反比例函数难题(含标准答案)

合集下载

反比例函数全章难题解答题30道带详细解析

反比例函数全章难题解答题30道带详细解析

反比例函数全章难题汇编(3)一.解答题(共30小题)1.(2013•天水)如图在平面直角坐标系xOy中,函数y=(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.2.(2013•成都)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.3.(2013•巴中)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(﹣6,n),线段OA=5,E为x轴正半轴上一点,且tan∠AOE=.(1)求反比例函数的解析式;(2)求△AOB的面积.4.(2013•广安)已知反比例函数y=(k≠0)和一次函数y=x﹣6.(1)若一次函数与反比例函数的图象交于点P(2,m),求m和k的值.(2)当k满足什么条件时,两函数的图象没有交点?5.(2013•珠海)已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,OA=OB,函数y=的图象与线段AB交于M点,且AM=BM.(1)求点M的坐标;(2)求直线AB的解析式.6.(2012•广安)如图,已知双曲线y=和直线y=mx+n交于点A和B,B点的坐标是(2,﹣3),AC垂直y轴于点C,AC=.(1)求双曲线和和直线的解析式.(2)求△AOB的面积.7.(2011•南京)【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+)(x>0).【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.①填写下表,画出函数的图象;x … 1 2 3 4 …y ……②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x>0)的最小值.【解决问题】(2)用上述方法解决“问题情境”中的问题,直接写出答案.8.(2011•临沂)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.9.(2011•聊城)如图,已知一次函数y=kx+b的图象交反比例函数y=(x>0)的图象于点A、B,交x轴于点C.(1)求m的取值范围;(2)若点A的坐标是(2,﹣4),且=,求m的值和一次函数的解析式.10.(2010•枣庄)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=,tan∠AOC=,点B的坐标为(m,﹣2).(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.11.(2009•宁德)如图,已知点A、B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC 与BD交于点P,P是AC的中点,若△ABP的面积为3,则k=_________.12.(2009•昆明)如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B两点,点A的坐标为(﹣6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.13.(2008•黔南州)如图,矩形ABOD的顶点A是函数y=与函数y=﹣x﹣(k+1)在第二象限的交点,AB⊥x轴于B,AD⊥y轴于D,且矩形ABOD的面积为3.(1)求两函数的解析式.(2)求两函数的交点A、C的坐标.(3)若点P是y轴上一动点,且S△APC=5,求点P的坐标.14.(2008•平谷区二模)已知反比例函数图象的两个分支分布在二、四象限内,且关于x的一元二次方程x2﹣4x+m2=0有两个相等的实数根.求反比例函数的解析式.15.(2007•西藏)如图,反比例函数(k≠0)的图象与正比例函数y2=﹣2x的图象交于A、B两点,过B作BC⊥y轴,垂足为C,已知S△BOC=4.求:(1)反比例函数的解析式;(2)观察图象,当x在什么取值范围内时y1>y2成立?16.(2003•四川)如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于A,B两点,且A点的横坐标与B点的纵坐标都是﹣2.(1)一次函数的解析式;(2)△AOB的面积.17.(2001•吉林)如图,已知反比例函数和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+1,b+k)两点.(1)求反比例函数的解析式;(2)如图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.18.(2012•南昌模拟)给出函数.(1)写出自变量x的取值范围;(2)请通过列表、描点、连线画出这个函数的图象;①列表:x …﹣4 ﹣3 ﹣2 ﹣11 23 4 …﹣﹣﹣y ……②描点(在下面给出的直角坐标中描出上表对应的各点):③连线(将上图中描出的各点用平滑曲线连接起来,得到函数图象)(3)观察函数图象,回答下列问题:①函数图象在第_________象限;②函数图象的对称性是(_________)A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形③在x>0时,当x=_________时,函数y有最_________(大,小)值,且这个最值等于_________;在x<0时,当x=_________时,函数y有最_________(大,小)值,且这个最值等于_________;④在第一象限内,x在什么范围内,y随着x增大而减小,x在什么范围内,y随x增大而增大;(4)方程是否有实数解?说明理由.19.(2011•阳江模拟)如图,点C是反比例函数y=的图象在第一象限的分支上的一点,直线y=ax+b与x轴相交于点A,与y轴相交于点B,作CH⊥x轴于点H,交直线AB于点F,作CG⊥y轴于点G,交直线AB于点E.已知四边形OHCG的面积为6.(1)求双曲线的解析式;(2)若E、F分别为CG和CH的中点,求△CEF的面积;(3)若∠BAO=α,求AE•BF的值(用α表示)20.(2014•河南模拟)如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.21.(2012•南宁模拟)如图,A(2,1)是矩形OCBD的对角线OB上的一点,点E在BC上,双曲线y=经过点A,交BC于点E,交BD于点F,若CE=(1)求双曲线的解析式;(2)求点F的坐标;(3)连接EF、DC,直线EF与直线DC是否一定平行?(只答“一定”或“不一定”)22.(2013•沙坪坝区校级模拟)如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数的图象交于A(1,4),B(3,m)两点.(1)求反比例函数的解析式;(2)求△AOB的面积;(3)如图写出反比例函数值大于一次函数值的自变量x的取值范围.23.(2013•安徽模拟)如图,函数y1=k1x+b的图象与函数y2=(x>0)的图象交于点A(2,1)、B,与y轴交于点C(0,3).(1)求函数y1的表达式和点B的坐标;(2)观察图象,指出当x取何值时y1<y2.(在x>0的范围内)24.(2011•丰都县校级一模)如图,已知A(﹣4,n),B(2,﹣6)是一次函数y=kx+b的图象和反比例函数的图象的两个交点,直线AB与x轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.25.(2012•牡丹江模拟)已知:点P(m,2)是某反比例函数的图象与直线y=kx﹣7的交点,M是该双曲线上的一点,MN⊥y轴于N,且S△MON=6(1)分别求出这两个函数解析式;(2)如果等腰梯形ABCD的顶点A、B在这个一次函数的图象上,顶点C、D在这个反比例函数的图象上,两底AD、BC与y轴平行,点A和点B的横坐标分别为a和a+2,求a的值;(3)求出等腰梯形ABCD的面积.26.(2012•武侯区校级三模)如图.反比例函数与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)求△AOB的面积;(3)若P(x,y1),Q(x,y2)分别是双曲线和直线y=﹣x+2上的两动点,写出y1≥y2的x的取值范围.27.(2013•广安模拟)如图,已知反比例函数(k1>0)与一次函数y2=k2x+1,(k2≠0)相交于A、B两点,AC⊥x轴于点C.若S△OAC=1,tan∠AOC=2(1)求反比例函数与一次函数的解析式(2)求S△ABC.28.(2012•长春模拟)如图,已知反比例函数(m为常数)的图象经过点A(1,6).(1)求m的值;(2)过点A的直线交x轴于点B,交y轴于点C,且OC=OB,求直线BC的解析式.29.(2013•泸州校级一模)已知一次函数y=kx+b与y轴交于点B(0,9),与x轴的负半轴交于点A,且tan∠BAO=1.今有反比例函数与一次函数y=kx+b的图象交于C、D两点,且BD2+BC2=90.(1)求一次函数的解析式;(2)求反比例函数的解析式.30.(2013•安徽模拟)已知:一次函数y=x+1与反比例函数y=的图象交于点A、B两点,点A的坐标为(a,3).(1)求a和m的值;(2)求△OAB的面积S△OAB.反比例函数全章难题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2013•天水)如图在平面直角坐标系xOy中,函数y=(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P 点的坐标.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)将A点坐标代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.解答:解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).点评:本题考查了反比例函数与一次函数的交点问题,求出函数解析式并熟悉点的坐标与图形的关系是解题的关键.2.(2013•成都)如图,一次函数y1=x+1的图象与反比例函数(k为常数,且k≠0)的图象都经过点A(m,2)(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1和y2的大小.考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:(1)将A点代入一次函数解析式求出m的值,然后将A点坐标代入反比例函数解析式,求出k的值即可得出反比例函数的表达式;(2)结合函数图象即可判断y1和y2的大小.解答:解:(1)将A的坐标代入y1=x+1,得:m+1=2,解得:m=1,故点A坐标为(1,2),将点A的坐标代入:,得:2=,解得:k=2,则反比例函数的表达式y2=;(2)结合函数图象可得:当0<x<1时,y1<y2;当x=1时,y1=y2;当x>1时,y1>y2.点评:本题考查了反比例函数与一次函数的交点问题,解答本题注意数形结合思想的运用,数形结合是数学解题中经常用到的,同学们注意熟练掌握.3.(2013•巴中)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(﹣6,n),线段OA=5,E为x轴正半轴上一点,且tan∠AOE=.(1)求反比例函数的解析式;(2)求△AOB的面积.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题.分析:(1)过点A作AD⊥x轴,在Rt△AOD中,根据已知的三角函数值和线段OA的长求出AD与OD的长,得到点A的坐标,代入反比例函数解析式中求出反比例函数的解析式;(2)把点B的横坐标代入反比例函数解析式中得到B的坐标,然后分别把点A和点B的坐标代入一次函数解析式中,求出k与b的值即可得到一次函数解析式,从而求出点C的坐标,得到OC的长,最后利用三角形的面积公式求出△AOC与△BOC的面积,相加即可得到△AOB的面积.解答:解:(1)过点A作AD⊥x轴,在Rt△AOD中,∵tan∠AOE==,设AD=4x,OD=3x,∵OA=5,在Rt△AOD中,根据勾股定理解得AD=4,OD=3,∴A(3,4),把A(3,4)代入反比例函数y=中,解得:m=12,则反比例函数的解析式为y=;(2)把点B的坐标为(﹣6,n)代入y=中,解得n=﹣2,则B的坐标为(﹣6,﹣2),把A(3,4)和B(﹣6,﹣2)分别代入一次函数y=kx+b(k≠0)得,解得,则一次函数的解析式为y=x+2,∵点C在x轴上,令y=0,得x=﹣3即OC=3,∴S△AOB=S△AOC+S△BOC=×3×4+×3×2=9.点评:此题考查了反比例函数与一次函数的交点问题,勾股定理,三角形函数值,以及三角形的面积公式的运用,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.4.(2013•广安)已知反比例函数y=(k≠0)和一次函数y=x﹣6.(1)若一次函数与反比例函数的图象交于点P(2,m),求m和k的值.(2)当k满足什么条件时,两函数的图象没有交点?考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:(1)两个函数交点的坐标满足这两个函数关系式,因此将交点的坐标分别代入反比例函数关系式和一次函数关系式即可求得待定的系数;(2)函数的图象没有交点,即无解,用二次函数根的判别式可解.解答:解:(1)∵一次函数和反比例函数的图象交于点(2,m),∴m=2﹣6,解得m=﹣4,即点P(2,﹣4),则k=2×(﹣4)=﹣8.∴m=﹣4,k=﹣8;(2)由联立方程y=(k≠0)和一次函数y=x﹣6,有=x﹣6,即x2﹣6x﹣k=0.∵要使两函数的图象没有交点,须使方程x2﹣6x﹣k=0无解.∴△=(﹣6)2﹣4×(﹣k)=36+4k<0,解得k<﹣9.又∵k≠0,∴当k<﹣9时,两函数的图象没有交点.点评:本题考查反比例函数与一次函数的交点问题,注意先代入一次函数解析式,求得两个函数的交点坐标.5.(2013•珠海)已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,OA=OB,函数y=的图象与线段AB交于M点,且AM=BM.(1)求点M的坐标;(2)求直线AB的解析式.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)过点M作MC⊥x轴,MD⊥y轴,根据M为AB的中点,MC∥OB,MD∥OA,利用平行线分线段成比例得到点C和点D分别为OA与OB的中点,从而得到MC=MD,设出点M的坐标代入反比例函数解析式中,求出a的值即可得到点M的坐标;(2)根据(1)中求出的点M的坐标得到MC与MD的长,从而求出OA与OB的长,得到点A与点B的坐标,设出一次函数的解析式,把点A与点B的坐标分别代入解析式中求出k与b的值,确定出直线AB 的表达式.解答:解:(1)过点M作MC⊥x轴,MD⊥y轴,∵AM=BM,∴点M为AB的中点,∵MC⊥x轴,MD⊥y轴,∴MC∥OB,MD∥OA,∴点C和点D分别为OA与OB的中点,∴MC=MD,则点M的坐标可以表示为(﹣a,a),把M(﹣a,a)代入函数y=中,解得a=2,则点M的坐标为(﹣2,2);(2)∵则点M的坐标为(﹣2,2),∴MC=2,MD=2,∴OA=OB=2MC=4,∴A(﹣4,0),B(0,4),设直线AB的解析式为y=kx+b,把点A(﹣4,0)和B(0,4)分别代入y=kx+b中得,解得:.则直线AB的解析式为y=x+4.点评:此题考查了反比例函数与一次函数的交点问题,平行线分线段成比例,以及中位线定理,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.6.(2012•广安)如图,已知双曲线y=和直线y=mx+n交于点A和B,B点的坐标是(2,﹣3),AC垂直y轴于点C,AC=.(1)求双曲线和和直线的解析式.(2)求△AOB的面积.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题.分析:(1)把点B的坐标代入双曲线解析式,利用待定系数法求函数解析式解答;根据AC=可得点A的横坐标,然后求出点A的坐标,再利用待定系数法求函数解析式求解直线的解析式;(2)设直线与x轴的交点为D,利用直线的解析式求出点D的坐标,从而得到OD的长度,再根据S△AOB=S△AOD+S△BOD,列式计算即可得解.解答:解:(1)∵点B(2,﹣3)在双曲线上,∴=﹣3,解得k=﹣6,∴双曲线解析式为y=﹣,∵AC=,∴点A的横坐标是﹣,∴y=﹣=4,∴点A的坐标是(﹣,4),∴,解得,∴直线的解析式为y=﹣2x+1;(2)如图,设直线与x轴的交点为D,当y=0时,﹣2x+1=0,解得x=,所以,点D的坐标为(,0),∴OD=,S△AOB=S△AOD+S△BOD=××4+××3=1+=.点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.7.(2011•南京)【问题情境】已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?【数学模型】设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+)(x>0).【探索研究】(1)我们可以借鉴以前研究函数的经验,先探索函数y=x+(x>0)的图象和性质.①填写下表,画出函数的图象;x … 1 2 3 4 …y ……②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x>0)的最小值.【解决问题】(2)用上述方法解决“问题情境”中的问题,直接写出答案.考点:反比例函数的性质;完全平方公式;配方法的应用;一次函数的性质;二次函数的最值.专题:计算题;压轴题.分析:(1)①把x的值代入解析式计算即可;②根据图象所反映的特点写出即可;③根据完全平方公式(a+b)2=a2+2ab+b2,进行配方即可得到最小值;(2)根据完全平方公式(a+b)2=a2+2ab+b2,进行配方得到y=2[+2],即可求出答案.解答:解:(1)①故答案为:,,,2,,,.函数y=x+的图象如图:②答:函数两条不同类型的性质是:当0<x<1时,y 随x的增大而减小,当x>1时,y 随x的增大而增大;当x=1时,函数y=x+(x>0)的最小值是2.③y=x+==+2=+2,∵x>0,所以≥0,所以当x=1时,的最小值为0,∴函数y=x+(x>0)的最小值是2.(2)答:矩形的面积为a(a为常数,a>0),当该矩形的长为时,它的周长最小,最小值是4.点评:本题主要考查对完全平方公式,反比例函数的性质,二次函数的最值,配方法的应用,一次函数的性质等知识点的理解和掌握,能熟练地运用学过的性质进行计算是解此题的关键.8.(2011•临沂)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.考点:反比例函数与一次函数的交点问题.分析:(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.解答:解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,∴S△ABC=×2×5=5.点评:此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.9.(2011•聊城)如图,已知一次函数y=kx+b的图象交反比例函数y=(x>0)的图象于点A、B,交x轴于点C.(1)求m的取值范围;(2)若点A的坐标是(2,﹣4),且=,求m的值和一次函数的解析式.考点:反比例函数与一次函数的交点问题;函数自变量的取值范围;待定系数法求一次函数解析式;待定系数法求反比例函数解析式.专题:综合题;压轴题.分析:(1)根据双曲线位于第四象限,比例系数k<0,列式求解即可;(2)先把点A的坐标代入反比例函数表达式求出m的值,从而的反比例函数解析式,设点B的坐标为B (x,y),利用相似三角形对应边成比例求出y的值,然后代入反比例函数解析式求出点B的坐标,再利用待定系数法求解即可.解答:解:(1)根据题意,反比例函数图象位于第四象限,∴4﹣2m<0,解得m>2;(2)∵点A(2,﹣4)在反比例函数图象上,∴=﹣4,解得m=6,∴反比例函数解析式为y=﹣,∵=,∴=,设点B的坐标为(x,y),则点B到x轴的距离为﹣y,点A到x轴的距离为4,所以==,解得y=﹣1,∴﹣=﹣1,解得x=8,∴点B的坐标是B(8,﹣1),设这个一次函数的解析式为y=kx+b,∵点A、B是一次函数与反比例函数图象的交点,∴,解得,∴一次函数的解析式是y=x﹣5.点评:本题主要考查了反比例函数图象与一次函数图象的交点问题,待定系数法求函数解析式,求出点B的坐标是解题的关键,也是本题的难点.10.(2010•枣庄)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A,B两点,与x轴交于点C,与y 轴交于点D,已知OA=,tan∠AOC=,点B的坐标为(m,﹣2).(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)在y轴上存在一点P,使得△PDC与△ODC相似,请你求出P点的坐标.考点:反比例函数与一次函数的交点问题;相似三角形的性质.专题:综合题;压轴题;数形结合.分析:(1)中,因为OA=,tan∠AOC=,则可过A作AE垂直x轴,垂足为E,利用三角函数和勾股定理即可求出AE=1,OE=3,从而可知A(3,1),又因点A在反比例函数y=的图象上,由此可求出开k=3,从而求出反比例函数的解析式.(2)中,因为一次函数y=ax+b的图象与反比例函数y=的图象交于A,B两点,点B的坐标为(m,﹣2).所以3=﹣2x.即m=﹣,B(﹣,﹣2).然后把点A、B的坐标代入一次函数的解析式,得到关于a、b的方程组,解之即可求出a、b的值,最终写出一次函数的解析式.(3)因为在y轴上存在一点P,使得△PDC与△ODC相似,而∠PDC和∠ODC是公共角,所以有△PDC∽△CDO,,而点C、D分别是一次函数y=x﹣1的图象与x轴、y轴的交点,因此有C(,0)、D(0,﹣1).OC=,OD=1,DC=.进而可求出PD=,OP=.写出点P的坐标.解答:解:(1)过A作AE垂直x轴,垂足为E,∵tan∠AOC=,∴OE=3AE∵OA=,OE2+AE2=10,∴AE=1,OE=3∴点A的坐标为(3,1).∵A点在双曲线上,∴,∴k=3.∴双曲线的解析式为.(2)∵点B(m,﹣2)在双曲线上,∴﹣2=,∴m=﹣.∴点B的坐标为(﹣,﹣2).∴,∴∴一次函数的解析式为y=x﹣1.(3)过点C作CP⊥AB,交y轴于点P,∵C,D两点在直线y=x﹣1上,∴C,D的坐标分别是:C(,0),D(0,﹣1).即:OC=,OD=1,∴DC=.∵△PDC∽△CDO,∴,∴PD=又OP=DP﹣OD=∴P点坐标为(0,).点评:此类题目往往和三角函数相联系,在考查学生待定系数法的同时,也综合考查了学生的解直角三角形、相似三角形的知识,是数形结合的典型题例,它的解决需要学生各方面知识的灵活运用.11.(2009•宁德)如图,已知点A、B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=12.考点:反比例函数系数k的几何意义.专题:压轴题.分析:由△ABP的面积为3,知BP•AP=6.根据反比例函数中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.解答:解:∵△ABP的面积为•BP•AP=3,∴BP•AP=6,∵P是AC的中点,∴A点的纵坐标是B点纵坐标的2倍,又点A、B都在双曲线y=(x>0)上,∴B点的横坐标是A点横坐标的2倍,∴OC=DP=BP,∴k=OC•AC=BP•2AP=12.故答案为:12.点评:主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.12.(2009•昆明)如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B两点,点A的坐标为(﹣6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题;待定系数法.分析:观察图象,函数经过一定点,将此点坐标代入函数解析式(k≠0)即可求得k的值.解答:解:把点A(﹣6,2)代入中,得m=﹣12.∴反比例函数的解析式为.把点B(3,n)代入中,得n=﹣4.∴B点的坐标为(3,﹣4).把点A(﹣6,2),点B(3,﹣4)分别代入y=kx+b中,得,解得.∴一次函数的解析式为y=﹣x﹣2.点评:用待定系数法确定反比例函数的比例系数k,求出函数解析式.13.(2008•黔南州)如图,矩形ABOD的顶点A是函数y=与函数y=﹣x﹣(k+1)在第二象限的交点,AB⊥x轴于B,AD⊥y轴于D,且矩形ABOD的面积为3.(1)求两函数的解析式.(2)求两函数的交点A、C的坐标.(3)若点P是y轴上一动点,且S△APC=5,求点P的坐标.考点:反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;三角形的面积.专题:数形结合.分析:(1)根据反比例函数系数k的几何意义和矩形ABOD的面积为3求出k的值;(2)将两函数解析式组成方程组,求出其解,即得交点A、C的坐标;(3)设直线y=﹣x+2与y轴的交点坐标为M(0,2),根据S△ABC=5,求出|PM|的值即可求出m的值.解答:解:(1)设点A的坐标为(x,y),∵点A在第二象限,∴x<0,y>0,∵S矩形ABOD=|AB|•|AD|=|x|•|y|=3,∴﹣xy=3,又∵y=,∴xy=k,∴k=﹣3.∴反比例函数的解析式为y=﹣,一次函数的解析式为y=﹣x+2.(2)由,解得,.∴点A、C的坐标分别为(﹣1,3),(3,﹣1).(3)设点P的坐标为(0,m),直线y=﹣x+2与y轴的交点坐标为M(0,2),∵S△APC=S△AMP+S△CMP=|PM|(|x1|+|x2|)=5.∴|PM|=,即|m﹣2|=,∴m=或m=﹣,∴点P的坐标为(0,)或(0,﹣).点评:此题考查了反比例函数的几何意义及函数图象交点和方程组的解关系,求出各交点坐标是解题的关键.14.(2008•平谷区二模)已知反比例函数图象的两个分支分布在二、四象限内,且关于x的一元二次方程x2﹣4x+m2=0有两个相等的实数根.求反比例函数的解析式.考点:待定系数法求反比例函数解析式;根的判别式.专题:计算题;压轴题.分析:由于一元二次方程x2﹣4x+m2=0有两个相等的实数根,根据根的判别式可得△=(﹣4)2﹣4m2=0,易求m,而函数图象的两个分支分布在二、四象限内,可知m﹣1<0,可求m的取值范围,从而可确定m的值,进而可求函数解析式.解答:解:依题意,得△=(﹣4)2﹣4m2=0,解得m=±2,∵函数图象的两个分支分布在二、四象限内,∴m﹣1<0,∴m<1,∴m=﹣2,∴反比例函数的解析式为y=﹣.点评:本题考查了根的判别式、反比例函数的性质、反比例函数解析式.解题的关键是求出m.15.(2007•西藏)如图,反比例函数(k≠0)的图象与正比例函数y2=﹣2x的图象交于A、B两点,过B作BC⊥y轴,垂足为C,已知S△BOC=4.求:(1)反比例函数的解析式;(2)观察图象,当x在什么取值范围内时y1>y2成立?考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题.分析:(1)由B在正比例函数图象上,设B(a,﹣2a),a>0,进而得出OC与BC的长,由三角形BOC的面积为4列出关于a的方程,求出方程的解得到a的值,确定出B坐标,代入反比例解析式中求出k的值,即可确定出反比例解析式;(2)由对称性求出A的坐标,由A与B横坐标及函数图象,即可求出满足题意x的范围.解答:解:(1)由题意设B(a,﹣2a),a>0,∴OC=2a,BC=a,∵S△BOC=•2a•a=4,即a2=4,∴a=2,即B(2,﹣4),将B(2,﹣4)代入反比例解析式得:k=﹣8,则反比例解析式为y1=﹣;(2)由对称性得到A(﹣2,4),根据图象得:当﹣2<x<0或x>2时,y1>y2.点评:此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法求反比例解析式,利用了数形结合的思想,熟练掌握数形结合思想是解本题第二问的关键.。

