3.2简单的平移作图(1)
3.2 简单的平移作图(1)
3.2 简单的平移作图主备人:张海芹使用人:张海芹包桂芳审核人:教学目标:知识与技能:掌握有关画图的操作技能,学会平移作图,掌握作图技巧。
过程与方法:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展学生的动手能力。
情感态度与价值观:通过作图及与其他人的合作,培养学生对图形的欣赏意识。
重点:平移图形的规律,作图的顺序;难点:平行线的作法及对应点的连结。
教学方法:采用自主探究式的教学方法,本着贯彻启发性、直观性、理论联系实际的教学原则;讲练结合。
一.预习导学:1.经过平移,线段AB的端点移到了点D,你能作出线段AB平移后的图形吗?A DB E2.确定一个图形平移后的位置,除需要知道原来的位置外,还需要什么条件?3.图中的窗棂轮廓是由一个半圆和一个矩形组成,试作出这个图案向左平移10格后的图案。
二.探究活动:例1:如图,经过平移,△ABC的顶点A移到了点D,请作出平移后的三角形。
分析:因为A与D是对应点,而平移的对应点的连线段平行且相等所以平移方向——射线AD,平移距离——线段AD的长,作法:1、分别过点B、C沿AD方向作线段BE、CF,使它们与AD平行且相等2、顺次连结D、E、F则△DEF即为所求。
①还有什么其他方法,作出△DEF吗?②确定一个图形平移后的位置,除需知道原来图形的位置外,还需要什么条件?对于①,教师要帮助学生整理平移作图的常用方法以及这些作法所依据的原理。
方法一:过点B、点C,分别作线段BE,CF,使得它们与线段AD平行且相等,连接DE,DF,EF,△DEF就是△ABC平移后的图形。
方法二:过点D 分别作出与AB ,AC 平行且相等的线段DE ,DF ,连接EF ,△DEF 就是△ABC 平移后的图形。
方法三:因为平移后的图形与原图形是全等,所以过点B 作线段BE ,使得它与线段AD 平行且相等,得到另一个对应点E (或者过点D 作与AB 平行且相等的线段DE ,得到另一个对应点E )后,按原方向作△ABC 的全等△DEF 。
图形在坐标中的平移(基础)知识讲解
图形在坐标中的平移(基础)知识讲解【学习目标】1. 能在直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点的变化规律,理解图形在平面直角坐标系上的平移实质是点坐标的对应变换.2. 运用点的坐标的变化规律来进行简单的平移作图.【要点梳理】要点一、点在坐标中的平移在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.要点二、图形在坐标中的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、点在坐标中的平移1.写出下列各点平移后的点的坐标:(1)将A(-3,2)向右平移3个单位;(2)将B(1,-2)向左平移3个单位;(3)将C(4,7)向上平移2个单位;(4)将D(-1,2)向下平移1个单位.(5)将E(2,-3)先向右平移1个单位,再向下平移1个单位.【思路点拨】根据平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.即可得出平移后点的坐标.【答案与解析】解:由题意可得:(1)平移后点的坐标为:(0,2);(2)平移后点的坐标为:(-2,-2);(3)平移后点的坐标为:(4,9);(4)平移后点的坐标为:(-1,1);(6)平移后点的坐标为:(3,-4).【总结升华】本题考查了点的平移及平移特征,掌握平移中点的变化规律是关键.2.(荆门)将点P向左平移2个单位,再向上平移1个单位得到P′(-1,3),则点P 的坐标是.【思路点拨】在平面直角坐标系中,图形的平移与图形上某点的平移相同,本题需注意的是已知新点的坐标,求原来点的坐标,注意平移的顺序的反过来的运用.【答案】(1,2).【解析】新点P′的横坐标是-1,纵坐标是3,点P′向右平移2个单位,再向下平移1个单位得到原来的点P,即点P的横坐标是-1+2=1,纵坐标为3-1=2.则点P的坐标是(1,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【高清课堂:第二讲平面直角坐标系2 369935 练习4 】【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【答案】(0,﹣3).解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).类型二、图形在坐标中的平移3.(2015春•邵阳县期末)在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣3,1),B(1,3).把线段AB平移后得到线段A′B′,A与A′对应,B与B′对应.若点A′的坐标是(﹣1,﹣1),则点B′的坐标为.【思路点拨】各对应点之间的关系是横坐标加2,纵坐标减2,那么让点B的横坐标加2,纵坐标减2即为点B′的坐标.【答案】(3,1).【解析】解:由A(﹣3,1)的对应点A′的坐标为(﹣1,﹣1 ),坐标的变化规律可知:各对应点之间的关系是横坐标加2,纵坐标减2,∴点B′的横坐标为1+2=3;纵坐标为3﹣2=1;即所求点B′的坐标为(3,1).故答案为(3,1).【总结升华】此题主要考查了坐标与图形的变化﹣平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.举一反三:【变式】按要求平移下面的图形.(1)将图形①先向右平移3个格,再向下平移5个格.(2)将图形②先向左平移2个格,再向上平移3个格.【答案】解:作图如下:4. 如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】如图,三角形DEF经过平移后得到三角形ABC,则点D坐标为,点E的坐标为.【答案】D(2,2),E(3,-2).。
平移1
Y X A
C D E
F
B
小 火 车
辘 轳 上 的 水 桶
大厦里的电梯
首先我们来观察现实生活中的一些现象:
问题:人坐在开动的火车里、站在电梯里是怎样 运动的呢?水桶是怎样运动的?
