2020届陕西省西安市中考数学一模试卷(有答案)(已审阅)

合集下载

2020届陕西省西安市中考数学一模试卷(有答案)

2020届陕西省西安市中考数学一模试卷(有答案)

陕西省西安市中考数学一模试卷一、选择题1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|2.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为()A.B.C. D.3.下列计算正确的是()A.a3+a2=a5 B.a3﹣a2=a C.a3•a2=a6 D.a3÷a2=a4.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:用电量(度)12014016180200户数23672则这20户家庭该月用电量的众数和中位数分别是()A.180,160 B.160,180 C.160,160 D.180,1805.如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=()A.112°B.124°C.128° D.140°6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.菱形D.正方形7.如图,在平面直角坐标系中,有一条通过点(﹣3,﹣2)的直线L,若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)均在直线L上,则下列数值的判断哪个是正确的()A.a=3 B.b>﹣2 C.c<﹣3 D.d=28.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1 C.h2=h1D.h2=h19.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.210.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1)B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大二、填空题11.分解因式:mn2+6mn+9m=.14.如图,在直角坐标系中,直线y=6﹣x与y=(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为、.15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE=.13.用科学计算器计算:12×tan13°=(结果精确到0.01).三、解答题16.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.17.先化简,再求值:,其中.18.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)19.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?20.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.21.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.25.如图,抛物线y=x2﹣x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=﹣2x上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.26.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.陕西省西安市中考数学一模试卷参考答案与试题解析一、选择题1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|【考点】有理数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:因为正实数都大于0,所以>0,又因为正实数大于一切负实数,所以>﹣2,所以>﹣0.1所以最大,故D不对;又因为负实数都小于0,所以0>﹣2,0>﹣0.1,故C不对;因为两个负实数绝对值大的反而小,所以﹣2<﹣0.1,故B不对;故选A.2.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为()A.B.C. D.【考点】简单组合体的三视图.【分析】找到从上面所看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从上面看,这个几何体有三行四列,且第一列有3个小正方形,二、四列有1个小正方形、第三列有2个小正方形;故选C.3.下列计算正确的是()A.a3+a2=a5 B.a3﹣a2=a C.a3•a2=a6 D.a3÷a2=a【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选D.4.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:用电量(度)120140160180200户数23672则这20户家庭该月用电量的众数和中位数分别是()A.180,160 B.160,180 C.160,160 D.180,180【考点】众数;中位数.【分析】根据众数和中位数的定义就可以解决.【解答】解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列后,处于中间位置的两个数是160,160,那么由中位数的定义可知,这组数据的中位数是÷2=160.故选:A.5.如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=()A.112°B.124°C.128° D.140°【考点】平行线的性质.【分析】根据邻补角的定义求出∠BAC,再根据角平分线的定义求出∠3,然后利用两直线平行,同旁内角互补列式求解即可.【解答】解:∵∠1=68°,∴∠BAC=180°﹣∠1=180°﹣68°=112°,∵AE平分∠BAC,∴∠3=∠BAC=×112°=56°,∵AC∥BD,∴∠2=180°﹣∠3=180°﹣56°=124°.故选B.6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.菱形D.正方形【考点】旋转对称图形.【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.【解答】解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.故选D.7.如图,在平面直角坐标系中,有一条通过点(﹣3,﹣2)的直线L,若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)均在直线L上,则下列数值的判断哪个是正确的()A.a=3 B.b>﹣2 C.c<﹣3 D.d=2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,根据此函数为减函数,利用增减性分析解答即可.【解答】解:如图,可得此一次函数是减函数,因为﹣2<0,所以可得a>b,因为﹣3<﹣1<0,可得c<d<﹣2,故选C.8.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1 C.h2=h1D.h2=h1【考点】三角形中位线定理.【分析】直接根据三角形中位线定理进行解答即可.【解答】解:如图所示:∵O为AB的中点,OC⊥AD,BD⊥AD,∴OC∥BD,∴OC是△ABD的中位线,∴h1=2OC,同理,当将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则h2=2OC,∴h1=h2.故选C.9.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.2【考点】垂径定理;勾股定理.【分析】作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,根据垂径定理得到AE=BE=AB=2,DF=CF=CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到OP=OE=.【解答】解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,则AE=BE=AB=2,DF=CF=CD=2,在Rt△OBE中,∵OB=,BE=2,∴OE==1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,而OE=OF=1,∴四边形OEPF为正方形,∴OP=OE=.故选B.10.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1)B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大【考点】抛物线与x轴的交点;二次函数的性质.【分析】判断各选项,点C的坐标可以令x=0,得到的y值即为点C的纵坐标;令y=0,得到的两个x值即为与x轴的交点坐标A、B;且AB的长也有两点坐标求得,对函数的增减性可借助函数图象进行判断.【解答】解:A,令x=0,y=1,则C点的坐标为(0,1),正确;B,令y=0,x=±1,则A(﹣1,0),B(1,0),|AB|=2,正确;C,由A、B、C三点坐标可以得出AC=BC,且AC2+BC2=AB2,则△ABC是等腰直角三角形,正确;D,当x>0时,y随x增大而减小,错误.故选D.二、填空题11.分解因式:mn2+6mn+9m=m(n+3)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再对余下的多项式利用完全平方公式继续分解.【解答】解:mn2+6mn+9m=m(n2+6n+9)=m(n+3)2.故答案为:m(n+3)2.14.如图,在直角坐标系中,直线y=6﹣x与y=(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为4、12.【考点】反比例函数系数k的几何意义;一次函数的图象.【分析】先求出两图象的交点坐标,从而得出矩形面积和周长.【解答】解:把y=6﹣x与y=联立到一个方程组中,解得x=3+和3﹣,y=3﹣和3+.在本题中x1=3﹣,y1=3+,所以矩形面积=x1y1=4,周长=2(x1+y1)=12.故矩形面积和周长分别为4和12.故答案为:4、12.15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是7.2.【考点】切线的性质;垂线段最短.【分析】三角形ABC中,利用勾股定理的逆定理判断得到∠C为直角,利用90度的圆周角所对的弦为直径,得到EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB时,即CD是圆的直径的时,EF长度最小,求出即可.【解答】解:∵在△ABC中,AB=15,AC=12,BC=9,∴AB2=AC2+BC2,∴△ABC为RT△,∠C=90°,即知EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB,即CD是圆的直径时,EF长度最小,最小值是=7.2.故答案为:7.2.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE=60°.【考点】菱形的性质.【分析】先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.【解答】解:在菱形ABCD中,∠ADC=120°,∴∠BAD=180°﹣120°=60°,∴∠BAO=∠BAD=×60°=30°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣30°=60°.故答案为:60°.13.用科学计算器计算:12×tan13°= 2.77(结果精确到0.01).【考点】计算器—三角函数;近似数和有效数字.【分析】正确使用计算器计算即可,注意运算顺序.【解答】解:12×tan13°≈12×0.231≈2.77.故答案为:2.77.三、解答题16.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.17.先化简,再求值:,其中.【考点】分式的化简求值;二次根式的化简求值.【分析】先将括号内通分,合并;再将除法问题转化为乘法问题;约分化简后,在原式有意义的条件下,代入计算即可【解答】解:===,当时,原式===.18.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)【考点】作图—复杂作图;角平分线的性质;垂径定理.【分析】作∠AOB的角平分线,作MN的垂直平分线,以角平分线与垂直平分线的交点为圆心,以圆心到M点(或N点)的距离为半径作圆.【解答】解:如图所示.圆P即为所作的圆.19.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据各部分所占的百分比的和等于1求出坐姿不良所占的百分比,然后求出被抽查的学生总人数,然后求出站姿不良与三姿良好的学生人数,最后补全统计图即可;(2)根据(1)的计算即可;(3)用总人数乘以坐姿和站姿不良的学生所占的百分比,列式计算即可得解.【解答】解:(1)坐姿不良所占的百分比为:1﹣30%﹣35%﹣15%=20%,被抽查的学生总人数为:100÷20%=500名,站姿不良的学生人数:500×30%=150名,三姿良好的学生人数:500×15%=75名,补全统计图如图所示;(2)100÷20%=500(名),答:这次被抽查形体测评的学生一共是500名;(3)5万×(20%+30%)=2.5万,答:全市初中生中,坐姿和站姿不良的学生有2.5万人.20.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】本题考查平行四边形性质的应用,要证AB=AF,由AB=CD,可以转换为求AF=CD,只要证明△AEF≌△DEC即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD.∴∠F=∠2,∠1=∠D.∵E为AD中点,∴AE=ED.在△AEF和△DEC中∴△AEF≌△DEC.∴AF=CD.∴AB=AF.21.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).【考点】解直角三角形的应用.【分析】首先根据AC∥ME,可得∠CAB=∠AE28°,再根据三角函数计算出BC的长,进而得到BD的长,进而求出DF即可.【解答】解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)利用待定系数法求出一次函数解析式即可,根据当生产数量至少为10吨,但不超过50吨时,得出x的定义域;(2)根据总成本=每吨的成本×生产数量,利用(1)中所求得出即可.【解答】解:(1)利用图象设y关于x的函数解析式为y=kx+b,将(10,10)(50,6)代入解析式得:,解得:,y=﹣x+11(10≤x≤50)(2)当生产这种产品的总成本为280万元时,x(﹣x+11)=280,解得:x1=40,x2=70(不合题意舍去),故该产品的生产数量为40吨.23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)【考点】列表法与树状图法.【分析】先画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率.【解答】解:画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;所以棋子走E点的可能性最大,棋子走到E点的概率==.24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【考点】切线的判定;圆周角定理.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.25.如图,抛物线y=x2﹣x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=﹣2x上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.【考点】二次函数综合题.【分析】(1)根据二次函数的顶点坐标的求法得出顶点坐标,再代入一次函数即可求出a的值;(2)根据二次函数解析式求出与x轴的交点坐标即是A,B两点的坐标;(3)根据平行四边形的性质得出D点的坐标,即可得出D′点的坐标,即可得出答案.【解答】解:(1)∵抛物线y=x2﹣x+a其顶点在直线y=﹣2x上.∴抛物线y=x2﹣x+a,=(x2﹣2x)+a,=(x﹣1)2﹣+a,∴顶点坐标为:(1,﹣+a),∴y=﹣2x,﹣+a=﹣2×1,∴a=﹣;(2)二次函数解析式为:y=x2﹣x﹣,∵抛物线y=x2﹣x﹣与x轴交于点A,B,∴0=x2﹣x﹣,整理得:x2﹣2x﹣3=0,解得:x=﹣1或3,A(﹣1,0),B(3,0);(3)作出平行四边形ACBD,作DE⊥AB,在△AOC和△BDE中∵∴△AOC≌△BED(AAS),∵AO=1,∴BE=1,∵二次函数解析式为:y=x2﹣x﹣,∴图象与y轴交点坐标为:(0,﹣),∴CO=,∴DE=,D点的坐标为:(2,),∴点D关于x轴的对称点D′坐标为:(2,﹣),代入解析式y=x2﹣x﹣,∵左边=﹣,右边=×4﹣2﹣=﹣,∴D′点在函数图象上.26.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.【考点】位似变换;等边三角形的性质;勾股定理;正方形的性质.【分析】(1)利用位似图形的性质,作出正方形EFPN的位似正方形E′F′P′N′,如答图①所示;(2)根据正三角形、正方形、直角三角形相关线段之间的关系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的边长;(3)设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),求得面积和的表达式为:S=+(m﹣n)2,可见S的大小只与m、n的差有关:①当m=n时,S取得最小值;②当m最大而n最小时,S取得最大值.m最大n最小的情形见第(1)(2)问.【解答】解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=x.∵E′F′+AE′+BF′=AB,∴x+x+x=3+,∴x=,即x=3﹣3,(x≈2.20也正确)(3)如图②,连接NE、EP、PN,则∠NEP=90°.设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=,PE=n.∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).∴S=m2+n2=PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m﹣n)2.∵AD+DE+EF+BF=AB,即m+m+n+n=+3,化简得m+n=3.∴S= [32+(m﹣n)2]= +(m﹣n)2①当(m﹣n)2=0时,即m=n时,S最小.∴S最小=;②当(m﹣n)2最大时,S最大.即当m最大且n最小时,S最大.∵m+n=3,3.由(2)知,m最大=3﹣9+(m最大﹣n最小)2]∴S最大= [= [9+(3﹣3﹣6+3)2]=99﹣54….≈5.47也正确)(S最大54,S最小=.综上所述,S最大=99﹣。