初中数学反比例函数难题汇编附答案解析

初中数学反比例函数难题汇编附答案解析

k1
3a
故选 A.
【点睛】
考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表
示出 k,是解决问题的方法.
3.已知点
A1,
y1 、
B 2,
y2 都在双曲线
y
3 2m x
上,且
y1
y2
,则 m
的取值范
围是( )
A. m 0
【答案】D 【解析】
B. m 0
C. m 3 2
7.已知点 M 1,3 在双曲线 y k 上,则下列各点一定在该双曲线上的是( )
x
A. 3,1
B. 1, 3
C. 1,3
D. 3,1
【答案】A 【解析】 【分析】 先求出 k=-3,再依次判断各点的横纵坐标乘积,等于-3 即是在该双曲线上,否则不在. 【详解】
∵点 M 1,3 在双曲线 y k 上,
x ∴ k 13 3 , ∵ 3 (1) 3,
∴点(3,-1)在该双曲线上,
∵ (1) (3) 13 31 3,
∴点 1, 3 、 1,3 、 3,1 均不在该双曲线上,
故选:A. 【点睛】 此题考查反比例函数解析式,正确计算 k 值是解题的关键.
8.如图,菱形 ABCD 的两个顶点 B、D 在反比例函数 y= 的图象上,对角线 AC 与 BD 的交
4.一次函数 y=ax+b 与反比例函数 y a b ,其中 ab<0,a、b 为常数,它们在同一坐标 x
系中的图象可以是( )
A.
B.
C.
D.
【答案】C 【解析】 【分析】 根据一次函数的位置确定 a、b 的大小,看是否符合 ab<0,计算 a-b 确定符号,确定双曲 线的位置. 【详解】 A. 由一次函数图象过一、三象限,得 a>0,交 y 轴负半轴,则 b<0, 满足 ab<0, ∴a−b>0,

反比例函数难题汇编及答案解析

反比例函数难题汇编及答案解析

错误;
B、y=x 是一次函数 k=1>0,y 随 x 的增大而增大,错误;
C、y=x+1 是一次函数 k=1>0,y 随 x 的增大而减小,错误;
D、 y 1 是反比例函数,图象无语一三象限,在每个象限 y 随 x 的增大而减小,正确; x
故选 D.
【点睛】
本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的
7.下列函数中,当 x>0 时,函数值 y 随自变量 x 的增大而减小的是( )
A.y=x2 【答案】D
B.y=x
C.y=x+1
D. y 1 x
【解析】
【分析】
需根据函数的性质得出函数的增减性,即可求出当 x>0 时,y 随 x 的增大而减小的函数.
【详解】
解:A、y=x2 是二次函数,开口向上,对称轴是 y 轴,当 x>0 时,y 随 x 的增大而增大,
图象过第一、三
试题分析:分别根据题意确定 k 的值,然后相加即可.∵关于 x 的分式方程 =2 的解为
非负数,∴x= ≥0,解得:k≥-1,∵反比例函数 y= 图象过第一、三象限,∴3﹣k> 0,解得:k<3,∴-1≤k<3,整数为-1,0,1,2,∵x≠0 或 1,∴和为-1+2=1,故选,B. 考点:反比例函数的性质.
解:依题意得方程 x3 2x 1 0 的实根是函数 y x2 2 与 y 1 的图象交点的横坐标,
x 这两个函数的图象如图所示,它们的交点在第一象限.

1
x=
时, y
x2
22
1
,y
1
4 ,此时抛物线的图象在反比例函数下方;
4
16
x
当 x= 1 时, y x2 2 2 1 , y 1 3 ,此时抛物线的图象在反比例函数下方;

反比例函数难题(含答案)

反比例函数难题(含答案)

反比例函数典型例题1、(2011•宁波)正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数y=x 2(x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y=x2(x >0)的图象上,顶点A 2在x 轴的正半轴上,则P 2点的坐标为___________,则点P 3的坐标为__________。

答案:P 2(2,1) P 2(3+1,3-1)2、已知关于x 的方程x 2+3x+a=0的两个实数根的倒数和等于3,且关于x的方程(k-1)x 2+3x-2a=0有实根,且k 为正整数,正方形ABP 1P 2的顶点P 1、P 2在反比例函数y=x1k +(x >0)图象上,顶点A 、B 分别在x 轴和y 轴的正半轴上,求点P 2的坐标.答案:(2,1)或(6,26) 3、如图,正方形OABC 和正方形AEDF 各有一个顶点在一反比例函数图象上,且正方形OABC 的边长为2. (1)求反比例函数的解析式;(2)求点D 的坐标.答案:(1) y=x4(2) (15+,1-5)4、两个反比例函数y=x 3,y=x6在第一象限内的图象如图所示,点P 1、P 2在反比例函数图象上,过点P 1作x 轴的平行线与过点P 2作y 轴的平行线相交于点N ,若点N (m ,n )恰好在y=x3的图象上,则NP 1与NP 2的乘积是______。

答案:3答案:35、(2007•泰安)已知三点P 1(x 1,y 1),P 2(x 2,y 2),P 3(1,-2)都在反比例函数y=xk的图象上,若x 1<0,x 2>0,则下列式子正确的是( )答案:D A .y 1<y 2<0B .y 1<0<y 2C .y 1>y 2>0D .y 1>0>y 26、如图,已知反比例函数y=x1的图象上有点P ,过P 点分别作x 轴和y 轴的垂线,垂足分别为A 、B ,使四边形OAPB 为正方形,又在反比例函数图象上有点P 1,过点P 1分别作BP 和y 轴的垂线,垂足分别为A 1、B 1,使四边形BA 1P 1B 1为正方形,则点P 1的坐标是________。

最新初中数学反比例函数难题汇编附答案解析

最新初中数学反比例函数难题汇编附答案解析
12.如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积 与气体对气缸壁产生的压强 的关系可以用如图所示的函数图象进行表示,下列说法正确的是()
A.气压P与体积V的关系式为
B.当气压 时,体积V的取值范围为
C.当体积V变为原来的一半时,对应的气压P也变为原来的一半
6.如图,A,B是反比例函数y= 在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是( )
A.4B.3C.2D.1
【答案】B
【解析】
【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD= ×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC= (BD+AC)•CD= ×(1+2)×2=3,从而得出S△AOB=3.
∴点A的坐标是( a,a)
同理可得点B的坐标是( a,-3a)
∴k1= a×a= a2,k2= a×(-3a)=-3 a
∴ .
故选A.
【点睛】
考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k,是解决问题的方法.
10.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数 、 的图象交于B、A两点,则∠OAB大小的变化趋势为()
【详解】
解:由反比例函数y2=﹣ (x<0)经过C,点C的横坐标为﹣1,得
y=﹣ =5,即C(﹣1,5).

反比例函数难题汇编附答案

反比例函数难题汇编附答案

x 轴,交 y 轴
A.6 【答案】D 【解析】
B.8
C.10
D.12
【分析】
过点 A 作 AD⊥x 轴于 D,过点 B 作 BE⊥x 轴于 E,得出四边形 ACOD 是矩形,四边形 BCOE
是矩形,得出 S矩形ACOD =4, S矩形BCOE k ,根据 AB=2AC,即 BC=3AC,即可求得矩形 BCOE
∵ y 2 x 0 ,过整点(-1,-2),(-2,-1),
x
当 b= 4 时,如图:区域 W 内没有整点, 3
当 b= 2 时,区域 W 内没有整点, 3
∴ 4 b 2 时图形 W 增大过程中,图形内没有整点,
3
3
故选:D.
【点睛】
此题考查函数图象,根据函数解析式正确画出图象是解题的关键.
y1>y2 的 x 的取值范围是( )
A.0<x<2
B.x>2
C.x>2 或-2<x<0 D.x<-2 或 0<x<2
【答案】D
【解析】
【分析】
先根据反比例函数与正比例函数的性质求出 B 点坐标,由函数图象即可得出结论.
【详解】
∵反比例函数与正比例函数的图象均关于原点对称,
∴A、B 两点关于原点对称.
【解析】
【分析】
首先根据 A,B 两点的横坐标,求出 A,B 两点的坐标,进而根据 AC//BD// y 轴,及反比例函数
2
2
几何意义得到 1 |k|= 3 ,然后利用反比例函数的性质确定 k 的值. 22
【详解】
连接 OC,如图,
∵BA⊥x 轴于点 A,C 是线段 AB 的中点,
∴S△AOC= 1 S△OAB= 3 ,
2
2
而 S△AOC= 1 |k|, 2