升旗仪式
电 梯 上 的 人
随堂练习
在下面的六幅图案中,(2)(3)(4)(5)(6)中的
哪个图案可以通过平移图案(1)得到?
生活中的平移
小 火 车
辘 轳 上 的 水 桶
大厦里的电梯
首先我们来观察现实生活中的一些现象:
问题:人坐在开动的火车里、站在电梯里是怎样 运动的呢?水桶是怎样运动的?
升旗仪式
电 梯 上 的 人
这些图片给我们什么共同印象?
1、传送带上的电视机的形状大小在运送过程中是否发 生了变化?电梯上的人呢? 2、在传送带上,如果电视机的某一按键向前移动了 80cm,那么电视机的其它部位(如屏幕左上角的图标)向 什么方向移动?移动了多少距离?电梯上的人呢?
B 方法1 B’ A 4cm
A’
B
B’
• 已知线段AB和点A平移后的 对应点A’ ,如何作出AB平移 后的对应线段A’B’ 呢?
A
A’
B
线段AA’有 什么特别的 意义吗?
经过平移,△ABC的顶点A移到 了点D,作出平移后的三角形。
A
D
B
C
议一议
☺ 还有什么其他方法,作出△DEF吗? ☺ 确定一个的图形运动称为平 移吗?
1.以下这几种运动现象有什么共同特点?
2.你能发现平移前后两个图形相比较,什么没有改 变,什么发生了改变吗?
位置、形状、大小
在平面内,将一个图形沿某个方向移动一 定的距离,这样的图形运动叫做平移。
图形的平移与旋转整章备课教案
东侨中学数学教案八年级数学组2011-2012学年上学期第周第课ABCDEFX Ya、AB∥EF AB=EF,BC∥FG,BC=FG。
并且:CD∥GH,CD=GH,DA∥HE,DA=HE。
b、AE∥BF∥CG∥DH。
因为AB∥EF,AB=EF,所以四边形ABFE是平行四边形,所以AE∥BF,同理可得AE∥BF∥CG∥DH。
c、相等的线段还有:AE=BF=CG=DH。
为什么呢?∠A=∠E, ∠B=∠F, ∠C=∠G, ∠D=∠H.d、图形经过平移后,只是位置发生了变化,即图形上的每个点都沿着同一个方向移动了相同的距离,而线段的长度、角的大小没有发生变化。
即:经过平移,对应线段、对应角分别相等,对应点的连线是平行的并且相等。
平移的性质:经过平移,对应线段、对应角分别相等,对应点的连线是平行且相等。
由平移的性质可得,相等的线段有两种,一是对应点的连线平行且相等,二是对应线段相等平行且相等。
4、平移的特征及性质的应用:如图:将△ABC沿着射线XY的方向移动一定距离后成为△DEF,找出图中存在的平行且相等的三条线段和全等三角形。
解析:有平移的特征:平移不改变图形的形状和大小。
可知△ABC与△DEF是全等的,有平移的性质可知相等的线段有两种,一是对应点的连线平行且相等,二是对应相等平行且相等。
(三)应用迁移,巩固新知:例1.如图所示,如果吊箱一共移动了300米,则ABCDEF(四)课堂练习:P70 随堂练习1,2.1. 如图所示,∠DEF是∠ABC经过平移得到的,∠ABC=33O,求∠DEF的度数。
2.下列B组中的图形能否由A组中的图形经过平移后得到?3. 观察下面两幅图案,并回答下列问题:a.这个图有什么特点?b.它可以通过什么“基本图案”经过怎样的平移而形成?c.在平移的过程中“基本图案”的大小、形状、位置是否发生了变化?BACO4.如图所示的正方体中,可以由线段AA1平移而得到的线段有哪些?5. 将图中的小船向左平移四格.(五)课堂小结:1.本节课我们通过具体的例子,认识了平移,理解了平移的特征和性质。
3[1].2.简单的平移作图(2)上课课件
做一做:
在下图中,左图是一个正六边形,它经过怎样的平移能 得到右图?自己动手做做看,你能得到右图的图案吗?
(2)下图可以看做是什么“基本图形”通过平移得到的?
