ∠CAB=2+ 3.8.答案:存在;λ=12,理由略.解析:假设存在点P (x ,y )满足题意,则x 2+y 2+8x =0,所以P A 2=(x +2)2+y 2,PB 2=(x -4)2+y 2,由P A 2=λ2·PB 2,可得x 2+y 2+4x +4=λ2(x 2+y 2-8x +16),整理得(1-x )(1-4λ2)=0,由点P (x ,y )为圆C 上任意一点,且λ>0,于是取λ2=14,即有λ=12.。

中考数学专题复习39几何最值之阿氏圆问题(解析版)

中考数学专题复习39几何最值之阿氏圆问题(解析版)

问题分析:“阿氏圆”又称为“阿波罗尼斯圆”.如下图.已知A 、B 两点.点P 满足PA:PB=k (k ≠1).则满足条件的所有的点P 的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现.故称“阿氏圆”。

模型展示:如下图.已知A 、B 两点.点P 满足PA :PB=k (k≠1).则满足条件的所有的点P 构成的图形为圆.(1)角平分线定理:如图.在△ABC 中.AD 是△BAC 的角平分线.则AB DBAC DC=.证明:ABD ACDS BD SCD =.ABD ACDSAB DE AB SAC DF AC ⨯==⨯.即AB DBAC DC=(2)外角平分线定理:如图.在△ABC 中.外角CAE 的角平分线AD 交BC 的延长线于点D.则AB DBAC DC=.证明:在BA 延长线上取点E 使得AE=AC.连接BD.则△ACD△△AEDA B POA B POFEDCBAABCDE几何最值之阿氏圆问题方法技巧(SAS ).CD=ED 且AD 平分△BDE.则DB AB DE AE =.即AB DBAC DC=. 接下来开始证明步骤:如图.PA :PB=k .作△APB 的角平分线交AB 于M 点.根据角平分线定理.MA PAk MB PB==.故M 点为定点.即△APB 的角平分线交AB 于定点;作△APB 外角平分线交直线AB 于N 点.根据外角平分线定理.NA PAk NB PB==.故N 点为定点.即△APB 外角平分线交直线AB 于定点;又△MPN=90°.定边对定角.故P 点轨迹是以MN 为直径的圆.模型最值技巧:计算PA k PB +的最小值时.利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA k PB +的值最小.解决步骤具体如下: △ 如图.将系数不为1的线段两端点与圆心相连即OP.OB △ 计算出这两条线段的长度比OPk OB= △ 在OB 上取一点C.使得OC k OP =.即构造△POM△△BOP.则PCk PB=.PC k PB = NM APOPB M△ 则=PA k PB PA PC AC ++≥.当A 、P 、C 三点共线时可得最小值【例1】如图.已知正方ABCD 的边长为4.圆B 的半径为2.点P 是圆B 上的一个动点.则12PD PC -的最大值为_______.【分析】当P 点运动到BC 边上时.此时PC=2.根据题意要求构造12PC .在BC 上取M 使得此时PM=1.则在点P 运动的任意时刻.均有PM=12PC .从而将问题转化为求PD -PM 的最大值.连接PD.对于△PDM.PD -PM <DM.故当D 、M 、P 共线时.PD -PM=DM 为最大值.【详解】解:(1)如图1中.在BC 上取一点G.使得BG=1.AB CDPABCDP MMPDCBAABCDPMMPDC BA题型精讲△212,212====PB BC BG PB △21==PB BC BG PB △△PBG=△PBC. △△PBG△△CBP.△PC PG 21= △PG DP PC DP +=+21△DP+PG≥DG.△当D 、G 、P 共线时.PC DP 21+的值最小.最小值为DG=2234+=5. △PC PD 21-=PD -PG≤DG. 当点P 在DG 的延长线上时.PC PD 21-的值最大(如图2中).最大值为DG=5.【例2】如图.菱形ABCD 的边长为2.锐角大小为60︒.A 与BC 相切于点E .在A 上任取一点P .则3PB 的最小值为___________.37【详解】解:在AD 上截取AH =1.5.连接PH 、AE .过点B 作BF △DA 延长线.垂足为F . △AB =2.△ABC =60°.△BE =AF =1.AE =BF 323AP AD AH AP ==△△P AD =△P AH .△△ADP △△APH .△23DP AD PH AP ==PH 3. 当B 、P 、H 共线时.3PB 的最小.最小值为BH 长. BH 222237(3) 2.5BF FH ++=37【例3】如图.在Rt ABC 中.△C =90°.CA =3.CB =4.C 的半径为2.点P 是C 上一动点.则12AP BP +的最小值______________23+PB PA 的最小值_______10410【详解】△在BC 上取点D .使CD =14BC =1.连接AD .PD .PC .由题意知:PC=2.△12DC PC PC BC ==.△PCD =△BCP .△PDC BPC ∆∆∽.△12PD PB =. 且12PA PB PA PD AD +=+≥.△229110AD AC CD =+=+=.△2PA PB 1+的最小值为10.故答案为:10;△在AC 上取点E .使CE =43.连接PE .BE .PC .△42323CE PC ==.23PC AC =.△23CE PC PC AC ==.且△PCE =△ACP . △PEC APC ∆∆∽.△23PE PC PA AC ==.△23PE PA =.△23PB PA PB PE BE +=+≥. △222244104()33BE BC CE =+=+=.△23+PB PA 的最小值为4103.故答案为:4103.1.如图.矩形ABCD 中.4,2AB AD ==.以B 为圆心.以BC 为半径画圆交边AB 于点E.点P 是弧CE 上的一个动点.连结,PD PA .则12AP DP +的最小值为( )提分作业A 10B 11C 13D 14【答案】C【详解】解:如图.连接BP.取BE 的中点G.连接PG. △2AD BC BP ===.4AB =.△2142BP BA ==.△G 是BE 的中点.△12BG BP =.△BP BGBA BP=. △PBG ABP ∠=∠.△BPGBAP .△12PG BP AP BA ==.△12PG AP =. 则12AP DP PG DP +=+.当P 、D 、G 三点共线时.取最小值.即DG 长. 224913DG AD AG ++C .2.如图.已知菱形ABCD 的边长为4.60B ∠=︒.B 的半径为2.P 为B 上一动点.则12PD PC +的最小值_______.3PC 的最小值_______37111【详解】△如图.在BC 上取一点G .使得BG =1.连接PB 、PG 、GD .作DF △BC 交BC 延长线于F .△221PB BG ==.422BC PB ==.△PB BCBG PB=.△PBG PBC ∠=∠.△PBG CBP ∆∆.△12PG BG PC PB ==.△12PG PC =.△12PD PC DP PG +=+.△DP PG DG +≥.△当D 、P 、G 共线时.PD +12PC 的值最小.最小值为DG . 在Rt △CDF 中.△DCF =60°.CD =4.△DF =CD •sin 3CF =2. 在Rt △GDF 中.DG 22(23)(5)37+=37 △如图.连接BD .在BD 上取一点M .使得BM 3连接PB 、PM 、MC .过M 作MN △BC 于N .△四边形ABCD 是菱形.且60ABC ∠=︒. △AC △BD .△AOB =90︒.△ABO =△CBO =12△ABC =30︒.△AO =12AB =2.BO 22224223AB AO -=-BD =2 BO =433332BM PB ==343PB BD = △3BM PB PB BD ==且△MBP =△PBD .△△MBP ~△PBD .△3PM PB PD BD ==3PM =.△3PC PC PM MC =+≥.△当M 、P 、C 共线时.3PC 的值最小.最小值为CM .在Rt △BMN 中.△CBO =30︒.BM 3MN =12BM 3BN 2212BM MN -=.△CN =4-1722=. △MC 2222111CN MN CN MN ++.△3PC 111. 3.如图.在中.△ACB=90°.BC=12.AC=9.以点C 为圆心.6为半径的圆上有一个动点D .连接AD 、BD 、CD.则2AD+3BD 的最小值是 .ABC ∆【分析】首先对问题作变式2AD+3BD=233AD BD ⎛⎫+ ⎪⎝⎭.故求23AD BD +最小值即可.考虑到D 点轨迹是圆.A 是定点.且要求构造23AD .条件已经足够明显.当D 点运动到AC 边时.DA=3.此时在线段CD 上取点M 使得DM=2.则在点D 运动过程中.始终存在23DM DA =.问题转化为DM+DB 的最小值.直接连接BM.BM 长度的3倍即为本题答案.【详解】如图.在AC 上取一点M.使CM=4 ∵CDAC CM CD= ABCDMACDD CBAM DCBAM∴∠MCD=∠ACD ∴△DCM ∽△ACD ∴96==AC DC AD MD ∴AD MD 32=在△MDE 中.MD+DB ≥MD ∴MD+DB 最小值为MB 。

模型17 阿氏圆最值问题(解析版)

模型17 阿氏圆最值问题(解析版)