人教版初中数学反比例函数难题汇编附答案

人教版初中数学反比例函数难题汇编附答案

人教版初中数学反比例函数难题汇编附答案一、选择题1.如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积(mL)V 与气体对气缸壁产生的压强(kPa)P 的关系可以用如图所示的函数图象进行表示,下列说法正确的是( )A .气压P 与体积V 的关系式为(0)P kV k =>B .当气压70P =时,体积V 的取值范围为70<V<80C .当体积V 变为原来的一半时,对应的气压P 也变为原来的一半D .当60100V 剟时,气压P 随着体积V 的增大而减小 【答案】D【解析】【分析】A .气压P 与体积V 表达式为P=k V ,k >0,即可求解; B .当P=70时,600070V =,即可求解; C .当体积V 变为原来的一半时,对应的气压P 变为原来的两倍,即可求解; D .当60≤V≤100时,气压P 随着体积V 的增大而减小,即可求解.【详解】解:当V=60时,P=100,则PV=6000,A .气压P 与体积V 表达式为P=k V ,k >0,故本选项不符合题意; B .当P=70时,V=600070>80,故本选项不符合题意; C .当体积V 变为原来的一半时,对应的气压P 变为原来的两倍,本选项不符合题意; D .当60≤V≤100时,气压P 随着体积V 的增大而减小,本选项符合题意;故选:D .【点睛】本题考查的是反比例函数综合运用.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,进而根据字母代表的意思求解.2.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数k=(x>0)的图象经过顶点B,则k的值为yxA.12 B.20 C.24 D.32【答案】D【解析】【分析】【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.∆的面积为2,边BC的长为x,边BC上的高为y,则y与x的变化规律用图象3.ABC表示大致是()A.B.C .D .【答案】A【解析】【分析】根据三角形面积公式得出y 与x 的函数解析式,根据解析式作出图象进行判断即可.【详解】根据题意得 122xy = ∴4y x=∵00x y >>,∴y 与x 的变化规律用图象表示大致是故答案为:A .【点睛】本题考查了反比例函数的图象问题,掌握反比例函数图象的性质是解题的关键.4.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x=≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.5.对于反比例函数2y x=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小 【答案】C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A 正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化6.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l与底面半径r之间的函数关系图象大致是()A.B.C.D.【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180lπ⋅⋅,整理得l=43r(r>0),然后根据正比例函数图象求解.【详解】解:根据题意得2πr=270180lπ⋅⋅,所以l=43r(r>0),即l与r为正比例函数关系,其图象在第一象限.故选A.【点睛】本题考查圆锥的计算;函数的图象.7.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23 BFOA=,∴OA=3OC,BF=2OC ∴若设F(m,n)则OA=3m,BF=2m ∵S△BEF=4∴BE=4 m则E(3m,n-4m)∵E在双曲线y=kx上∴mn=3m(n-4m)∴mn=6即k=6.故选A.【点睛】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E点坐标是解题关键.8.下列各点中,在反比例函数3yx=图象上的是()A.(3,1) B.(-3,1)C.(3,13) D.(13,3)【答案】A【解析】【分析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3.【详解】解:A、∵3×1=3,∴此点在反比例函数的图象上,故A正确;B、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B错误;C、∵13=133垂, ∴此点不在反比例函数的图象上,故C错误;D、∵13=133垂, ∴此点不在反比例函数的图象上,故D错误;故选A.9.如图, 在同一坐标系中(水平方向是x轴),函数kyx=和3y kx=+的图象大致是()A.B.C.D.【答案】A【解析】【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=kx的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=kx的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=kx的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=kx的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.10.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数ykx(x>0)的图象经过A,B两点,若菱形ABCD的面积为25,则k的值为()A.2 B.3 C.4 D.6【答案】C【解析】【分析】过点A作x轴的垂线,交CB的延长线于点E,根据A,B两点的纵坐标分别为4,2,可得出横坐标,即可求得AE ,BE 的长,根据菱形的面积为25,求得AE 的长,在Rt △AEB 中,即可得出k 的值.【详解】过点A 作x 轴的垂线,交CB 的延长线于点E ,∵A ,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A (4k ,4),B (2k ,2), ∴AE =2,BE 12=k 14-k 14=k , ∵菱形ABCD 的面积为5∴BC×AE =5BC 5=∴AB =BC 5=在Rt △AEB 中,BE 22AB AE =-=1 ∴14k =1, ∴k =4.故选:C .【点睛】 本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.11.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2y x =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【解析】【分析】 过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V ∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.12.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .32【答案】B【解析】【分析】 首先根据A,B 两点的横坐标,求出A,B 两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D 两点的坐标,从而得出AC,BD 的长,根据三角形的面积公式表示出S △OAC ,S △ABD 的面积,再根据△OAC 与△ABD 的面积之和为32,列出方程,求解得出答案.【详解】把x=1代入1y x=得:y=1, ∴A(1,1),把x=2代入1y x =得:y=12, ∴B(2, 12), ∵AC//BD// y 轴, ∴C(1,K),D(2,k 2) ∴AC=k-1,BD=k 2-12, ∴S △OAC =12(k-1)×1, S △ABD =12 (k 2-12)×1, 又∵△OAC 与△ABD 的面积之和为32, ∴12(k-1)×1+12 (k 2-12)×1=32,解得:k=3; 故答案为B.【点睛】:此题考查了反比例函数系数k 的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.13.反比例函数k y x=的图象在第二、第四象限,点()()()1232,,4,,5,A y B y C y -是图象上的三点,则123,,y y y 的大小关系是( )A .123y y y >>B .132y y y >>C .312y y y >>D .231y y y >> 【答案】B【解析】【分析】根据反比例函数图像在第二、四象限,反比例函数图像在第二、四象限,y 随x 的增大而增大,再根据三点横坐标的特点即可得出结论.【详解】 解:∵反比例函数k y x=图象在第二、四象限, ∴反比例函数图象在每个象限内y 随x 的增大而增大,∵-2<4<5,∴点B 、C 在第四象限,点A 在第二象限,∴23y y <<0,10y > ,∴132y y y >>.故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答本题的关键.14.矩形ABCO 如图摆放,点B 在y 轴上,点C 在反比例函数y k x=(x >0)上,OA =2,AB =4,则k 的值为( )A .4B .6C .325D .425 【答案】C【解析】【分析】 根据矩形的性质得到∠A=∠AOC=90°,OC=AB ,根据勾股定理得到OB 22OA AB =+=5C 作CD ⊥x 轴于D ,根据相似三角形的性质得到CD 855=,OD 455=, 求得C (85555,)于是得到结论. 【详解】解:∵四边形ABCO 是矩形,∴∠A =∠AOC =90°,OC =AB ,∵OA =2,AB =4,∴过C 作CD ⊥x 轴于D ,∴∠CDO =∠A =90°,∠COD+∠COB =∠COB+∠AOB =90°,∴∠COD =∠AOB ,∴△AOB ∽△DOC , ∴OB AB OA OC CD OD ==, 2542CD OD==,∴CD 855=,OD 455=, ∴C(455,855), ∴k 325=, 故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.15.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D【解析】【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可.【详解】当12x =时,2y = ,当2x =时,12y = , ∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时APBP -的值最大.设直线AB 的解析式为y kx b =+ ,将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=V . 故选:D .【点睛】本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.16.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( ) A .-1或1B .小于12的任意实数 C .-1 D .不能确定 【答案】C【解析】【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-Q 是反比例函数,∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<, 解得12m <,即m 的值是1-. 故选:C . 【点睛】 对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.17.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<Q 的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=, 1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.18.已知反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a =+的图象可能是( ) A . B . C . D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a=+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0,∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】 本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.19.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A .22B .12C .14D .3 【答案】A【解析】【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA = 【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴2OB OA =, 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解20.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.。

初中数学反比例函数难题汇编及答案

初中数学反比例函数难题汇编及答案

初中数学反比例函数难题汇编及答案一、选择题1.已知1122(,),,)A x y Bx y (均在反比例函数2y x=的图像上,若120x x <<,则12,y y 的大小关系是( ) A .120y y << B .210y y <<C .120y y <<D .210y y <<【答案】D 【解析】 【分析】先根据反比例函数的性质判断出函数图象所在的象限,再根据反比例函数的性质即可作出判断. 【详解】解:∵反比例函数2y x=中k=2>0, ∴此函数的图象在一、三象限,且在每一象限内y 随x 的增大而减小, ∵0<x l <x 2,∴点A (x 1,y 1),B (x 2,y 2)均在第一象限, ∴0<y 2<y l . 故选:D . 【点睛】此题考查反比例函数图象上点的坐标特点,熟知反比例函数图象的增减性是解题的关键.2.如图,点A 是反比例函数y =kx(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣4【答案】B 【解析】 【分析】作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|. 【详解】解:作AE ⊥BC 于E ,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|k|,∴|k|=8,而k<0∴k=-8.故选:B.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.3.在同一平面直角坐标系中,反比例函数ybx(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a,b异号,即b<0.所以反比例函数ybx=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a,b同号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.4.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.5.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x=<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个 C .1个 D .没有 【答案】D 【解析】 【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择. 【详解】∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b-≤≤-时图形W增大过程中,图形内没有整点,故选:D.【点睛】此题考查函数图象,根据函数解析式正确画出图象是解题的关键.6.在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,则有()A.m>﹣13B.m<﹣13C.m≥﹣13D.m≤﹣13【答案】B【解析】【分析】先根据y1<0<y2,有x1>x2,判断出反比例函数的比例系数的正负,求出m的取值范围即可.【详解】∵在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,∴反比例函数的图象在二、四象限,∴9m+3<0,解得m<﹣13.故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是掌握反比例函数的性质7.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D【解析】 【分析】如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a-),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠OAB=22为定值,即可解决问题. 【详解】解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F , 则△BEO ∽△OFA , ∴BE OEOF AF=, 设点B 为(a ,1a-),A 为(b ,2b ),则OE=-a ,EB=1a-,OF=b ,AF=2b ,可代入比例式求得222a b =,即222a b=, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b+=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b bb++==++=222214()24b b b b ++=22∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变. 故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.8.如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【答案】C【解析】分析:根据题意可以求得点B的坐标,从而可以求得k的值.详解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(−,),∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.9.已知点A(﹣2,y1),B(a,y2),C(3,y3)都在反比例函数4yx的图象上,且﹣2<a<0,则()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【答案】D 【解析】 【分析】根据k >0,在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,逐一分析即可. 【详解】 ∵反比例函数y=4x中的k=4>0, ∴在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限, ∵-2<a <0, ∴0>y 1>y 2,∵C (3,y 3)在第一象限, ∴y 3>0, ∴213y y y <<, 故选D . 【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.10.在函数2y x=,3y x ,2y x 的图象中,是中心对称图形,且对称中心是原点的图象共有( )A .0个B .1个C .2个D .3个【答案】B 【解析】 【分析】根据中心对称图形的定义与函数的图象即可求解. 【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x 2图象不是中心对称图形;只有函数2y x =符合条件. 故选:B . 【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.11.已知点11(,)x y ,22(,)x y 均在双曲线1y x=-上,下列说法中错误的是( ) A .若12x x =,则12y y =B .若12x x =-,则12y y =-C .若120x x <<,则12y y <D .若120x x <<,则12y y >【答案】D 【解析】 【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x=-,用y 1、y 2表示出x 1,x 2,据此进行判断. 【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x=-上, ∴111y x =-,221y x =-.A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确;B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确;D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误; 故选:D . 【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数by x=在同平面直角坐标系中的图象大致是( )A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b,c的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax2+bx+c的图象开口向下,∴a<0,∵二次函数y=ax2+bx+c的图象经过原点,∴c=0,∵二次函数y=ax2+bx+c的图象对称轴在y轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.13.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】【分析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形,∴O为AB 的中点,∴S△AOC=S△COB,∵由题意得A点在y=-2x上,B点在y=4x上,∴S△AOD=12×OD×AD=12xy=1;S△COD=12×OC×OD=12xy=2;S△AOC= S△AOD+ S△COD=3,∴S△ABC= S△AOC+S△COB=6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.14.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=kx的图象于点C,且OC=2CA',则k的值为()A .4B .72C .8D .7【答案】C【解析】【详解】 解:设将Rt △AOB 绕点O 顺时针旋转至Rt △A'OB'的旋转角为α,OB=a ,则OA=3a , 由题意可得,点B′的坐标为(acosα,﹣asinα),点C 的坐标为(2asinα,2acosα), ∵点B'在反比例函数y=﹣2x 的图象上, ∴﹣asinα=﹣2acos α,得a 2sinαcosα=2, 又∵点C 在反比例函数y=k x 的图象上, ∴2acos α=k 2asin α,得k=4a 2sinαcosα=8. 故选C.【点睛】 本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C 的坐标,再通过反比例函数的性质求解即可.15.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( ) A .-1或1B .小于12的任意实数 C .-1 D .不能确定 【答案】C【解析】【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-是反比例函数, ∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<, 解得12m <,即m 的值是1-. 故选:C . 【点睛】 对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.16.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x =<的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.17.如图,点A在反比例函数3(0)y xx=-<的图象上,点B在反比例函数3(0)y xx=>的图象上,点C在x轴的正半轴上,则平行四边形ABCO的面积是()A.6 B.5 C.4 D.3【答案】A【解析】【分析】因为四边形ABCO是平行四边形,所以点A、B纵坐标相等,即可求得A、B横坐标,则AB 的长度即可求得,然后利用平行四边形面积公式即可求解.【详解】解:∵四边形ABCO是平行四边形∴点A、B纵坐标相等设纵坐标为b,将y=b带入3(0)y xx=-<和3(0)y xx=>中,则A点横坐标为3b-,B点横坐标为3b∴AB=336()b b b --=∴66 ABCOS bb=⨯=故选:A.【点睛】本题考查了反比例函数以及平行四边形面积公式,本题关键在于两点间距离的求法.18.如图,△AOB是直角三角形,∠AOB=90°,△AOB的两边分别与函数12,y yx x =-=的图象交于B、A两点,则等于()A .22B .12C .14D .33【答案】A【解析】【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出22OB OA = 【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴22OB OA =, 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解19.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23【答案】B【解析】【分析】 设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】 设OA=4a根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得; 3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32故选:B【点睛】 本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.20.如图,在平面直角坐标系中,将△OAB (顶点为网格线交点)绕原点O 顺时针旋转90°,得到△OA ′B ′,若反比例函数y=k x的图象经过点A 的对应点A′,则k 的值为( )A.6 B.﹣3 C.3 D.6【答案】C【解析】【分析】直接利用旋转的性质得出A′点坐标,再利用反比例函数的性质得出答案.【详解】如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=kx的图象经过点A的对应点A′,∴A′(3,1),则把A′代入y=kx,解得:k=3.故选C.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确得出A′点坐标是解题关键.。

反比例函数难题汇编及答案

反比例函数难题汇编及答案
∵S 四边形 AODB=S△AOB+S△BOD=S△AOC+S 梯形 ABDC, ∴S△AOB=S 梯形 ABDC,
∵S 梯形 ABDC= 1 (BD+AC)•CD= 1 ×(1+2)×2=3,
2
2
∴S△AOB=3,
故选 B.
【点睛】本题考查了反比例函数 y k k 0 中 k 的几何意义,反比例函数图象上点的坐
∵点 B 在反比例函数
(x>0)的图象上,
性质得到 S△BDO= 5 ,S△AOC= 1 ,根据相似三角形的性质得到= OB 5 ,根据三角函数的
2
2
OA
定义即可得到结论.
【详解】
解:过 A 作 AC⊥x 轴,过 B 作 BD⊥x 轴于 D,
则∠BDO=∠ACO=90°,
∵顶点 A,B 分别在反比例函数 y 1 x 0 与 y 5 x 0 的图象上,
A.气压 P 与体积 V 的关系式为 P kV (k 0) B.当气压 P 70 时,体积 V 的取值范围为 70<V<80
C.当体积 V 变为原来的一半时,对应的气压 P 也变为原来的一半
D.当 60 V 100 时,气压 P 随着体积 V 的增大而减小
【答案】D 【解析】 【分析】 A.气压 P 与体积 V 表达式为 P= k ,k>0,即可求解;
解:依题意得方程 x3 2x 1 0 的实根是函数 y x2 2 与 y 1 的图象交点的横坐标,
x 这两个函数的图象如图所示,它们的交点在第一象限.