2020年陕西省中考数学一模试卷 解析版

2020年陕西省中考数学一模试卷  解析版

2020年陕西省中考数学一模试卷一.选择题(共10小题)1.的倒数是()A.B.C.D.2.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°5.某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:尺码/码4041424344购买数量/双24221则这十一双运动鞋尺码的众数和中位数分别为()A.40,41B.41,41C.41,42D.42,436.若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)7.如图,在菱形ABCD中,∠ABC=60°,AB=4.若点E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE,则四边形EFGH的面积为()A.8B.6C.4D.68.如果点A(m,n)、B(m+1,n+2)均在一次函数y=kx+b(k≠0)的图象上,那么k的值为()A.2B.1C.﹣1D.﹣29.如图,在矩形ABCD中,AB=3.4,BC=5,以BC为直径作半圆O,点P是半圆O上的一点,若PB=4,则点P到AD的距离为()A.B.1C.D.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距10个单位长度.若其中一条抛物线的函数表达式为y=x2+6x+m,则m的值是()A.﹣4或﹣14B.﹣4或14C.4或﹣14D.4或14二.填空题(共4小题)11.在,﹣1,,π这四个数中,无理数有个.12.不等式+2>x的正整数解为.13.如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=.14.如图,在半圆⊙O中,AB是直径,CD是一条弦,若AB=10,则△COD面积的最大值是.三.解答题(共11小题)15.计算:×﹣2×|﹣5|+(﹣)﹣2.16.解方程:﹣=1.17.如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使△ADE与△ABC相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)18.在正方形ABCD中,M、N分别是边CD、AD的中点,连接BN,AM交于点E.求证:AM⊥BN.19.为了庆祝六一儿童节,红旗中学七年级举办了文艺演出,该校学生会为了了解学生最喜欢演出中的哪类节目,对这个年级的学生进行了抽样调查.我们根据调查结果绘制了两幅统计图.请依据以下两幅统计图提供的相关信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该校七年级有800名学生,求这些学生中最喜欢歌唱类节目的人数.20.小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O 为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)21.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y(元)与所用的水(自来水)量x(吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当17≤x≤30时,求y与x之间的函数关系式;(2)当一户居民在某月用水为15吨时,求这户居民这个月的水费;(3)已知某户居民上月水费为91元,求这户居民上月用水量多少吨?22.甲、乙两人利用五个小球做“找象限”游戏,这五个小球的球面上分别标有数字﹣2、﹣1、1、2、3,这些小球除球面上数字不同外其他完全相同.他们俩约定:把这五个小球放在一个不透明的口袋中,甲先从口袋中任摸一个小球,记下数字作为一点的横坐标,再将这个小球放回这个袋中摇匀,接着乙从口袋中任摸一个小球,记下数字作为这个点的纵坐标,这样就得到坐标平面上的一个点,若此点在第一、三象限,则甲胜,否则乙胜.这样的游戏对甲、乙双方公平吗?为什么?23.如图,⊙O是△ABC的外接圆,过点A、B两点分别作⊙O的切线PA、PB交于一点P,连接OP(1)求证:∠APO=∠BPO;(2)若∠C=60°,AB=6,点Q是⊙O上的一动点,求PQ的最大值.24.如图,在平面直角坐标系中,点A(﹣1,0),B(0,2),点C在x轴上,且∠ABC=90°.(1)求点C的坐标;(2)求经过A,B,C三点的抛物线的表达式;(3)在(2)中的抛物线上是否存在点P,使∠PAC=∠BCO?若存在,求出点P的坐标;若不存在,说明理由.25.问题探究(1)如图①,在Rt△ABC中,∠B=90°,请你过点A作一条直线AD,其中点D为BC 上一点,使直线AD平分△ABC的面积;(2)如图②,点P为▱ABCD外一点,AB=6,BC=12,∠B=45°,请过点P作一条直线l,使其平分▱ABCD的面积,并求出▱ABCD的面积;问题解决(3)如图③,在平面直角坐标系中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12)、P(3,6).你认为直线1是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.的倒数是()A.B.C.D.【分析】根据倒数的定义直接进行解答即可.【解答】解:根据倒数的定义得:﹣的倒数是﹣;故选:A.2.如图,将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是()A.B.C.D.【分析】根据直角三角形绕直角边旋转是圆锥,可得答案.【解答】解:将直角三角形绕其一条直角边所在直线l旋转一周,得到的几何体是圆锥,故选:B.3.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选:D.4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选:B.5.某校给足球队的十一位运动员每人购买了一双运动鞋.尺码及购买数量如下表:尺码/码4041424344购买数量/双24221则这十一双运动鞋尺码的众数和中位数分别为()A.40,41B.41,41C.41,42D.42,43【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:由表可知41出现次数最多,所以众数为41,因为共有2+4+2+2+1=11个数据,所以中位数为第6个数据,即中位数为41,故选:B.6.若正比例函数的图象经过(﹣3,2),则这个图象一定经过点()A.(2,﹣3)B.C.(﹣1,1)D.(2,﹣2)【分析】先利用待定系数法求出正比例函数的解析式,再把各选项代入进行检验即可.【解答】解:设正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过(﹣3,2),∴﹣3k=2,解得k=﹣,∴正比例函数的解析式为:y=﹣x.A、∵当x=2时,y=﹣×2=﹣≠﹣3,∴此点不在函数图象上,故本选项错误;B、∵当x=时,y=﹣×=﹣1,∴此点在函数图象上,故本选项正确;C、∵当x=﹣1时,y=﹣×(﹣1)=≠1,∴此点不在函数图象上,故本选项错误;D、∵当x=2时,y=﹣×2=﹣≠﹣2,∴此点不在函数图象上,故本选项错误.故选:B.7.如图,在菱形ABCD中,∠ABC=60°,AB=4.若点E、F、G、H分别是边AB、BC、CD、DA的中点,连接EF、FG、GH、HE,则四边形EFGH的面积为()A.8B.6C.4D.6【分析】连接AC、BD交于O,根据三角形中位线性质得到EH∥BD,FG∥BD,EF∥AC,HG∥AC,推出四边形EFGH是平行四边形,求得∠HEF=90°,得到四边形EFGH 是矩形,解直角三角形得到AC=AB=4,BD=4,于是得到结论.【解答】解:连接AC、BD交于O,∵四边形ABCD是菱形,∴AC⊥BD,∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH∥BD,FG∥BD,EF∥AC,HG∥AC,∴EH∥FG,EF∥HG,∴四边形EFGH是平行四边形,∵AC⊥BD,∴∠AOB=90°,∴∠BAO+∠ABO=90°,∵∠AEO=∠ABO,∠BEF=∠EAO,∴∠AEO+∠BEF=90°,∴∠HEF=90°,∴四边形EFGH是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=4,BD=4,∴EF=AC=2,∴EH=BD=2,∴四边形EFGH的面积为2×=4,故选:C.8.如果点A(m,n)、B(m+1,n+2)均在一次函数y=kx+b(k≠0)的图象上,那么k的值为()A.2B.1C.﹣1D.﹣2【分析】根据点A、B的坐标利用一次函数图象上点的坐标特征可得出关于k、b的二元一次方程组(m、n当做已知量),解之即可得出k值.【解答】解:∵点A(m,n)、B(m+1,n+2)均在一次函数y=kx+b(k≠0)的图象上,∴,解得:k=2.故选:A.9.如图,在矩形ABCD中,AB=3.4,BC=5,以BC为直径作半圆O,点P是半圆O上的一点,若PB=4,则点P到AD的距离为()A.B.1C.D.【分析】作PE⊥AD于E,直线PE交BC于F,连接PC,如图,根据平行线的性质可判断PF⊥BC,再根据圆周角定理得到∠BPC=90°,则可根据勾股定理计算出PC,接着利用面积法计算出PF,然后计算出PE即可.【解答】解:如图,连接PC,作PE⊥AD于E,直线PE交BC于F,∵AD∥BC,∴PF⊥BC,∵BC为直径,∴∠BPC=90°,∴PC==3,∵PF•BC=PB•PC,∴PF==2.4,易得四边形ABFE为矩形,∴EF=AB=3.4,∴PE=3.4﹣2.4=1.故选:B.10.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距10个单位长度.若其中一条抛物线的函数表达式为y=x2+6x+m,则m的值是()A.﹣4或﹣14B.﹣4或14C.4或﹣14D.4或14【分析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得.【解答】解:∵一条抛物线的函数表达式为y=x2+6x+m,∴这条抛物线的顶点为(﹣3,m﹣9),∴关于x轴对称的抛物线的顶点(﹣3,9﹣m),∵它们的顶点相距10个单位长度.∴|m﹣9﹣(9﹣m)|=10,∴2m﹣18=±10,当2m﹣18=10时,m=14,当2m﹣18=﹣10时,m=4,∴m的值是4或14.故选:D.二.填空题(共4小题)11.在,﹣1,,π这四个数中,无理数有2个.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:在,﹣1,,π这四个数中,无理数有和π共2个.故答案为:212.不等式+2>x的正整数解为1,2.【分析】首先去分母、移项、合并同类项、系数化成1,求得不等式的解集,然后确定正整数解即可.【解答】解:+2>x,去分母,得:x﹣1+6>3x,移项,得:x﹣3x>1﹣6,合并同类项,得:﹣2x>﹣5,系数化成1得:x<2.5.则正整数解是:1,2.故答案是:1,2.13.如图,在x轴上方,平行于x轴的直线与反比例函数y=和y=的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1﹣k2=﹣12.【分析】根据AB∥x轴,设A(x,),B(,)得到AB=﹣x,根据△AOB的面积为6,列方程即可得到结论.【解答】解:∵AB∥x轴,∴设A(x,),B(,)∴AB=﹣x,∵△AOB的面积为6,∴(﹣x)•=6,∴k1﹣k2=﹣12,故答案为:﹣12.14.如图,在半圆⊙O中,AB是直径,CD是一条弦,若AB=10,则△COD面积的最大值是12.5.【分析】如图,作DH⊥CO交CO的延长线于H.