练一练
1.分析奥运五环旗图案的形成过程(不考虑图案的颜色)
2.如图,在正六边形硬纸片上剪去一个与其边长相同的正三角形, 并将其平移到左边,形成一个新的图案,用这个图案能否得到 类似与图3-9右图的图案?与同伴交流。
简单的平移作图(2)
回顾与思考:
1.平移作图需要的条件: 图形原来的位置、平移的方向以及平移的距离。 2.简单平移作图的方法: 以局部带整体的平移作图方法,确定图形的关键点。
你能将下列多边形向右平移8格吗?作出图形。
B
D C E
B’
C’
D’ E’
A
F
A’
F’
阅读课本P75—P76并思考下列问题: (1)P75的这个图案有什么特点? (2)它可以通过什么“基本图案”经过 怎样的平移而形成的? (3)在平移的过程中“基本图案”的大 小、形状、位置是够发生了变化?你能解 释其中的道理吗? (4)你能用自己的语言叙述图3-9、图310的变化过程吗?
观察下列图形,你 能找出基什么特点? 2.它可以通过什么“基本图案”经过怎样的平移而形成? 3.在平移的过程中,“基本图案”的大小、形状、位置是否 发生了变化?你能解释其中的道理吗?
议一议:
(1)在下图中左图是一种“工”字形的砖,右 图是怎样通过左图得到的?
3.2 简单的平移作图(1)g
D
F
教师点拨(5分钟)
(1)还有其它的方法 作出图3-6中的△DEF吗 ? (2)确定 一个图形平移后的 位置,除需要原来 的位置外,还需要 什么条件? 图3-6 过点D分别 作与AB、AC平行 且相等的线段
第三章 图形的平移与旋转
2. 简单的平移作图(一)
年级:八年级 科目:数学 主备人:傅美贤 议课时间: 授课时间:
一、学习目标(1分钟)
1、能按要求做出简单平面图形平移后的图形
2、掌握画图的方法
3、确定一个图形平移后的位置需要的条件
自学指导(1分钟) 1.自学P72例一前面的内容,动手画一画。
作法一:
连接AD,过B作与 AD平行且相等的线 段 BC,连结CD 在平移作图当中常用此方法
作法二:
过D作与AB平行且 相等的线段 DC
学生自学,教师巡视(3分钟)
2.自学课本例1、例2思考下面问题:
确定一个图形平移后的位置,除需要原来的位置外, 还需要什么条件? 方向、距离
学生自学,教师巡视(5分钟)
‹# ›
自学检测(8分钟)
1.经过平移,三角形ABC的顶点A移到了点D.作出 平移后的三角形.
提示:连接AD就可得到了方向和距离。
2.P73随练T1、P74知识技能T1、T2 (画在课本上)
学生讨论、更正,教师点拨(6分钟)
解:如图,连接AD, 过 B,C点分别做线段 BE,CF使得他们与线段 AD平行且相等,连接 DE,DF,EF。 三角形 DEF 就是三角形ABC平 移后的图形.
D
3 —4
H O l C P
图形的平移和旋转(经典教案和习题)
图形的平移和旋转(经典教案和习题)§3.1生活中的平移一、新知要点(1)平移的概念(2)平移的特点(3)平移的基本性质火车沿笔直的轨道行驶、缆车沿笔直的索道滑行、火箭升空等物体都是沿着一条直线运动的,那么在运动的过程中这些物体的形状、大小、位置等因素中,哪些没有发生改变哪些发生了变化这种运动就叫做什么?1.图形的平移例1:下图中的图形A向右平移了6格得到图形A′A′A(1)平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小。
(2)平移的特点:①平移是指整个图形平行移动,包括图形的每一条线段,每一个点。
经过平移,图形上的每一个点都沿同一个方向移动相同的距离。
②平移不改变图形的形状、大小,方向,只改变图形的位置。
例2、观察下图△ABE沿射线某Y的方向平移一定距离后成为△CDF。
找出图中存在的平行且相等的三条线段和一组全等三角形。
(3)平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
二、新知巩固(练习)1.平移改变的是图形的()A位置B大小C形状D位置、大小和形状2.经过平移,对应点所连的线段()A平行B相等C平行且相等D既不平行,又不相等3.经过平移,图形上每个点都沿同一个方向移动了一段距离,下面说法正确的是()A不同的点移动的距离不同B既可能相同也可能不同C不同的点移动的距离相同D无法确定4.如图,四边形ABCD平移后得到四边形EFGH,填空(1)CD=______,(2)∠F=______(3)HE=,(4)∠D=_____,(5)DH=_________。
5.如图,若线段CD是由线段AB平移而得到的,则线段CD、AB关系是__________.6.试着做一做:(1)把图形向右平移7格后得到(2)把图形向左平移5格后到的图形涂上颜色。
的图形涂上颜色。
(3)画出小船向右平移6格后的图形(4)画出向右平移6格后的图形三、归纳小结●通过本节课的学习,我们明白了什么叫平移。
图形的平移与旋转