模型介绍背景故事:“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.模型建立:当点P在一个以O为圆心,r为半径的圆上运动时,如图所示:易证:△BOP∽△POA,∴对于圆上任意一点P都有.对于任意一个圆,任意一个k的值,我们可以在任意一条直径所在直线上,在同侧适当的位置选取A、B点,则需+ 的最小值时,利用两边成比例且夹角相等构造母子型相似 【技巧总结】计算PA k PB三角形+ 的值最小,解决步骤具体如下:问题:在圆上找一点P使得PA k PB①如图,将系数不为1的线段两端点与圆心相连即OP,OB②计算出这两条线段的长度比OP k OB=③在OB 上取一点C ,使得OC k OP =,即构造△POM ∽△BOP ,则PC k PB=,PC k PB = ④则=PA k PB PA PC AC ++≥ ,当A 、P 、C 三点共线时可得最小值例题精讲【例1】.如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连接AP ,BP ,则AP +BP 的最小值为________.解:如图1,连接CP ,在CB 上取点D ,使CD =1,则有==,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP ,∴=,∴PD =BP ,∴AP +BP =AP +PD .要使AP +BP 最小,只要AP +PD 最小,当点A ,P ,D 在同一条直线时,AP +PD 最小,即:AP +BP 最小值为AD ,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为变式训练【变式1-1】.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+PC 的最小值等于5.解:如图,在BC上截取BE=1,连接BP,PE,∵正方形ABCD的边长为4,⊙B的半径为2,∴BC=4=CD,BP=2,EC=3∵,且∠PBE=∠PBE∴△PBE∽△CBP∴∴PE=PC∴PD+PC=PD+PE∴当点D,点P,点E三点共线时,PD+PE有最小值,即PD+PC有最小值,∴PD+PC最小值为DE==5故答案为:5【变式1-2】.如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则的最小值为.解:如图,在AB上截取AQ=1,连接AP,PQ,CQ,∵点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,∴,∵AP=2,AQ=1,∴,∵∠PAQ=∠BAP,∴△APQ∽△ABP,∴PQ=PB,∴PB+PC=PC+PQ≥CQ,在Rt△ACQ中,AC=4,AQ=1,∴QC===.,∴PB+PC的最小值.,故答案为:.【变式1-3】.如图,在直角坐标系中,以原点O为圆心作半径为4的圆交x轴正半轴于点A,点M的坐标为(6,3),点N的坐标为(8,0),点P在圆上运动.则PM+PN的最小值是5.解:如图,作MB⊥ON于B,则BM=3,OB=6,取OA的中点I,连接OP,PI,IM,∴OI=2,OP=4,∴==,==,∴,又∠POI是公共角,∴△POI∽△NOP,∴,∴PI=PN,∴PM+PN=PM+PI≥IM,∴当M、P(图中Q点)、I在一条直线上时,PM+PI最小=MI===5,故答案是5.【例2】.如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为.解:延长OB到T,使得BT=OB,连接MT,CT.∵OM=6,OD=DB=3,OT=12,∴OM2=OD•OT,∴=,∵∠MOD=∠TOM,∴△MOD∽△TOM,∴==,∴MT=2DM,∵CM+2DM=CM+MT≥CT,又∵在Rt△OCT中,∠COT=90°,OC=4,OT=12,∴CT===4,∴CM+2DM≥4,∴CM+2DM的最小值为4,∴答案为4.变式训练【变式2-1】.⊙O半径为2,AB,DE为两条直线.作DC⊥AB于C,且C为AO中点,P 为圆上一个动点.求2PC+PE的最小值.解:延长OA到K,使AK=AO=2.∵C是AO的中点,∴OC=OA=1,∴=.又∵∠COP=∠POK,∴△COP∽△POK,∴,即PK=2PC.∴2PC+PE=PE+PK≥EK.作EH⊥BC于点H.∵在直角△COD中,cos∠DOC=,∴∠DOC=60°,∴∠EOH=∠DOC=60°,∴HE=OE•sin60°=2×,∴EK=.即最小值是2.故答案是:2.【变式2-2】.如图,在扇形OCD中,∠COD=90°,OC=3,点A在OD上,AD=1,点B为OC的中点,点E是弧CD上的动点,则AE+2EB的最小值是2.解:如图,延长OC至F,使得CF=OC=3.连接EF,OE,∵∠EOB为公共角∴△OBE∽△OEF∴∴2BE=EF∴AE+2BE=AE+EF即A、E、F三点共线时取得最小值即由勾股定理得AF==故答案为【变式2-3】.如图,等边△ABC的边长6,内切圆记为⊙O,P是⊙O上一动点,则2PB+PC的最小值为3.解:如图,连接OC交⊙O于点D,取OD的中点F,作OE⊥BC于E,FG⊥BC于G,∴==,∵∠FOP=∠POC,∴△OPF∽△OCP,∴CP=2PF,∴2PB+PC=2(PC+PB)=2(PB+PF),∵PB+PF≥BF,∴PB+PF的最小值为BF,∵BC=6,∠OCE=30°,∴CE=3,OE=,OC=2,∴CF=,∴GF=,CG=,∴BG=BC﹣CG=,由勾股定理得,BF=,∴2PB+PC的最小值为2BF=3.故答案为:3.1.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则PA+PB的最小值为2.解:设⊙O半径为r,OP=r=BC=2,OB=r=2,取OB的中点I,连接PI,∴OI=IB=,∵,,∴,∠O是公共角,∴△BOP∽△POI,∴,∴PI=PB,∴AP+PB=AP+PI,∴当A、P、I在一条直线上时,AP+PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=BI=1,∴AE=AB﹣BE=3,∴AI==,∴AP+PB最小值=AI=,∵PA+PB=(PA+PB),∴PA+PB的最小值是AI==2.故答案是2.2.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是上一动点,则PC+PD的最小值为.解:如图,延长OA使AE=OB,连接EC,EP,OP,∵AO=OB=6,C分别是OA的中点,∴OE=12,OP=6,OC=AC=3,∴==,且∠COP=∠EOP∴△OPE∽△OCP∴==,∴EP=2PC,∴PC+PD=(2PC+PD)=(PD+PE),∴当点E,点P,点D三点共线时,PC+PD的值最小,∵DE===13,∴PD+PE≥DE=13,∴PD+PE的最小值为13,∴PC+PD的值最小值为.故答案为:.3.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为弧AB上一动点,则PC+PD的最小值为.解:∵AC是⊙O的切线,∴∠OAC=90°,∴OC==,取OC的中点I,连接PI,DI,∵,,∴,又∠O是公共角,∴△POI∽△COP,∴==,∴PI=PC,∴PC+PD=PI+PD,∴当D、P、I在一条直线上时,PC+PD最小=DI,作IF⊥AB于F,IE⊥BD于E,∵BE=IF=AC=,∴DE=BD﹣BE=,IE=BF=OB+OF=,∴DI==,∴PC+PD最小=DI=.故答案是:.4.在Rt△AOB中,∠AOB=90°,OA=8,OB=10,以O为圆心,4为半径作圆O,交两边于点C,D,P为劣弧CD上一动点,则PA+PB最小值为2.解:如图,连接OP,取OC的中点E,∵,∠POE=∠AOP,∴△POE∽△AOP,∴=,∴PA+PB=PE+PB,∵PE+PB≥BE,∴当B、P、E共线时,PE+PB最小,∵OE=OC=2,OB=10,∴BE===2,∴PA+PB的最小值是2.5.如图,在边长为6的正方形ABCD中,M为AB上一点,且BM=2,N为边BC上一动点,连接MN,点B关于MN对称,对应点为P,连接PA,PC,则PA+2PC的最小值为6.解:∵B、P关于MN对称,BM=2,∴PM=2,如图所示,则点P在以M为圆心,BM为半径的圆上,在线段MA上取一个点E,使得ME=1,又∵MA=6﹣2=4,MP=2,∴,,∴,又∵∠EMP=∠PMA,∴△EMP∽△PMA,∴,∴,∴PA+2PC=2()=2(PC+PE)≥2CE,如图所示,当且仅当P、C、E三点共线时取得最小值2CE,∵CE=,∴PA+2PC的最小值为6.6.如图,矩形ABCD中,AB=2,AD=4,M点是BC的中点,A为圆心,AB为半径的圆交AD于点E.点P在上运动,则PM+DP的最小值为.解:取AE的中点K,连接PK,KM,作KH⊥BC于H,则四边形ABHK是矩形.可得AK=BH=1,HK=AB=2.∵AP=2,AK=1,AD=4,∴PA2=AK•AD,∴=,∵∠KAP=∠PAD,∴△PAK∽△DAP,∴==,∴PK=PD,∴PM+PD=PM+PK,∵PM+PK≥KM,KM==,∴PM+PK≥,∴PM+DP的最小值为,故答案为.7.如图,在△ABC中,∠A=90°,AB=3,AC=4,D为AC的中点,以A为圆心,AD为半径作OA交AB于点E,P为劣弧DE上一动点,连接PB、PC,则PC+PB的最小值为.解:在AB上取F,使AF=,连接CF与⊙A的交点即是满足条件的点P,连接AP,如图:∵AD=AC=2,∴AP=AD=2,∵AB=3,AF=,∴AP2=AF•AB,∵∠PAB=∠FAP,∴△PAB∽△FAP,∴==,∴PF=PB,∴PC+PB=PC+PF=CF,根据两点之间线段最短,此时PC+PB=CF最小,∴PC+PB最小值为CF===,故答案为:.8.