首先证明当DH=OD时,△COD的面积最大,此时△COD是等腰直角三角形,然后求得最大值即可.【解答】解:如图,作DH⊥CO交CO的延长线于H.=•OC•DH,∵S△COD∵DH≤OD,∴当DH=OD时,△COD的面积最大,此时△COD是等腰直角三角形,∠COD=90°,此时面积的最大值为:×5×5=12.5,故答案为:12.5.三.解答题(共11小题)15.计算:×﹣2×|﹣5|+(﹣)﹣2.【分析】根据二次根式的乘法法则、绝对值和负整数指数幂的意义计算.【解答】解:原式=﹣2×10+9=2﹣10+9=2﹣1.16.解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x﹣1)﹣2=x2﹣3x,去括号得:x2﹣x﹣2=x2﹣3x,移项合并得:2x=2,解得:x=1,经检验x=1是分式方程的解.17.如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使△ADE与△ABC相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)【分析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AC的交点即为所求作的点.【解答】解:如图,点E即为所求作的点.18.在正方形ABCD中,M、N分别是边CD、AD的中点,连接BN,AM交于点E.求证:AM⊥BN.【分析】先根据SAS证明△ABN≌△DAM,得出对应角相等∠ABN=∠DAM,再根据角的互余关系即可得出∠AEB=90°,证出AM⊥BN.【解答】证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠BAN=∠ADM=90°,∵M、N分别是边CD、AD的中点,∴AN=AD,DM=CD,∴AN=DM,在△ABN和△DAM中,,∴△ABN≌△DAM(SAS),∴∠ABN=∠DAM,∵∠DAM+∠BAE=90°,∴∠ABN+∠BAE=90°,∴∠AEB=90°,∴AM⊥BN.19.为了庆祝六一儿童节,红旗中学七年级举办了文艺演出,该校学生会为了了解学生最喜欢演出中的哪类节目,对这个年级的学生进行了抽样调查.我们根据调查结果绘制了两幅统计图.请依据以下两幅统计图提供的相关信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该校七年级有800名学生,求这些学生中最喜欢歌唱类节目的人数.【分析】(1)根据统计图可得,抽样调查中,最喜欢乐器的学生有12人,占总人数的10%,根据频数与频率、数据总数的关系,即可求出本次调查的学生人数;(2)根据(1)所求结果即可补全两幅统计图;(3)根据样本估计总体即可得800名学生中最喜欢歌唱类节目的人数.【解答】解:(1)本次抽样调查的学生人数:12÷10%=120(名);(2)舞蹈类人数:120×35%=42(名),歌唱类的百分比:×100%=30%,小品类的百分比:×100%=20%.补全两幅统计图如图所示:(3)800×30%=240(名).答:最喜欢歌唱类节目的人数为240名.20.小明想利用所学知识测量一公园门前热气球直径的大小,如图,当热气球升到某一位置时,小明在点A处测得热气球底部点C、中部点D的仰角分别为50°和60°,已知点O 为热气球中心,EA⊥AB,OB⊥AB,OB⊥OD,点C在OB上,AB=30m,且点E、A、B、O、D在同一平面内,根据以上提供的信息,求热气球的直径约为多少米?(精确到0.1m)(参考数据:sin50°≈0.7660,cos50°≈0.6428,tan50°=1.192)【分析】过E点作EF⊥OB于F,过D点作DG⊥EF于G.在Rt△CEF中,根据三角函数得到CF,在Rt△DEG中,根据三角函数得到DG=EG,设热气球的直径为x米,得到关于x的方程,解方程即可求解.【解答】解:如图,过E点作EF⊥OB于F,过D点作DG⊥EF于G.在Rt△CEF中,CF=EF•tan50°=AB•tan50°=35.76m,在Rt△DEG中,DG=EG•tan60°=EG,设热气球的直径为x米,则35.76+x=(30﹣x),解得x≈11.9.故热气球的直径约为11.9米.21.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y(元)与所用的水(自来水)量x(吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当17≤x≤30时,求y与x之间的函数关系式;(2)当一户居民在某月用水为15吨时,求这户居民这个月的水费;(3)已知某户居民上月水费为91元,求这户居民上月用水量多少吨?【分析】(1)根据图示知,该直线经过点(20,66),(30,116),则由待定系数法来求y 与x之间的函数关系式;(2)先求出当0≤x<17时,y与x之间的函数关系式,把x=15代入可求解;(3)把y=91代入(1)中的函数关系式,求得x的值即可.【解答】解:(1)y与x之间的函数关系式为:y=kx+b,由题意得:∴∴y与x之间的函数关系式为:y=5x﹣34;(2)当x=17吨时,y=5×17﹣34=51元,∴当0≤x<17时,y与x之间的函数关系式为:y=3x,∴当x=15吨时,y=45元,答:这户居民这个月的水费45元;(3)当y=91元>51元,∴91=5x﹣34x=25答:这户居民上月用水量25吨.22.甲、乙两人利用五个小球做“找象限”游戏,这五个小球的球面上分别标有数字﹣2、﹣1、1、2、3,这些小球除球面上数字不同外其他完全相同.他们俩约定:把这五个小球放在一个不透明的口袋中,甲先从口袋中任摸一个小球,记下数字作为一点的横坐标,再将这个小球放回这个袋中摇匀,接着乙从口袋中任摸一个小球,记下数字作为这个点的纵坐标,这样就得到坐标平面上的一个点,若此点在第一、三象限,则甲胜,否则乙胜.这样的游戏对甲、乙双方公平吗?为什么?【分析】画出树状图,然后找出点在第一、三象限和第二、四象限的情况数,再根据概率公式列式进行计算即可得解.【解答】解:画树状图如下:共有25种情况,其中此点在第一、三象限的有13种结果,此点在第二、四象限的有12种结果,∴甲获胜的概率为,乙获胜的概率为,∵>,∴这样的游戏对甲、乙双方不公平.23.如图,⊙O是△ABC的外接圆,过点A、B两点分别作⊙O的切线PA、PB交于一点P,连接OP(1)求证:∠APO=∠BPO;(2)若∠C=60°,AB=6,点Q是⊙O上的一动点,求PQ的最大值.【分析】(1)根据切线的性质得出OA⊥PA,OB⊥PB,然后根据HL证得RT△PAO≌RT △PBO,即可证得结论.(2)根据切线的性质得出∠PAB=∠PBA=∠C=60°,OP⊥AB,从而证得△PAB为等边三角形,延长PO交⊙O于Q,连接AQ、BQ,则此时PQ最大,然后通过解直角三角形即可求得PQ的最大值.【解答】(1)证明:连接OA、OB,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,在RT△PAO和RT△PBO中,,∴RT△PAO≌RT△PBO(HL),∴∠APO=∠BPO;(2)解:∵PA、PB是⊙O的切线,∴∠PAB=∠PBA=∠C=60°,OP⊥AB,∴△PAB为等边三角形,延长PO交⊙O于Q,连接AQ、BQ,则此时PQ最大,∵∠APB=60°,∴∠APO=∠BPO=30°∴PQ=2×AP=2×AB=2××6=6.24.如图,在平面直角坐标系中,点A(﹣1,0),B(0,2),点C在x轴上,且∠ABC=90°.(1)求点C的坐标;(2)求经过A,B,C三点的抛物线的表达式;(3)在(2)中的抛物线上是否存在点P,使∠PAC=∠BCO?若存在,求出点P的坐标;若不存在,说明理由.【分析】(1)设C点坐标为(x,0)(x>0),可得AC=x+1,AB=,BC=,由勾股定理可得(x+1)2=5+(),解方程可求x,进一步得到点C的坐标;(2)根据待定系数法可求经过A,B,C三点的抛物线的表达式;(3)由∠PAC=∠BCO可得tan∠PAC=tan∠BCO,设P点坐标为(x,y),再分两种情况:P点在x轴上方时;P点在x轴下方时;进行讨论可求点P的坐标.【解答】解:(1)设C点坐标为(x,0)(x>0),则AC=x+1,AB=,BC=,由勾股定理可得(x+1)2=5+()2,解得x=4.故点C的坐标为(4,0);(2)设经过A,B,C三点的抛物线的表达式为y=ax2+bx+c,依题意有,解得.故经过A,B,C三点的抛物线的表达式为y=﹣x2+x+2;(3)∵∠PAC=∠BCO,∴tan∠PAC=tan∠BCO,设P点坐标为(x,y),tan∠BCO=,P点在x轴上方时,y>0,tan∠PAC=,联立,﹣x2+3x+4=x+1,x2﹣2x﹣3=0,(x﹣3)(x+1)=0,∵y>0,∴x=3,∴点P的坐标为(3,2);P点在x轴下方时;y<0,x>0,tan∠PAC=﹣,联立,x2﹣3x﹣4=x+1,x2﹣4x﹣5=0,(x﹣5)(x+1)=0,∵x>0,∴x=5,∴点P的坐标为(5,﹣3).综上可得,点P的坐标为(3,2)或(5,﹣3).25.问题探究(1)如图①,在Rt△ABC中,∠B=90°,请你过点A作一条直线AD,其中点D为BC 上一点,使直线AD平分△ABC的面积;(2)如图②,点P为▱ABCD外一点,AB=6,BC=12,∠B=45°,请过点P作一条直线l,使其平分▱ABCD的面积,并求出▱ABCD的面积;问题解决(3)如图③,在平面直角坐标系中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12)、P(3,6).你认为直线1是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.【分析】(1)点D为BC的中点时,直线AD则平分△ABC的面积;(2)连接AC、BD,AC与BD交于点O,则点O为平行四边形ABCD的对称中心,作直线OP,直线OP即为所求,作高线AE,根据等腰直角三角形的性质求AE的长,根据平行四边形的面积公式可得结论;(3)过点B作BD⊥x轴于点D,交AO于E,连接OB,则E(6,6).先证明四边形OEBC是平行四边形,则过点P的直线平分平行四边形OEBC,然后过点P的直线只要平分△BEA的面积即可,然后求得直线AB、PA的解析式,接下来,再求得直线PF的解析式为y=kx+6﹣3k,然后再求得点G、F、E的坐标,最后,依据△BGF的面积等于△ABE的面积的一半列出关于k的方程求解即可.【解答】解:(1)如图1,点D为BC的中点,作直线AD,直线AD则平分△ABC的面积;(2)如图2,连接AC、BD,AC与BD交于点O,则点O为平行四边形ABCD的对称中心,作直线OP,直线OP即为所求;如图3,过A作AE⊥BC于E,∵∠ABC=45°,∴△ABE是等腰直角三角形,∴AE===3,∵BC=12,∴▱ABCD的面积=BC•AE=12×3=36;(3)∵A(8,8),∴直线OA的解析式为:y=x,过点B作BD⊥x轴于点D,交AO于E,连接OB,则E(6,6),∵B(6,12),点P(3,6),∴点P为线段OB的中点.∵OA∥BC,BE∥OC,∴四边形OEBC是平行四边形.∴点P是平行四边形OEBC的对称中心,∴过点P的直线平分平行四边形OEBC.∴过点P的直线PF只要平分△BEA的面积即可.设直线PF的表达式为y=kx+b,且过点P(3,6),∴3k+b=6,即b=6﹣3k,∴y=kx+6﹣3k.设直线AB的表达式为y=mx+n,且过点B(6,12),A(8,8),则,解得:,∴直线AB的函数表达式为y=﹣2x+24.∴,解得:x=,∴F的横坐标为,把x=6代入y=kx+6﹣3k得y=3k+6,∴G(6,3k+6)同理得直线AP的解析式为y=x+,当x=6时,y=,∴<3k+6<12,解得<k<2,=BG•(F x﹣6)=(12﹣3k﹣6)(﹣6)=(8﹣6)(12﹣6),∵S△BFG解得k=或k=4(舍去),∴直线l的表达式为y=x+4.。

