北理版矩阵分析课件
矩阵分析第5章课件

第五章 向量与矩阵范数 前言
• 向量与矩阵范数是向量与矩阵的一个重要数 字特征---用它可以建立向量集或矩阵集的 拓扑结构,从而便于研究向量或矩阵序列,向 量或矩阵级数的收敛性质.因此,这一章的理 论在数值分析及其它领域中十分有用. • 本章是本课程重点内容之一.所有5节都要认 真学好.最后一节(矩阵幂级数)是研究矩阵 函数的重要工具.
Holder不等式与Minkowski不等式
• 下面两个不等式对本章的理论推导十分有用 • Holder不等式:对任意给定p>1和q=p/(p-1) (>1,即(1/p)+(1/q)=1)及任意ak,bk0成立 k=1nakbk (k=1nakp)1/p(k=1nbkp)1/p. (C-S不等式为其(p=2时)特例) • Minkowski不等式:对任意给定p1成立 (k=1n|ak+bk|p)1/p (k=1n|ak|p)1/p+(k=1n|bk|p)1/p
ACmn 定义 ‖A‖= maxi,k|aik| 则‖A‖显然是向量范数(向量的无穷大范数),但它 不是矩阵范数,反例如下:
1 1 1 1 1 2 A 1 1 , B 0 1 , AB 1 2
矩阵分析 - 北京理工大学研究生院

课程名称:矩阵分析一、课程编码:1700002课内学时: 32 学分: 2二、适用学科专业:计算机、通信、软件、宇航、光电、生命科学等工科研究生专业三、先修课程:线性代数,高等数学四、教学目标通过本课程的学习,要使学生掌握线性空间、线性变换、Jordan标准形,及各种矩阵分解如QR分解、奇异值分解等,正规矩阵的结构、向量范数和矩阵范数、矩阵函数,广义逆矩阵、Kronecker积等概念和理论方法,提升研究生的数学基础,更好地掌握矩阵理论,在今后的专业研究或工作领域中熟练应用相关的矩阵分析技巧与方法,让科研结果有严格的数学理论依据。
五、教学方式教师授课六、主要内容及学时分配1、线性空间和线性变换(5学时)1.1线性空间的概念、基、维数、基变换与坐标变换1.2子空间、线性变换1.3线性变换的矩阵、特征值与特征向量、矩阵的可对角化条件2、λ-矩阵与矩阵的Jordan标准形(4学时)2.1 λ-矩阵及Smith标准形2.2 初等因子与相似条件2.3 Jordan标准形及应用;3、内积空间、正规矩阵、Hermite 矩阵(6学时)3.1 欧式空间、酉空间3.2标准正交基、Schmidt方法3.3酉变换、正交变换3.4幂等矩阵、正交投影3.5正规矩阵、Schur 引理3.6 Hermite 矩阵、Hermite 二次齐式3.7.正定二次齐式、正定Hermite 矩阵3.8 Hermite 矩阵偶在复相合下的标准形4、矩阵分解(4学时)4.1矩阵的满秩分解4.2矩阵的正交三角分解(UR、QR分解)4.3矩阵的奇异值分解4.4矩阵的极分解4.5矩阵的谱分解5、范数、序列、级数(4学时)5.1向量范数5.2矩阵范数5.3诱导范数(算子范数)5.4矩阵序列与极限5.5矩阵幂级数6、矩阵函数(4学时)6.1矩阵多项式、最小多项式6.2矩阵函数及其Jordan表示6.3矩阵函数的多项式表示6.4矩阵函数的幂级数表示6.5矩阵指数函数与矩阵三角函数7、函数矩阵与矩阵微分方程(2学时)7.1 函数矩阵对纯量的导数与积分7.2 函数向量的线性相关性7.3 矩阵微分方程(t)()() dXA t X t dt=7.4 线性向量微分方程(t)()()() dxA t x t f t dt=+8、矩阵的广义逆(3学时)8.1 广义逆矩阵8.2 伪逆矩阵8.3 广义逆与线性方程组课时分配说明:第一章的课时根据学生的数学基础情况可以调整,最多5学时,如学生线性代数的基础普遍较高,可以分配3学时,剩余2学时可在最后讲解第九章部分内容(Kronecker 积的概念和基本性质)。
北理工高等代数课件第三次课