1
x=
时, y
x2
22
1
,y
1
4 ,此时抛物线的图象在反比例函数下方;
4

初中数学反比例函数难题汇编含答案

初中数学反比例函数难题汇编含答案

初中数学反比例函数难题汇编含答案一、选择题1.如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数1(0)k y x x =>和2(0)k y x x =>的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( )A .∠POQ 不可能等于90°B .12PM QM k k = C .这两个函数的图象一定关于x 轴对称 D .△POQ 的面积是()1212k k + 【答案】D 【解析】 【分析】 【详解】解:根据反比例函数的性质逐一作出判断:A .∵当PM=MO=MQ 时,∠POQ=90°,故此选项错误;B .根据反比例函数的性质,由图形可得:1k >0,2k <0,而PM ,QM 为线段一定为正值,故12PM QM k k =,故此选项错误; C .根据1k ,2k 的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误;D .∵|1k |=PM•MO ,|2k |=MQ•MO , ∴△POQ 的面积=12MO•PQ=12MO (PM+MQ )=12MO•PM+12MO•MQ=()1212k k +. 故此选项正确. 故选D .2.如图, 在同一坐标系中(水平方向是x 轴),函数ky x=和3y kx =+的图象大致是( )A.B.C.D.【答案】A【解析】【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=kx的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=kx的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=kx的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=kx的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.3.如图,直线l与x轴、y轴分别交于A、B两点,与反比例函数y=kx的图象在第一象限相交于点C.若AB=BC,△AOB的面积为3,则k的值为()A.6 B.9 C.12 D.18【答案】C【解析】【分析】设OB=a,根据相似三角形性质即可表示出点C,把点C代入反比例函数即可求得k.【详解】作CD⊥x轴于D,设OB=a,(a>0)∵△AOB的面积为3,∴12OA•OB=3,∴OA=6a,∵CD∥OB,∴OD=OA=6a,CD=2OB=2a,∴C(6a,2a),∵反比例函数y=kx经过点C,∴k=6a×2a=12,故选C.【点睛】本题考查直线和反比例函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键.4.已知反比例函数2yx-=,下列结论不正确的是()A.图象经过点(﹣2,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>﹣1时,y>2【答案】D【解析】【分析】【详解】A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B选项:因为-2<0,图象在第二、四象限,故本选项正确;C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;D选项:当x>0时,y<0,故本选项错误.故选D.5.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.6.在函数2yx=,3y x,2y x的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2yx=符合条件.故选:B.【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.7.下列各点中,在反比例函数3yx=图象上的是()A.(3,1) B.(-3,1)C.(3,13) D.(13,3)【答案】A【解析】【分析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3.【详解】解:A、∵3×1=3,∴此点在反比例函数的图象上,故A正确;B、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B错误;C、∵13=133, ∴此点不在反比例函数的图象上,故C错误;D、∵13=133, ∴此点不在反比例函数的图象上,故D错误;故选A.8.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=kx (x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为()A.13B.1 C.2 D.3【答案】D 【解析】【分析】连接OC,如图,利用三角形面积公式得到S△AOC=12S△OAB=32,再根据反比例函数系数k的几何意义得到12|k|=32,然后利用反比例函数的性质确定k的值.【详解】连接OC,如图,∵BA⊥x轴于点A,C是线段AB的中点,∴S△AOC=12S△OAB=32,而S△AOC=12|k|,∴12|k|=32,而k>0,∴k=3.故选:D.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9.如图,点P 是反比例函数y =kx(x <0)图象上一点,过P 向x 轴作垂线,垂足为M ,连接OP .若Rt △POM 的面积为2,则k 的值为( )A .4B .2C .-4D .-2【答案】C 【解析】 【分析】根据反比例函数的比例系数k 的几何意义得到S △POD =12|k|=2,然后去绝对值确定满足条件的k 的值. 【详解】解:根据题意得S △POD =12|k|, 所以12|k||=2, 而k <0, 所以k=-4. 故选:C . 【点睛】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.如图,已知点A ,B 分别在反比例函数12y x =-和2ky x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-【答案】A 【解析】 【分析】设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可. 【详解】解:设A (a ,b ),则B (2a ,2b ), ∵点A 在反比例函数12y x=-的图象上, ∴ab =−2;∵B 点在反比例函数2ky x=的图象上, ∴k =2a•2b =4ab =−8. 故选:A . 【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .11.已知点11(,)x y ,22(,)x y 均在双曲线1y x=-上,下列说法中错误的是( ) A .若12x x =,则12y y = B .若12x x =-,则12y y =- C .若120x x <<,则12y y < D .若120x x <<,则12y y >【答案】D 【解析】 【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x=-,用y 1、y 2表示出x 1,x 2,据此进行判断. 【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x=-上, ∴111y x =-,221y x =-.A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确;B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确;C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确;D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误; 故选:D . 【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .32【答案】B 【解析】 【分析】首先根据A,B 两点的横坐标,求出A,B 两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D 两点的坐标,从而得出AC,BD 的长,根据三角形的面积公式表示出S △OAC ,S △ABD 的面积,再根据△OAC 与△ABD 的面积之和为32,列出方程,求解得出答案. 【详解】 把x=1代入1y x=得:y=1, ∴A(1,1),把x=2代入1y x =得:y=12, ∴B(2,12), ∵AC//BD// y 轴, ∴C(1,K),D(2,k 2) ∴AC=k-1,BD=k 2-12, ∴S △OAC =12(k-1)×1, S △ABD =12 (k 2-12)×1, 又∵△OAC 与△ABD 的面积之和为32, ∴12(k-1)×1+12 (k 2-12)×1=32,解得:k=3; 故答案为B. 【点睛】:此题考查了反比例函数系数k 的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k 的几何意义是解本题的关键.13.直线y =ax (a >0)与双曲线y =3x交于A (x 1,y 1)、B (x 2,y 2)两点,则代数式4x 1y 2-3x 2y 1的值是( ) A .-3a B .-3 C .3aD .3【答案】B 【解析】 【分析】先把1(A x ,1)y 、2(B x ,2)y 代入反比例函数3y x=得出11x y 、22x y 的值,再根据直线与双曲线均关于原点对称可知12x x =-,12y y =-,再把此关系式代入所求代数式进行计算即可. 【详解】 解:1(A x ,1)y 、2(B x ,2)y 在反比例函数3y x=的图象上, 11223x y x y ∴==,直线(0)y ax a =>与双曲线3y x=的图象均关于原点对称, 12x x ∴=-,12y y =-,∴原式111111433x y x y x y =+=-=--.故选:B . 【点睛】本题考查的是反比例函数图象的对称性及反比例函数的性质,根据题意得出11223x y x y ==,12x x =-,12y y =-是解答此题的关键.14.如图,点A 在反比例函数3(0)y x x =-<的图象上,点B 在反比例函数3(0)y x x=>的图象上,点C 在x 轴的正半轴上,则平行四边形ABCO 的面积是( )A .6B .5C .4D .3【答案】A 【解析】 【分析】因为四边形ABCO 是平行四边形,所以点A 、B 纵坐标相等,即可求得A 、B 横坐标,则AB 的长度即可求得,然后利用平行四边形面积公式即可求解. 【详解】解:∵四边形ABCO 是平行四边形 ∴点A 、B 纵坐标相等设纵坐标为b ,将y=b 带入3(0)y x x =-<和3(0)y x x=>中,则A 点横坐标为3b- ,B 点横坐标为3b∴AB=336()b b b--=∴66ABCOSb b=⨯= 故选:A . 【点睛】本题考查了反比例函数以及平行四边形面积公式,本题关键在于两点间距离的求法.15.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)ky k x=≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .25D .6【答案】B 【解析】 【分析】设E 的坐标是m n k mn =(,),, 则C 的坐标是2m n (,) ,求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值. 【详解】设E 的坐标是m n k mn =(,),,, 则C 的坐标是(m ,2n ), 在mny x = 中,令2y n =,解得:2m x =, ∵1CDES =,∴111,12222m m n m n -=⨯=即 ∴4mn = ∴4k = 故选:B 【点睛】本题考查了待定系数法求函数的解析式,利用mn 表示出三角形的面积是关键.16.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCDS为( )A .2.5B .3.5C .4D .5【答案】D 【解析】 【分析】过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论. 【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形 ∴//AB x 轴,CD=AB ∴点A 和点B 的纵坐标相同 由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a )∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCDS=BH·CD=5故选D . 【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.17.已知抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,则一次函数y=kx ﹣k 与反比例函数y=kx在同一坐标系内的大致图象是( )A .B .C .D .【答案】D 【解析】【分析】依据抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,即可得到k <0,进而得出一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=kx的图象在第二四象限,据此即可作出判断.【详解】∵抛物线y=x 2+2x+k+1与x 轴有两个不同的交点, ∴△=4﹣4(k+1)>0, 解得k <0,∴一次函数y=kx ﹣k 的图象经过第一二四象限, 反比例函数y=kx的图象在第二四象限, 故选D .【点睛】本题考查了二次函数的图象与x 轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与x 轴的交点情况确定出k 的取值范围是解本题的关键.18.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数ky x=在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23【答案】B 【解析】 【分析】设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长. 【详解】 设OA=4a 根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a∴D(4a ,3a),E(4a+4,a) 将这两点代入解析得;3444k a ak a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12 ∴BC=AD=32故选:B 【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.19.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2y x=的图象上,OA 交反比例函数()0ky k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D 【解析】 【分析】过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OADS OB SOA ==,24()9COE AOD SOC S OA ==,根据反比例函数比例系数的几何意义求得212BOFS ==,从而求得4COES=,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴 ∴CE ∥AD ,∠CEO=∠BFO=90° ∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90° ∴∠ECO=∠FOB ∴△COE ∽△OBF ∽△AOD 又∵3AO BO =,2OC CA =∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==,24()9COE AODSOC SOA == ∴4COE BOFSS=∵点B 在反比例函数2y x=的图象上 ∴212BOFS == ∴4COES =∴42k=,解得k=±8 又∵反比例函数位于第二象限, ∴k=-8 故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.20.如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积(mL)V 与气体对气缸壁产生的压强(kPa)P 的关系可以用如图所示的函数图象进行表示,下列说法正确的是( )A .气压P 与体积V 的关系式为(0)P kV k =>B .当气压70P =时,体积V 的取值范围为70<V<80C .当体积V 变为原来的一半时,对应的气压P 也变为原来的一半D .当60100V 时,气压P 随着体积V 的增大而减小 【答案】D 【解析】 【分析】A .气压P 与体积V 表达式为P= kV,k >0,即可求解; B .当P=70时,600070V =,即可求解; C .当体积V 变为原来的一半时,对应的气压P 变为原来的两倍,即可求解; D .当60≤V≤100时,气压P 随着体积V 的增大而减小,即可求解. 【详解】解:当V=60时,P=100,则PV=6000, A .气压P 与体积V 表达式为P= kV,k >0,故本选项不符合题意; B .当P=70时,V=600070>80,故本选项不符合题意; C .当体积V 变为原来的一半时,对应的气压P 变为原来的两倍,本选项不符合题意; D .当60≤V≤100时,气压P 随着体积V 的增大而减小,本选项符合题意; 故选:D . 【点睛】本题考查的是反比例函数综合运用.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,进而根据字母代表的意思求解.。

最新初中数学反比例函数难题汇编及答案

最新初中数学反比例函数难题汇编及答案

最新初中数学反比例函数难题汇编及答案一、选择题1.已知反比例函数ky x=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k =-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命题个数是( )A .0B .1C .2D .3【答案】D 【解析】 【分析】根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案. 【详解】 ∵反比例函数ky x=的图象分别位于第二、第四象限, ∴k<0,∵()11,A x y 、()22,B x y 两点在该图象上, ∴y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,∴x 1y 1=k ,x 2y 2=k ,①过点A 作AC x ⊥轴,C 为垂足, ∴S △AOC =1OC?AC 2=11x ?y k =322=, ∴6k=-,故①正确;②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=, ∴()121212120k x x k k y y x x x x ++=+==,故③正确, 故选D. 【点睛】本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.2.已知反比例函数2y x-=,下列结论不正确的是( ) A .图象经过点(﹣2,1)B .图象在第二、四象限C .当x <0时,y 随着x 的增大而增大D .当x >﹣1时,y >2【答案】D 【解析】 【分析】 【详解】A 选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B 选项:因为-2<0,图象在第二、四象限,故本选项正确;C 选项:当x <0,且k <0,y 随x 的增大而增大,故本选项正确;D 选项:当x >0时,y <0,故本选项错误. 故选D .3.如图,在平面直角坐标系中,点A 是函数()0ky x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小【答案】A 【解析】 【分析】根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE S V COF S =V 12=,则四边形OFAE 的面积为定值1k -. 【详解】 ∵点A 是函数(0ky x x=>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x=的图象上, ∴BOE S V COF S =V 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变, 故选:A . 【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.4.在平面直角坐标系中,分别过点(),0A m ,()2,0B m﹢作x 轴的垂线1l 和2l ,探究直线1l 和2l 与双曲线 3y x=的关系,下列结论中错误..的是 A .两直线中总有一条与双曲线相交B .当m =1时,两条直线与双曲线的交点到原点的距离相等C .当20m -﹤﹤ 时,两条直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2 【答案】D 【解析】 【分析】根据题意给定m 特定值、非特定值分别进行讨论即可得. 【详解】当m =0时,2l 与双曲线有交点,当m =-2时,1l 与双曲线有交点,当m 0m 2≠≠,﹣时,12l l 与和双曲线都有交点,所以A 正确,不符合题意;当m 1=时,两交点分别是(1,3),(3,1)B 正确,不符合题意;当2m 0-﹤﹤ 时,1l 在y 轴的左侧,2l 在y 轴的右侧,所以C 正确,不符合题意;两交点分别是33m (m 2m m 2++,和,),当m 无限大时,两交点的距离趋近于2,所以D 不正确,符合题意, 故选D. 【点睛】本题考查了垂直于x 轴的直线与反比例函数图象之间的关系,利用特定值,分情况进行讨论是解本题的关键,本题有一定的难度.5.在同一平面直角坐标系中,反比例函数ybx=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a,b异号,即b<0.所以反比例函数ybx=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a,b同号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a,b异号,即b>0.所以反比例函数ybx=的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.6.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.7.如图,直线y1=x+b与x轴、y轴分别交于A,B两点,与反比例函数y2=﹣5x(x<0)的图象交于C,D两点,点C的横坐标为﹣1,过点C作CE⊥y轴于点E,过点D作DF ⊥x轴于点F.下列说法正确的是()A.b=5B.BC=ADC.五边形CDFOE的面积为35D.当x<﹣2时,y1>y2【答案】B【解析】【分析】根据函数值与相应自变量的关系,可得C点坐标,根据待定系数法,可得一次函数解析式,可判断A选项;根据解方程组,可得C、D点的坐标,根据全等三角形的判定与性质,可判断B选项;根据图形的分割,可得梯形、矩形,根据面积的和差,可判断C选项;根据函数与不等式的关系:函数图象在上方的函数值大,可判断D选项.【详解】解:由反比例函数y2=﹣5 x(x<0)经过C,点C的横坐标为﹣1,得y=﹣51-=5,即C(﹣1,5).反比例函数与一次函数交于C、D点,5=﹣1+b,解得b=6,故A错误;CE⊥y轴于E点,E(0,﹣5),BE=6﹣5=1.反比例函数与一次函数交于C、D点,联立65y xyx=+⎧⎪⎨=-⎪⎩,x2+6x+5=0解得x1=﹣5,x2=﹣1,当x=﹣5时,y=﹣5+6=1,即D(﹣5,1),即DF=1,在△ADF和△CBE中,DAF BCEAFD CEBDF BE∠=∠⎧⎪∠=∠⎨⎪=⎩,△ADF≌△CBE(AAS),AD=BC,故B正确;作CG⊥x轴,S△CDFOE=S梯形DFGC+S矩形CGOE=()(15)422DF CG FGOG CG++⨯+g+1×5=17,故C错误;由一次函数图象在反比例函数图象上方的部分,得﹣5<x<﹣1,即当﹣5<x <﹣1时,y 1>y 2,故D 错误; 故选:B . 【点睛】本题考查了反比例函数综合题,利用了自变量与函数值的对应关系,点的坐标与函数解析式的关系,全等三角形的判定与性质,图形分割法求图形的面积,函数图象与不等式的关系.8.如图,一次函数1y ax b =+和反比例函数2ky x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B 【解析】 【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可. 【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<, 故选B . 【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.9.如图,是反比例函数3y x=和7y x=-在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象相交于点,A B ,点P 在x 轴上.则点P 从左到右的运动过程中,APB △的面积是( )A .10B .4C .5D .从小变大再变小【答案】C 【解析】 【分析】连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =V V ,结合反比例函数比例系数的几何意义,即可求解. 【详解】连接AO 、BO ,设AB 与y 轴交于点C . ∵AB ∥x 轴,∴ABP ABO S S =V V ,AB ⊥y 轴, ∵73522ABO BOC AOC S S S -=+=+=V V V , ∴APB △的面积是:5. 故选C .【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.10.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】【分析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形,∴O为AB 的中点,∴S△AOC=S△COB,∵由题意得A点在y=-2x上,B点在y=4x上,∴S△AOD=12×OD×AD=12xy=1;S△COD=12×OC×OD=12xy=2;S△AOC= S△AOD+ S△COD=3,∴S△ABC= S△AOC+S△COB=6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.11.函数y=1-kx与y=2x的图象没有交点,则k的取值范围是()A.k<0 B.k<1 C.k>0 D.k>1【答案】D【解析】【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k的取值范围.【详解】令1-kx=2x,化简得:x2=1-2k;由于两函数无交点,因此1-2k<0,即k>1.故选D.【点睛】函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.若A(-3,y1)、B(-1,y2)、C(1,y3)三点都在反比例函数y=kx(k>0)的图象上,则y1、y2、y3的大小关系是()A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3【答案】B【解析】【分析】反比例函数y=kx(k>0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y随x的增大而减小,而A(-3,y1)、B(-1,y2)在第三象限双曲线上的点,可得y2<y1<0,C(1,y3)在第一象限双曲线上的点y3>0,于是对y1、y2、y3的大小关系做出判断.【详解】∵反比例函数y=kx(k>0)的图象在一、三象限,∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.13.直线y =ax (a >0)与双曲线y =3x 交于A (x 1,y 1)、B (x 2,y 2)两点,则代数式4x 1y 2-3x 2y 1的值是( )A .-3aB .-3C .3aD .3【答案】B【解析】【分析】先把1(A x ,1)y 、2(B x ,2)y 代入反比例函数3y x =得出11x y g 、22x y g 的值,再根据直线与双曲线均关于原点对称可知12x x =-,12y y =-,再把此关系式代入所求代数式进行计算即可.【详解】解:1(A x Q ,1)y 、2(B x ,2)y 在反比例函数3y x=的图象上, 11223x y x y ∴==g g ,Q 直线(0)y ax a =>与双曲线3y x=的图象均关于原点对称, 12x x ∴=-,12y y =-,∴原式111111433x y x y x y =+=-=--.故选:B .【点睛】本题考查的是反比例函数图象的对称性及反比例函数的性质,根据题意得出11223x y x y ==g g ,12x x =-,12y y =-是解答此题的关键.14.当0x <时,反比例函数2y x=-的图象( )A .在第一象限,y 随x 的增大而减小B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】 本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.15.已知反比例函数2y x =-,下列结论不正确的是 A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2 【答案】B【解析】【分析】此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】解: A 、把(-1,2)代入函数解析式得:2=-21-成立,故点(-1,2)在函数图象上,故选项正确;B 、由k=-2<0,因此在每一个象限内,y 随x 的增大而增大,故选项不正确;C 、由k=-2<0,因此函数图象在二、四象限内,故选项正确;D 、当x=1,则y=-2,又因为k=-2<0,所以y 随x 的增大而增大,因此x >1时,-2<y <0,故选项正确;故选B .【点睛】本题考查反比例函数的图像与性质.16.已知反比例函数b y x =与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( ) A . B . C . D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a=+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0,∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】 本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.17.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A .22B .12C .14D .3 【答案】A【解析】【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA = 【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴2OB OA =, 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解18.如图,平行于x 轴的直线与函数y =1k x(k 1>0,x >0),y =2k x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为6,则k 1﹣k 2的值为( )A .12B .﹣12C .6D .﹣6【答案】A【解析】【分析】 △ABC 的面积=12•AB•y A ,先设A 、B 两点坐标(其y 坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】 解:设:A 、B 点的坐标分别是A (1k m ,m )、B (2k m ,m ), 则:△ABC 的面积=12•AB•y A =12•(1k m ﹣2k m )•m =6, 则k 1﹣k 2=12.故选:A .【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A 、B 两点坐标,表示出相应线段长度即可求解问题.19.如图,直线y =k 和双曲线y =k x相交于点P ,过点P 作PA 0垂直于x 轴,垂足为A 0,x 轴上的点A 0,A 1,A 2,…A n 的横坐标是连续整数,过点A 1,A 2,…A n :分别作x 轴的垂线,与双曲线y =k x(k >0)及直线y =k 分别交于点B 1,B 2,…B n 和点C 1,C 2,…C n ,则n n n n A B C B 的值为( )A .11n +B .11n -C .1nD .11n- 【答案】C【解析】【分析】由x 轴上的点A 0,A 1,A 2,…,A n 的横坐标是连续整数,则得到点An (n +1,0),再分别表示出∁n (n +1,k ),B n (n +1,k n 1+),根据坐标与图形性质计算出A n B n =k n 1+,B n ∁n =k ﹣k n 1+,然后计算n n n nA B B C . 【详解】∵x 轴上的点A 0,A 1,A 2,…,A n 的横坐标是连续整数,∴An (n +1,0),∵∁n A n ⊥x 轴,∴∁n (n +1,k ),B n (n +1,k n 1+), ∴A n B n =k n 1+,B n ∁n =k ﹣k n 1+, ∴n n n n A B B C =11k n k k n +-+=1n . 故选:C .【点睛】考查了反比例函数与一次函数的交点问题,解题关键是抓住了反比例函数与一次函数图象的交点坐标满足两函数解析式.20.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )A .2B .3C .4D .5【答案】C【解析】【分析】 根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号.【详解】解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆== 又因图象过第一象限, 122AOB S k ∆==,解得4k = 故选C【点睛】本题考查了反比例函数系数k 的几何意义.。

中考数学反比例函数选择填空难题(含详细答案)

中考数学反比例函数选择填空难题(含详细答案)