图形的平移与旋转(1)知识概述1、生活中的平移.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2、简单的平移作图.二、重点知识归纳及讲解1、图形的平移是日常生活中比较常见的几何图形变换形式,属全等变化的一种情况.平移不改变图形的大小和形状,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2、对于简单的平移作图,要注意选好一个“基本图形”,把基本图形中的每一个点都沿着相同的方向平行移动相同的距离,再连结相应线段,就可得到平移后的图形.三、难点知识剖析1、如图(1),将△ABC在图中平移,(平移时△ABC的三个顶点一定落在图中两线交点上),最多能平移几次?分析:抓住将三角形ABC平移,就是将顶点A、B、C向同一方向平移相同的单位.解答:能平移三次,具体做法见图(2).将△ABC先向下移一个单位得到△AˊBˊCˊ,再沿AˊCˊ向左上方平移到△A"B"C"处,然后向下平移到△位置.2、如图,经过平移,四边形的顶点A移到了点E,作出平移后的四边形EFGH.分析:根据平移的对应线为平行且相等的性质作图.解答:分别过B、C、D三点向右方作AE的平行线,并依次截取BH=AE,CG=AE,DF=AE,再连接成四边形EFGH,即为平移后的四边形.一、选择题1、如图,A、B、C、D是视力表中一行图案,可以通过平移图形①得到的是()A.B.C.D.2、下列各商标图案是利用平移来设计的个数是()A.1个B.2个C.3个D.4个3、在图中,由△ABC平移而得到的三角形共有()个A.2个B.3个C.4个D.5个4、下面A、B、C、D四个图案,那么平移图案(1),得到图案()A.B.C.D.5、如图,下列哪一项的右边图形是由左边图形平移而得()A.B.C.D.6、如图的图案中,可由一个“基本图案”平移而成的是()A.B.C.D.7、如图,△ABE沿射线XY的方向平移一定距离后成为△CDF,那么下面结论:①△CDF≌ABE;②AC∥EF;③∠AEB=∠CFD;④BD=EF,其中正确的有()A.1个B.2个C.3个D.4个B 卷二、解答题1、将图中的图案的一个顶点A移到了点F,请作出平移后的图案.2、将图中的正方形ABCD平移,顶点A移到了点E,作出平移后的正方形.3、如图,能由△AOB平移而得的图形是哪个?4、如图在正方体ABCD——AˊBˊCˊDˊ中,哪些线段可看做是由C ˊDˊ平移得到的?哪些线段可看做是由B Bˊ平移得到的?AˊDˊ是否也可由CˊDˊ或B Bˊ平移得到?5、如图,图中由△ABC平移而得的三角形共有多少个?如果照这个图沿AB、AC方向延伸平移下去,第n排有多少个平移而得的三角形?6、观察下面两幅图案,分析这两个图案是通过怎样的“基本图案”变化而成.答案:1、略2、向左边的方向,过B、C、D点分别作AE的平行线,依次截取与AE等长的线段为BF、CG、DH,则正方形EFGH是平移后的正方形.3、△EOF和△COD4、AB、AˊBˊ,CD可以看作是由CˊDˊ平移得到的,AAˊ,CC ˊ,DDˊ可以看作是由BBˊ平移得到的,AˊDˊ无法由CˊDˊ或BB ˊ平移得到5、9个,n个6、如图(1)(2)中的阴影部分分别向上、下、左、右平移就可以得到整个图案.图形的平移与旋转(2)知识概述1、生活中的旋转在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.2、简单的旋转作图3、简单的图案设计二、重点知识归纳及讲解1、旋转之后得到的图形与原来的图形全等,即旋转不改变图形的大小和形状.2、画旋转后的图形时,首先必须明确旋转中心,其次要注意对应点到旋转中心的距离相等,还要注意,在同一个图形中的旋转角相等.3、在认识图形变化时,要根据我们已掌握的对称的性质,平移和旋转的特征去仔细观察、分析,同时要注意“基本图案”是经过怎样的变化形成美观的图案.4、学习简单的图案设计,学会利用平移、旋转的知识,画出精美的几何图案,培养创新意识,创意美丽作品。
第三章生活中的平移(含答案)-
3.1 生活中的平移(第1课时)【学习目标】理解平移的定义,掌握平移的基本性质. 【基础知识演练】1.还记得游乐园内的一些项目吗?旋转木马、荡秋千、小火车、滑梯……它们使我们许多人乐而忘返.不过,你想过没有: 小火车在笔直的铁轨上开动时,火车头走了100米,那车尾走了 米. 2.如图,∠DEF 是∠ABC 经过平移得到的,∠DEF =42°,则∠DEF 的度数为 .EDCBAFEDB AF(第2题) (第3题)3.如图,已知DE 由线段AB 平移而得,AB=DC=4cm ,EC=5cm.则△DCE 的周长是 _________________cm.4.如图,面积为6平方厘米的梯形A ′B ′C ′D ′是梯形ABCD 经过平移得到的且∠ABC =85°.那么梯形ABCD 的面积为________,∠A ′B ′C =________.D 'DCB AA 'B 'C '(第4题) (第7题) 5.以下现象是数学中的平移的是〔 〕A.冰化成水;B.电梯由一楼升到二楼;C.导弹击中目标后爆炸;D.卫星绕地球运动 6. 将图形平移,以下结论错误的选项是〔 〕A.对应线段相等B.对应角相等C.对应点所连的线段互相平分D.对应点所连的线段相等7.