特征值与特征向量的求解方法
• 对于每一个特征值λi,求出齐次线性方程组(λiE-A)X=0的一个基础解系,该基础解系即为对应于特征值λi的全 部特征向量(可能有多个)。
特征值与特征向量的求解方法
01
注意事项
02 在求解过程中,需要注意计算的正确性和精度。
03 当方阵A的阶数较高时,计算量较大,需要采用 一些简化的方法或技巧。
线性变换的定义和性质
• 定义:设$V_n, V_m$分别是数域$P$上的 $n$维、$m$维向量空间,若映射 $\sigma: V_n \rightarrow V_m$满足: 对任意$\alpha, \beta \in V_n, k \in P$, 有$\sigma(\alpha + \beta) = \sigma(\alpha) + \sigma(\beta), \sigma(k\alpha) = k\sigma(\alpha)$, 则称$\sigma$为从$V_n$到$V_m$的一个 线性变换。
线性变换的定义和性质
零变换与恒等变换
若对任意$alpha in V_n$,都有$sigma(alpha) = mathbf{0}$,则称$sigma$为零变换;若对任意$alpha in V_n$,都有$sigma(alpha) = alpha$,则称$sigma$ 为恒等变换。
线性变换的核与像
设$sigma: V_n rightarrow V_m$是一个线性变换,称集 合${alpha | alpha in V_n, sigma(alpha) = mathbf{0}}$ 为$sigma$的核,记作$text{Ker}(sigma)$;称集合 ${beta | beta = sigma(alpha), alpha in V_n}$为 $sigma$的像,记作$text{Im}(sigma)$。
《矩阵分析》

所以,V1 是向量空间。
(2) V2 不是向量空间。
因为若 1,a2 , ,an T V2 , 则2 2,2a2 , ,2an T V2 .
数乘运算:设 k为数域 p 中的数,向量
ka1,ka2,L ,kan 称为向量 a1,a2,L ,an
与数 k 的数量乘积。记为 k
数乘运算满足下列四条规则:
50 1 60 k(l ) (kl )
70 k l k l
80 k( ) k k , 是n维向量,k, l P
则与的和 为
(a b ,a b , ,a b )
1
1
2
2
n
n
负向量:向量 (a ,a , ,a )
1
2
n
称为向量 的负向量
向量的差 ( )
加法运算满足性质
10 20 ( ) ( ) 30 0
40 0
注: 零向量和负向量是唯一的
满足: , V
(4) 对于 V , V ,使
在集合V的元素与数域F之间还定义一种运算,叫乘法.即对于
V中任一元素 与数域F中任一数k,在V中有唯一 与它们对应,称为k与 的数乘积,记为 k 且满足:
(1)1 (2)k(l ) (kl) (3)(k l) k l (4)k( ) k k
问题3:全体正实数R ,加法“”和数乘“”分别
定义为:a,b R , k R, R是否为R上的线性空间?
a b ab
k
a
ak
,
例:设A Rmn , 记 N ( A) {x Rn , Ax 0},则N ( A)为R上的线性空间. 称其为矩阵A的核或零空间。
北理版矩阵分析课件 共101页

1 ,2 , ,n 1 ,2 ,n P
定理:过渡矩阵 P 是可逆的。
任取 V ,设 在两组基下的坐标分别为
x1,x2,
,xn
T
与
y1,y2,
,yn
T
,那么我们有:
x1 y1
x
2
P
y
2
的为极向大量线 组性无关组,span1,2, ,s的维数即
的秩。
1,2, ,s
例 4 实数域 R 上的线性空间 R n n 中全体上三角矩
阵集合,全体下三角矩阵集合,全体对称矩阵集合,
全体反对称矩阵集合分别都构成 R n n 的子空间,
问题:这几个子空间的基底与维数分别时什么?
(2) 加法结合律 ( ) ( )
(3) 零元素 在 V 中存在一个元素 0 ,使得对
于任意的 V 都有
0
(4) 负元素
对于 V 中的任意元素 都存
在一个元素 使得
0
(5) 1
(6) k(l)(kl)
(7) (kl)kl
与向量组
(0,1,1),(1,0,1),(1,1,0)
都是 R 3 的基。R 3 是3维线性空间。
例 2 实数域 R 上的线性空间R 2 2 中的向量组
0 1
1 1,1 1
10,10
1 1,1 1
1 0
与向量组
1 0
0 0,10
例 4 R 表示实数域 R 上的全体无限序列组成的
的集合。即
R [a1,a2,a3,]iai 1,F 2,,3,
在 R 中定义加法与数乘:
矩阵分析课件