反比例函数(1)1、如图,已知点A ,C 在反比例函数)0(>=a x a y 的图象上,点B ,D 在反比例函数)0(<=b xby 的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB =3,CD =2,AB 与CD 的距离为5,则b a -的值是 6【解】不妨取点C 的横坐标为1,∵点C 在反比例函数(0)ay a x=>的图象上,∴点C 的坐标为()1,a . ∵CD ∥x 轴,CD 在x 轴的两侧,CD =2,∴点D 的横坐标为1-. ∵点D 在反比例函数(0)by b x=<的图象上,∴点D 的坐标为()1,b -- . ∵AB ∥CD ∥x 轴,AB 与CD 的距离为5,∴点A 的纵坐标为5b --. ∵点A 在反比例函数(0)a y a x =>的图象上,∴点A 的坐标为,55a b b ⎛⎫--- ⎪+⎝⎭. ∵AB ∥x 轴,AB 在x 轴的两侧,AB =3,∴点B 的横坐标为315355a b ab b +--+=++. ∵点B在反比例函数(0)by b x=<的图象上,∴点B的坐标为23155,5315b a b b b b a ⎛⎫+-+ ⎪++-⎝⎭ .∴225554155315a b b b b b b b b b a =-⎧+⎪⇒--=⎨++--=⎪+-⎩. ∵50b +≠,∴4153b b b --=⇒=-. ∴3a =.∴6a b -=.2、反比例函数x a y =(a >0,a 为常数)x y 2=在第一象限内的图象如图所示,点M 在xay =的图象上,MC ⊥x 轴于点C ,交x y 2=的图象于点A ;MD ⊥y 轴于点D ,交xy 2=的图象于点B ,当点M 在的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论有 ①②③【解】①由于A 、B 在同一反比例函数xy 2=图象上,则△ODB 与△OCA 的面积相等,都为×2=1,正确;②由于矩形OCMD 、三角形ODB 、三角形OCA 为定值,则四边形MAOB 的面积不会发生变化,正确;③连接OM ,点A 是MC 的中点,则△OAM 和△OAC 的面积相等,∵△ODM 的面积=△OCM 的面积=2a,△ODB 与△OCA 的面积相等,∴△OBM 与△OAM 的面积相等,∴△OBD 和△OBM 面积相等, ∴点B 一定是MD 的中点.正确;3、如图,两个反比例函数x k y 11=(其中k 1>0)和xy 32=在第一象限内的图象依次是C 1和C 2,点P 在C 1上.矩形PCOD 交C 2于A 、B 两点,OA 的延长线交C 1于点E ,EF ⊥x 轴于F 点,且图中四边形BOAP 的面积为6,则EF :AC 为( )A .3﹕1B .2﹕3C .2﹕1D .29﹕14【解】∵B 、C 反比例函数x y 32=的图象上,∴S △ODB =S △OAC =23 ∵P 在反比例函数x k y 11=的图象上, ∴S 矩形PDOC =k 1=6+23+23=9∴图象C 1的函数关系式为x y 9=∵E 点在图象C 1上,∴S △EOF =21×9=29,∴3=∆∆ACO EFO S S ,∵AC ⊥x 轴,EF ⊥x 轴,∴AC ∥EF ,∴△EOF ∽△AOC ,∴3=ACEF,故选:A4、如图,直线l 是经过点(1,0)且与y 轴平行的直线.Rt △ABC 中直角边AC =4,BC =3.将BC 边在直线l 上滑动,使A ,B 在函数x k y =的图象上.那么k 的值是 4155、如图,OABC 为菱形,点C 在x 轴上,点A 在直线y=x 上,点B 在xky =(k >0)的图象上, 若S 菱形OABC =2,则k 的值为2+1 .【解】:∵直线y=x 经过点A ,∴设A (a ,a ),∴OA 2=2a 2,∴AO=2a , ∵四边形ABCD 是菱形,∴AO=CO=CB=AB=2a ,∵菱形OABC 的面积是2,∴2a=2,∴a =1,∴AB=2,A (1,1)∴B (1+2,1), 设反比例函数解析式为xky =(k ≠0),∵B (1+2,1)在反比例函数图象上, ∴k =(1+2)×1=2+1,故答案为:2 +1.6、如图,平面直角坐标系中,OB 在x 轴上,∠ABO=90°,点A 的坐标为(1,2),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线xky =(x >0)上,则k 的值为 3BACO 1xy l【解】易得OB=1,AB=2,∴AD=2,∴点D 的坐标为(3,2),∴点C 的坐标为(3,1),∴k =3×1=3.7、如图,平面直角坐标系中,直线1-=kx y 与反比例函数xy 6-=相交于点A ,AB ⊥x 轴,S △ABC =1,则k 的值为 81-8、如图,A 、B 是双曲线xky =(k >0)上的点,A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k = 4 .【解】分别过点A 、B 作x 轴的垂线,垂足分别为D 、E ,再过点A 作AF ⊥BE 于F . 则AD ∥BE ,AD=2BE=ak,∴B 、E 分别是AC 、DC 的中点. 在△ABF 与△CBE 中,∠ABF=∠CBE ,∠F=∠BEC=90°,AB=CB , ∴△ABF ≌△CBE .∴S △AOC =S 梯形AOEF =6. 又∵A (a ,a k ),B (2a ,a k 2),∴S 梯形AOEF =21(AF+OE )×EF=21(a+2a )×ak=6,得:k =4.9、(2006•长春)如图,双曲线xy 8=的一个分支为( )A B CO DxyA .①B .②C .③D .④【解】∵在xy 8=中,k =8>0∴它的两个分支分别位于第一、三象限,排除①②; 又当x =2时,y =4,排除③;所以应该是④.故选D .10、(2014•盐城)如图,反比例函数xky =(x <0)的图象经过点A (﹣1,1),过点A 作AB ⊥y 轴,垂足为B ,在y 轴的正半轴上取一点P (0,t ),过点P 作直线OA 的垂线l ,以直线l 为对称轴,点B 经轴对称变换得到的点B′在此反比例函数的图象上,则t 的值是215+【解】如图,∵点A 坐标为(﹣1,1),∴k=﹣1×1=﹣1,∴反比例函数解析式为xy 1-= ∵OB=AB=1,∴△OAB 为等腰直角三角形,∴∠AOB=45°, ∵PQ ⊥OA ,∴∠OPQ=45°,∵点B 和点B′关于直线l 对称, ∴PB=PB′,BB′⊥PQ ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P ⊥y 轴,∴点B′的坐标为(﹣t 1,t ),∵PB=PB′,∴t ﹣1=|﹣t 1|=t1,整理得t 2﹣t ﹣1=0,解得t 1=215+,t 2=215-(不符合题意,舍去),∴t 的值为215+.11、直线y=ax (a >0)与双曲线xy 3=交于A (x 1,y 1)、B (x 2,y 2)两点,则4x 1y 2﹣3x 2y 1= ﹣3 . 【解】直线y=ax (a >0)过原点和一、三象限,且与双曲线xy 3=交于两点,则这两点关于原点对称,∴x 1=﹣x 2,y 1=﹣y 2,又∵点A 点B 在双曲线xy 3=上, ∴x 1×y 1=3,x 2×y 2=3,∴原式=﹣4x 2y 2+3x 2y 2=﹣4×3+3×3=﹣3.12、如图,点A 在双曲线x y 1=上,点B 在双曲线xy 3=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为 2 .【解】过A 点作AE ⊥y 轴,垂足为E ,∵点A 在双曲线xy 1=上,∴四边形AEOD 的面积为1, ∵点B 在双曲线xy 3=上,且AB ∥x 轴,∴四边形BEOC 的面积为3, ∴矩形ABCD 的面积为3﹣1=213、已知(x 1,y 1),(x 2,y 2)为反比例函数xky =图象上的点,当x 1<x 2<0时,y 1<y 2,则k 的一个值可为 ﹣1 .(只需写出符合条件的一个k 的值)【解】:∵x 1<x 2<0,∴A (x 1,y 1),B (x 2,y 2)同象限,y 1<y 2,∴点A ,B 都在第二象限, ∴k <0,例如k=﹣1等.故答案为:﹣1.(小于0均可)14、如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数xky =的图象上,若点A 的坐标为(﹣2,﹣2),则k 的值为 4 .【解】设C 的坐标为(m ,n ),又A (﹣2,﹣2),∴AN=MD=2,AF=2,CE=OM=FD=m ,CM=n ,∴AD=AF+FD=2+m ,AB=BN+NA=2+n ,∵∠A=∠OMD=90°,∠MOD=∠ODF , ∴△OMD ∽△DAB ,∴DA OM AB MD =,即mmn +=+222, 整理得:4+2m =2m +mn ,即mn =4,则k =4.15、(2010•衡阳)如图,已知双曲线xky =(k >0)经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k = 2 .【解】:过D 点作DE ⊥x 轴,垂足为E ,∵在Rt △OAB 中,∠OAB=90°,∴DE ∥AB ,∵D 为Rt △OAB 斜边OB 的中点D ,∴DE 为Rt △OAB 的中位线,∴DE ∥AB ,∴△OED ∽△OAB ,∴两三角形的相似比为:=21∵双曲线x k y =(k >0),可知S △AOC =S △DOE =21k ,∴S △AOB =4S △DOE =2k , 由S △AOB ﹣S △AOC =S △OBC =3,得2k ﹣21k=3,解得k =2.故本题答案为:2.16、如图,在平面直角坐标系中,反比例函数xky =(x >0)的图象交矩形OABC 的边AB 于点D ,交边BC 于点E ,且BE=2EC .若四边形ODBE 的面积为6,则k = 3 .【解】连接OB ,如图所示:∵四边形OABC 是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB 的面积=△OBC 的面积,∵D 、E 在反比例函数xky =(x >0)的图象上,∴△OAD 的面积=△OCE 的面积, ∴△OBD 的面积=△OBE 的面积=21四边形ODBE 的面积=3,∵BE=2EC ,∴△OCE 的面积=21△OBE 的面积=23,∴k=3;故答案为:3.17、如图,双曲线)0(2>=x xy 经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 2.18、如图,平行四边形AOBC 中,对角线交于点E ,双曲线xky =(k >0)经过A ,E 两点,若平行四边形AOBC 的面积为24,则k =________819、如图,▱ABCD 的顶点A 、B 的坐标分别是A (-1,0),B (0,-2),顶点C 、D 在双曲线xky 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k =_______12【解】如图,过C 、D 两点作x 轴的垂线,垂足为F 、G ,DG 交BC 于M 点,过C 点作CH ⊥DG ,垂足为H ,∵ABCD 是平行四边形,∴∠ABC=∠ADC ,∵BO ∥DG ,∴∠OBC=∠GDE ,∴∠HDC=∠ABO ,∴△CDH ≌△ABO (ASA ),∴CH=AO=1,DH=OB=2,设C (m+1,n ),D (m ,n+2),则(m+1)n=m (n+2)=k ,解得n=2m ,则D 的坐标是(m ,2m+2),设直线AD 解析式为y=ax+b ,将A 、D 两点坐标代入解得b=2,∴a=b=2∴y=2x+2,E (0,2),BE=4,∴S △ABE=21×BE×AO=2, ∵S 四边形BCDE=5S △ABE=5×21×4×1=10,∴S △ABE+S 四边形BEDM=10,即2+4×m =10,解得m =2,∴n =2m =4,∴k=(m +1)n =3×4=12.20、如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB =54,反比例函数xy 48=在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于 40【解】过点A 作AM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,如图所示.设OA =a ,BF =b ,在Rt △OAM 中,∠AMO =90°,OA =a ,sin ∠AOB =54, ∴AM =OA •sin ∠AOB =54a ,OM =53a ,∴点A 的坐标为(53a ,54a ). ∵点A 在反比例函数x y 48=的图象上,∴53a ×54a =22512a =48,解得:a =10,或a =﹣10(舍去). ∴AM =8,OM =6.∵四边形OACB 是菱形,∴OA =OB =10,BC ∥OA ,∴∠FBN =∠AO B . 在Rt △BNF 中,BF =b ,sin ∠FBN =54,∠BNF =90°, ∴FN =BF •sin ∠FBN =54b ,BN =53b ,∴点F 的坐标为(10+53b ,54b ). ∵点B 在反比例函数x y 48=的图象上,∴(10+53b )×54b =48,解得:b =3)561(5-,或b =3)561(5+-(舍去). ∴FN =3)561(4-,BN =61﹣5,MN =OB +BN ﹣OM =61﹣1.S △AOF =S △AOM +S 梯形AMNF ﹣S △OFN =S 梯形AMNF =21(AM +FN )•MN =21(8+3)561(4-)×(61﹣1)=32×(61+1)×(61﹣1)=40.21、如图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B .若反比例函数xky =的图象恰好经过斜边A ′B 的中点C ,S △ABO =4,tan ∠BAO =2,则k 的值为( C )A .3B .4C .6D .8 【解】设点C 坐标为(x ,y ),作CD ⊥BO ′交边BO ′于点D , ∵tan ∠BAO =2,∴AO BO =2,∵S △ABO =21•AO •BO =4,∴AO =2,BO =4, ∵△ABO ≌△A ′O ′B ,∴AO =A ′0′=2,BO =BO ′=4, ∵点C 为斜边A ′B 的中点,CD ⊥BO ′,∴CD =21A ′0′=1,BD =21BO ′=2, ∴x =BO ﹣CD =4﹣1=3,y =BD =2,∴k =x •y =3•2=6.22、如图,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数xky =的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k = 6 .【解】∵点P (6,3),∴点A 的横坐标为6,点B 的纵坐标为3,代入反比例函数x k y =得,点A 的纵坐标为6k ,点B 的横坐标为3k ,即AM =6k ,NB =3k, ∵S 四边形OAPB =12,即S 矩形OMPN ﹣S △OAM ﹣S △NBO =12,6×3﹣21×6×6k ﹣21×3×3k=12,解得:k =6.23、(2017•临沂)如图,在平面直角坐标系中,反比例函数xky =(x >0)的图象与边长是6的正方形OABC的两边AB ,BC 分别相交于M ,N 两点.△OMN 的面积为10.若动点P 在x 轴上,则PM+PN 的最小值是 262解:∵正方形OABC 的边长是6,∴点M 的横坐标和点N 的纵坐标为6,∴M (6,6k ),N (6k ,6),∴BN=6﹣6k ,BM=6﹣6k , ∵△OMN 的面积为10,∴6×6﹣21×6×6k ﹣⨯216×6k ﹣21×(6﹣6k)2=10,∴k=24,∴M (6,4),N (4,6),作M 关于x 轴的对称点M′,连接NM′交x 轴于P ,则NM′的长=PM+PN 的最小值, ∵AM=AM′=4,∴BM′=10,BN=2,∴NM′=262,24、如图,矩形OABC 中,A (1,0),C (0,2),双曲线x ky =(0<k <2)的图象分别交AB ,CB 于点E ,F ,连接OE ,OF ,EF ,S △OEF =2S △BEF ,则k 值为 32【解】∵四边形OABC 是矩形,BA ⊥OA ,A (1,0),∴设E 点坐标为(1,m ),则F 点坐标为(2m,2), 则S △BEF =21(1﹣2m )(2﹣m ),S △OFC =S △OAE =21m ,∴S △OEF =S 矩形ABCO ﹣S △OCF ﹣S △OEA ﹣S △BEF =2﹣2m ﹣2m ﹣21(1﹣2m)(2﹣m ),∵S △OEF =2S △BEF ,∴2﹣2m ﹣2m ﹣21(1﹣2m )(2﹣m )=2•21(1﹣2m)(2﹣m ),整理得43(m ﹣2)2+m ﹣2=0,解得m 1=2(舍去),m 2=32,∴E 点坐标为(1,32);∴k =32,.25、如图,直线63-=x y 分别交x 轴,y 轴于A ,B ,M 是反比例函数xky =(x >0)的图象上位于直线上方的一点,MC ∥x 轴交AB 于C ,MD ⊥MC 交AB 于D ,AC•BD=34,则k 的值为( ﹣3 )【解】过点D 作DE ⊥y 轴于点E ,过点C 作CF ⊥x 轴于点F , 令x =0代入63-=x y ,∴y =﹣6,∴B (0,﹣6),∴OB=6, 令y=0代入63-=x y ,∴x =32,∴(32,0),∴OA=32,∴勾股定理可知:AB=34,∴sin ∠OAB=AB OB =23,cos ∠OAB=AB OA =21 设M (x ,y ),∴CF=﹣y ,ED=x ,∴sin ∠OAB=ACCF , ∴AC=y 332-,∵cos ∠OAB=cos ∠EDB=BDED, ∴BD=2x ,∵AC•BD=34,∴y 332-×2x =34,∴xy =﹣3, ∵M 在反比例函数的图象上,∴k=xy =﹣3,26、如图,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数xky =的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k = 6 .【解】∵点P (6,3),∴点A 的横坐标为6,点B 的纵坐标为3, 代入反比例函数y =x k 得,点A 的纵坐标为6k ,点B 的横坐标为3k, 即AM=6k ,NB=3k,∵S 四边形OAPB =12,即S 矩形OMPN ﹣S △OAM ﹣S △NBO =12, 6×3﹣21×6×6k ﹣21×3×3k =12,解得:k =627、如图,在平面直角坐标系中,正方形ABOC 和正方形DOFE 的顶点B ,F 在x 轴上,顶点C ,D 在y 轴上,且S △ADF =4,反比例函数xky =(x >0)的图象经过点E ,则k = 8 .【解】设正方形ABOC 和正方形DOFE 的边长分别是m 、n ,则AB=OB=m ,DE=EF=OF=n , ∴BF=OB+OF=m +n ,∴S △ADF =S 梯形ABOD +S △DOF ﹣S △ABF =21m (m +n )+21n 2﹣21m (m +n )=4,∴n 2=8, ∵点E (n ,n )在反比例函数xky =(x >0)的图象上,∴k =n 2=8, 28、(2017•株洲)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数x k y 11=(x >0)的图象上,顶点B 在函数xky 22=(x >0)的图象上,∠ABO=30°,则21k k = 31- .【解】如图,Rt △AOB 中,∠B=30°,∠AOB=90°,∴∠OAC=60°, ∵AB ⊥OC ,∴∠ACO=90°,∴∠AOC=30°, 设AC=a ,则OA=2a ,OC=a 3,∴A (a 3,a ), ∵A 在函数xk y 11=(x >0)的图象上,∴k 1=a 3•a =23a Rt △BOC 中,OB=2OC=a 32,∴BC=3a ,∴B (a 3,﹣3a ), ∵B 在函数x k y 22=(x >0)的图象上,∴k 2=﹣3a a 3=﹣323a ,∴21k k = 31-29、两个反比例函数x y 4=,x y 8-=的图象在第一象限,第二象限如图,点P1、P2、P3…P2010在xy 4=的图象上,它们的横坐标分别是有这样规律的一行数列1,3,5,7,9,11,…,过点P1、P2、P3、…、P2010分别作x 轴的平行线,与xy 8-=的图象交点依次是Q1、Q2、Q3、…、Q2010,则点Q2010的横坐标是______________-803830、如图所示,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上;点FAB 上,点B ,E 在反比例函数y=x 1(x >0)的图象上.正方形MNPB 中心为原点O ,且NP ∥BM ,(1)则正方形MNPB 面积为 4. (2)点E 的坐标为 .⎪⎪⎭⎫⎝⎛+21-5215, 【解】31、如图,梯形AOBC 中,对角线交于点E ,双曲线xky =(k >0)经过A 、E 两点,若AC :OB=1:3,梯形AOBC 面积为24,则k = 710832、如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数xky =(k >0,x >0)的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,△AEF 的面积为1,则k 的值为 3【解】设A (a ,0),∵矩形ABCD ,∴D (a ,ak), ∵矩形ABCD ,E 为AC 的中点,则E 也为BD 的中点,∵点B 在x 轴上,∴E 的纵坐标为ak 2, E )2,2(a k a ∵E 为AC 的中点,∴点C (3a ,a k ),∴点F (3a ,ak3), ∵△AEF 的面积为1,AE =EC ,∴S △ACF =2,解得:k =3.33、如图,点A ,B 在反比例函数xky =(k >0,x >0)的图象上,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,BE ⊥y 轴于点E ,连结AE .若OE =1,OC =32OD ,AC =AE ,则k 的值为 223【解】∵BD ⊥x 轴于点D ,BE ⊥y 轴于点E ,∴四边形BDOE 是矩形,∴BD =OE =1,把y =1代入xky =,求得x =k , ∴B (k ,1),∴OD =k ,∵OC =32OD ,∴OC =32k ,∵AC ⊥x 轴于点C ,把x =32k 代入x k y =得,y =23,∴AE =AC =23,∵OC =EF =32k ,AF =23﹣1=21,在Rt △AEF 中,AE 2=EF 2+AF 2,∴(23)2=(32k )2+(21)2,解得k =±223,∵在第一象限,∴k =223,34、如图,点P 是函数y =x k 1(k 1>0,x >0)的图象上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数y =xk2(k 2>0,x >0)的图象于点C 、D ,连接OC 、OD 、CD 、AB ,其中k 1>k 2.下列结论:①CD ∥AB ;②S △OCD =221k k -;③S △DCP =12212(k k k )-,其中正确的是( )A .①②B .①③C .②③D .① 【解】∵PB ⊥y 轴,P A ⊥x 轴,点P 在上,点C ,D 在上,设P (m ,),则C (m ,),A (m ,0),B (0,),令,则,即D (,),∴PC =,PD =,∵,,即,又∠DPC =∠BP A ,∴△PDC ∽△PBA ,∴∠PDC =∠PBC ,∴CD ∥AB ,故①正确;△PDC 的面积=12212(k k k )-,故③正确;S △OCD =S 四边形OAPB ﹣S △OCA ﹣S △DPC =12212(k k k )-,故②错误;故选:B .35、如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥x 轴,AO ⊥AD ,AO =AD .过点A 作AE ⊥CD ,垂足为E ,DE =4CE .反比例函数xky =(x >0)的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若S △EOF =811,则k 的值为 37【解】:延长EA 交x 轴于点G ,过点F 作FH ⊥x 轴于点H ,如图,∵AB ∥x 轴,AE ⊥CD ,AB ∥CD ∴AG ⊥x 轴.∵AO ⊥AD ∴∠DAE +∠OAG =90°. ∵AE ⊥CD ,∴∠DAE +∠D =90°.∴∠D =∠OAG . 在△DAE 和△AOG 中,∴△DAE ≌△AOG (AAS ).∴DE =AG ,AE =OG . ∵四边形ABCD 是菱形,DE =4CE ,∴AD =CD =45DE . 设DE =4a ,则AD =OA =5a .∴OG =AE =3a .∴EG =AE +AG =7a .∴E (3a ,7a ). ∵反比例函数xky =(x >0)的图象经过点E ,∴k =21a 2. ∵AG ⊥GH ,AH ⊥GH ,AF ⊥AG ,∴四边形AGHF 为矩形.∴HF =AG =4a .∵点F 在反比例函数x k y =(x >0)的图象上,∴y =421a . ∴F (421a , 4a ).∴OH =421a .∴GH =OH ﹣OG =49a∵S △OEF =S △OEG +S 梯形EGHF ﹣S △OFH ,S △EOF =811,得:a 2=91.∴k =21a 2=37.36、如图,在Rt △AOB 中,OAB ∠的外角平分线与OBA ∠外角平分线交于点C ,反比例函数)0(>=x xky经过点C ,延长CA 交x 轴于D ,延长CB 交y 轴于E ,连接DE 、DE 的中点F 恰好落在反比例函数)0(9<=x xy 图像上,则k = 1837、如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为(-10,0),对角线AC 和OB 相交于点D 且AC·OB=160.若反比例函数xky = (x <0)的图象经过点D ,并与BC 的延长线交于点E,则S △OCE ∶S △OAB =________1:5O。