2020年陕西省中考数学一模试卷 (含解析)

2020年陕西省中考数学一模试卷 (含解析)

2020年陕西省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−66的相反数是()A. −66B. 66C. 166D. −1662.55°角的余角是()A. 55°B. 45°C. 35°D. 125°3.据报道,2015年国内生产总值达到677000亿元,677000用科学记数法表示应为()A. 0.677×106B. 6.77×105C. 67.7×104D. 677×1034.如图是郴(cℎēn)州市春季某一天的气温随时间变化的图象,根据图象可知,在这一天中最高气温与达到最高气温的时间是()A. 25℃,16时B. 10℃,6时C. 20℃,14时D. 15℃,18时5.(−12x2y)3的计算结果是()A. −12x6y3 B. −16x6y3 C. −18x6y3 D. 18x6y36.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D.则CD的长为()A. 25√5 B. 23√5 C. 45√5 D. 35√57.直线y=ax+2与直线y=3x−2平行,下列说法不正确的是()A. a =3B. 直线y =ax +2与y =3x −2没有交点C. 方程组{y =ax +2y =3x −2无解D. 方程组{y =ax +2y =3x −2有无穷多个解8. 如图,平行四边形ABCD 中,AC ⊥AB ,点E 为BC 边中点,AD =6,则AE 的长为( )A. 2B. 3C. 4D. 59. 在直径为12cm 的圆中有一个内接△ABC ,AB =6cm ,则∠C 的度数是A. 30°B. 150°C. 30°或120°D. 30°或150°10. 在平面直角坐标系中,将抛物线y =3x 2+2先向左平移2个单位,再向上平移6个单位后所得到的抛物线的顶点坐标是( )A. (−2,6)B. (−2,−8)C. (−2,8)D. (2,−8)二、填空题(本大题共4小题,共12.0分)11. 计算:(1+√2)(1−√2)=______.12. 如图,在正五边形ABCDE 中,连接AC ,则∠BAC 的度数为______.13. 若M(2,2)和N(b,−1−n 2)是反比例函数y =kx 图象上的两点,则一次函数y =kx +b 的图象经过______ 象限.14. 如图,在菱形ABCD 中,AB =2,∠DAB =60°,对角线AC ,BD 相交于点O ,过点C 作CE//BD交AB 的延长线于点E ,连接OE ,则OE 长为______.三、计算题(本大题共2小题,共12.0分)15.解分式方程:①40x−3=64x;②2xx−1+2=−21−x.16.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)四、解答题(本大题共9小题,共66.0分)17.解不等式组:{3x≥4x−1 5x−12>x−218.已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:要保留作图痕迹,不写作法.)19.如图,在▱ABCD中,AE=CF,求证:四边形DEBF是平行四边形.20.某商场进了600箱苹果.在出售之前,先从中随机抽出10箱检查,称得10箱苹果的质量(单位:千克)如下:5.0,5.4,4.4,5.3,5.0,5.0,4.8,4.8,4.0,5.3.(1)请指出这10箱苹果质量的平均数、中位数和众数分别是多少?(2)请你根据上述结果估计600箱苹果的质量为多少千克.21.某生物小组观察一植物生长,得到植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).(1)该植物从观察时起,多少天以后停止长高?(2)求AC段对应的函数解析式,并求该植物最高能长到多少厘米.22.不透明的口袋里装有黄、白两种颜色的乒乓球(除颜色外其他都相同),其中黄球有3个,白球有1个.(1)若从中随机摸出1个乒乓球,则摸出白球的概率为______;(2)若从中随机摸出2个乒乓球,求摸出的2个球都是黄球的概率.23.如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作⊙O的切线,交AB的延长线于点D,求∠D的度数.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(−2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)点P的横坐标为t,在抛物线上的第一象限内移动,当△BCP的面积取最大值时,求t得值;(3)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;25.如图,⊙O的直径AB=10,点P为BA的延长线上一点,直线PD切⊙O于点D,过点B作BH⊥PD,垂足为H,BH交⊙O于点C,BC=6,连接BD.(1)求证:BD平分∠ABH;(2)求PA的长;(3)E是AB⏜上的一动点,DE交AB于点F,连接AD,AE.是否存在点E,使得△ADE∽△FDB?如果存在,请证明你的结论,并求AE⏜的长;如果不存在,请说明理由.【答案与解析】1.答案:B解析:解:−66的相反数是66.故选:B.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握相反数的定义是解题关键.2.答案:C解析:解:55°的余角=90°−55°=35°.故选C.相加等于90°的两角称作互为余角,也作两角互余,即一个角是另一个角的余角.因而,求这个角的余角,就可以用90°减去这个角的度数.本题考查了余角的定义,互余是反映了两个角之间的关系即和是90°.3.答案:B解析:解:677000=6.77×105,故选:B.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:C解析:本题考查了函数图象,仔细观察图象,即可解决问题.根据图象,即可求出答案.解:根据题意:在这一天中最高气温即T的最大值为20,达到最高气温的时间即对应t的值为14.故选C .5.答案:C解析:解:原式=−18x 6y 3.故选C .根据幂的乘方与积的乘方运算法则进行运算即可.本题考查了幂的乘方与积的乘方,解答本题的关键是掌握幂的乘方与积的乘方运算法则. 6.答案:A解析:本题考查了勾股定理,三角形的面积.利用面积法求得线段BD 的长度是解题的关键.利用勾股定理求得相关线段的长度,然后由面积法求得BD 的长度,再利用勾股定理即可求出CD 的长.解:如图,由勾股定理得AC =√12+22=√5,∵12BC ×2=12AC ⋅BD ,即12×2×2=12×√5BD ,∴BD =4√55, ∴CD =√BC 2−BD 2=2√55. 故选A .7.答案:D解析:本题主要考查了两条直线平行问题、一次函数与二元一次方程组的关系.根据两个一次函数平行时系数之间的关系即可得出答案.解:∵直线y =ax +2与直线y =3x −2平行,∴a =3,两直线无交点,方程组{y =ax +2y =3x −2无解. 故A ,B ,C 正确,D 错误,故选D .8.答案:B解析:解:∵四边形ABCD是平行四边形,∴BC=AD=6,∵E为BC的中点,AC⊥AB,BC=3,∴AE=12故选:B.由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.9.答案:D解析:本题考查了圆周角定理,考查了三角形的内接圆,解答时要进行分类讨论,根据点C所在的不同位置来加以分析.解:如图∵⊙O的直径为12cm,∴OA=OB=6cm,∵AB=6cm,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠ACB=1∠AOB=30°,2∵四边形ACBC′是⊙O的内接四边形,∴∠AC′B+∠ACB=180°,∴∠AC′B=150°.∴弦长6cm所对的圆周角等于30°或150°.故选D.10.答案:C解析:本题考查了二次函数图象与几何变换.先把抛物线的解析式化为顶点式y=a(x−k)2+ℎ,其中对称轴为直线x=k,顶点坐标为(k,ℎ),若把抛物线先右平移m个单位,向上平移n个单位,抛物线的平移后顶点(k+m,ℎ+n).解:抛物线y=3x2+2的顶点坐标为(0,2),抛物线y=3x2+2先向左平移2个单位,再向上平移6个单位后所得到抛物线顶点坐标为(−2,8),故选:C.11.答案:−1解析:解:原式=1−(√2)2=1−2=−1.故答案为−1.根据平方差公式计算.本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.12.答案:36°解析:解:正五边形内角和:(5−2)×180°=3×180°=540°∴∠B=540°=108°,5∴∠BAC=180°−∠B2=180°−108°2=36°,故答案为:36°.首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC的度数.本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n−2)×180°是解答此题的关键.13.答案:第一、三、四解析:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键,先根据M(2,2)和N(b,−1−n2)是反比例函数y=kx图象上的两点求出k 的值及b的符号,再根据一次函数的性质即可得出结论.解:∵M(2,2)和N(b,−1−n2)是反比例函数y=kx图象上的两点,∴k=2×2=4,∴b(−1−n2)=4,∴−1−n2=4b,∵1+n2>0,∴−1−n2<0,即4b<0,∴b<0,∵一次函数y=kx+b中k=4>0,b<0,∴此函数的图象经过一、三、四象限.故答案为第一、三、四.14.答案:√7解析:解:∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.OB=OD,AO=CO,CD//AB,∵AB=2,∴OB=1,AO=OC=√3,∴DB=2,∵CE//DB,CD//BE,∴四边形DBEC是平行四边形.∴CE=DB=2,∠OCE=90°,∴OE=√OC2+CE2=√4+3=√7,故答案为:√7.由菱形的性质可得∠OAB=30°,∠AOB=90°,由直角三角形的性质可求OB=1,AO=OC=√3,由勾股定理可求OE的长.本题菱形的性质,等边三角形的性质,直角三角形的性质,平行四边形的判定和性质,灵活运用菱形的性质是本题的关键.15.答案:解:(1)方程两边都乘以x(x−3)得,40x=64(x−3),64x−40x=192,x=8,检验:当x=8时,x(x−3)≠0,∴x=8是原方程的解;(2)方程两边都乘以(x−1)得,2x+2(x−1)=2,4x=4,x=1,检验:当x=1时,x−1=0,∴x=1是原分式方程的增根,原分式方程无解.