的次数低。
定理 2.1.4 任意一个非零的n阶 矩阵 A
都等价于一个对角矩阵,即
A( )
d1( )
参照例 2.1.2 的方法可把二阶矩阵用初等变换化某一
个元素成常数。
1
A 0
0
1 C2C3 0
0
1 C3 C2 0
0
0
3 2 2 4 3 2
0
3 2 1
4 3 2
0
3 2 2 4 3 2
0
2 1
0
0
0
2
2 1
4 3 2
0
1
0
2
2
3
2 5
3
然后用初等变换把公因子 所在的行、列的
其余元素均化为零。
A( )
2 3
2
2
3
5
23r1
r2
0
2 5
3
(
2
10
3)
( 5)C1C2
0
0
(
2
10
3)
3
3C2 0
0 ( 2 10 3)
例 2.1.2 用初等变换把 矩阵
1 2
A( )
【证明】必要性:设 A()可逆,在式(2.1.1)
的两边求行列式得
A( ) B( ) 1
(2.1.2)
因为 A( ) 和 B( ) 都是 的多项式,所以根
据式(2.1.2)推知,A( ) 和 B( ) 都是零次多
项式,此即 A( ) 是非零的常数.
《矩阵分析》课件

Gauss消元法原理
LU分解求解线性方程组
通过行变换将矩阵化为上三角矩阵, 从而解线性方程组。
将Ax=b转化为LUx=b,通过前向替 换和后向替换求解。
LU分解定义
将矩阵分解为一个下三角矩阵L和一个 上三角矩阵U的乘积。
QR分解原理及实现
QR分解定义
将矩阵分解为一个正交矩阵Q和 一个上三角矩阵R的乘积。
Jordan标准型及其性质
Jordan标准型定义: 设A是n阶方阵,如果 存在一个可逆矩阵P, 使得P^(-1)AP为 Jordan矩阵,则称A 可以相似对角化为 Jordan标准型。
Jordan标准型的性质
Jordan标准型是唯一 的,即对于给定的方 阵A,其Jordan标准 型是唯一的。
Jordan标准型中的每 个Jordan块对应A的 一个特征值。
非零行的首非零元所在列在上一行的 首非零元所在列的右边。
同一行的所有非零元均在首非零元的 右边。
线性无关组与基础解系
线性无关组:一组向量线性无关当且仅当它们不 能由其中的部分向量线性表示出来。换句话说, 只有当这组向量中任何一个向量都不能由其余向 量线性表示时,这组向量才是线性无关的。
基础解系中的解向量线性无关。
初等变换和行阶梯形式
初等变换:对矩阵进行以下三种变换称为初等变 换 对调两行(列)。
以数k≠0乘某一行(列)中的所有元。
初等变换和到另一行(列)的对应元上去。
02
行阶梯形式:一个矩阵经过初等行变换可以化为行阶梯形式,
其特点是
非零行在零行的上面。
03
初等变换和行阶梯形式
方阵
行数和列数相等的矩阵称为方阵。
01
对角矩阵
除主对角线外的元素全为零的方阵称 为对角矩阵。
2024版第5章矩阵分析ppt课件