反比例函数经典例题(含详细解答)

反比例函数经典例题(含详细解答)

反比例函数难题1、如图,已知△P1OA1,△P2A1A2,△P3A2A3…△P n A n-1A n都是等腰直角三角形,点P1、P2、P3…P n都在函数2、如图1,矩形ABCD的边BC在x轴的正半轴上,点E(m,1)是对角线BD的中点,点A、E在反比例函数y=(1)求AB的长;(2)当矩形ABCD是正方形时,将反比例函数y=kx的图象沿y轴翻折,得到反比例函数y=1kx的图象(如图2),求k1的值;(3)在条件(2)下,直线y=-x上有一长为2动线段MN,作MH、NP都平行y轴交第一象限内的双曲线y=kx于点H、P,问四边形MHPN能否为平行四边形(如图3)?若能,请求出点M的坐标;若不能,请说明理由.1.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+k ,b+k+2)两点.(1)求反比例函数的解析式;(2)求反比例函数与一次函数两个交点A 、B 的坐标: (3)根据函数图象,求不等式2kx>2x-1的解集; (4)在(2)的条件下,x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.1.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象与反比例函数y =(m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ),线段OA =5,E 为x 轴负半轴上一点,且s i n ∠AOE =45.(1)求该反比例函数和一次函数; (2)求△AOC 的面积.(1)过A 点作AD⊥x 轴于点D ,∵sin ∠AOE = 45,OA =5,∴在Rt△ADO 中,∵sin∠AOE=AD AO =AD 5= 45,xm∴AD=4,DO =OA2-DA2=3,又点A 在第二象限∴点A 的坐标为(-3,4),将A 的坐标为(-3,4)代入y = m x ,得4=m -3∴m=-12,∴该反比例函数的解析式为y =-12x ,∵点B 在反比例函数y =-12x 的图象上,∴n=-126=-2,点B 的坐标为(6,-2), ∵一次函数y =kx +b(k≠0)的图象过A 、B 两点,∴⎩⎨⎧-3k +b=4,6k +b =-2,∴⎩⎨⎧k =-23, b =2∴ 该一次函数解析式为y =-23x +2.(2)在y =-23x +2中,令y =0,即-23x +2=0,∴x=3,∴点C 的坐标是(3,0),∴OC =3, 又DA=4, ∴S△AOC=12×OC×AD=12×3×4=6,所以△AOC 的面积为6.练习1.已知Rt△ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (1,3)在反比例函数y = k x的图象上,且sin∠BAC = 35.(1)求k 的值和边AC 的长; (2)求点B 的坐标.(1)把C (1,3)代入y = kx得k =3设斜边AB 上的高为CD ,则sin∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,当点B 在点A 右侧时,如图1有:AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD ·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134 图1此时B 点坐标为(134,0)图2 当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(-54,0)所以点B 的坐标为(134,0)或(-54,0).1.如图,矩形ABOD 的顶点A 是函数与函数在第二象限的交点,轴于B ,轴于D ,且矩形ABOD 的面积为3.(1)求两函数的解析式.(2)求两函数的交点A 、C 的坐标. (3)若点P 是y 轴上一动点,且,求点P 的坐标.解:(1)由图象知k<0,由结论及已知条件得-k=3 ∴∴反比例函数的解析式为,一次函数的解析式为(2)由,解得,∴点A 、C 的坐标分别为(,3),(3,)(3)设点P 的坐标为(0,m ) 直线与y 轴的交点坐标为M (0,2)∵O xyB A CD∴∣PM∣=,即∣m-2∣=,∴或,∴点P的坐标为(0,)或(0,)1.如图,已知,是一次函数的图像和反比例函数的图像的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与轴的交点的坐标及三角形的面积.解:(1)在上.反比例函数的解析式为:.点在上经过,,解之得一次函数的解析式为:(2)是直线与轴的交点当时,点1.(1)探究新知如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.(2)结论应用:①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行。

(专题精选)初中数学反比例函数难题汇编附答案

(专题精选)初中数学反比例函数难题汇编附答案

(专题精选)初中数学反比例函数难题汇编附答案一、选择题1.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数by x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案. 【详解】∵二次函数y=ax 2+bx+c 的图象开口向下, ∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点, ∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧, ∴a ,b 同号, ∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限, 反比例函数y=bx图象分布在第二、四象限, 故选D . 【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.2.如图,直线l 与x 轴、y 轴分别交于A 、B 两点,与反比例函数y =kx的图象在第一象限相交于点C.若AB=BC,△AOB的面积为3,则k的值为()A.6 B.9 C.12 D.18【答案】C【解析】【分析】设OB=a,根据相似三角形性质即可表示出点C,把点C代入反比例函数即可求得k.【详解】作CD⊥x轴于D,设OB=a,(a>0)∵△AOB的面积为3,∴12OA•OB=3,∴OA=6a,∵CD∥OB,∴OD=OA=6a,CD=2OB=2a,∴C(6a,2a),∵反比例函数y=kx经过点C,∴k=6a×2a=12,故选C.【点睛】本题考查直线和反比例函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键.3.已知点A (﹣2,y 1),B (a ,y 2),C (3,y 3)都在反比例函数4y x=的图象上,且﹣2<a <0,则( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【答案】D 【解析】 【分析】根据k >0,在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,逐一分析即可. 【详解】 ∵反比例函数y=4x中的k=4>0, ∴在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限, ∵-2<a <0, ∴0>y 1>y 2,∵C (3,y 3)在第一象限, ∴y 3>0, ∴213y y y <<, 故选D . 【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.4.如图,在平面直角坐标系中,点A 是函数()0ky x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小【答案】A 【解析】 【分析】根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE S V COF S =V 12=,则四边形OFAE 的面积为定值1k -. 【详解】 ∵点A 是函数(0ky x x=>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k , ∵点E 、F 在函数1y x=的图象上, ∴BOE S V COF S =V 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变, 故选:A . 【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.5.如图,点A 在双曲线4y x =上,点B 在双曲线(0)k y k x=≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D 【解析】 【分析】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值. 【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E , ∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形, ∵AB=2AC , ∴BC=3AC , ∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4, 同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12, ∴k=12, 故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.6.如图,点A 是反比例函数y =kx(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣4【答案】B 【解析】 【分析】作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|k|.【详解】解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|k|,∴|k|=8,而k<0∴k=-8.故选:B.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.7.对于反比例函数2yx,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【答案】C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1【答案】B【解析】【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=12×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=12(BD+AC)•CD=12×(1+2)×2=3,从而得出S△AOB=3.【详解】∵A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1),如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=12×4=2,∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=12(BD+AC)•CD=12×(1+2)×2=3,∴S△AOB=3,故选B.【点睛】本题考查了反比例函数()0ky k x=≠中k 的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 与k 的关系为S=12|k|是解题的关键.9.如图, 在同一坐标系中(水平方向是x 轴),函数ky x=和3y kx =+的图象大致是( )A .B .C .D .【答案】A 【解析】 【分析】根据一次函数及反比例函数的图象与系数的关系作答. 【详解】 解:A 、由函数y=kx的图象可知k >0与y=kx+3的图象k >0一致,正确; B 、由函数y=kx的图象可知k >0与y=kx+3的图象k >0,与3>0矛盾,错误; C 、由函数y=kx的图象可知k <0与y=kx+3的图象k <0矛盾,错误; D 、由函数y=kx的图象可知k >0与y=kx+3的图象k <0矛盾,错误.故选A . 【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.10.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.11.若点A (﹣4,y 1)、B (﹣2,y 2)、C (2,y 3)都在反比例函数1y x=-的图象上,则y 1、y 2、y 3的大小关系是( ) A .y 1>y 2>y 3 B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 1>y 3>y 2【答案】C 【解析】 【分析】根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论. 【详解】∵点A(﹣4,y 1)、B(﹣2,y 2)、C(2,y 3)都在反比例函数1y x=-的图象上, ∴11144y =-=-,21122y =-=-,312y =-, 又∵﹣12<14<12, ∴y 3<y 1<y 2, 故选C. 【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.12.如图,过点()1,2C 分别作x 轴、y 轴的平行线,交直线5y x =-+于A 、B 两点,若反比例函数(0)ky x x=>的图象与ABC V 有公共点,则k 的取值范围是( )A .2524k ≤≤ B .26k ≤≤ C .24k ≤≤ D .46k ≤≤【答案】A 【解析】 【分析】由点C 的坐标结合直线AB 的解析式可得出点A 、B 的坐标,求出反比例函数图象过点C 时的k值,将直线AB的解析式代入反比例函数解析式中,令其根的判别式△≥0可求出k的取值范围,取其最大值,找出此时交点的横坐标,进而可得出此点在线段AB上,综上即可得出结论.【详解】解:令y=−x+5中x=1,则y=4,∴B(1,4);令y=−x+5中y=2,则x=3,∴A(3,2),当反比例函数kyx=(x>0)的图象过点C时,有2=1k,解得:k=2,将y=−x+5代入kyx=中,整理得:x2−5x+k=0,∵△=(−5)2−4k≥0,∴k≤254,当k=254时,解得:x=52,∵1<52<3,∴若反比例函数kyx=(x>0)的图象与△ABC有公共点,则k的取值范围是2≤k≤254,故选:A.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数图象过点A、C时的k值以及直线与双曲线有一个交点时k的值.13.反比例函数kyx=在第一象限的图象如图所示,则k的值可能是()A.3 B.5 C.6 D.8【答案】B【解析】【分析】根据点(1,3)在反比例函数图象下方,点(3,2)在反比例函数图象上方可得出k的取值范围,即可得答案.【详解】∵点(1,3)在反比例函数图象下方,∴k>3,∵点(3,2)在反比例函数图象上方, ∴3k <2,即k<6, ∴3<k<6,故选:B.【点睛】 本题考查了反比例函数的图象的性质,熟记k=xy 是解题关键.14.如图,在平面直角坐标系中,函数 y = kx 与 y = -2x 的图象交于 A 、B 两点,过 A 作 y 轴的垂线,交函数4y x=的图象于点 C ,连接 BC ,则△ABC 的面积为( )A .2B .4C .6D .8【答案】C【解析】【分析】 连接OC ,根据图象先证明△AOC 与△COB 的面积相等,再根据题意分别计算出△AOD 与△ODC 的面积即可得△ABC 的面积.【详解】连接OC ,设AC ⊥y 轴交y 轴为点D ,如图,∵反比例函数y=-2x 为对称图形, ∴O 为AB 的中点,∴S △AOC =S △COB , ∵由题意得A 点在y=-2x 上,B 点在y=4x 上, ∴S △AOD =12×OD×AD=12xy=1; S △COD =12×OC×OD=12xy=2; S △AOC = S △AOD + S △COD =3,∴S △ABC = S △AOC +S △COB =6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.15.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)k y k x=>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .32【答案】B【解析】【分析】 首先根据A,B 两点的横坐标,求出A,B 两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D 两点的坐标,从而得出AC,BD 的长,根据三角形的面积公式表示出S △OAC ,S △ABD 的面积,再根据△OAC 与△ABD 的面积之和为32,列出方程,求解得出答案.【详解】把x=1代入1yx=得:y=1,∴A(1,1),把x=2代入1yx=得:y=12,∴B(2, 1 2 ),∵AC//BD// y轴,∴C(1,K),D(2,k 2 )∴AC=k-1,BD=k2-12,∴S△OAC=12(k-1)×1,S△ABD=12(k2-12)×1,又∵△OAC与△ABD的面积之和为32,∴12(k-1)×1+12(k2-12)×1=32,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.16.点(2,﹣4)在反比例函数y=kx的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【答案】D【解析】【详解】∵点(2,-4)在反比例函数y=kx的图象上,∴k=2×(-4)=-8.∵A中2×4=8;B中-1×(-8)=8;C中-2×(-4)=8;D中4×(-2)=-8,∴点(4,-2)在反比例函数y=kx的图象上.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k值是关键.17.已知反比例函数2yx=-,下列结论不正确的是A.图象必经过点(-1,2) B.y随x的增大而增大C.图象在第二、四象限内D.若x>1,则y>-2【答案】B【解析】【分析】此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】解: A、把(-1,2)代入函数解析式得:2=-21-成立,故点(-1,2)在函数图象上,故选项正确;B、由k=-2<0,因此在每一个象限内,y随x的增大而增大,故选项不正确;C、由k=-2<0,因此函数图象在二、四象限内,故选项正确;D、当x=1,则y=-2,又因为k=-2<0,所以y随x的增大而增大,因此x>1时,-2<y<0,故选项正确;故选B.【点睛】本题考查反比例函数的图像与性质.18.如图,点A在反比例函数3(0)y xx=-<的图象上,点B在反比例函数3(0)y xx=>的图象上,点C在x轴的正半轴上,则平行四边形ABCO的面积是()A.6 B.5 C.4 D.3【答案】A【解析】【分析】因为四边形ABCO是平行四边形,所以点A、B纵坐标相等,即可求得A、B横坐标,则AB 的长度即可求得,然后利用平行四边形面积公式即可求解.【详解】解:∵四边形ABCO是平行四边形∴点A、B纵坐标相等设纵坐标为b,将y=b带入3(0)y xx=-<和3(0)y xx=>中,则A点横坐标为3b-,B点横坐标为3b∴AB=336()b b b --=∴66 ABCOS bb=⨯= Y故选:A.【点睛】本题考查了反比例函数以及平行四边形面积公式,本题关键在于两点间距离的求法.19.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B.C.D.【答案】D【解析】【分析】先由反比例函数的图象得到k,b同号,然后分析各选项一次函数的图象即可.【详解】∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,选项A图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;选项B图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;选项C图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;选项D图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选D.考点:反比例函数的图象;一次函数的图象.20.如图,,A B是双曲线kyx=上两点,且,A B两点的横坐标分别是1-和5,ABO-∆的面积为12,则k的值为()A.3-B.4-C.5-D.6-【答案】C【解析】【分析】分别过点A、B作AD⊥x轴于点D,BE⊥x轴于点E,根据S△AOB=S梯形ABED+S△AOD- S△BOE =12,故可得出k的值.【详解】分别过点A、B作AD⊥x轴于点D,BE⊥x轴于点E,∵双曲线kyx=的图象的一支在第二象限∴k<0,∵A,B两点在双曲线kyx=的图象上,且A,B两点横坐标分别为:-1,-5,∴A (-1,-k ),B (-5, 5k -) ∴S △AOB =S 梯形ABED +S △AOD - S △BOE =1||11||(||)(51)1||525225k k k k ⨯+⨯-+⨯⨯-⨯⨯=12||5k =12, 解得,k=-5故选:C .【点睛】 本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.。