如图,在平面直角坐标系中,A(2,0)、B(0,2)、C(4,0)、D(3,2),P是△AOB外部的第一象限内一动点,且∠BPA=135°,则2PD+PC的最小值是4.解:如图,取一点T(1,0),连接OP,PT,TD,∵A(2,0)、B(0,2)、C(4,0),∴OA=OB=2,OC=4,以O为圆心OA为半径作⊙O,在优弧AB上取一点Q,连接QB,QA,∵∠Q=AOB=45°,∠APB=135°,∴∠Q+∠APB=180°,∴A、P、B、Q四点共圆,∴OP=OA=2,∵OP=2,OT=1,OC=4,∴OP2=OC•OT,∴,∵∠POT=∠POC,∴△POT∽△POC,∴,∴PT=,∴2PD+PC=2(PD+PC)=2(PD+PT),∵PD+PT≥DT,DT==2,∴2PD+PC,∴2PD+PC的最小值是4.故答案为:4.9.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,⊙O的半径为1,M为⊙O上一动点,求AM+BM的最小值.解:如图,连接OM,在OB上取点C,使OC=,连接MC,AC,∵OB=2,⊙O的半径为1,∴,∵∠MOC=∠COM,∴△OMC∽△OBM,∴,∴MC=,∴AM+BM=AM+MC,∴AM+BM的最小值即为AM+MC的最小值,∴A、M、C三点共线时,AM+MC最小,在Rt△AOC中,由勾股定理得:AC=.∴AM+BM的最小值为.10.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连接AP,BP,求AP+BP的最小值.(12,连接CP,在CB 上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为3.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为5.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2PA+PB的最小值,画出示意图并写出求解过程.解:(1)解:(1)如图1,连接AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=12,AF⊥BC,∠ACB=60°,∴CF=6,AF=6,∴DF=CF﹣CD=6﹣3=3,∴AD==3,∴AP+BP的最小值为3;(2)如图,在AB上截取BF=1,连接PF,PC,∵AB=9,PB=3,BF=1,∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴,∴PF=AP,∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF===5,∴AP+PC的值最小值为5;(3)如图,延长OC,使CF=4,连接BF,OP,PF,过点F作FM⊥OD于点M,∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,∴,且∠AOP=∠AOP,∴△AOP∽△POF,∴,∴PF=2AP,∴2PA+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM,∴OM=4,FM=4,∴MB=OM+OB=4+3=7,∴FB==,∴2PA+PB的最小值为.11.(1)如图1,已知正方形ABCD的边长为6,圆B的半径为3,点P是圆B上的一个动点,则PD+PC的最小值为,PD﹣PC的最大值为.(2)如图2,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B 上的一个动点,求PD+PC的最小值,以及PD﹣PC的最大值.解:(1)如图1,在BC上截取BE=,∴,∵∠PBE=∠PBC,∴△PBE∽△CBP,∴,∴PE=PC,∴PD+PC=PD+PE≥DE,PD﹣PC=PD﹣PE≤DE,∵四边形ABCD是正方形,∴∠BCD=90°,∴DE===,∴PD+PC的最小值为:,此时点P在P′处,PD﹣PC的最大值为:,此时点P在P″处,故答案为:,;(2)如图2,在BC上截取BE=1,作DF⊥BC交BC的延长线于F,∴,∵∠PBE=∠PBC,∴△PBE∽△CBP,∴,∴PE=PC,∴PD+PC=PD+PE≥DE,PD﹣PC=PD﹣PE≤DE,在Rt△DCF中,∠DCF=∠ABC=60°,CD=4,∴CF=4•cos60°=2,DF=4•sin60°=2,在Rt△DEF中,DF=2,EF=CE+CF=3+2=5,∴DE==,∴PD+PC的最小值为:,此时点P在P′处PD﹣PC的最大值为:,此时点P在P″处12.阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合=k(k>0且k≠1)的点P会组成一个圆.这个结论最先由古希腊数学家阿波罗尼斯发现,称阿氏圆.阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设=k,求PC+kPD的最小值.阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+BD的最小值.解(1)在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.∴MP:PD=k,∴MP=kPD,∴PC+kPD=PC+MP,当PC+kPD取最小值时,PC+MP有最小值,即C,P,M三点共线时有最小值,利用勾股定理得.(2)∵AC=m=4,=,在CB上取一点M,使得CM=CD=,∴的最小值为.13.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.14.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)①在y轴上存在一点H,连接EH,HF,当点E运动到什么位置时,以A,E,F,H为顶点的四边形是矩形?求出此时点E,H的坐标;②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM它的最小值.解:(1)∵点A(﹣4,﹣4),B(0,4)在抛物线y=﹣x2+bx+c上,∴,∴,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+n过点A,B,∴,∴,∴直线AB的解析式为y=2x+4,设E(m,2m+4),∴G(m,﹣m2﹣2m+4),∵四边形GEOB是平行四边形,∴EG=OB=4,∴﹣m2﹣2m+4﹣2m﹣4=4,∴m=﹣2∴G(﹣2,4).(3)①如图1,由(2)知,直线AB的解析式为y=2x+4,∴设E(a,2a+4),∵直线AC:y=﹣x﹣6,∴F(a,﹣a﹣6),设H(0,p),∵以点A,E,F,H为顶点的四边形是矩形,∵直线AB的解析式为y=2x+4,直线AC:y=﹣x﹣6,∴AB⊥AC,∴EF为对角线,∴EF与AH互相平分,∴(﹣4+0)=(a+a),(﹣4+p)=(2a+4﹣a﹣6),∴a=﹣2,P=﹣1,∴E(﹣2,0).H(0,﹣1);②如图2,由①知,E(﹣2,0),H(0,﹣1),A(﹣4,﹣4),∴EH=,AE=2,设AE交⊙E于G,取EG的中点P,∴PE=,连接PC交⊙E于M,连接EM,∴EM=EH=,∴=,∵=,∴=,∵∠PEM=∠MEA,∴△PEM∽△MEA,∴,∴PM=AM,∴AM+CM的最小值=PC,设点P(p,2p+4),∵E(﹣2,0),∴PE2=(p+2)2+(2p+4)2=5(p+2)2,∵PE=,∴5(p+2)2=,∴p=﹣或p=﹣(由于E(﹣2,0),所以舍去),∴P(﹣,﹣1),∴PC==,即:AM+CM的最小值为.15.如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B (8,0).(1)求二次函数的表达式;(2)求顶点A的坐标及直线AB的表达式;(3)判断△ABO的形状,试说明理由;(4)若点P为⊙O上的动点,且⊙O的半径为2,一动点E从点A出发,以每秒2个单位长度的速度沿线段AP匀速运动到点P,再以每秒1个单位长度的速度沿线段PB 匀速运动到点B后停止运动,求点E的运动时间t的最小值.解:(1)∵二次函数y=ax2+bx+c(a≠0)的图象经过C(2,﹣3),且与x轴交于原点∴c=0,二次函数表达式可设为:y=ax2+bx(a≠0),将C(2,﹣3),B(8,0)代入y=ax2+bx得:,解得:,∴二次函数的表达式为;(2)∵=(x﹣4)2﹣4,∴抛物线的顶点A(4,﹣4),设直线AB的函数表达式为y=kx+m,将A(4,﹣4),B(8,0)代入,得:,解得:,∴直线AB的函数表达式为y=x﹣8;(3)△ABO是等腰直角三角形.方法1:如图1,过点A作AF⊥OB于点F,则F(4,0),∴∠AFO=∠AFB=90°,OF=BF=AF=4,∴△AFO、△AFB∴OA=AB=4,∠OAF=∠BAF=45°,∴∠OAB=90°,∴△ABO是等腰直角三角形.方法2:∵△ABO的三个顶点分别是O(0,0),A(4,﹣4),B(8,0),∴OB=8,OA===,AB===,且满足OB2=OA2+AB2,∴△ABO是等腰直角三角形;(4)如图2,以O为圆心,2为半径作圆,则点P在圆周上,依题意知:动点E的运动时间为t=AP+PB,在OA上取点D,使OD=,连接PD,则在△APO和△PDO中,满足:==2,∠AOP=∠POD,∴△APO∽△PDO,∴==2,从而得:PD=AP,∴t=AP+PB=PD+PB,∴当B、P、D三点共线时,PD+PB取得最小值,过点D作DG⊥OB于点G,由于,且△ABO为等腰直角三角形,则有DG=1,∠DOG=45°∴动点E的运动时间t的最小值为:t=DB===5.。