如图,在5×5方格纸中将图1中的图形N 平移后的位置如图2中所示,那么正确的平移方法是〔 〕 A.先向下移动1格,再向左移动1格; B.先向下移动1格,再向左移动2格 C.先向下移动2格,再向左移动1格; D.先向下移动2格,再向左移动2格 8.如图,△ABC 通过平移得到△ECD ,请指出图形中的等量关系.9.举3个生活中常见的平移的例子.【思维技能整合】10. 甲图向上平移2个单位得到乙图,乙图向左平移2个单位得到丙图,丙图向下平移2个单位得到丁图,那么丁图向______平移______个单位可以得到甲图.11. 如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,至少需要移动〔〕A.8格B.9格C.11格D.12格AC DE F【发散创新尝试】12.如下图有两个村庄A和B被一条河隔开,现要架一座桥〔桥与河岸垂直〕,请你设计一种方案,使由A到B的路程最短.【回忆体会联想】13.问:什么叫平移?答: 在平面内,将一个图形沿移动一定的距离,这样的图形运动称为平移.问:平移的基本性质是什么?答: 经过平移,对应线段,对应角分别;对应点所连的线段.参考答案1. 100 2. 42° 3. 13 4. 6平方厘米 ∠A ′B ′C ′=85° 5.B 6. C 7.C8.AB =EC ,AC =ED ,BC =CD ,∠A =∠E ,∠B =∠ECD ,∠ACB =∠D ,∠A =∠ACE 9.略 10.右,2 11.B 12.略 13.某个方向,相等,平行且相等.参考答案1.A 2~9.略 10. 〔1〕略;〔2〕作A ’与点A 关于直线L 成轴对称,连接A ’B 交直线L 于点P ,则点P 为所求 11.乙公司提供的有用面积为900002m ,比甲单位提供的895002m 多,应购买乙公司的土地 12.位置,方向,距离参考答案1.B 2.C 3.B 4.不是,因为汽车的整体形状发生了变化 5.〔1〕不是.〔2〕不是 6.略7.(1)其特点可以看成由一个“基本图形”经过平移而得到另一个图形(2)(1)~(5)均可以看成前一个图形是后一个图形向前平移一定距离后得到的.(6)中的下面图形可以看成是上面图形向下平移一段距离再向右平移一段距离后得到的.〔3〕略 8. B9. 连结AB ,作AB 的垂直平分线,交射线BO 于点C ,则点C 即为机器人截住小球的位置.机器人平移的方向为从点A 到点C 的方向. 10.如图11.平移3.2 简单的平移作图【学习目标】会按要求作出简单平面图形平移后的图形.了解确定一个图形平移后的位置的条件.【基础知识演练】1.确定一个图形平移后的位置,除需要原来的位置外,还需要什么条件?下面来进行体会:将△ABC平移到△DEF,不能确定△DEF位置的是〔〕A.已知平移的方向B.已知点A的对应点D的位置C.已知边AB的对应边DE的位置D.已知∠A的对应角∠D的位置2.经过平移,△ABC的边AB移到了MN,作出平移后的三角形,你能给出几种作法?3.如图,将字母N按箭头所指的方向平移2cm,作出平移后的图形.4.已知图中的每个小正方形的边长都是1个单位.将图中的格点△ABC,先向右平移3个单位,再向上平移2个单位,得到△A1B1C1,请你在图中画出△A1B1C1.CA B5.请将图中的“小鱼”向左平移6格.6.如图,正方形ABCD的对角线交点O移到了O′的位置,请作出此正方形平移后的图形.7.如图,经过平移五角星的顶点A移到了点B,作出平移后的图形.8. 作线段AB和CD,且AB和CD互相垂直平分,交点为O,AB=2C D.分别取OA、OB、OC、OD的中点A′、B′、C′、D′,连结CA′、DA′、CB′、DB′、AC′、AD′、BC′、BD′得到一个四角星图案.将此四角星沿水平方向向右平移2厘米,作出平移前后的图形.【思维技能整合】9. 如图,经过平移,扇形上的点A移到了F,作出平移后的扇形.10. 如图,有一条小船.〔1〕假设把小船平移,使点A平移到点B,请你在图中画出平移后的小船;〔2〕假设该小船先从点A航行到达岸边L的点P处补给后,再航行到点B,但要求航程最短,试在图中画出点P的位置.【发散创新尝试】11面积大的为购买对象.【回忆体会联想】12.师:生: (1)3.2 简单的平移作图(2)【学习目标】了解图形之间的平移关系.了解平移在现实生活中的应用.【基础知识演练】1.生活中经常见到一些美丽的图案,这些图案有许多是由基本图形平移组成的,如:以下图形中只能用其中一部分平移而得到的是〔〕A B C D2.如图图案中可以看作由图案自身的一部分经过平移后而得到的是〔〕3.如图的图案中,可以看出由图案自身的部分经过平移而得到的是〔〕4.汽车在笔直的公路上行驶,我们可以把它看成是汽车沿着公路的方向移动了一定的距离,这就是平移,想一想,如果汽车在盘山公路上行驶,这也是数学上的平移吗?为什么?5.如图,由图形A变化到图形B,是不是平移得到的?为什么?6.如图,第2个图形是第1个图形平移得到的,请你仿照这种方法,在格点处画出平移后的第3和第4个图形.7.