解析:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.(1)方程两边都乘以x(x−3),分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程两边都乘以(x−1),分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.16.答案:解:(1)作CH ⊥BD 于H ,如图,根据题意得∠DCH =15°,∠BCH =22°,∴∠BCD =∠DCH +∠BCH =15°+22°=37°;(2)易得四边形ABHC 为矩形,则CH =AB =30,在Rt △DCH 中,tan∠DCH =DH CH ,∴DH =30tan15°=30×0.268=8.04,在Rt △BCH 中,tan∠BCH =BHCH ,∴BH =30tan22°=30×0.404=12.12,∴BD =12.12+8.04=20.16≈20.2(m).答:教工宿舍楼的高BD 为20.2m .解析:(1)作CH ⊥BD 于H ,如图,利用仰角和俯角定义得到∠DCH =15°,∠BCH =22°,然后计算它们的和即可得到∠BCD 的度数;(2)利用正切定义,在Rt △DCH 中计算出DH =30tan15°=8.04,在Rt △BCH 中计算出BH =30tan22°=12.12,然后计算BH +DH 即可得到教工宿舍楼的高BD .本题考查了解直角三角形的应用−仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.17.答案:解:{3x ≥4x −1①5x−12>x −2② ∵解不等式①得:x ≤1,解不等式②得:x >−1,∴不等式组的解集为−1<x ≤1,解析:先求出不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键. 18.答案:解:如图所示,∠BAC 即为所求.解析:根据作一个角等于已知角的方法作图即可.此题主要考查了基本作图,关键是掌握作一个角等于已知角的方法.19.答案:证明:在▱ABCD中,则AB//CD,AB=CD,∵AE=CF,∴AB−AE=CD−CF,∴BE=DF,∵BE//DF,∴四边形DEBF是平行四边形.解析:利用平行四边形的性质得出AB//CD,AB=CD,进而求出BE=DF,进而利用一组对边平行且相等的四边形是平行四边形进而求出即可.此题主要考查了平行四边形的判定与性质,得出BE=DF是解题关键.=4.9(千克),20.答案:解:(1)平均数=5.0+5.4+4.4+5.3+5.0+5.0+4.8+4.8+4.0+5.3105.0出现的次数最多,是3次,因而众数是5.0千克;共有10个数,中间位置的是第5个与第6个,中位数是这两个数的平均数是5.0千克.(2)由(1)得每箱苹果的质量平均为4.9千克,∴总量=4.9×600=2940千克.答:600箱苹果的质量约为2940千克.解析:本题考查的是平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.并且本题考查了总体与样本的关系,可以用样本平均数估计总体平均数.(1)根据平均数、众数和中位数的定义求解;(2)先求出样本的平均数,再估计总体.21.答案:解:(1)∵CD//x轴,∴从第50天开始植物的高度不变,答:该植物从观察时起,50天以后停止长高;(2)设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴{b=630k+b=12,解得{k=15b=6.所以,直线AC的解析式为y=15x+6(0≤x≤50),当x=50时,y=15×50+6=16cm.答:直线AC所在线段的解析式为y=15x+6(0≤x≤50),该植物最高长16cm.解析:本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.(1)根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;(2)设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,再把x=50代入进行计算即可得解.22.答案:14解析:解:(1)∵不透明的口袋里黄球有3个,白球有1个,共有4个球,∴摸出白球的概率为14;故答案为:14.(2)根据题意画树状图如下:共有12种等情况数,其中摸出的2个球都是黄球的有6种,则摸出的2个球都是黄球的概率是612=12.(1)用白球的个数除以总球的个数即可得出答案;(2)根据题意画树状图,然后根据树状图即可求得所有等可能的结果与摸出的2个球都是黄球的情况,然后根据概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.答案:40°解析:考查切线的性质,圆周角定理,比较简单,熟记圆周角定理是解题的关键.首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是⊙O的切线,可得OC⊥CD,继而求得答案.解:连接OC,∵圆O是Rt△ABC的外接圆,∴AB是直径,∵CD 是圆O 的切线,∴OC ⊥CD ,24.答案:解:(1)∵抛物线y =ax 2+bx +4交x 轴于A(−2,0), ∴0=4a −2b +4,∵对称轴是x =3,∴−b 2a =3,即6a +b =0,两关于a 、b 的方程联立解得a =−14,b =32,∴抛物线为y =−14x 2+32x +4;(2)当x =0时,y =4,∴点C 的坐标为(0,4),∴OC =4,OB =3.∵点P 的横坐标为t ,点P 在抛物线上,∴点P 的坐标为(t,−14t 2+32t +4),当0<x ≤3时,S △BCP =3(−14t 2+32t +4)−12×3×4−12t(−14t 2+32t +4−4)−12(3−t)(−14t 2+32t +4)=−38(t −173)2+28924, 即当t =173时,最大面积为28924; 当3<x ≤6时,S △BCP =t(−1t 2+3t +4)−1×3×4−1(t −3)(−1t 2+3t +4)−1t(−1t 2+3t +4−4) =−38(t −173)2+289, 即当t =173时,最大面积为28924;当6<x ≤8时,S △BCP =4t −12×3×4−12t(4+14t 2−32t −4)−12(t −3)(−14t 2+32t +4) =−98(t −209)2+509, 即当t =209时,最大面积为509. ∵28924>509,∴当△BCP 的面积取最大值时,t 的值为173;(3)如图1所示,∵四边形为平行四边形,且BC//MN ,∴BC =MN .①N 点在M 点下方,即M 向下平移4个单位,向右平移3个单位与N 重合. 设M 1(x,−14x 2+32x +4),则N 1(x +3,−14x 2+32x), ∵N 1在x 轴上,∴−14x 2+32x =0,解得x =0(M 与C 重合,舍去),或x =6, ∴x M =6,∴M 1(6,4);②M 点在N 点右下方,即N 向下平移4个单位,向右平移3个单位与M 重合. 设M(x,−14x 2+32x +4),则N(x −3,−14x 2+32x +8), ∵N 在x 轴上,∴−14x2+32x+8=0,解得x=3−√41,或x=3+√41,∴x M=3−√41,或3+√41,∴M2(3−√41,−4)或M3(3+√41,−4)综上所述,M的坐标为(6,4)或(3−√41,−4)或(3+√41,−4).解析:本题考查了一次函数、二次函数的图象与性质,函数的意义,平移及二元一次方程求解等知识,本题难度适中,但想做全答案并不容易,是道非常值得学生练习的题目.(1)解析式已存在,y=ax2+bx+4,我们只需要根据特点描述求出a,b即可.由对称轴为−b2a,又过点A(−2,0),所以函数表达式易得;(2)根据(1)求出OB,OC的长,然后得出点P的坐标为(t,−14t2+32t+4),再分三种情况分析:当0<x≤3时;当3<x≤6时;当6<x≤8时,分别求出三种情况下的最大面积,再比较即可;(3)四边形BCMN为平行四边形,则必定对边平行且相等.因为已知MN//BC,所以MN=BC,即M、N的位置如B、C位置关系,则可分2种情形,①N点在M点右下方,即M向下平移4个单位,向右平移3个单位与N重合.②M点在N右下方,即N向下平移4个单位,向右平移3个单位与M重合.因为M在抛物线,可设坐标为(x,−14x2+32x+4),易得N坐标,由N在x轴上,所以其纵坐标为0,则可得关于x的方程,进而求出x,求出M的坐标.25.答案:(1)证明:连接OD,∵PD是⊙O的切线,∴OD⊥PD,又∵BH⊥PD,∴∠PDO=∠PHB=90°,∴OD//BH,∴∠ODB=∠DBH,而OD=OB,∴∠ODB=∠OBD,∴∠OBD=∠DBH,∴BD平分∠ABH;(2)解:过点O 作OG ⊥BC ,垂足为G ,则BG =CG =3,在Rt △OBG 中,OG =√OB 2−BG 2=4,∵∠ODH =∠DHG =∠HGO =90°,∴四边形ODHG 为矩形,∴OD =GH =5,BH =BG +GH =8,∵OD//BH ,∴PO PB =OD BH ,即PO PO+5=58,解得PO =253,∴PA =PO −AO =253−5=103;(3)当E 为AB 弧的中点时,△ADE∽△FDB ,∵E 是AB⏜的中点, 即AE⏜=BE ⏜, ∴∠ADE =∠EDB ,又∵∠AED =∠ABD ,∴△ADE∽△FDB ,可求得AE ⏜=52π.解析:此题考查了平行线的判定与性质,角平分线的定义,勾股定理,矩形的判定与性质,切线的性质,圆周角定理及其推论,相似三角形的判定,掌握这些判定与性质及定理的内容是解决此类问题的关键.(1)先连接OD ,根据PD 是⊙O 的切线,得到OD ⊥PD ,结合BH ⊥PD ,得到∠PDO =∠PHB =90°,∴OD//BH ,∴∠ODB =∠DBH ,而OD =OB ,∴∠ODB =∠OBD ,∴∠OBD =∠DBH ,即可证明BD 平分∠ABH ;(2)过点O 作OG ⊥BC ,垂足为G ,先用勾股定理求出OG =√OB 2−BG 2=4,根据∠ODH =∠DHG =∠HGO =90°,得到四边形ODHG 为矩形,得到OD =GH =5,BH =BG +GH =8,根据OD//BH ,得到PO PB =OD BH ,即PO PO+5=58,可以求出PO =253,即可求出PA 的长;(3)当E 是AB⏜的中点时,得到AE ⏜=BE ⏜,则∠ADE =∠EDB ,又∵∠AED =∠ABD ,∴△ADE∽△FDB ,可求得AE ⏜=52π.。