陕西省2020年中考25题几何探究---“阿氏圆”问题 (含答案)

陕西省2020年中考25题几何探究---“阿氏圆”问题 (含答案)

几何探究型问题(针对第25题)“阿氏圆”问题【问题背景】“PA+k·PB”型的最值问题是近几年中考考查的热点,更是一个难点.当k 的值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k取任意不为1的正数时,此类问题的处理通常以动点P的运动轨迹不同来分类,一般分为两类研究,即点P在直线上运动和点P 在圆上运动.其中点P在圆周上运动的类型称之为“阿氏圆”问题.【模型分析】如图1,⊙O的半径为r,点A,B都在⊙O外,P为⊙O上一动点,已知r=k·OB,连接PA,PB,则当PA+k·PB的值最小时,点P的位置如何确定?如图2,在线段OB上截取OC,使OC=k·r,则可证明△BPO与△PCO相似,即k·PB=PC.故求PA+k·PB的最小值可以转化为PA+PC的最小值,其中A,C为定点,P为动点,当点P,A,C共线时,PA+PC的值最小,如图3.“阿氏圆”模型解题策略:第一步:连接动点与圆心O (一般将含有k 的线段两端点分别与圆心O 相连),即连接OB ,OP ;第二步:计算线段OP 与OB 及OP 与OA 的线段比,找到线段比为k 的情况,如例子中的OPOB=k ;第三步:在OB 上取点C ,使得OC OP =OPOB ;第四步:连接AC ,与⊙O 的交点即为点P . 例题1.如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 的半径为2,P 为圆上一动点,连接AP ,BP ,求AP +12BP 的最小值.解:如答图,连接CP ,在CB 上取点D ,使CD =1,连接AD ,PD .∵CD CP =CP BC =12,∠PCD =∠BCD , ∴△PCD ∽△BCP ,∴PD BP =12,∴PD =12BP ,∴AP +12BP =AP +PD ,∴要使AP +12BP 最小,则AP +PD 最小,当点A ,P ,D 在同一条直线时,AP +PD 最小, 即AP +12BP 的最小值为AD 的长.在Rt △ACD 中,∵CD =1,AC =6, ∴AD =AC 2+CD 2=37,∴AP +12BP 的最小值为37.2.问题提出(1)如图1,已知线段AB 和BC ,AB =2,BC =5,则线段AC 的最小值为______.解题思路当点A 在线段BC 上时,线段AC 有最小值. 【解答】∵当点A 在线段BC 上时,线段AC 有最小值, ∴线段AC 的最小值为5-2=3. 问题探究(2)如图2,已知在扇形COD 中,∠COD =90°,DO =CO =6,A 是OC 的中点,延长OC 到点F ,使CF =OC ,P 是CD ︵上的动点,点B 是OD 上的一点,BD =1.①求证:△OAP ∽△OPF . 【解答】∵A 是OC 的中点,DO =CO =6=OP ,∴OA OP =12.∵CF =OC ,∴OF =2OC =2OP ,∴OP OF =12,∴OA OP =OPOF,且∠AOP =∠POF , ∴△OAP ∽△OPF . ②求BP +2AP 的最小值.【解答】∵△OAP ∽△OPF ,∴AP PF =OP OF =12,∴PF =2AP .∵BP +2AP =BP +PF ,∴当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长. ∵DO =CO =6,BD =1,∴BO =5,OF =12, ∴BF =OB 2+OF 2=13. 问题解决(3)如图3,有一个形状为四边形ABCD 的人工湖,BC =9千米,CD =4千米,∠BCD =150°,现计划在湖中选取一处建造一座假山P ,且BP =3千米,为方便游客观光,从C ,D 分别建小桥PD ,PC .已知建桥PD 每千米的造价是3万元,建桥PC 每千米的造价是1万元,建桥PD 和PC 的总造价是否存在最小值?若存在,请确定点P 的位置,并求出总造价的最小值,若不存在,请说明理由.(桥的宽度忽略不计) 解题思路以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.∵建桥PD 和PC 的总造价为3PD +PC =3PD +3PM =3(PD +PM ), ∴当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值. ∵∠BCD =150°,∴∠DCG =30°. ∵DG ⊥BC ,∴DG =12DC =23(千米),CG =3DG =6(千米),∴MG =BC +CG -BM =9+6-1=14(千米), ∴MD =DG 2+MG 2=413(千米),∴建桥PD 和PC 的总造价的最小值为3×413=1213万元. 作业练习类型三 “阿氏圆”问题7.(2018·西工大附中三模) 问题提出(1)如图1,在△ABC 中,AB =AC ,BD 是AC 边的中线,请用尺规作图作出AB 边的中线CE ,并证明BD =CE ;问题探究(2)如图2,已知点P 是边长为6的正方形ABCD 内部一动点,P A =3,求PC +12PD 的最小值;问题解决(3)如图3,在矩形ABCD 中,AB =18,BC =25,点M 是矩形内部一动点,MA =15,当MC +35MD 最小时,画出点M 的位置,并求出MC +35MD 的最小值.解:(1)如答图1,线段EC 即为所求.证明:∵AB =AC ,AE =EB ,AD =CD ,∴AE =AD , 在△BAD 和△CAE 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AD =AE ,答图1∴△BAD ≌△CAE (SAS),∴BD =CE . (2)如答图2,在AD 上截取AE ,使得AE =32.∵P A 2=9,AE ·AD =32×6=9,∴P A 2=AE ·AD ,∴P A AD =AEP A.∵∠P AE =∠DAP ,∴△P AE ∽△DAP , ∴PE DP =P A DA =12,∴PE =12PD , ∴PC +12PD =PC +PE .∵PC +PE ≥EC ,∴PC +12PD 的最小值即为EC 的长,在Rt △CDE 中,∵∠CDE =90°,CD =6,DE =92,∴EC =62+(92)2=152,∴PC +12PD 的最小值为152.答图(3)如答图3,在AD 上截取AE ,使得AE =9. ∵MA 2=225,AE ·AD =9×25=225, ∴MA 2=AE ·AD ,∴MA AD =AEMA.∵∠MAE =∠DAM ,∴△MAE ∽△DAM , ∴EM MD =MA DA =1525=35,∴ME =35MD , ∴MC +35MD =MC +ME .∵MC +ME ≥EC ,∴MC +35MD 的最小值即为EC 的长.如答图3,以点A 为圆心,AM 长为半径画弧,交EC 于点M ′,点M ′即为所求. 在Rt △CDE 中,∵∠CDE =90°,CD =18,DE =16, ∴EC =162+182=2145, ∴MC +35MD 的最小值为2145.8.(1)如图1,已知正方形ABCD 的边长为4,⊙B 的半径为2,P 是⊙B 上的一个动点,求PD +12PC 的最小值和PD -12PC 的最大值;(2)如图2,已知正方形ABCD 的边长为9,⊙B 的半径为6,P 是⊙B 上的一个动点,那么PD +23PC 的最小值为,PD -23PC 的最大值为(3)如图3,已知菱形ABCD 的边长为4,∠B =60°,⊙B 的半径为2,P 是⊙B 上的一个动点,那么PD +12PC 的最小值为,PD -12PC 的最大值为解:(1)如答图1,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG . ∵PB BG =CBPB=2,∠PBG =∠CBP , ∴△PBG ∽△CBP , ∴PG CP =BG BP =12,∴PG =12PC , ∴PD +12PC =PD +PG .∵PD +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG =42+32=5.∵PD -12PC =PD -PG ≤DG ,∴如答图2,当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为5.答图(2)106,106.【解法提示】如答图3,在BC 上取一点G ,使BG =4,连接PG ,PB ,DG . ∵PB BG =64=32,CB PB =96=32,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =23, ∴PG =23PC ,∴PD +23PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +23PC 的值最小,最小值为DG =52+92=106.∵PD -23PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为106.答图(3)37,37.【解法提示】如答图4,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG ,作DF ⊥BC 交BC 的延长线于点F .∵PB BG =21=2,BC PB =42=2,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =12,∴PG =12PC ,∴PD +12PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG 的长.在Rt △CDF 中,∵∠DCF =60°,CD =4, ∴DF =CD ·sin60°=23,CF =2,∴在Rt △GDF 中,DG =(23)2+52=37. ∴PD +12PC 的最小值为37.∵PD -12PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为37.。

阿波罗尼斯圆及其应用 阿波罗尼斯圆与向量 (解析版)

阿波罗尼斯圆及其应用  阿波罗尼斯圆与向量 (解析版)