小明和婷婷在一起做拼图游戏,他们用“○○、△△、=”构思出了独特而有意义的图形并根据图形还用简洁的语言进行了表述:〔1〕请分析这些图案的构成特点;〔2〕分析这些图案的平移现象;〔3〕仿照他们的方法自己设计两个有意义的图案.【思维技能整合】8. 如图,把边长为2的正方形的局部进行图①~图④的变换,拼成图⑤,则图⑤的面积是〔〕A.18B.16C.12D.89.如图,一机器人在点A处发现一个小球自B点处沿着射线BO方向匀速滚去,机器人立即从A处出发匀速直线前进去拦截小球,假设小球滚动速度与机器人行走速度相等,请在图中标出机器人的平移方向及最快能截住小球的位置C.〔此题中的机器人行走、小球滚动均视为点的平移〕OA B【发散创新尝试】10.如图,有一个由火柴搭成的图形.移走其中的4根火柴,使之留下5个正方形且留下的每一根都是正方形的边或边的一部分.请你将符合条件的图形画出来.【回忆体会联想】11.一些复合图案,它的许多部分可以通过而相互得到,可见平移在现实生活中有着广泛的应用,也可利用平移来解决一些有趣的问题.如图,10根火柴可以拼成向下飞的编幅形状,你能只平移3根火柴就使它向上飞吗?请你试有试.3.3 生活中的旋转【学习目标】了解旋转的定义.理解旋转的基本性质. 【基础知识演练】1.日常生活中,我们经常见到以下情景:①钟表指针的转动;②汽车方向盘的转动;③打气筒打气时,活塞的运动;④传送带上瓶装饮料的移动.其中属于旋转的是 .2.在字母“X”、“V”、“Z”、“H”中绕某点旋转〔旋转度数不超过180〕后能与原字母重合的是____ .3.如图,△BCD 是由△ABD 旋转而成的,其中AB=CD ,AD=BC ,则旋转中心是点 ,旋转角是 度.A BCOD EF(第3题) (第4题) (第6题)4.如图中的图形,是由基本图案多边形ABCDE 旋转而成的,它的旋转角为〔 〕 A .30°B .60°C .90°D .150° 5.以下说法不正确的选项是〔 〕 A .旋转中心在旋转过程中是不动的;B .旋转形成的图形是由旋转中心和旋转角共同决定的;C .旋转不改变图形的形状和大小;D .旋转改变图形的形状但不改变大小6.如图,如果把钟表的指针看做四边形AOBC ,它绕O 点旋转得到四边形DOEF ,在这个旋转过程中: (1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A 、B 分别移动到什么位置? (3)AO 与DO 的长有什么关系?BO 与EO 呢?(4)∠AOD 与∠BOE 有什么大小关系?7.观察以下图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?【思维技能整合】8. 同学们曾玩过万花筒,它是由三块等宽等长的玻璃围成的,如图是看到的万花筒的一个图案,图中所有的小三角形均是全等的等边三角形,其中的菱形AEFG可以看成是把菱形ABCD以点A为中心〔〕A.顺时针旋转60°得到B.顺时针旋转120°得到C.逆时针旋转60°得到D.逆时针旋转120°得到9. 如下图的五角星绕中心旋转,最少旋转________度后才能与自身重合.10. 钟表的分针匀速旋转一周需要60分钟,那么:〔1〕它的旋转中心是什么?〔2〕分针旋转一周,时针旋转多少度?〔3〕下午3点半时,时针和分针的夹角是多少度?【发散创新尝试】11.分析图中的旋转现象.【回忆体会联想】12.问:旋转的基本性质有哪些?答:旋转不改变图形的和,但图形上的每个点同时都按相同的方式转动相同的 .旋转前后两个图形对应点到旋转中心的距离,对应点与旋转中心的连线所成的角彼此 .参考答案1.①②2.X,Z,H 3.BD的中点,180 4.B 5.D6.(1)旋转中心是O点,旋转角是∠AOD. ∠BOE.(2)点A旋转到点D的位置,点B旋转到点E的位置.(3) OA与OD是相等的.OB与OE是相等的.(4)∠AOD与∠BOE是相等的7.图形(1)是通过一条线段绕点O旋转360°而得到的;图形(2)可以看作是“一个Rt△ABC”绕线段AC旋转360°而得到的;图形(3)将矩形ABCD绕AD旋转一周而得到的8. D 9. 72 10. (1)时针和分针的交点;(2)30°;(3)75°11。
3.2.1简单的平移作图(1)
F E 图 3- 5
5
议 一 议 议一议
(1)还有其它的方法作 中的△ABC吗 出图3-6中的△ABC吗? 确定一个图 (2)确定一个图 形平移后的位置, 形平移后的位置,除 需要原来的位置外, 需要原来的位置外, 需要什么条件? 还需要什么条件? 沿什么方向、 沿什么方向、 多少距离。 移动多少距离。 图 3- 6
B D
3
平移线段的作法
作法一: 连接 AD, 过B AD, 作法一: 作与AD平行且相等 作与AD平行且相等 BC, 的线段 BC, DC。 连接DC。
作法二: 作法二: 连接AD ,过D 作与AB平行且相等 作与AB平行且相等 DC, 的线段 DC,
4
平移三角形的作法