2020年陕西省西安市长安区中考数学第一次模拟测试试卷 含解析

2020年陕西省西安市长安区中考数学第一次模拟测试试卷 含解析

2020年中考数学一模试卷一、选择题(共10个小题)1.下列四个实数中,是无理数的为()A.﹣2B.0C.D.2.如图所示的几何体的左视图是()A.B.C.D.3.如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于()A.30°B.40°C.60°D.70°4.如果分式的值为0,那么x的值为()A.﹣1B.1C.﹣1或1D.1或05.下列计算正确的是()A.a6+a6=2a12B.2﹣2÷25×28=32C.a2•(﹣a)7•a11=﹣a20D.(ab2)•(﹣2a2b)3=a3b36.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为()A.275×104B.2.75×104C.2.75×1012D.27.5×1011 7.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD =60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30°B.15°C.45°D.25°8.若不等式组无解,则m的取值范围为()A.m≤2B.m<2C.m≥2D.m>29.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)10.如图,BC是半圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE.如果∠A=70°,那么∠DOE的度数为()A.35°B.38°C.40°D.42°二、填空题(共4个小题)11.计算﹣的结果是.12.一副三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E =30°,∠A=45°,AC=12,CD的长.13.在光明中学组织的全效师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是.14.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A,B,C,D四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是.三、解答题(本题共10个小题,共78分,解答题应写出文字说明,证明过程或推演步骤)15.计算:1﹣(+)÷.16.解分式方程:.17.已知如图,△ABC中,AB=AC,用尺规在BC边上求作一点P,使△BPA∽△BAC(保留作图痕迹,不写作法).18.学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查,并将抽查得到的数据分成5组,下面是未完成的频数、频率分布表和频数分布扇形图:组别课前预习时间t/min频数(人数)频率10≤t<102210≤t<20a0.10320≤t<30160.32430≤t<40b c5t≥403请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为,表中的a=,b=,c=;(2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级共有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数.19.某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:第一次第二次A品牌运动服装数/件2030B品牌运动服装数/件3040累计采购款/元1020014400(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?20.在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.21.2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用“硬科技”打造了最具独特的风景线,2018“西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(≈1.73,≈1.41).22.如图,点A(,4),B(3,m)是直线AB与反比例函数y=(x>0)图象的两个交点,AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2.求S2﹣S1.23.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x 轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.24.问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.参考答案一、选择题(本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.下列四个实数中,是无理数的为()A.﹣2B.0C.D.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行判断即可.解:A、﹣2是有理数,故本选项错误;B、0是有理数,故本选项错误;C、是有理数,故本选项错误;D、是无理数,故本选项正确;故选:D.2.如图所示的几何体的左视图是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:从左向右看,得到的几何体的左视图是.故选:B.3.如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于()A.30°B.40°C.60°D.70°【分析】根据平行线的性质得出∠A=∠EFD,再根据三角形的外角性质求出∠C即可.解:AE与CD交于F点,∵AB∥CD,∠A=70°,∴∠EFD=70°,∵∠E=30°,∴∠C=40°,故选:B.4.如果分式的值为0,那么x的值为()A.﹣1B.1C.﹣1或1D.1或0【分析】根据分式的值为零的条件可以求出x的值.解:根据题意,得|x|﹣1=0且x+1≠0,解得,x=1.故选:B.5.下列计算正确的是()A.a6+a6=2a12B.2﹣2÷25×28=32C.a2•(﹣a)7•a11=﹣a20D.(ab2)•(﹣2a2b)3=a3b3【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.解:A、a6+a6=2a6,故此选项错误;B、2﹣2÷25×28=2,故此选项错误;C、a2•(﹣a)7•a11=﹣a20,故此选项正确;D、(ab2)•(﹣2a2b)3=4a7b5,故此选项错误;故选:C.6.我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为()A.275×104B.2.75×104C.2.75×1012D.27.5×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.解:将27500亿用科学记数法表示为:2.75×1012.故选:C.7.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD =60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30°B.15°C.45°D.25°【分析】根据直角三角形的性质得到BE=CE,求得∠CBE=60°,得到∠DBF=30°,根据等腰直角三角形的性质得到∠ABD=45°,求得∠ABF=75°,根据三角形的内角和即可得到结论.解:∵∠DBC=90°,E为DC中点,∴BE=CE=CD,∵∠BCD=60°,∴∠CBE=60°,∴∠DBF=30°,∵△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABF=75°,∴∠AFB=180°﹣90°﹣75°=15°,故选:B.8.若不等式组无解,则m的取值范围为()A.m≤2B.m<2C.m≥2D.m>2【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m的不等式,解之可得.解:解不等式<﹣1,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选:A.9.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选:A.10.如图,BC是半圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE.如果∠A=70°,那么∠DOE的度数为()A.35°B.38°C.40°D.42°【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠ACD=90°﹣∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可,解:连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°﹣∠A=20°,∴∠DOE=2∠ACD=40°,故选:C.二、填空题(本题共4个小题,每小题3分,共12分,只要求填写最后结果)11.计算﹣的结果是.【分析】先化简,再合并同类二次根式即可.解:﹣=4﹣3=.故答案为:.12.一副三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E =30°,∠A=45°,AC=12,CD的长12﹣4.【分析】过点B作BM⊥FD于点M,根据题意可求出BC的长度,然后在△EFD中可求出∠EDF=60°,进而可得出答案.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=12,∴BC=AC=12,∵AB∥CF,∴BM=BC×sin45°=12×=12,CM=BM=12,在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BM÷tan60°=4,∴CD=CM﹣MD=12﹣4,故答案为:12﹣4.13.在光明中学组织的全效师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是96.【分析】利用中位数的定义求解.解:共有25个数,最中间的数为第13数,是96,所以数据的中位数为96分.故答案为:96.14.