阿波罗尼斯圆及其应用阿波罗尼斯圆与向量阿波罗尼斯圆及其应用阿波罗尼斯圆与向量【微点综述】涉及线段定比的有些平面向量题,或是涉及数量积的等式,可以转化成三点共线问题,构造阿波罗尼斯圆,建立平面直角坐标系,利用阿波罗尼斯圆解决问题.【典例刨析】1.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足|c -a |=12,则|a +b -c |+2|c -b |最小值为__________.2.已知BC =6,AC =2AB ,点D 满足AD=2x x +y AB+y 2x +yAC ,设f x ,y =AD ,若f x ,y ≥f x0,y 0 恒成立,则f x 0,y 0 的最大值为______________.3.(2022浙江省宁波市鄞州中学高三其他)已知向量a ,b ,c 满足|a |=12|b|=|c |=1,a ⋅b =1,则c +12a +12|c -b|的取值范围是_______.4.已知等边ΔABC 的边长为2,点P 在线段AC 上,若满足PA ⋅PB-2λ+1=0的点P 恰有两个,则实数λ的取值范围是__________.5.已知A ,B 是平面上两个定点,平面上的动点C ,D 满足|CA |CB=|DA|DB =m ,若对于任意的m ≥3,不等式CD≤k AB 恒成立,则实数k 的最小值为______.6.已知点A (0,1),B (1,0),C (t ,0),点D 是直线AC 上的动点,若|AD |≤2|BD|恒成立,则最小正整数t =__________.【针对训练】7.(2022·广东广州·高二期末)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A 、B 的距离之比为定值λ(λ>0且λ≠1)的点的轨迹是圆”.后来人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆,在平面直角坐标系xOy 中,A -2,0 ,B 2,0 ,点P 满足PAPB=3,则点P 的轨迹方程为__________.(答案写成标准方程),PA ⋅PB的最小值为__________.8.(2022·江苏·高邮一中高二期末)阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期的数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上动点P 到两定点A ,B 的距离之比满足PAPB=t (t >0且t≠1,t 为常数),则P 点的轨迹为圆.已知在平面直角坐标系xOy 中,A (-3,0),B (3,0),动点P 满足PAPB =2,则P 点的轨迹Γ为圆,该圆方程为_________;过点A 的直线交圆Γ于两点C ,D ,且AC =CD ,则CD =_________.9.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k k >0,k ≠1 的点的轨迹是圆,后人将此圆称为阿氏圆.若平面内两定点A 、B 间的距离为4,动点P 满足PAPB=3,则动点P 的轨迹所围成的图形的面积为___________;PA ⋅PB 最大值是___________.10.在平面四边形ABCD 中,∠BAD =90°,AB =2,AD =1.若AB ⋅AC +BA ⋅BC =43CA ⋅CB,则CB+12CD 的最小值为____.11.在ΔABC 中,A =120°,AB =2AC =6,点D 满足AD=x3x +3y AB +2y x +yAC ,则AD 的最小值为______.12.已知圆C 的圆心在直线3x -y =0上,与x 轴正半轴相切,且被直线l :x -y =0截得的弦长为27.(1)求圆C 的方程;(2)设点A 在圆C 上运动,点B 7,6 ,且点M 满足AM =2MB ,记点M 的轨迹为Γ.①求Γ的方程,并说明Γ是什么图形;②试探究:在直线l 上是否存在定点T (异于原点O ),使得对于Γ上任意一点P ,都有PO PT为一常数,若存在,求出所有满足条件的点T 的坐标,若不存在,说明理由.参考答案1.【答案】52【分析】建立坐标系,设A (1,0),B (0,1),D (1,1),设OA =a ,OB =b ,则|a +b -c |+2|c -b|=CD +2BC ,构造相似三角形,设E 1,14,可得ΔAEC ∽ΔACD ,所以|a +b -c |+2|c -b |=CD +2BC =2(BC +CE )≥2BE =52.【详解】如图,A 1,0 ,B 0,1 ,D 1,1 ,设OA =a ,OB =b ,则向量c 满足|c -a |=12,设OC =c ,所以点C为以A 为圆心,以12为半径的圆上的一点,所以|a +b -c |=|OD -OC |=|CD |,同理2|c -b|=2|BC |,取点E 1,14 ,则AE AC =ACAD,又因∠CAE =∠DAC ,所以ΔAEC ∽ΔACD ,所以CE CD=12,即CD =2CE ,所以|a +b -c |+2|c -b|=CD +2BC =2CE +2BC =2BC +CE ,由三角形的三边关系知2BC +CE ≥2BE =212+34 2=2×54=52.故填:52.【点睛】本题考查向量的坐标运算,向量的模,向量模的几何意义,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意构造相似三角形等知识,属于难题.2.【答案】4【分析】将已知AD =2x x +y AB +y 2x +yAC 变形为x x +y 2AB +y x +y 12AC ,设延长AB 至点F ,使得AF =2AB ,取AC 的中点E ,并通过xx +y +y x +y=1得出点D 在EF 上,再通过△AEF ≅△ABC 与已知条件得出f x 0,y 0 =ADmin =AG ,设AB =m ,再通过面积法与正、余弦定理得出AG 即可利用一元二次方程最值与根式性质得出答案.【详解】延长AB 至点F ,使得AF =2AB ,取AC 的中点E ,连接EF ,则AD =2x x +y AB +y 2x +y AC ,=x x +y 2AB+y x +y 12AC,=x x +y AF+y x +yAE ,∵xx +y +y x +y =1,∴点D 在EF 上,过点A 作AG ⊥EF 于点G ,由“边角边”公理可得:△AEF ≅△ABC ,∴EF =BC =6,∵f x ,y =AD,且f x ,y ≥f x 0,y 0 恒成立,∴f x 0,y 0 =ADmin =AG ,设AB =m ,根据面积法知:AG =AE AF sin AEF,=m ⋅2m ⋅sin A6,=m 23sin A ,=m 231-m 2+4m 2-362⋅m ⋅2m 2,=13-916m 2-20 +144≤13×12=4,当且仅当m =25时等号成立,∴f x 0,y 0 max =4,故答案为:4.3.【答案】[3,7]【解析】根据几何关系,设点A ,B ,D 的坐标,点C 在单位圆上,故M =c +12a +12c -b =12EC+BC ,当B ,E ,C 三点共线时,即点C 在C 1处时,取最小值,以及数形结合分析出最大值,计算得到答案.【详解】因为|a |=1,|b |=2,a ⋅b =1,所以‹a ,b ›=π3,设OA =a ,OB =b ,OC =c ,OD =-12a,即A (1,0),B (1,3),D -12,0 ,点C 在单位圆x 2+y 2=1上,因为c +12a +12c -b =OC -OD +12OC -OB =DC +12BC,设|DC |=12|EC|,C (x ,y ),E (m ,n ),即x +12 2+y 2=12(x -m )2+(y -n )2,故E (-2,0),所以M =c +12a +12c -b =12EC+BC ,如图,(1)当B ,E ,C 三点共线,即点C 在C 1处时,取最小值.因为M =c +12a +12c -b =12EC +BC ≥12BE=3,所以M min =3,(2)当C 位于C 2处时,取最大值,M =12(|EC 2|+|C 2B |)=7,因为2(|EC |2+|BC |2)=(2CC 1)2+(EB )2≤(4)2+(23)2=28,即EC 2+BC 2≤14,所以|EC |+|BC |2≤|EC |2+|BC|22≤7,当且仅当|EC |=|BC |取等号,综上,c +12a +12|c-b |∈3,7 .故答案为:3,7 .【点睛】关键点点睛:本题考查向量模的最值问题,主要考查转化分析,数形结合分析,属于中档题型,本题的关键是根据根据条件设出定点和动点的坐标,根据数形结合分析,转化为点C 位置讨论的问题.4.【答案】38<λ≤12.【分析】设PA =x 0≤x ≤2 ,根据PA ⋅PB-2λ+1=0得到关于x 的函数,由题意可得该函数在区间0,2 上有两个不同的零点,然后根据二次函数的相关知识可得实数λ的取值范围.【详解】如图,设PA =x 0≤x ≤2 ,则PC =2-x ,则PB =PA +AB =-x 2AC+AB ,又AC ⋅AB=2×2×cos60°=2,∴PA ⋅PB =-x 2AC ⋅-x 2AC +AB =x 24AC 2-x 2AC⋅AB =x 2-x .∵满足PA ⋅PB-2λ+1=0的点P 恰有两个,∴关于x 的方程x 2-x -2λ+1=0在区间0,2 上有两个不同的实数根.设f x =x 2-x -2λ+1,则函数f x 在区间0,2 上有两个不同的零点,∴Δ=1-4-2λ+1 >0f 0 =-2λ+1≥0f 2 =3-2λ≥00<12<2,解得38<λ≤12.