例一:经过平移,三角形ABC ABC的 移到了点D 例一:经过平移,三角形ABC的顶点A移到了点D 平移 ).作出平移后的三角形 作出平移后的三角形. (如图3-5).作出平移后的三角形. 分析:设顶点 分析:设顶点 B,C分别 平移到了E 根据“ 平移到了E,F,根据“经过 D 平移,对应点所 点所连 平移,对应点所连的线段平 行且相等” 可知线 BE, 行且相等”,可知线段 BE, CF与AD平行且相等 平行且相等. CF与AD平行且相等. 解 : 如 图 , 过 B, C 点 BE,CF使得 分别做线段BE,CF使得 AD平行且相 他们与线段AD平行且相 DE,DF,EF。 等,连接 DE,DF,EF。 三角形 DEF 就是三角 ABC平移后的 平移后的图 形ABC平移后的图形.
7
随 随堂练习 练习 随堂练习
p62
1.将图中的字母 N 沿水平方向向右平移3cm, 沿水平方向向右平移3cm, 作出平移后的图 作出平移后的图形.
8
(完整版)北师大版八年级下册3.2图形的平移与旋转讲义(无答案)
八年级数学精讲——第三章:图形的平移与旋转【基础知识】1.平移的定义与规律(1)定义:在平面内将一个图形沿某个方向移动一定的距离,•这样的图形运动称为平移.关键:平移不改变图形的形状和大小,也不会改变图形的方向.(2)平移的规律:经过平移,对应线段、对应角分别相等,•对应点所连的线段平行且相等(或共线且相等).(3)简单作图平移的作图主要关注要点:1.方向,2.距离.整个平移的作图,就象把整个图案的每个特征点放在一套平行的轨道上滑动一样,每个特征点滑过的距离是一样的.2.旋转的定义与规律(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,•这样的图形运动称为旋转.关键:旋转不改变图形的大小和形状,但改变图形的方向.(2)旋转的规律经过旋转,图形上的每一点,都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(3)简单的旋转作图旋转作图关键有两点:①旋转方向,②旋转角度.主要分四步:边、转、截、连.旋转就象把每个特征点与旋转中心用线连住的风筝,每个点转的角度是相同的,每个点与旋转中心的距离是不会改变的,即对应点与旋转中心距离相等.3.图案的分析与设计首先找到图中的基本图案,然后分析其图案与它的关系,即由它作何种运动变换而形成的,我们主要遇到的变换有:轴对称、平移、旋转.在相似形一章里还会学到图形的放大与缩小等.【典例剖析】1、请你完成下列问题.图形的操作过程(本题中四个长方形的水平方向的边长均为a,•竖直方向的边长均为b);在图1中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);(1)(2)(3)在图2中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图3中,请你类似地画一条有两个折点的折线,同样向右平移一个单位,•从而得到一个封闭图形,并用斜线画出阴影.(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=_____,S2=_______,S3=_______;(3)联想与探索如图4,在一块长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少,并说明你的猜想是正确的.2、如图,有边长为1的等边三角形ABC和顶角为120°的等腰△DBC,•以D为顶点作60°角,两边分别交AB、AC于M、N的三角形,连结MN,试说明△AMN的周长为2.3、如图,小正六边形沿着大正六边形的边缘顺时针滚动,小正六边形的边长是大正六边形边- 1 - / 8- 2 - / 8长的一半,当小正六边形由图①位置滚动到图②位置时,线段OA 绕点O 顺时针转过的角度为 度.4、如图,已知ABC △中,AB AC =,90BAC ∠=o ,直角EPF ∠的顶点P 是BC中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下五个结论:①AE CF=②APE CPF ∠=∠③EPF△是等腰直角三角形④EF AP=⑤12AEPFABC S S =四边形△;当EPF ∠在ABC △内绕顶点P 旋转时(点E 不与A ,B 重合),上述结论中始终正确的序号有5、如图,P 是正三角形ABC 内的一点,且68PA PB ==,,10PC =.若将PAC△绕点A 逆时针旋转后,得到P AB '△,则点P 与点P '之间的距离为 ,APB ∠=第4题 第5题变式:△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ACP /重合,如果AP=3,那么线段P P /的长是多少?6、如图,ABC△中,90301B C AB ∠=∠==o o ,,,将ABC △绕顶点A 旋转180o ,点C 落在C '处,则CC '的长为 。
北师大版八年级上册数学课本课后练习题答案(整理版)
八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,§,¤,♀,∮,≒,均表示本章节内的类似符号。