中考数学反比例函数(大题培优 易错 难题)含答案解析

中考数学反比例函数(大题培优 易错 难题)含答案解析

中考数学反比例函数(大题培优易错难题)含答案解析一、反比例函数1.如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.(1)求k的值;(2)求经过A、C两点的直线的解析式;(3)连接OA、OC,求△OAC的面积.【答案】(1)解:∵AB=5﹣2=3cm,OB=2cm,∴A的坐标是(2,3),代入y= 得3= ,解得:k=6(2)解:OD=2+2=4,在y= 中令x=4,解得y= .则C的坐标是(4,).设AC的解析式是y=mx+n,根据题意得:,解得:,则直线AC的解析式是y=﹣ x+(3)解:直角△AOB中,OB=2,AB=3,则S△AOB= OB•AB= ×2×3=3;直角△ODC中,OD=4,CD= ,则S△OCD= OD•CD= ×4× =3.在直角梯形ABDC中,BD=2,AB=3,CD= ,则S梯形ABDC= (AB+DC)•BD= (3+ )×2= .则S△OAC=S△AOB+S梯形ABDC﹣S△OCD=3+ ﹣3=【解析】【分析】(1)首先求得A的坐标,然后利用待定系数法求得函数的解析式;(2)首先求得C的坐标,然后利用待定系数法求得直线的解析式;(3)根据S△OAC=S△AOB+S梯形ABDC﹣S△OCD利用直角三角形和梯形的面积公式求解.2.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b 时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,理由如下:y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,∴﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”(2)解:y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),∴顶点坐标为:(1,a﹣1),又∵抛物线y=x2﹣2x+a的开口向上,∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴0≤a≤1(3)解:y1﹣y2= ﹣(﹣2x+4)= +2x﹣4,构造函数y= +2x﹣4,∵y= +2x﹣4∴当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,即a﹣2≤y≤ ,∵函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴1≤a≤2;∴a的最大值是2,a的最小值1【解析】【分析】(1)y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”;(2)y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣2x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y1﹣y2≤1,即0≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y1﹣y2≤1,即1≤a≤2,所以a的最大值是2,a 的最小值1.3.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.4.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.5.如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.所以双曲线的解析式为y=﹣.设点B的坐标为(m,﹣m).∵点B在双曲线上,∴﹣m2=﹣4,解得m=2或m=﹣2.∵点B在第四象限,∴m=2.∴B(2,﹣2).将点A、B、C的坐标代入得:,解得:.∴抛物线的解析式为y=x2﹣3x.(2)解:如图1,连接AC、BC.令y=0,则x2﹣3x=0,∴x=0或x=3,∴C(3,0),∵A(﹣1,4),B(2,﹣2),∴直线AB的解析式为y=﹣2x+2,∵点D是直线AB与x轴的交点,∴D(1,0),∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;(3)解:存在,理由:如图2,由原抛物线的解析式为y=x2﹣3x=(x﹣)2﹣,∴原抛物线的顶点坐标为(,﹣),∴抛物线向左平移个单位,再向上平移个单位,而平移前A(﹣1,4),B(2,﹣2),∴平移后点A(﹣,),B(,),∴点A关于y轴的对称点A'(,),连接A'B并延长交y轴于点P,连接AP,由对称性知,∠APE=∠BPE,∴△APB的内切圆的圆心在y轴上,∵B(,),A'(,),∴直线A'B的解析式为y=3x﹣,∴P(0,﹣).【解析】【分析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.6.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.7.如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y= (m≠0)交于点A(2,﹣3)和点B(n,2).(1)求直线与双曲线的表达式;(2)对于横、纵坐标都是整数的点给出名称叫整点.动点P是双曲线y= (m≠0)上的整点,过点P作垂直于x轴的直线,交直线AB于点Q,当点P位于点Q下方时,请直接写出整点P的坐标.【答案】(1)解:∵双曲线y= (m≠0)经过点A(2,﹣3),∴m=﹣6.∴双曲线的表达式为y=﹣.∵点B(n,2)在双曲线y=﹣上,∴点B的坐标为(﹣3,2).∵直线y=kx+b经过点A(2,﹣3)和点B(﹣3,2),∴解得,∴直线的表达式为y=﹣x﹣1(2)解:符合条件的点P的坐标是(1,﹣6)或(6,﹣1).【解析】【分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)根据图象和函数解析式得出即可.8.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y= 的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y= 的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【答案】(1)解:∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB= =5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形(2)解:∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y= 的图象经过D点,∴4= ,∴k=20,∴反比例函数的解析式为:y=(3)解:∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y= ,得y= ,∴M点的纵坐标为:﹣4= ,∴M点的坐标为:(0,)【解析】【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D 的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN 是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.9.如图,已知二次函数的图象与y轴交于点A(0,4),与x 轴交于点B,C,点C坐标为(8,0),连接AB,AC.(1)请直接写出二次函数的解析式.(2)判断△ABC的形状,并说明理由.(3)若点N在x轴上运动,当以点A,N,C为顶点的三角形是等腰三角形时,请写出此时点N的坐标.【答案】(1)解:∵二次函数的图象与y轴交于点A(0,4),与x轴交于点B.C,点C坐标(8,0),∴解得∴抛物线表达式:(2)解:△ABC是直角三角形.令y=0,则解得x1=8,x2=-2,∴点B的坐标为(-2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∴BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形(3)解:∵A(0,4),C(8,0),AC= =4 ,①以A为圆心,以AC长为半径作圆,交轴于N,此时N的坐标为(-8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为( ,0)或( ,0)③作AC的垂直平分线,交g轴于N,此时N的坐标为(3,0),综上,若点N在轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(-8,0)、( ,0)、(3,0)、 ,0)【解析】【分析】(1)根据待定系数法即可求得;(2)根据拋物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC=10然后根据勾股定理的逆定理即可证得△ABC是直角三角形(3)分别以A.C两点为圆心,AC长为半径画弧,与m轴交于三个点,由AC的垂直平分线与c轴交于一个点,即可求得点N的坐标10.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.11.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D 在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.(1)【探究发现】如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;(2)【数学思考】如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;(3)【拓展引申】如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.【答案】(1)解:∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DB=DP(2)解:∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,且DC=DG,∠DCP=∠DGB=135°,∴△CDP≌△GDB(ASA)∴DB=DP(3)解:如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,∵MH⊥MN,∴∠AMH+∠NMB=90°∵CD∥AB,∠CDB=90°∴∠DBM=90°∴∠NMB+∠MNB=90°∴∠HMA=∠MNB,且AM=BN,∠CAB=∠CBN=45°∴△AMH≌△BNQ(ASA)∴AH=BQ∵∠ACB=90°,AC=BC=4,∴AB=4 ,AC-AH=BC-BQ∴CH=CQ∴∠CHQ=∠CQH=45°=∠CAB∴HQ∥AB∴∠HQM=∠QMB∵∠ACB=∠HMQ=90°∴点H,点M,点Q,点C四点共圆,∴∠HCM=∠HQM∴∠HCM=∠QMB,且∠A=∠CBA=45°∴△ACM∽△BMQ∴∴∴BQ= +2∴AM=2 时,BQ有最大值为2.【解析】【分析】(1)DB=DP,理由如下:根据等腰直角三角形的性质得出∠CAB=∠CBA=45°,根据二直线平行,内错角相等得出∠CBA=∠DCB=45°,根据三角形的内角和得出∠DCB=∠DBC=45°,最后根据等角对等边得出 DB=DC ,即DB=DP;(2)利用ASA判断出△CDP≌△GDB ,再根据全等三角形的对应边相等得出DB=DP;(3)如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,利用ASA判断出△AMH≌△BNQ 根据全等三角形的对应边相等得出AH=BQ,进而判断出点H,点M,点Q,点C四点共圆,根据圆周角定理得出∠HCM=∠HQM ,然后判断出△ACM∽△BMQ ,根据相似三角形的对应边成比例得出,根据比例式及偶数次幂的非负性即可得出求出答案.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。

反比例函数难题汇编及解析

反比例函数难题汇编及解析

反比例函数难题汇编及解析一、选择题1.直线y =ax (a >0)与双曲线y =3x交于A (x 1,y 1)、B (x 2,y 2)两点,则代数式4x 1y 2-3x 2y 1的值是( ) A .-3a B .-3 C .3aD .3【答案】B 【解析】 【分析】先把1(A x ,1)y 、2(B x ,2)y 代入反比例函数3y x=得出11x y 、22x y 的值,再根据直线与双曲线均关于原点对称可知12x x =-,12y y =-,再把此关系式代入所求代数式进行计算即可. 【详解】 解:1(A x ,1)y 、2(B x ,2)y 在反比例函数3y x=的图象上, 11223x y x y ∴==,直线(0)y ax a =>与双曲线3y x=的图象均关于原点对称, 12x x ∴=-,12y y =-,∴原式111111433x y x y x y =+=-=--.故选:B . 【点睛】本题考查的是反比例函数图象的对称性及反比例函数的性质,根据题意得出11223x y x y ==,12x x =-,12y y =-是解答此题的关键.2.如图,点A 在双曲线4y x =上,点B 在双曲线(0)ky k x=≠上,AB x 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【分析】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值. 【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E , ∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形, ∵AB=2AC , ∴BC=3AC , ∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4, 同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12, ∴k=12, 故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.3.对于反比例函数2y x=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限 C .当x >0时,y 随x 的增大而增大 D .当x <0时,y 随x 的增大而减小【答案】C 【解析】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A 正确;因为2大于0所以该函数图象在第一,三象限,所以B 正确;C 中,因为2大于0,所以该函数在x >0时,y 随x 的增大而减小,所以C 错误;D 中,当x <0时,y 随x 的增大而减小,正确, 故选C.考点:反比例函数 【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化4.已知点()11,A y -、()22,B y -都在双曲线32my x+=上,且12y y >,则m 的取值范围是( ) A .0m < B .0m >C .32m >-D .32m <-【答案】D 【解析】 【分析】根据已知得3+2m <0,从而得出m 的取值范围. 【详解】∵点()11,A y -、()22,B y -两点在双曲线32my x+=上,且y 1>y 2, ∴3+2m <0,∴32m <-, 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,当k >0时,该函数图象位于第一、三象限,当k <0时,函数图象位于第二、四象限.5.如图,反比例函数11k y x=的图象与正比例函数22y k x =的图象交于点(2,1),则使y 1>y 2的x 的取值范围是( )A.0<x<2 B.x>2 C.x>2或-2<x<0 D.x<-2或0<x<2【答案】D【解析】【分析】先根据反比例函数与正比例函数的性质求出B点坐标,由函数图象即可得出结论.【详解】∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称.∵A(2,1),∴B(-2,-1).∵由函数图象可知,当0<x<2或x<-2时函数y1的图象在y2的上方,∴使y1>y2的x的取值范围是x<-2或0<x<2.故选D.6.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y =kx中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.7.使关于x 的分式方程=2的解为非负数,且使反比例函数y=图象过第一、三象限时满足条件的所有整数k 的和为( ).A .0B .1C .2D .3 【答案】B 【解析】试题分析:分别根据题意确定k 的值,然后相加即可.∵关于x 的分式方程=2的解为非负数,∴x=≥0,解得:k≥-1,∵反比例函数y=图象过第一、三象限,∴3﹣k >0,解得:k <3,∴-1≤k <3,整数为-1,0,1,2,∵x ≠0或1,∴和为-1+2=1,故选,B . 考点:反比例函数的性质.8.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y < 【答案】D 【解析】 【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解. 【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D. 【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.9.已知点A (﹣2,y 1),B (a ,y 2),C (3,y 3)都在反比例函数4y x=的图象上,且﹣2<a <0,则( ) A .y 1<y 2<y 3 B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【答案】D 【解析】 【分析】根据k >0,在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,逐一分析即可. 【详解】 ∵反比例函数y=4x中的k=4>0, ∴在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限, ∵-2<a <0, ∴0>y 1>y 2,∵C (3,y 3)在第一象限, ∴y 3>0, ∴213y y y <<, 故选D . 【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.10.如图,已知点A ,B 分别在反比例函数12y x =-和2ky x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-【答案】A【分析】设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可. 【详解】解:设A (a ,b ),则B (2a ,2b ), ∵点A 在反比例函数12y x=-的图象上, ∴ab =−2;∵B 点在反比例函数2ky x=的图象上, ∴k =2a•2b =4ab =−8. 故选:A . 【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .11.函数y =1-kx与y =2x 的图象没有交点,则k 的取值范围是( ) A .k<0 B .k<1C .k>0D .k>1【答案】D 【解析】 【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k 的取值范围. 【详解】令1-k x =2x ,化简得:x 2=1-2k ;由于两函数无交点,因此1-2k<0,即k >1. 故选D . 【点睛】函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.若反比例函数()2221m y m x -=-的图象在第二、四象限,则m 的值是( )A .-1或1B .小于12的任意实数 C .-1 D .不能确定【答案】C 【解析】 【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.解:22(21)m y m x -=-是反比例函数,∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限, 所以210m -<,解得12m <,即m 的值是1-. 故选:C .【点睛】 对于反比例函数()0ky k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.13.在函数()0ky k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B 【解析】 【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可. 【详解】 解:(0)ky k x=<的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-,而k 0<, 132y y y ∴<<.故选:B . 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数ky x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.14.反比例函数21k y x+=的图象上有两点()11,A a y -,()21,B a y +,若12y y <,则a的取值范围( )A .1a <-B .1a >C .11a -<<D .这样的a 值不存在【答案】C 【解析】 【分析】由210k +>得出在同一分支上,反比例函数y 随x 的增大而减小,然后结合反比例函数的图象进行求解. 【详解】210k +>,∴在同一分支上,反比例函数y 随x 的增大而减小,11a a -<+,12y y <,∴点A ,B 不可能在同一分支上,只能为位于不同的两支上,10a ∴-<且10a +>,11a ∴-<<, 故选C . 【点睛】本题考查反比例函数的图象与性质,熟练掌握反比例函数的性质是解题的关键,注意反比例函数的图象有两个分支.15.如图,矩形ABCD 的边AB 在x 轴上,反比例函数(0)ky k x=≠的图象过D 点和边BC 的中点E ,连接DE ,若△CDE 的面积是1,则k 的值是( )A .3B .4C .25D .6【答案】B 【解析】 【分析】设E 的坐标是m n k mn =(,),, 则C 的坐标是2m n (,) ,求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值. 【详解】设E 的坐标是m n k mn =(,),,, 则C 的坐标是(m ,2n ), 在mny x = 中,令2y n =,解得:2m x =, ∵1CDES =,∴111,12222m m n m n -=⨯=即 ∴4mn = ∴4k = 故选:B 【点睛】本题考查了待定系数法求函数的解析式,利用mn 表示出三角形的面积是关键.16.已知反比例函数y =﹣2x的图象上有三个点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1>x 2>0>x 3,则下列关系是正确的是( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 2<y 1 D .y 2<y 3<y 1 【答案】B 【解析】 【分析】根据函数的解析式得出图象所在的象限和增减性,再进行比较即可. 【详解】解:∵反比例函数y =﹣2x, ∴函数图象在第二、四象限,且在每个象限内,y 随x 的增大而增大,∵函数的图象上有三个点(x 1,y 1),(x 2,y 2)、(x 3,y 3),且x 1>x 2>0>x 3, ∴y 2<y 1<0,y 3>0 ∴. y 2<y 1<y 3 故选:B . 【点睛】本题考查了反比例函数图象上点的坐标特征和函数的图象和性质,能灵活运用函数的图象和性质进行推理是解此题的关键.17.如图,平行于x 轴的直线与函数y =1k x(k 1>0,x >0),y =2k x (k 2>0,x >0)的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若△ABC 的面积为6,则k 1﹣k 2的值为( )A .12B .﹣12C .6D .﹣6【答案】A【解析】【分析】 △ABC 的面积=12•AB•y A ,先设A 、B 两点坐标(其y 坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】 解:设:A 、B 点的坐标分别是A (1k m ,m )、B (2k m ,m ), 则:△ABC 的面积=12•AB•y A =12•(1k m ﹣2k m )•m =6, 则k 1﹣k 2=12.故选:A .【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A 、B 两点坐标,表示出相应线段长度即可求解问题.18.已知点11(,)x y ,22(,)x y 均在双曲线1y x =-上,下列说法中错误的是( ) A .若12x x =,则12y y =B .若12x x =-,则12y y =-C .若120x x <<,则12y y <D .若120x x <<,则12y y > 【答案】D【解析】【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x =-,用y 1、y 2表示出x 1,x 2,据此进行判断.【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x=-上,∴111y x =-,221y x =-. A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确; B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确; D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误;故选:D .【点睛】 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.19.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B 2C 2D .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的值,本题得以解决.【详解】等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=,22OA OB ∴==,2AC =, ∴点C 的坐标为2,22⎛⎫ ⎪ ⎪⎝⎭,点C 在函数()0k y x x=>的图象上, 2212k ∴=⨯=, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.20.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.。