∴实数λ的取值范围是38,12.【点睛】(1)用定义进行向量的数量积运算时,有时要注意选择合适的基底,将所有向量用同一基底表示,然后再根据数量积的运算律求解.(2)对于一元二次方程根的分布问题,可根据“三个二次”间的关系,结合二次函数的图象转化为不等式(组),通过解不等式(组)可得所求.5.【答案】34【分析】建立坐标系,得点C ,D 的轨迹方程,分离参量求范围即可求解【详解】不妨设AB =1,以A 为原点,AB 所在直线为x 轴建立直角坐标系,则A 0,0 ,B 1,0 ,设C x ,y ,∴x 2+y 2x -1 2+y2=m ⇒x -m 2m 2-1 2+y 2=m 2m 2-1 2故动点C ,D 的轨迹为圆,由CD≤k AB 恒成立,则k ≥CD max =2m m 2-1=2m -1m≥34故答案为34【点睛】本题考查圆的轨迹方程,平面问题坐标化的思想,是难题6.【答案】4【解析】设点D x ,y ,根据|AD |≤2|BD|列出关于D x ,y 的关系式,再数形结合分析即可.【详解】设点D x ,y ,因为点D 是直线AC 上的动点,故y -1x =-1t⇒x +ty -t =0.由|AD |≤2|BD |得x 2+y -1 2≤4x -1 2+y 2 ,化简得x -43 2+y +13 2≥89.依题意可知,直线AC 与圆x -43 2+y +13 2=89至多有一个公共点,所以43-43t 1+t 2≥89,解得t ≥2+3或t ≤2- 3.所以最小正整数t =4.故答案为:4【点睛】本题主要考查了直线与圆和向量的综合运用,需要设点的坐标表达所给的信息,再数形结合利用圆心到直线的距离列式求解.属于中档题.7.【答案】 x -522+y 2=94-3【分析】设点P 坐标,然后用直接法可求;根据轨迹方程和数量积的坐标表示对PA ⋅PB 化简,结合轨迹方程可得x 的范围,然后可解.【详解】设P 点坐标为(x ,y ),则由PA PB=3,得(x +2)2+y 2(x -2)2+y2=3,化简得x 2+y 2-5x +4=0,即x -52 2+y 2=94.因为PA =(-2-x ,-y ),PB=(2-x ,-y ),x 2+y 2=5x -4所以PA ⋅PB=(-2-x )(2-x )+y 2=x 2+y 2-4=5x -8因为点P 在圆x -52 2+y 2=94上,故1≤x ≤4所以-3≤PA ⋅PB ≤12,故PA ⋅PB的最小值为-3.故答案为:x -52 2+y 2=94,-38. 【答案】 (x -5)2+y 2=16 26【分析】设P x ,y ,根据PAPB=2可得圆的方程,利用垂径定理可求CD =2 6.【详解】设P x ,y ,则x +3 2+y 2x -32+y2=2,整理得到x 2+y 2-10x +9=0,即(x -5)2+y 2=16.因为AC =CD ,故C 为AD 的中点,过圆心5,0 作AD 的垂线,垂足为M ,则M 为CD 的中点,则AM =32CD ,故64-94CD 2=16-14CD 2,解得CD =26,故答案为:(x -5)2+y 2=16,2 6.9.【答案】12π 24+163【分析】以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,求出阿氏圆方程,可得半径,从而得面积.由P (x ,y ),利用向量数量积的坐标表示求出PA ⋅PB,结合P 在圆上可得最大值.【详解】以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,如图,则A -2,0 ,B 2,0 ,设P x ,y ,PAPB=3,∴x +22+y 2x -2 2+y2=3,得:x 2+y 2-8x +4=0⇒x -4 2+y 2=12,点P 的轨迹为圆(如图),其面积为12π.PA ⋅PB =x 2-4+y 2=OP 2-4,如图当P 位于点D 时,OP 2最大,OP 2最大值为4+23 2=28+163,故PA ⋅PB最大值是24+16 3.故答案为:12π;24+16 3.10.【答案】262【分析】以AB 的中点O 为坐标原点,以AB 方向为x 轴正向,建立如下平面直角坐标系. 设C (x ,y ),根据已知条件可求得C 点在以O 为圆心,2为半径的圆上,取B 1(4,0),可得ΔOBC ~ΔOCB 1,从而有CB 1=2CB ,因此CB +12CD =12(2CB +CD )=12(CB 1+CD ),因此只要CB 1+CD 最小即可.【详解】如图,以AB 的中点O 为坐标原点,以AB 方向为x 轴正向,建立如下平面直角坐标系.则A (-1,0),B (1,0),设C (x ,y ),则AB =(2,0),AC =(x +1,y ),BC=(x -1,y )因为AB ⋅AC +BA ⋅BC =AB ⋅AC +AB ⋅CB =AB ⋅AB =43CA ⋅CB所以AB ⋅AB =43AC ⋅BC ,即:4=43×(x -1)(x +1)+y 2整理得:x 2+y 2=4,所以点C 在以原点为圆心,半径为2的圆上.在x 轴上取B 1(4,0),连接B 1C可得ΔOBC ~ΔOCB 1,所以BC B 1C =OBOC=2,所以B 1C =2BCCB +12CD =12(2CB +CD )=12B 1C +CD由图可得:当B 1,C ,D 三点共线时,即点C 在图中的M 位置时,B 1C +CD 最小.此时CB +12CD 最小为DB 1=12(4+1)2+12=262.故答案为262.【点睛】本题考查平面向量的数量积,考查平面向量的几何应用.解题关键点有二,一是建立坐标系,求出C 点在一个圆上,二是取点B 1,构造出ΔOBC ~ΔOCB 1,于是B 1C =2BC ,问题转化为求CD +CB 1的最小值.11.【答案】33913【分析】令AE =13AB ,AF =2AC ,可得AD =x x +y AE+y x +yAF ,即D 在直线EF 上,从而当AD ⊥EF 时AD最小,结合三角形知识得到结果.【详解】AD =x 3x +3y AB +2y x +y AC =x x +y 13AB+y x +y 2AC,令AE =13AB ,AF =2AC ,则AD =x x +y AE +y x +yAF ,因为xx +y +y x +y=1,所以D 在直线EF 上,从而当AD ⊥EF 时AD最小,在ΔAEF 中,AE =13AB =2,AF =2AC =6,A =120°,由余弦定理得EF =213,又S ΔAEF =12AE ⋅AF ⋅sin A =12EF ⋅AD min ,得AD min =AE ⋅AF sin A EF =2×6×32213=33913.故答案为:33913【点睛】本题综合考查了平面向量与解三角形知识,考查三点共线、余弦定理,三角形面积公式等知识,考查转化能力与计算能力,属于中档题.12.【答案】(1)x -1 2+y -3 2=9;(2)①x -5 2+y -5 2=1,Γ是圆;②存在,D 4910,4910.【分析】(1)设圆心t ,3t ,根据题意,得到半径r =3t ,根据弦长的几何表示,由题中条件,列出方程求解,得出t =±1,从而可得圆心和半径,进而可得出结果;(2)①设M (x ,y ),根据向量的坐标表示,由题中条件,得到x A =-14+3xy A =-12+3y ,代入圆C 的方程,即可得出结果;②假设存在一点D t ,t 满足PO PT=λ(其中λ为常数),设P x ,y ,根据题意,得到x 2+y 2x -t 2+y -t2=λ,再由①,得到x -5 2+y -5 2=1,两式联立化简整理,得到x 10-10λ2+2tλ2 +y 10-10λ2+2tλ2-49+49λ2-2λ2t 2=0,推出10-10λ2+2tλ2=049λ2-2λ2⋅t 2=49 ,求解得出t ,即可得出结果.【详解】(1)设圆心t ,3t ,则由圆与x 轴正半轴相切,可得半径r =3t .∵圆心到直线的距离d =t -3t2=2t ,由7+2t 2=r 2,解得t =±1.故圆心为1,3 或-1,-3 ,半径等于3.∵圆与x 轴正半轴相切∴圆心只能为1,3故圆C 的方程为x -1 2+y -3 2=9;(2)①设M (x ,y ),则:AM =x -x A ,y -y A ,MB=7-x ,6-y ,∴x -x A =14-2x y -y A =12-2y∴x A=-14+3xy A =-12+3y∵点A 在圆C 上运动∴3x -14-1 2+3y -12-3 2=9即:∴3x -15 2+3y -15 2=9∴x -5 2+y -5 2=1所以点M 的轨迹方程为x -5 2+y -5 2=1,它是一个以5,5 为圆心,以1为半径的圆;②假设存在一点D t ,t 满足POPT =λ(其中λ为常数)设P x ,y ,则:x 2+y 2x -t 2+y -t2=λ整理化简得:x 2+y 2=λ2x 2-2tx +t 2+y 2-2ty +t 2 ,∵P 在轨迹Γ上,∴x -5 2+y -5 2=1化简得:x 2+y 2=10x +10y -49,所以10x +10y -49=λ210x +10y -49-2tx -2ty +2t 2整理得x 10-10λ2+2tλ2 +y 10-10λ2+2tλ2 -49+49λ2-2λ2t 2=0∴10-10λ2+2tλ2=0 49λ2-2λ2⋅t2=49 ,解得:t=49 10;∴存在D4910,4910满足题目条件.【点睛】本题主要考查求圆的方程,考查圆中的定点问题,涉及圆的弦长公式等,属于常考题型.。