矩阵函数以及矩阵微分方程等问题时,都可以利用若尔当标准型来简化
计算。
05
二次型及其标准型
二次型定义及性质
二次型定义
对称性
线性变换下的不变性
二次型的值
二次型是n个变量的二次多项式, 其一般形式为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n}sum_{ j=1}^{n} a_{ij}x_ix_j$,其中$a_{ij}$为常 数,且$a_{ij} = a_{ ji}$。
若尔当标准型简介
01
若尔当标准型定义
对于任意一个n阶方阵A,都存在一个可逆矩阵P,使得$P^{-1}AP=J$
为若尔当标准型,其中J由若干个若尔当块组成。
02
若尔当块
一个若尔当块是一个上三角矩阵,它的对角线上的元素相等,且对角线
上方的元素或者是1,或者是0。
03
若尔当标准型的应用
若尔当标准型在矩阵分析中有着广泛的应用,例如在求解矩阵的高次幂、
矩阵性质总结
结合律 $(AB)C = A(BC)$。
数乘结合律 $(kA)(lB) = kl(AB)$。
分配律
$(A + B)C = AC + BC, C(A + B) = CA + CB$。
数乘分配律
$(k + l)A = kA + lA, k(A + B) = kA + kB$。
02
矩阵变换与等价类
求解过程
先求出矩阵A的特征值,然后将其代 入(A-λE)X=0,解出对应的特征向量。
特征值和特征向量在矩阵分析中的应用
判断矩阵是否可对角化
如果矩阵A有n个线性无关的特征向量,则A可对角化。
矩阵分析_第一章 北京理工大学

(5)
1
(6)
(7)
k (l ) (kl ) (k l ) k l
(8)
k ( ) k k
V中的元素称 为向量
称这样的 V 为数域
F 上的线性空间。
R
例 1 全体实函数集合 R 构成实数域 线性空间。 按函数的加法和数乘函数
R上的
例 2 复数域 C上的全体 m n 型矩阵构成 的集合为 C上的线性空间。
A线性表示, 且表示式是唯一的.
最大(线性)无关向量组
定义3 设有向量组A,如果在A中能选出r个向量
A0 : 1 , 2 ,, r,满足 (1)向量组 A0 : 1 , 2 ,, r 线性无关; (2)向量组A中任意r 1个向量(如果A中有
r 1个向量的话)都线性相关, 那末称向量组A0是
定理:过渡矩阵
P 是可逆的。
提示PX=0 只有零解
任取
V
,设 在两组基下的坐标分别为
T
x1 , x2 ,, xn
与
y1 , y2 ,, yn ,那么我们有:
T
x1 x 2 (1 , 2 , , n ) xn y1 y1 y y 2 ( , , , ) P 2 ( 1 , 2 , , n ) 1 2 n yn yn
按矩阵的加法和数乘矩阵
ห้องสมุดไป่ตู้
例 3 实数域 R 上全体次数小于或等于 n 的多项 式集合 R[ x ]n 构成实数域 R上的线性空间 例 4 全体正的实数 R 在下面的加法与数乘的 定义下也构成线性空间:
a b : ab, a , b R k a : a , a , k R
矩阵分析_第三章 北京理工大学

(4) ( , ki i ) ki ( , i )
i 1 i 1
t
酉空间的性质:
(1) ( , k ) k ( , ), (k , ) k ( , ) (2) ( , ) ( , ) ( , ) (3) ( ki i , ) ki ( i , )
b
2
a
f ( x) d ( x)
b
2
a
g ( x) d ( x)
定义:设 V 为欧氏空间,两个非零向量 , 的夹角定义为
, : arccos
于是有
( , )
2
0 ,
定理:
,
2
( , ) 0
因此我们引入下面的概念; 定义:在酉空间 V 中,如果 称 与 正交。
(1) ( , ) ( , ) (2) (k , ) k ( , ) (3) ( , ) ( , ) ( , ) (4) ( , ) 0
k 这里 , , 是 V 中任意向量, 为任意复数
,只有当 0 时 ( , ) 0 ,我们称带有 这样内积的 n 维线性空间 V 为酉空间。 欧氏空间与酉空间通称为内积空间。
1 2i 3i 6 1 2i (2) 9 1 i 3i 1 i 7
1 2i 3i 1 2i 3i 6 6 1 2i 1 2i 9 1 i 9 1 i 3i 1 i 7 3i 1 i 7
n
2
维线性空间
n n
酉空间。
内积空间的基本性质:
欧氏空间的性质:
矩阵分析PPT课件