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A,B,C,D四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是.【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率.解:如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果,∴小亮和大刚两人恰好分在同一组的概率是=,故答案为:.三、解答题(本题共10个小题,共78分,解答题应写出文字说明,证明过程或推演步骤)15.计算:1﹣(+)÷.【分析】根据分式的混合运算法则计算即可.解:原式=1﹣•=1﹣=﹣=.16.解分式方程:.【分析】分式方程变形后去分母得到整式方程,解之,经检验即可得到答案.解:原方程可整理得:﹣1=,去分母得:3﹣(x﹣3)=﹣1,去括号得:3﹣x+3=﹣1,移项得:﹣x=﹣1﹣3﹣3,合并同类项得:﹣x=﹣7,系数化为1得:x=7,经检验x=7是分式方程的解.17.已知如图,△ABC中,AB=AC,用尺规在BC边上求作一点P,使△BPA∽△BAC(保留作图痕迹,不写作法).【分析】作出AB的垂直平分线,可得BP=AP,则∠PBA=∠BAP,进而得出△BPA ∽△BAC.解:如图所示:点P即为所求,此时△BPA∽△BAC.18.学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查,并将抽查得到的数据分成5组,下面是未完成的频数、频率分布表和频数分布扇形图:组别课前预习时间t/min频数(人数)频率10≤t<102210≤t<20a0.10320≤t<30160.32430≤t<40b c5t≥403请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为50,表中的a=5,b=24,c=0.48;(2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级共有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数.【分析】(1)根据3组的频数和百分数,即可得到本次调查的样本容量,根据2组的百分比即可得到a的值,进而得到2组的人数,由本次调查的样本容量﹣其他小组的人数即可得到b,用b÷本次调查的样本容量得到c;(2)根据4组的人数占总人数的百分比乘上360°,即可得到扇形统计图中“4”区对应的圆心角度数;(3)根据每天课前预习时间不少于20min的学生人数所占的比例乘上该校九年级总人数,即可得到结果.解:(1)16÷0.32=50,a=50×0.1=5,b=50﹣2﹣5﹣16﹣3=24,c=24÷50=0.48;故答案为:50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数=360°×0.48=172.8°;(3)每天课前预习时间不少于20min的学生人数的频率=1﹣﹣0.10=0.86,∴1000×0.86=860,答:这些学生中每天课前预习时间不少于20min的学生人数是860人.19.某商场的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:第一次第二次A品牌运动服装数/件2030B品牌运动服装数/件3040累计采购款/元1020014400(1)问A,B两种品牌运动服的进货单价各是多少元?(2)由于B品牌运动服的销量明显好于A品牌,商家决定采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B品牌运动服?【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.解:(1)设A,B两种品牌运动服的进货单价各是x元和y元,根据题意可得:,解得:,答:A,B两种品牌运动服的进货单价各是240元和180元;(2)设购进A品牌运动服m件,购进B品牌运动服(m+5)件,则240m+180(m+5)≤21300,解得:m≤40,经检验,不等式的解符合题意,∴m+5≤×40+5=65,答:最多能购进65件B品牌运动服.20.在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.【分析】(1)根据菱形的性质得到AB=AD,AD∥BC,由平行线的性质得到∠BOA=∠DAE,等量代换得到∠BAF=∠ADE,求得∠ABF=∠DAE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AE=BF,DE=AF,根据线段的和差即可得到结论.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BPA=∠DAE,∵∠ABC=∠AED,∴∠BAF=∠ADE,∵∠ABF=∠BPF,∠BPA=∠DAE,∴∠ABF=∠DAE,∵AB=DA,∴△ABF≌△DAE(ASA);(2)∵△ABF≌△DAE,∴AE=BF,DE=AF,∵AF=AE+EF=BF+EF,∴DE=BF+EF.21.2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用“硬科技”打造了最具独特的风景线,2018“西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(≈1.73,≈1.41).【分析】作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE是矩形.解直角△CDF,得出CD=DF=185米,那么OD=OC+CD=208米,AE=OD=208米.再解直角△AEF,求出EF=AE•tan∠FAE=米,然后根据OA=DE=DF﹣EF 即可求解.解:如图,作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE是矩形.由题意,可知∠FAE=30°,∠FCD=45°,DF=185米.在直角△CDF中,∵∠D=90°,∠FCD=45°,∴CD=DF=185米,∴OD=OC+CD=208米,∴AE=OD=208米.在直角△AEF中,∵∠AEF=90°,∠FAE=30°,∴EF=AE•tan∠FAE=208×=(米),∴DE=DF﹣EF=185﹣≈185﹣119.95≈65.1(米),∴OA=DE≈65.1米.故大雁塔的大体高度是65.1米.22.如图,点A(,4),B(3,m)是直线AB与反比例函数y=(x>0)图象的两个交点,AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2.求S2﹣S1.【分析】(1)先将点A(,4)代入反比例函数解析式中求出n的值,进而得到点B 的坐标,已知点A、点B坐标,利用待定系数法即可求出直线AB的表达式;(2)利用三角形的面积公式以及割补法分别求出S1,S2的值,即可求出S2﹣S1.解:(1)由点A(,4),B(3,m)在反比例函数y=(x>0)图象上∴4=∴n=6∴反比例函数的解析式为y=(x>0)将点B(3,m)代入y=(x>0)得m=2∴B(3,2)设直线AB的表达式为y=kx+b∴解得∴直线AB的表达式为y=﹣;(2)由点A,B坐标得AC=4,点B到AC的距离为3﹣=∴S1=×4×=3设AB与y轴的交点为E,可得E(0,6),如图:∴DE=6﹣1=5由点A(,4),B(3,2)知点A,B到DE的距离分别为,3∴S2=S△BDE﹣S△AED=×5×3﹣×5×=∴S2﹣S1=﹣3=.23.如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x 轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.【分析】(1)将点A、B、C的坐标代入二次函数表达式,即可求解;(2)只有当∠PEA=∠AOC时,PEA△∽AOC,可得:PE=4AE,设点P坐标(4k﹣2,k),即可求解;(3)利用Rt△PFD∽Rt△BOC得:=PD2,再求出PD的最大值,即可求解.解:(1)将点A、B、C的坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=﹣x2+2x+8;(2)∵点A(﹣2,0)、C(0,8),∴OA=2,OC=8,∵l⊥x轴,∴∠PEA=∠AOC=90°,∵∠PAE≠∠CAO,∴只有当∠PEA=∠AOC时,△PEA∽△AOC,此时,即:,∴AE=4PE,设点P的纵坐标为k,则PE=k,AE=4k,∴OE=4k﹣2,将点P坐标(4k﹣2,k)代入二次函数表达式并解得:k=0或(舍去0),则点P(,);(3)在Rt△PFD中,∠PFD=∠COB=90°,∵l∥y轴,∴∠PDF=∠OCB,∴Rt△PFD∽Rt△OCB,∴,∴S△PDF=•S△BOC,而S△BOC=OB•OC==16,BC==4,∴S△PDF=•S△BOC=PD2,即当PD取得最大值时,S△PDF最大,将B、C坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣2x+8,设点P(m,﹣m2+2m+8),则点D(m,﹣2m+8),则PD=﹣m2+2m+8+2m﹣8=﹣(m﹣2)2+4,当m=2时,PD的最大值为4,故当PD=4时,∴S△PDF=PD2=.24.问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为BE+DF=EF;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.【分析】(1)延长CD至G,使得DG=BE,依据△ABE≌△ADG,可得AE=AG,∠BAE=∠DAG,再判定△AEF≌△AEG,即可得到EF=GF=DG+DF=BE+DF;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.依据△DBE是等边三角形,可得DE=BD,再根据在△DCE中,DE<DC+CE=4+2=6,即可得到当D、C、E三点共线时,DE存在最大值,且最大值为6,即可得出BD的最大值为6;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,依据△ABC ≌△DBE,可得DE=AC,依据在等边三角形BCE中,EF⊥BC,即可得到EF=BF =×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,则DF=BC=×4=2,根据AC=DE≤DF+EF=2+2,即可得到AC的最大值为2+2.解:(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.。