(专题精选)初中数学反比例函数难题汇编附解析

(专题精选)初中数学反比例函数难题汇编附解析

(专题精选)初中数学反比例函数难题汇编附解析一、选择题1.下列各点中,在反比例函数3y x =图象上的是( ) A .(3,1)B .(-3,1)C .(3,13)D .(13,3) 【答案】A【解析】【分析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3.【详解】解:A 、∵3×1=3,∴此点在反比例函数的图象上,故A 正确;B 、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B 错误;C 、∵13=133垂, ∴此点不在反比例函数的图象上,故C 错误;D 、∵13=133垂, ∴此点不在反比例函数的图象上,故D 错误; 故选A.2.对于反比例函数2y x=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小 【答案】C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A 正确;因为2大于0所以该函数图象在第一,三象限,所以B 正确;C 中,因为2大于0,所以该函数在x >0时,y 随x 的增大而减小,所以C 错误;D 中,当x <0时,y 随x 的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化3.如图,点A 、B 在函数k y x=(0x >,0k >且k 是常数)的图像上,且点A 在点B 的左侧过点A 作AM x ⊥轴,垂足为M ,过点B 作BN y ⊥轴,垂足为N ,AM 与BN 的交点为C ,连结AB 、MN .若CMN ∆和ABC ∆的面积分别为1和4,则k 的值为()A.4 B.2C 522D.6【答案】D【解析】【分析】设点M(a,0),N(0,b),然后可表示出点A、B、C的坐标,根据CMN∆的面积为1可求出ab=2,根据ABC∆的面积为4列方程整理,可求出k.【详解】解:设点M(a,0),N(0,b),∵AM⊥x轴,且点A在反比例函数kyx=的图象上,∴点A的坐标为(a,ka),∵BN⊥y轴,同理可得:B(kb,b),则点C(a,b),∵S△CMN=12N C•MC=12ab=1,∴ab=2,∵AC=ka−b,BC=kb−a,∴S△ABC=12AC•BC=12(ka−b)•(kb−a)=4,即8k ab k aba b--⋅=,∴()2216k-=,解得:k=6或k=−2(舍去),故选:D.【点睛】本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确题意,利用三角形的面积列方程求解.4.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小5.在平面直角坐标系xoy 中,函数()20y x x =<的图象与直线1l :()103y x b b =+<交于点A ,与直线2l :x b =交于点B ,直线1l 与2l 交于点C ,记函数()20y x x =<的图象在点A 、B 之间的部分与线段AC ,线段BC 围城的区域(不含边界)为W ,当4233b -≤≤-时,区域W 的整点个数为( ) A .3个 B .2个 C .1个 D .没有【答案】D【解析】【分析】根据解析式画出函数图象,根据图形W 得到整点个数进行选择.【详解】∵()20y x x=<,过整点(-1,-2),(-2,-1), 当b=43-时,如图:区域W 内没有整点,当b=23-时,区域W 内没有整点,∴4233b -≤≤-时图形W 增大过程中,图形内没有整点, 故选:D.【点睛】 此题考查函数图象,根据函数解析式正确画出图象是解题的关键.6.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.7.使关于x 的分式方程=2的解为非负数,且使反比例函数y=图象过第一、三象限时满足条件的所有整数k 的和为( ).A .0B .1C .2D .3【答案】B【解析】试题分析:分别根据题意确定k 的值,然后相加即可.∵关于x 的分式方程=2的解为非负数,∴x=≥0,解得:k≥-1,∵反比例函数y=图象过第一、三象限,∴3﹣k >0,解得:k <3,∴-1≤k <3,整数为-1,0,1,2,∵x ≠0或1,∴和为-1+2=1,故选,B . 考点:反比例函数的性质.8.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.9.如图,是反比例函数3y x =和7y x=-在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象相交于点,A B ,点P 在x 轴上.则点P 从左到右的运动过程中,APB △的面积是( )A .10B .4C .5D .从小变大再变小【答案】C【解析】【分析】 连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =V V ,结合反比例函数比例系数的几何意义,即可求解.【详解】连接AO 、BO ,设AB 与y 轴交于点C .∵AB ∥x 轴,∴ABP ABO S S =V V ,AB ⊥y 轴, ∵73522ABO BOC AOC S S S -=+=+=V V V , ∴APB △的面积是:5.故选C .【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.10.如图,过反比例函数()0k y x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S ∆=,则k 的值为( )A .2B .3C .4D .5【答案】C【解析】【分析】 根据2AOB S ∆=,利用反比例函数系数k 的几何意义即可求出k 值,再根据函数在第一象限可确定k 的符号. 【详解】解:由AB x ⊥轴于点B ,2AOB S ∆=,得到122AOB S k ∆== 又因图象过第一象限, 122AOB S k ∆==,解得4k = 故选C【点睛】本题考查了反比例函数系数k 的几何意义.11.若点()11,A y -,()22,B y -,()33,C y 在反比例函数8y x=-的图象上,则y 1,y 2,y 3的大小关系是( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y << 【答案】D【解析】【分析】由于反比例函数的系数是-8,故把点A 、B 、C 的坐标依次代入反比例函数的解析式,求出123,,y y y 的值即可进行比较.【详解】解:∵点()11,A y -、()22,B y -、()33,C y 在反比例函数8y x =-的图象上, ∴1881y =-=-,2842y =-=-,383y =-, 又∵8483-<<, ∴321y y y <<.故选:D .【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.12.如图,过点()1,2C 分别作x 轴、y 轴的平行线,交直线5y x =-+于A 、B 两点,若反比例函数(0)k y x x=>的图象与ABC V 有公共点,则k 的取值范围是( )A .2524k ≤≤B .26k ≤≤C .24k ≤≤D .46k ≤≤【答案】A【解析】【分析】 由点C 的坐标结合直线AB 的解析式可得出点A 、B 的坐标,求出反比例函数图象过点C 时的k 值,将直线AB 的解析式代入反比例函数解析式中,令其根的判别式△≥0可求出k 的取值范围,取其最大值,找出此时交点的横坐标,进而可得出此点在线段AB 上,综上即可得出结论.【详解】解:令y =−x +5中x =1,则y =4,∴B (1,4);令y =−x +5中y =2,则x =3,∴A (3,2),当反比例函数k y x=(x >0)的图象过点C 时,有2=1k , 解得:k =2,将y=−x+5代入kyx=中,整理得:x2−5x+k=0,∵△=(−5)2−4k≥0,∴k≤254,当k=254时,解得:x=52,∵1<52<3,∴若反比例函数kyx=(x>0)的图象与△ABC有公共点,则k的取值范围是2≤k≤254,故选:A.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数图象过点A、C时的k值以及直线与双曲线有一个交点时k的值.13.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】【分析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形, ∴O 为AB 的中点,∴S △AOC =S △COB , ∵由题意得A 点在y=-2x 上,B 点在y=4x 上, ∴S △AOD =12×OD×AD=12xy=1; S △COD =12×OC×OD=12xy=2; S △AOC = S △AOD + S △COD =3,∴S △ABC = S △AOC +S △COB =6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.14.已知反比例函数k y x=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k=-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命题个数是( ) A .0B .1C .2D .3 【答案】D【解析】【分析】根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案.【详解】∵反比例函数kyx=的图象分别位于第二、第四象限,∴k<0,∵()11,A x y、()22,B x y两点在该图象上,∴y1=,,sin cos22x x xππ⎡⎤∃∈-≤⎢⎥⎣⎦,y2=2kx,∴x1y1=k,x2y2=k,①过点A作AC x⊥轴,C为垂足,∴S△AOC=1OC?AC2=11x?y k=322=,∴6k=-,故①正确;②若12x x<<,则点A在第二象限,点B在第四象限,所以12y y>,故②正确;③∵120x x+=,∴()12121212k x xk ky yx x x x++=+==,故③正确,故选D.【点睛】本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.15.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=kx的图象于点C,且OC=2CA',则k的值为()A.4 B.72C.8 D.7【答案】C【解析】【详解】解:设将Rt △AOB 绕点O 顺时针旋转至Rt △A'OB'的旋转角为α,OB=a ,则OA=3a , 由题意可得,点B′的坐标为(acosα,﹣asinα),点C 的坐标为(2asinα,2acosα), ∵点B'在反比例函数y=﹣2x 的图象上, ∴﹣asinα=﹣2acos α,得a 2sinαcosα=2, 又∵点C 在反比例函数y=k x 的图象上, ∴2acos α=k 2asin α,得k=4a 2sinαcosα=8. 故选C.【点睛】 本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C 的坐标,再通过反比例函数的性质求解即可.16.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<Q 的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=, 1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.17.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】 过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCD S Y =BH·CD=5 故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.18.如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数k yx=在第一象限内的图象经过点D,交BC于点E.若4AB=,2CEBE=,34ADOA=,则线段BC的长度为()A.1 B.32C.2 D.23【答案】B【解析】【分析】设OA为4a,则根据题干中的比例关系,可得AD=3a,CE=2a,BE=a,从而得出点D和点E 的坐标(用a表示),代入反比例函数可求得a的值,进而得出BC长.【详解】设OA=4a根据2CEBE=,34ADOA=得:AD=3a,CE=2a,BE=a∴D(4a,3a),E(4a+4,a)将这两点代入解析得;3444kaakaa⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D、E的坐标,然后代入解析式求解.19.已知点11(,)x y,22(,)x y均在双曲线1yx=-上,下列说法中错误的是()A.若12x x=,则12y y=B.若12x x=-,则12y y=-C.若120x x<<,则12y y<D.若12x x<<,则12y y>【解析】【分析】先把点A(x1,y1)、B(x2,y2)代入双曲线1yx=-,用y1、y2表示出x1,x2,据此进行判断.【详解】∵点(x1,y1),(x2,y2)均在双曲线1yx=-上,∴111yx=-,221yx=-.A、当x1=x2时,-11x=-21x,即y1=y2,故本选项说法正确;B、当x1=-x2时,-11x=21x,即y1=-y2,故本选项说法正确;C、因为双曲线1yx=-位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当0<x1<x2时,y1<y2,故本选项说法正确;D、因为双曲线1yx=-位于第二、四象限,且在每一象限内,y随x的增大而增大,所以当x1<x2<0时,y1>y2,故本选项说法错误;故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=kx上一点,k的值是()A.4 B.8 C.16 D.24【答案】C【解析】延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽, ∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽, ∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数典型例题
1、(2011•宁波)正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数y=x 2
(x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y=x
2
(x >0)的图象上,顶点A 2在x 轴的正半轴上,则
P 2点的坐标为___________,则点P 3的坐标为__________。

答案:P 2(2,1) P 2(3+1,3-1)
2、已知关于x 的方程x 2+3x+a=0的两个实数根的倒数和等于3,且关于x
的方程(k-1)x 2+3x-2a=0有实根,且k 为正整
数,正方形ABP 1P 2的顶点P 1、P 2在反比例函数y=x
1
k +(x >0)图象上,顶点A 、B 分别在x 轴和y 轴的正半轴上,求点P 2的坐标.
答案:(2,1)或(6,
2
6) 3、如图,正方形OABC 和正方形AEDF 各有一个顶点在一反比例函数图象上,且正方形OABC 的边长为2. (1)求反比例函数的解析式;(2)求点D 的坐标.
答案:(1) y=
x
4
(2) (15+,1-5)
4、两个反比例函数y=x 3,y=x
6
在第一象限内的图象如图所示,点P 1、P 2在反比例函数图象上,过点P 1作x 轴的平行线与过点P 2作y 轴的平行线相交于点N ,若点N (m ,n )恰好在y=x
3
的图象上,则NP 1与NP 2的乘积是______。

答案:3
答案:3
5、(2007•泰安)已知三点P 1(x 1,y 1),P 2(x 2,y 2),P 3(1,-2)都在反比例函数y=x
k
的图象上,若x 1<0,x 2>0,则下列式子正确的是( )答案:D A .y 1<y 2<0
B .y 1<0<y 2
C .y 1>y 2>0
D .y 1>0>y 2
6、如图,已知反比例函数y=
x
1
的图象上有点P ,过P 点分别作x 轴和y 轴的垂线,垂足分别为A 、B ,使四边形OAPB 为正方形,又在反比例函数图象上有点P 1,过点P 1分别作BP 和y 轴的垂线,垂足分别为A 1、B 1,使四边形BA 1P 1B 1为正方形,则点P 1的坐标是________。

答案:⎪⎪


⎝⎛+21-5215, 7、在反比例函数y=
x
1
(x >0)的图象上,有一系列点P 1、P 2、P 3、…、Pn ,若P 1的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2.现分别过点P 1、P 2、P 3、…、Pn 作x 轴与y 轴的垂线段,构成若干个长方形如图所示,将图中阴影部分的面积从左到右依次记为S 1、S 2、S 3、…、Sn ,则S 1+S 2+S 3+…+S 2010=________。

答案:1
8、如图,四边形ABCD 为正方形,点A 在x 轴上,点B 在y 轴上,且OA=2,OB=4,反比例函数y=x
k
(k ≠0)在第一象限的图象经过正方形的顶点D . (1)求反比例函数的关系式;
(2)将正方形ABCD 沿x 轴向左平移_____个单位长度时,点C 恰好落在反比例函数的图象上.
答案:(1)x
12
y =
(2)2 9、如图,已知△OP 1A 1、△A 1P 2A 2、△A 2P 3A 3、…均为等腰直角三角形,直角顶点P 1、P 2、P 3、…在函数y=x
4
(x >0)图象上,点A 1、A 2、A 3、…在x 轴的正半轴上,则点P 2010的横坐标为________________。

答案:2011220102+
10、两个反比例函数y=
x 4,y=-x 8的图象在第一象限,第二象限如图,点P 1、P 2、P 3…P 2010在y=x
4
的图象上,它们的横坐标分别是有这样规律的一行数列1,3,5,7,9,11,…,过点P 1、P 2、P 3、…、P 2010分别作x 轴的平行线,与y=-x
8
的图象交点依次是Q 1、Q 2、Q 3、…、Q 2010,则点Q 2010的横坐标是______________。

答案:-8038
11、如图所示,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上;点FAB 上,点B ,E 在反比例函数y=x
1
(x >0)的图象上.
(1)正方形MNPB 中心为原点O ,且NP ∥BM ,求正方形MNPB 面积. (2)求点E 的坐标.
答案:(1)正方形MNPB 面积=4×正方形OABC 的面积=4×1×1=4 (2)⎪⎪⎭

⎝⎛+21-5215,
12、(2011十堰)如图,平行四边形AOBC 中,对角线交于点E ,双曲线y=x
k
(k >0)经过A ,E 两点,若平行四边形AOBC 的面积为24,则k=________。

答案:8
13、如图,梯形AOBC 中,对角线交于点E ,双曲线y=x
k
k >0)经过A 、E 两点,若AC :OB=1:3,梯形AOBC 面积为24,则k=( ) A 、
7108 B 、235 C 、465 D 、2
27
答案A
14、如图,已知点A 的坐标为(3,3),AB 丄x 轴,垂足为B ,连接OA ,反比例函数y=x
k
(k >0)的图象与线段OA 、AB 分别交于点C 、D .若AB=3BD ,以点C 为圆心,CA 的4
5
倍的长为半径作圆,则该圆与x 轴的位置关系是________。

(填”相离”,“相切”或“相交“).
答案:相交
14、(2011•武汉)如图,▱ABCD 的顶点A 、B 的坐标分别是A (-1,0),B (0,-2),顶点C 、D 在双曲线y=x
k
上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k=_______。

答案:12
解:如图,过C 、D 两点作x 轴的垂线,垂足为F 、G ,DG 交BC 于M 点,过C 点作CH ⊥DG ,垂足为H , ∵ABCD 是平行四边形,∴∠ABC=∠ADC ,
∵BO ∥DG ,∴∠OBC=∠GDE ,∴∠HDC=∠ABO ,∴△CDH ≌△ABO (ASA ),
∴CH=AO=1,DH=OB=2,设C (m+1,n ),D (m ,n+2),则(m+1)n=m (n+2)=k ,解得n=2m ,则D 的坐标是(m ,2m+2),
设直线AD 解析式为y=ax+b ,将A 、D 两点坐标代入得
{
,①
0a 2②
2m b ma =+-+=+b
由①得:a=b ,代入②得:b (m+1)=2(m+1),解得b=2,∴a=b=2
∴y=2x+2,E (0,2),BE=4,∴×BE×AO=2, ∵S 四边形BCDE
=5S △ABE =5×2
1
×4×1=10,四边形BEDM
=10,即2+4×m=10,解得m=2,∴n=2m=4,∴k=(m+1)n=3×4=12.。

相关文档
最新文档