例2引出的一些结论
• 在R2中至少可定义两个不同的内积.
• 欧氏空间是由实线性空间连同内积一起定义的, 同一实线性空间连同不同内积会定义不同的欧 氏空间.因此,用标准内积和例2的内积对R2能 定义出两个不同的欧氏空间.
• 这两个不同内积的确定义了两个不同欧氏空间. 例如,同一向量a=(1,0)T在标准内积下的长度 是(a,a)1/2=1;而在例2的内积下的长度是:
数学的重要性
① 新世纪国家间的竞争主要是经济竞争。但归 根结底是人才的竞争。人才培养的关键是素质 教育。素质教育包括修养、品质、知识、技能 等各个方面。数学教育在素质教育中占据重要 地位。
② 当今社会正日益数学化,数学是高科技的基 础。
数学在素质教育中的重要地位
• 数学授人以能力,数学训练能使人变聪明.
tr(k1A+k2B)=i (k1aii+k2bA+k2trB
欧氏空间例3 (例3.1.3 p.113)
A,BRmn={A=(aij)|aijR,i=1,…m,j=1,…,n}. 定义内积:(A,B)=tr(ATB)=ijaijbij.
1阶方阵
(k,)=TG(k)=kTG=k(,), (+,)=TG(+)=TG+TG=(,)+(,),
TG(b1
2 b2)1
1a1 1a2
(b1
b2)2aa11aa22
2 a 1 b 1 a 1 b 2 a 2 b 1 a 2 b 2
(a,a)1/2=(2+0+0+0)1/2=21/2,
二者不相同.
方阵A=(aij)Cnn,A的迹定义为其所有对角元 之和:
矩阵分析课件

初等变换及其性质
初等行变换
01
对矩阵进行某行乘以非零常数、交换两行、某行加上另一行的
若干倍的操作。
初等列变换
02
对矩阵进行某列乘以非零常数、交换两列、某列加上另一列的
若干倍的操作。
初等变换的性质
03
不改变矩阵的秩,且任意多次初等变换可用一个初等变换表示
。
矩阵等价性判断方法
1 2
矩阵等价的定义
若两个矩阵经过有限次初等变换可以相互转化, 则称这两个矩阵等价。
对角化条件及判别方法
对角化条件
n阶方阵A可对角化的充分必要条件是A有n个线性无关的特征向量。
判别方法
计算A的特征多项式,求出全部特征值。对于每个特征值,求解(A-λE)x=0得到对应的特征向量。如果所有特征 向量线性无关,则A可对角化。
应用案例:动力学系统稳定性分析
01
系统稳定性定义
动力学系统的稳定性是指系统在受到微小扰动后,能否恢复到原来的平
06
CATALOGUE
矩阵函数与微分运算
常见矩阵函数类型及性质介绍
指数函数
矩阵指数函数具有类似于标量指数函数的性质, 如可微性、可积性等。
三角函数
矩阵三角函数与标量三角函数有类似的性质,如 周期性、奇偶性等。
ABCD
对数函数
矩阵对数函数在某些条件下可以定义为矩阵指数 函数的反函数,具有一些独特的性质。
标准型转化过程
通过正交变换或配方法,可以将二次型转化为标准型,即$f = lambda_1y_1^2 + lambda_2y_2^2 + ... + lambda_ny_n^2$,其中$lambda_i$为特征值。
正定、负定和半正定矩阵判别方法
北理版矩阵分析课件