“阿波罗尼斯圆模型”——中考最值专题(二)

“阿波罗尼斯圆模型”——中考最值专题(二)

最值专题一、【阿氏圆最值】模型识别:问题本质:【例1】1.已知∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点.(1)12AP BP +的最小值为__________;(2)13AP BP +的最小值为 .【例2】 已知:如图1,抛物线y =x 2+bx +c 与x 轴交于点A (-1,0),B (3,0)两点,与y 轴交于点C ,点D 为顶点.(1)求抛物线解析式及点D 的坐标;(2)如图2,E 为OB 的中点,将线段OE 绕点O 顺时针旋转得到OE',旋转角为α(0°<α<90°),连接E'B 、E'C ,当C E B E '+'21取得最小值时,求直线E'B 与抛物线的交点坐标.二、【归于几何模型】(一)“将军饮马”问题:分散化为集中的数学化归思想1. 如图1,将军骑马从A 出发,先到河边a 喝水,再回驻地B ,问将军怎样走路程最短?2. 如图,一位将军骑马从驻地M 出发,先牵马去草地OA 吃草,再牵马去河边OB 喝水,最后回到驻地M ,问:这位将军怎样走路程最短?图1 图23. 如图,在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点, 连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝4.已知点A 是半圆上的一个三等分点,点B 是弧AN 的中点,点P 是半径ON 上的动点, 若⊙O 的半径长为1,则AP+BP 的最小值为__________.5.如图,∠AOB=30°,点M ,N 分别在边OA ,OB 上,且OM=1,ON=3,点P ,Q 分别在边OB ,OA 上,则MP+PQ+QN 的最小值是 .6.如图,抛物线和y轴的交点为A(0,3),M为OA的中点,若有一动点P,自M点处出发,沿直线运动到x 轴上的某点(设为点E),再沿直线运动到该抛物线对称轴直线x=3上的某点(设为点F),最后又沿直线运动到点A,求使点P运动的总路程最短的点E,点F的坐标,并求出这个最短路程的长。

陕西省2020年中考25题几何探究---“阿氏圆”问题(包含答案)

陕西省2020年中考25题几何探究---“阿氏圆”问题(包含答案)

陕西省2020年中考25题几何探究---“阿氏圆”问题(包含答案)几何探究型问题(针对第25题)“阿氏圆”问题【问题背景】“PA+k·PB”型的最值问题是近几年中考考查的热点,更是一个难点.当k 的值为1时,即可转化为“PA+PB”之和最短问题,就可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k取任意不为1的正数时,此类问题的处理通常以动点P的运动轨迹不同来分类,一般分为两类研究,即点P 在直线上运动和点P 在圆上运动.其中点P在圆周上运动的类型称之为“阿氏圆”问题.【模型分析】如图1,⊙O的半径为r,点A,B都在⊙O外,P 为⊙O上一动点,已知r=k·OB,连接PA,PB,则当PA+k·PB的值最小时,点P的位置如何确定?如图2,在线段OB上截取OC,使OC=k·r,则可证明△BPO与△PCO相似,即k·PB=PC.故求PA+k·PB的最小值可以转化为PA+PC的最小值,其中A,C为定点,P为动点,当点P,A,C共线时,PA+PC的值最小,如图3.“阿氏圆”模型解题策略:第一步:连接动点与圆心O (一般将含有k 的线段两端点分别与圆心O 相连),即连接OB ,OP ;第二步:计算线段OP 与OB 及OP 与OA 的线段比,找到线段比为k 的情况,如例子中的OPOB=k ;第三步:在OB 上取点C ,使得OC OP =OPOB ;第四步:连接AC ,与⊙O 的交点即为点P . 例题1.如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 的半径为2,P 为圆上一动点,连接AP ,BP ,求AP +1 2BP 的最小值.解:如答图,连接CP ,在CB 上取点D ,使CD =1,连接AD ,PD .∵CD CP =CP BC =12,∠PCD =∠BCD ,∴△PCD ∽△BCP ,∴PD BP =12,∴PD =12BP ,∴AP +12BP =AP +PD ,∴要使AP +12BP 最小,则AP +PD 最小,当点A ,P ,D 在同一条直线时,AP +PD 最小,即AP +12BP 的最小值为AD 的长.在Rt △ACD 中,∵CD =1,AC =6,∴AD =AC 2+CD 2=37,∴AP +12BP 的最小值为37.2.问题提出(1)如图1,已知线段AB 和BC ,AB =2,BC =5,则线段AC 的最小值为______.解题思路当点A 在线段BC 上时,线段AC 有最小值.【解答】∵当点A 在线段BC 上时,线段AC 有最小值,∴线段AC 的最小值为5-2=3. 问题探究(2)如图2,已知在扇形COD 中,∠COD =90°,DO =CO =6,A 是OC 的中点,延长OC 到点F ,使CF =OC ,P 是CD ︵上的动点,点B 是OD 上的一点,BD =1.①求证:△OAP ∽△OPF . 【解答】∵A 是OC 的中点,DO =CO =6=OP ,∴OA OP =12.∵CF =OC ,∴OF =2OC =2OP ,∴OP OF =12,∴OA OP =OPOF,且∠AOP =∠POF ,∴△OAP ∽△OPF . ②求BP +2AP 的最小值.【解答】∵△OAP ∽△OPF ,∴AP PF =OP OF =12,∴PF =2AP .∵BP +2AP =BP +PF ,∴当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长.∵DO =CO =6,BD =1,∴BO =5,OF =12,∴BF =OB 2+OF 2=13. 问题解决(3)如图3,有一个形状为四边形ABCD 的人工湖,BC =9千米,CD =4千米,∠BCD =150°,现计划在湖中选取一处建造一座假山P ,且BP =3千米,为方便游客观光,从C ,D 分别建小桥PD ,PC .已知建桥PD 每千米的造价是3万元,建桥PC 每千米的造价是1万元,建桥PD 和PC 的总造价是否存在最小值?若存在,请确定点P 的位置,并求出总造价的最小值,若不存在,请说明理由.(桥的宽度忽略不计) 解题思路以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.∵建桥PD 和PC 的总造价为3PD +PC =3PD +3PM =3(PD +PM ),∴当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值.∵∠BCD =150°,∴∠DCG =30°. ∵DG ⊥BC ,∴DG =12DC =23(千米),CG =3DG =6(千米),∴MG =BC +CG -BM =9+6-1=14(千米),∴MD =DG 2+MG 2=413(千米),∴建桥PD 和PC 的总造价的最小值为3×413=1213万元.作业练习类型三“阿氏圆”问题7.(2018·西工大附中三模) 问题提出(1)如图1,在△ABC 中,AB =AC ,BD 是AC 边的中线,请用尺规作图作出AB 边的中线CE ,并证明BD =CE ;问题探究(2)如图2,已知点P 是边长为6的正方形ABCD 内部一动点,PA =3,求PC +12PD 的最小值;问题解决(3)如图3,在矩形ABCD 中,AB =18,BC =25,点M 是矩形内部一动点,MA =15,当MC +35MD 最小时,画出点M 的位置,并求出MC +35MD 的最小值.解:(1)如答图1,线段EC 即为所求.证明:∵AB =AC ,AE =EB ,AD =CD ,∴AE =AD ,在△BAD 和△CAE 中,AB =AC ,∠A =∠A ,AD =AE ,答图1∴△BAD ≌△CAE (SAS),∴BD =CE . (2)如答图2,在AD 上截取AE ,使得AE =32.∵P A 2=9,AE ·AD =32×6=9,∴P A 2=AE ·AD ,∴P A AD =AEP A.∵∠P AE =∠DAP ,∴△P AE ∽△DAP ,∴PE DP =P A DA =12,∴PE =12PD ,∴PC +12PD =PC +PE .∵PC +PE ≥EC ,∴PC +12PD 的最小值即为EC 的长,在Rt △CDE 中,∵∠CDE =90°,CD =6,DE =92,∴EC =62+(92)2=152,∴PC +12PD 的最小值为152.答图(3)如答图3,在AD 上截取AE ,使得AE =9. ∵MA 2=225,AE ·AD =9×25=225,∴MA 2=AE ·AD ,∴MA AD =AE MA.∵∠MAE =∠DAM ,∴△MAE ∽△DAM ,∴EM MD =MA DA =1525=35,∴ME =35MD ,∴MC +35MD =MC +ME .∵MC +ME ≥EC ,∴MC +35MD 的最小值即为EC 的长.如答图3,以点A 为圆心,AM 长为半径画弧,交EC 于点M ′,点M ′即为所求.在Rt △CDE 中,∵∠CDE =90°,CD =18,DE =16,∴EC =162+182=2145,∴MC +35MD 的最小值为2145.8.(1)如图1,已知正方形ABCD 的边长为4,⊙B 的半径为2,P 是⊙B 上的一个动点,求PD +12PC 的最小值和PD -1 2PC 的最大值;(2)如图2,已知正方形ABCD 的边长为9,⊙B 的半径为6,P 是⊙B 上的一个动点,那么PD +23PC 的最小值为,PD -23PC 的最大值为(3)如图3,已知菱形ABCD 的边长为4,∠B =60°,⊙B 的半径为2,P 是⊙B 上的一个动点,那么PD +12PC 的最小值为,PD -12PC 的最大值为解:(1)如答图1,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG . ∵PB BG =CBPB=2,∠PBG =∠CBP ,∴△PBG ∽△CBP ,∴PG CP =BG BP =12,∴PG =12PC ,∴PD +12PC =PD +PG .∵PD +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG =42+32=5.∵PD -12PC =PD -PG ≤DG ,∴如答图2,当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为5.答图(2)106,106.【解法提示】如答图3,在BC 上取一点G ,使BG =4,连接PG ,PB ,DG . ∵PB BG =64=32,CB PB =96=32,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP ,∴PG CP =BG BP =23,∴PG =23PC ,∴PD +23PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +23PC 的值最小,最小值为DG =52+92=106.∵PD -23PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为106.答图(3)37,37.【解法提示】如答图4,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG ,作DF ⊥BC 交BC 的延长线于点F .∵PB BG =21=2,BC PB =42=2,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP ,∴PG CP =BG BP =12,∴PG =12PC ,∴PD +12PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG 的长.在Rt △CDF 中,∵∠DCF =60°,CD =4,∴DF =CD ·sin60°=23,CF =2,∴在Rt △GDF 中,DG =(23)2+52=37. ∴PD +12PC 的最小值为37.∵PD -12PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -1 2PC 的值最大,最大值为37.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。

阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。

【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。

即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。

【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。

但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。

知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。

即“两腰之比”等于“两底边之比”。

其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。

【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。

①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。

② 由上述过程,我们可以更进一步推导出阿氏圆的直径,设定点间距离AB=a , ∵k MBMA=, ∴kMAMB =∵MB - MA = a ∴a MA kMA=- ∴.1kakMA -=同理,∵k NBNA= ∴kNANB =∵NA+NB=a ∴kNANA +=a∴1+=k akNA ∴直径|1|2112k akk ak k ak NA MA MN -=++-=+=。

证明方法二:高中解析几何建立直角坐标系,如下图所示以定直线AB 所在直线为x 轴,点A 为坐标原点,建立平面直角坐标系,设AB=a ,则A(0,0), B(a,0),设P(x,y),则k PBPA=,即 k ya x y x =+-+2222)(,两边平方,整理得:02)1()1(2222222=+--+-a k x ak y k x k ,又k ≠1,配方得:22222222)1()1(-=+--k a k y k ak x由圆的方程可知:此方程表示是以)0,1(22-k ak 为圆心,|1|2-k ak 为半径的圆。

【实际应用】阿氏圆常用于解决形如:)1(≠⋅+k PB k PA 类线段最值问题:其中P 是动点,A ,B 是定点,且动点P 在阿氏圆上运动(这和我上一讲中的P 点在直线上动产生的胡不归有本质区别)。

先看如下例题,然后我们总结出更加一般的解题步骤,使这种题变成套路题,直接秒杀。

【例题1】如下图1,已知圆O 的半径r=4,A(6,0),B 是圆上一动,在x 轴上取一点M ,使得△OBM ∽△OAB 。

(1)求M 点的坐标并求出相似比;(2)在(1)的条件下,若C 点的坐标为(0,5),求AB BC 32+的最小值。

分析:(1)△OBM 与△OAB 中有公共角∠BOA ,此题由于B 点动导致两个三角形中的其他角都在动,故从角角相等去判定相似有难度,但题目中给出的已知条件都是边,所以从边对应成比例及夹角相等去判定会简单一些。

在x 轴上选择点M ,使得OBOMOA OB =,且∠BOA 是公共角,所以此时△OBM ∽△OAB 。

∴OB ²=OA ×OM (即构造共边共角模型:共边的平方等于从共顶点出发两线段的乘积) ∴4²=6×OM ,∴OM=38,∴M 坐标为)0,38(,此时相似比为:32===AB BM OB OM OA OB . (2) 由(1)中相似知:32=AB BM ,∴BM AB =32∴BM BC AB BC +=+32,由两点之间线段最短可知: 317)38(52222=+=+==+OM OC CM BM BC 。

∴AB BC 32+的最小值为317。

【方法总结】从上面例1中我们可以得到)1(≠⋅+k PB k PA 类问题更加一般性的解题步骤:运用:动点在圆上运动,两线段(带系数)相加求最小值。

形如:AB+k ×BP 的最小值 (k 为系数),原理:构造共边共角相似,转移带系数的边,利用两点间线段最短求最小值, 解题步骤:Step1: 计算出动点所在圆的半径r ;Step2:在题中寻找:k r=定边(相似比),若找不到,则需要将系数k 提到括号外边再寻找相似比;比如PB PA 53+,找不到相似比为3:5时,需要经过如下变形: )35(5353PB PA PB PA +=+,对带系数的线段PA 去寻找相似比为5:3。

Step3:利用共边共角模型,在第2步:定边所在的三角形中构造共边共角相似模型,此时定边与动点构成一个三角形(此步非常重要,是核心);Step4:利用相似转移带系数的边; Step5:由两点间线段最短求最小值。

【例题2】已知如下图1所示,圆O 的半径r=4,A(6,0),C(0,5),B 为圆上一动点。

求BC AB 54+的最小值。

分析:按照上述的解题步骤,此题变成了套路题: Step1:计算出动点所在圆的半径,题目直接已知r=4;Step2:在题中寻找:54=定边r ,此题中的定边有:OA=6,OC=5,显然选择定边为OC ; Step3:在OC 边所在的三角形中构造共边共角相似模型,如上图2: 在y 轴上选取点M ,并使得:OBOMOC OB =,且有∠COB 是公共角, ∴△OMB ∽△OBC ,由共边共角模型知道:OM OC OB ⋅=2(共边的平方等于从共顶点出发两条线段的乘积),∴16=5·OM ,∴OM=516。

Step4:利用相似转移带系数的边; 此时由构造出的△OMB ∽△OBC 可知:54==OC OB BC BM ,∴BC BM 54=。

Step5:由两点间线段最短求最小值。

∴BC AB 54+=BM AB +,由两点之间线段最短可知,其最小值为AM : BM AB +.534)516(62222=+=+==OM AO AM【例题3】如下图1,已知B(12,0),A(0,12),D(10,0),C 为OA 的中点,P 为圆O 上一动点,求PD PC 21+的最小值。

分析:按照上述的解题步骤,此题变成了套路题:Step1:计算出动点所在圆的半径,题目直接已知r=OB=12;Step2:在题中寻找:21=定边r ,此题中的定边有:OA=OB=12,OC=AC=6,显然没有21=定边r ,所以必须要提取21出来,∴)2(2121PD PC PD PC +=+,再去寻找:12=定边r ,显然OC=6,故应选择定边OC. Step3:在OC 边所在的三角形中构造共边共角相似模型,如上图2:在y 轴上选取点M ,并使得:OPOCOM OP =,且有∠MOP 是公共角, ∴△OCP ∽△OPM ,由共边共角模型知道:OM OC OP ⋅=2(共边的平方等于从共顶点出发两条线段的乘积),∴12²=6·OM ,∴OM=24。

Step4:利用相似转移带系数的边; 此时由构造出的△OCP ∽△OPM 可知:12===PC PM OP OM OC OP ,∴PC PM 2=。

Step5:由两点间线段最短求最小值。

∴)(21)2(2121PD PM PD PC PD PC +=+=+,由两点之间线段最短可知,其最小值为: .1326212121)(2122=⨯=+==+OM OD MD PD PM【课后演练】1、如图,直角坐标系中,AB=5,AO=3,圆O 的半径为2,P 为圆O 上一个动点, (1) 求PB PA 21+的最小值是__________. (2) 求PB PA +32的最小值是_________.【答案】(1)10 (2)3104 2、如图,A(-1,0),B(1,0),C(-1,1), D (1,3),P 点在以AB 为直径的圆上,则PD PC 2 的最小值是__________。

【答案】2343、如图,在扇形COD 中,OC=4,OA=2,OB=3,∠COD=120°,P 是弧BC 上一动点,不与D 、C 重合,则2PA+PB 的最小值是_______。

【答案】974、如图,等边△ABC 的边长为6,内切圆记为圆O ,P 是圆O 上一动点,则2PC+PB 的最小值为_______。

【答案】735、如图,在等边△ABC 中,AB=12,圆C 的半径为6,P 是圆上一动点,连接AP ,BP ,则BP AP 21 的最小值是________。

【答案】1336、如图1,抛物线)0(2)2(2≠+++=a a x a ax y 与x 轴交于A(4,0),与y 轴交于点B ,在x 轴上有一动点P(m ,0),过点P 作x 轴垂线交AB 于N ,交抛物线于点M 。

(1) 求a 的值;(2) 若PN:MN=1:3,求m 的值;(3) 如图(2),在(2)的条件下,设动点P 对应的位置是P 1,将线段OP 1绕点O 逆时钟旋转得到OP 2,旋转角度为α,且0<α<90°,连接AP 2、BP 2,求2223BP AP +的最小值。

【答案】(1) 223212++-=x x y (2) 3=m(3) 21457、如图1,在平面直角坐标系中,点M 的坐标为(3,0),以点M 为圆心,5为半径的圆与坐标轴分别交于点A 、B 、C 、D .(1)△AOD 与△COB 相似吗?为什么?(2)如图2,弦DE 交x 轴于点P ,且BP :DP=3:2,求tan△EDA ;(3)如图3,过点D 作△M 的切线,交x 轴于点Q .点G 是△M 上的动点,问比值 GQGO 是否变化?若不变,请求出比值;若变化,请说明理由.【答案】(1)相似 (2)311(3)不变,其值为53(本质为阿氏圆,QO 为定直线,G 为动点53GQ GO)。

相关文档
最新文档