§1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。
2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm2.1.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’F’和△D’F’C’的位置上.学生通过量或其他方法说明B’E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。
即(B’C’)2=AB2+CD2:也就是BC2=a2+b2。
,这样就验证了勾股定理§l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.§1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在.习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。
4.如图1~1,设水深为x尺,则芦苇长为(x+1)尺,由勾股定理解得x=12,则水池的深度为12尺,芦苇长为13尺。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
安阳中心学校八年级数学学案
创编:王军姓名班级时间:年月日
课题:3.2简单的平移作图(1)
学习目标:1.经历对图形进行观察、分析、欣赏和动手操作、画图等过程,掌握有关画图的操作技能,学会平移作图,掌握作图技巧。
2.通过对图形的观察、分析、对比平移前后的图形特征,动手操作,发展学生动手能力。
3.通过作图及与其他人的合作,培养学生对图形的欣赏意识。
学习重点:平移图形的规律,作图的顺序。
学习难点:平行线的作法及对应点的连结。
预习导学:1.什么叫平移?平移有哪些性质?决定平移的两大要素是什么?
2.阅读课本72至73页内容,掌握平移作图的方法。
3.作平移图形的理论依据是。
4.平移作图的分类。
(1)已知原图和一对对应点,求作平移后的图形。
(2)已知原图和一对对应边,求作平移后的图形。
(3)已知原图和平移方向,平移距离,求作平移后的图形。
5.平移作图的步骤。
(1)分析题目要求,找出平移的方向和平移的距离。
(2)分析所作的图形,找出构成图形的关键点。
(3)沿一定的方向,按一定的距离平移各个关键点。
(4)连接所作的各个关键点,并标上相应的字母。
(5)写出结论。
6.经过平移,线段AB的端点A移到了点D,
你能作出线段AB平移后的图形吗?
7.如图,经过平移,△ABC的顶点A移到了点D,
请作出平移后的三角形。
8.完成课本73页随堂练习。
学习研讨1.将字母A
作出平移后的图形。
2.如图,经过平移,相交线段
CD的交点O移到了O′,
你能做出相交线段AB、
CD平移后的图形吗?
当堂检测:
一、选择题
1.下列现象是数学中的平移的是()
A.冰化成水
B.电梯由一楼升到二楼
C.导弹击中目标后爆炸
D.卫星绕地球运动
B
2.将图形平移,下列结论错误的是( )
A.对应线段相等
B.对应角相等
C.对应点所连的线段互相平分
D.对应点所连的线段相等
3.将△ABC 平移到△DEF ,不能确定△DEF 位置的是( )
A.已知平移的方向
B.已知点A 的对应点D 的位置
C .已知边AB 的对应边DE 的位置 D.已知∠A 的对应角∠
D 的位置
二、填空题
4.火车在笔直的铁路上行驶,可以看作是数学中的_______现象.
5.线段AB 沿和它垂直的方向平移到A ′B ′,则线段AB 和线段A ′B ′的关系是______.
6.△ABC 平移到△DEF 的位置,则△DEF 和△ABC 的关系是_______.
7.平行四边形ABCD 平移到四边形A ′B ′C ′D ′的位置,那么四边形A ′B ′C ′D ′是_______四边形.
8.平移只改变图形的_____,而不改变图形的_____.
9.经过平移,△ABC 的边AB 移到了MN ,
作出平移后的三角形,你能给出几种作法?
四、拓展延伸:
1\如图,已知Rt △ABC 中,∠C=90°,BC=4,AC=4,现将△ABC 沿CB 方向平移到△A ′B ′C ′的位置。
(1)若平移距离为3,求△ABC 与△A ′B ′C ′的重叠部分的面积;
(2)若平移距离为x (40≤≤x ),求△ABC 与△A ′B ′C ′的重叠部分的面积y ,并写出y 与x 的关系式。
五、课后练习
1、下列数中仅由一个数字平移所得的数是( )A 、2002 B 、1999 C 、8888 D 、1414
2、如图所示,若A B C '''∆是由ABC ∆平移形成,若∠BCA=55°,
∠BAC=70°, 则C B A '''∠= ,B A C '''∠= 。
3、将下图的阴影部分,向右平移6个方格。
4、如图,已知梯形ABCD 中,B C ∠=∠, ⑴、若点D 是AB 经过平移后的点A 的对应点,请作出平移后的线段DE ;
⑵、DE DC =吗?请你说明理由。
六、学习心得 A B C A ' B ' C '。