1 0
1 0
,
1 1
1 0
,
1 1
1 1
是其两组基,求向量 坐标。
A
1 3
2 4 在这两组基下的
解:设向量 A 在第一组基下的坐标为 ( x1, x2 , x3, x4 )T
于是可得
1 2 0 1 1 0 3 4 x1 1 1 x2 1 1
1 1 1 1 x3 0 1 x4 1 0
解得
x1
7, 3
求 V1 V2 、V1 V2 的基与维数。
第一章 第一节 函数
解: 设 V1 V2 ,则 V1, V2
所以可令 k11 k22 = l11 l22
故
k11 k22 l11 l22
这是关于 k1, k2 , l1, l2 的齐次方程组,即
k1
(1 , 2
,
1,
2
)
注意: 通过上面的例子可以看出线性空间的基底并不 唯一,但是维数是唯一确定的。利用维数的定义线性 空间可以分为有限维线性空间和无限维线性空间。目 前,我们主要讨论有限维的线性空间。
例 4 在4维线性空间 R22 中,向量组
0 1
1 1
,
1 1
0 1
,
1 0
1 1
,
1 1
1 0
与向量组
1 0
0 0
,
组互不相同的实数。
例 2 实数域 R 上的线性空间 RR 中,函数组
x1 , x2 , , xn
是一组线性无关的函数,其中 1,2 , ,n为一
组互不相同的实数。
例 3 实数域 R 上的线性空间 RR 中,函数组
1,cos x,cos2x,,cosnx
矩阵分析_第二章 北京理工大学

要(2)式成立,取
Q0 D0 , Q1 D1 AQ0 , Q2 D2 AQ1 , , Qk Dk AQk 1 , , Qm 1 Dm 1 AQm 2 ,U 0 Dm AQm 1
定理 A ~ B E A E B 的证明
0 A2 ( ) 0
0 0 A3 ( )
对于 A3 ( ) ,其初等因子为 , 1, 1 由上面的定理可知 A( ) 的初等因子为
, , , 1, 1, 1
的秩为4,故
因为
A( )
A( )
的不变因子为
d 4 ( 1)( 1), d 3 ( 1), d 2 , d1 1
1 0 0, D3 ( ) 1 1
D3 ( ) 1 D2 ( ) 1, D1 ( ) 1
1 0 0 1 D4 ( ) 0 0
5
4 3
0 0 1
4
2
3
2
2 3 4 5
d1 ( ) 1, d2 ( ) 1, d3 ( ) 1 4 3 2 d 4 ( ) 2 3 4 5
例 如果 5 6 矩阵 A( ) 的秩为4,其初等因
子为 , , , 1,( 1) ,( 1) ,( i )
2 2 3 3
( i ) 求 A( ) 的Smith标准形。
3
解:首先求出 A( ) 的不变因子
d 4 ( 1) ( i ) ( i )
E U ( ) P ( E A)V 1 ( ) R( ) [( E A)Q( ) U 0 ]P ( E A)V 1 ( ) R( ) U 0 P ( E A)[Q( ) P V ( ) R( )]
《矩阵分析》课件

行列式的计算方法
代数余子式法
01
利用代数余子式展开行列式,将行列式化为三角形或对角线形
式,从而简化计算。
递推法
02
根据行列式的性质和展开定理,利用递推关系式计算行列式的
值。
公式法
03
对于一些特殊的行列式,可以利用已知的公式直接计算其值。
如三阶行列式公式、范德蒙德公式等。
03
矩阵的秩与线性方程组
矩阵的秩
逆矩阵的求法
高斯-约当消元法是求逆矩阵的一种常用方法,通过一系列行 变换将矩阵变为单位矩阵,其伴随矩阵即为所求的逆矩阵。
行列式的定义与性质
行列式的定义
n阶方阵A的行列式记为det(A)或|A|, 是一个标量,其值是所有n阶排列的 代数和,每个排列对应一个二项式系 数。
行列式的性质
行列式具有一些重要的性质,如交换 律、结合律、分配律等。此外,行列 式的值也可以通过对角线元素、主子 式、余子式等计算得到。
04
矩阵的特征值与特征向量
特征值与特征向量的定义与性质
特征值
对于给定的矩阵A,如果存在一个标量λ和相应的非零向量v,使得A×v=λ×v成立,则称λ为矩阵A的特征值,v为 矩阵A的对应于特征值λ的特征向量。
特征向量的性质
特征向量与特征值是对应的,不同的特征值对应的特征向量是线性无关的,特征向量与特征值之间满足特定的关 系式。
高斯消元法
通过行变换将增广矩阵化为阶梯形矩 阵,从而求解线性方程组。
迭代法
通过迭代的方式逼近方程组的解,常 用的方法有雅可比迭代法和SOR方法 等。
共轭梯度法
一种用于求解大规模稀疏线性方程组 的方法,通过迭代寻找方程组的解。
最小二乘法