2020年陕西省西安市中考数学模拟试卷1解析版

2020年陕西省西安市中考数学模拟试卷1解析版

2020年陕西省西安市中考数学模拟试卷1解析版一.选择题(共12小题,满分36分,每小题3分)1.下列运算正确的是()A.1﹣2=1B.3×(﹣2)=6C.(a4)2=a6D.3×(2y﹣1)=6y﹣32.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.下列调查方式,你认为最合适的是()A.了解北京市每天的流动人口数,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解北京市居民”一带一路”期间的出行方式,采用全面调查方式D.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式5.将点A(2,3)向左平移2个单位长度得到点A',点A'关于x轴的对称点是A'',则点A''的坐标为()A.(0,﹣3)B.(4,﹣3)C.(4,3)D.(0,3)6.使函数有意义的自变量x的取值范围为()A.x≠0B.x≥﹣1C.x≥﹣1且x≠0D.x>﹣1且x≠0 7.如图,在△ABC中,点D,E分别为AB,AC边上的点,且DE∥BC,BE相较于点O,连接AO并延长交DE于点G,交BC边于点F,则下列结论中一定正确的是()A.=B.=C.=D.=8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.9.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56B.64C.72D.9010.如图∠A是⊙O的圆周角,∠A=50°,则∠OBC的度数为()A.30°B.40°C.50°D.60°11.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米12.已知y=bx﹣c与抛物线y=ax2+bx+c在同一直角坐标系中的图象可能是()A.B.C.D.二.填空题(共7小题,满分21分,每小题3分)13.已知一组数据:12,10,8,15,6,8.则这组数据的中位数是.14.计算:()﹣2+(π﹣3)0﹣=.15.如图,AB是⊙O的直径,点C、D在圆上,∠D=65°,则∠BAC等于度.16.初2018级某班文娱委员,对该班“肆月”学习小组同学购买不同单价的毕业照(单位:元)情况进行了统计,绘制了如图所示的条形统计图,则所购毕业照平均每张的单价是元.17.如图,已知抛物线与反比例函数的图象相交于B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线的顶点,P点是x轴上一动点,当P A+PB最小时,P点的坐标为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.19.求21+22+23+…+2n的值,解题过程如下:解:设:S=21+22+23+…+2n①两边同乘以2得:2S=22+23+24+…+2n+1②由②﹣①得:S=2n+1﹣2所以21+22+23+…+2n=2n+1﹣2参照上面解法,计算:1+31+32+33+…+3n﹣1=.三.解答题(共9小题,满分63分)20.(6分)(1)计算:(﹣2)2﹣﹣2cos30°+(﹣3)0+|﹣1|(2)化简:+÷21.(5分)关于x、y的方程组的解满足x大于0,y小于4.求a的取值范围.22.(6分)为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.23.(6分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:≈1.414,≈1.732,≈2.449)24.(6分)已知:如图,点A,F,E,C在同一直线上,AB∥DC,AB=CD,∠B=∠D.(1)求证:△ABE≌△CDF;(2)若点E,G分别为线段FC,FD的中点,连接EG,且EG=5,求AB的长.25.(7分)如图,过⊙O外一点P作⊙O的切线P A切⊙O于点A,连接PO并延长,与⊙O 交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.(1)求证:CM2=MN•MA;(2)若∠P=30°,PC=2,求CM的长.26.(8分)如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣x>的解集;(3)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.27.(9分)某文具店去年8月底购进了一批文具1160件,预计在9月份进行试销.购进价格为每件10元.若售价为12元/件,则可全部售出.若每涨价0.1元.销售量就减少2件.(1)求该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少m%.结果10月份利润达到3388元,求m的值(m>10).28.(10分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:A、1﹣2=﹣1,错误;B、3×(﹣2)=﹣6,错误;C、(a4)2=a8,错误;D、3×(2y﹣1)=6y﹣3,正确;故选:D.2.【解答】解:4 400 000 000=4.4×109,故选:B.3.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选:A.4.【解答】解:A、了解北京市每天的流动人口数,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、了解北京市居民”一带一路”期间的出行方式,抽样调查方式,故错误;D、日光灯管厂要检测一批灯管的使用寿命,采用抽样调查方式,故错误;故选:A.5.【解答】解:∵点A(2,3)沿向左平移2个单位长度得到点A′,∴A′(0,3),∴点A′关于x轴对称的点的坐标是:(0,﹣3).故选:A.6.【解答】解:由题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:C.7.【解答】解:∵DE∥BC,∴△ADE∽△ABC,△DEO∽△CBO.∴=,=.∴=.故选:C.8.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OB=BD=3,OC=AC=4,在Rt△BOC中,由勾股定理得,BC==5,∵S△OBC=×OB×OC=×BC×OF,∴OF=,∴EF=.故答案为.9.【解答】解:∵第一个图形:三角形每条边上有3盆花,共计32﹣3盆花,第二个图形:正四边形每条边上有4盆花,共计42﹣4盆花,第三个图形:正五边形每条边上有5盆花,共计52﹣5盆花,…第n个图形:正n+2边形每条边上有n盆花,共计(n+2)2﹣(n+2)盆花,则第8个图形中花盆的个数为(8+2)2﹣(8+2)=90盆.故选:D.10.【解答】解:∵=,∴∠BOC=2∠A,∵∠A=50°,∴∠BOC=100°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣100°)=40°,故选:B.11.【解答】解:作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选:A.12.【解答】解:A、∵二次函数图象开口向上,对称轴在y轴右侧,交y轴与负半轴,∴a>0,b<0,c<0,∴一次函数图象应该过第一、二、四象限,A错误;B、∵二次函数图象开口向下,对称轴在y轴右侧,交原点,∴a<0,b>0,c=0,∴一次函数图象应该过第一、三象限,B错误;C、∵二次函数图象开口向上,对称轴在y轴左侧,交y轴与负半轴,∴a>0,b>0,c<0,∴一次函数图象应该过第一、二、三象限,C正确;D、∵二次函数图象开口向下,对称轴在y轴右侧,交y轴正半轴,∴a<0,b>0,c>0,∴一次函数图象应该过第一、三、四象限,D错误.故选:C.二.填空题(共7小题,满分21分,每小题3分)13.【解答】解:将数据从小到大重新排列为:6、8、8、10、12、15,所以这组数据的中位数为=9,故答案为:9.14.【解答】解:原式=4+1﹣3=2,故答案为:215.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠D=65°,∠B与∠D是对的圆周角,∴∠D=∠B=65°,∴∠BAC=90°﹣∠B=25°.故答案为:25.16.【解答】解:所购毕业照平均每张的单价是=18(元),故答案为:18.17.【解答】解:如图,作点A关于x轴的对称点A′,连接A′B,则A′B与x轴的交点即为所求,∵抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),∴点B(3,3),∴,解得:∴y=x2﹣4x+6=(x﹣2)2+2,∴点A的坐标为(2,2),∴点A′的坐标为(2,﹣2),设过点A′(2,﹣2)和点B(3,3)的直线解析式为y=mx+n,解得:,∴直线A′B的函数解析式为y=5x﹣12,令y=0,则0=5x﹣12得x=,故答案为:(,0).18.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∵∠EAD=90°,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BFE,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.19.【解答】解:设S=1+31+32+33+…+3n﹣1①∴3S=3(1+31+32+33+…+3n﹣1)=3+32+33+…+3n②②﹣①得2S=3n﹣1∴S=1+31+32+33+…+3n﹣1=,故答案为:.三.解答题(共9小题,满分63分)20.【解答】解:(1)原式=4﹣2﹣2×+1+﹣1=2;(2)原式=+•=+1=.21.【解答】解:解方程组得:,∵x大于0,y小于4,∴,解得:﹣2<a<1,故a的取值范围为:﹣2<a<1.22.【解答】(1)近五年获奖总人数=7÷35%=20(人)该社团2013年获奖占近五年获奖总人数的百分比==5%,所以该社团2017年获奖占近五年获奖总人数的百分比=25%﹣5%=20%,所以该社团2017年获奖总人数=20×20%=4,补全折线统计图为:故答案为20%;(2)画树状图为:(用A表示初一学生、用B表示初二学生,用C、C表示初三学生)共有12种等可能的结果数,其中所抽取两名学生恰好都来自初三年级的结果数为2,所以所抽取两名学生恰好都来自初三年级的概率==.23.【解答】解答:在Rt△ABC中,AC=AB•sin45°=4×=2,∵∠ABC=45°,∴AC=BC=2,在Rt△ADC中,AD=2AC=4,AD﹣AB=4﹣4≈1.66.答:改善后滑板会加长1.66米.24.【解答】证明:(1)∵AB∥DC,∴∠A=∠C,在△ABE与△CDF中,∴△ABE≌△CDF(ASA);(2)∵点E,G分别为线段FC,FD的中点,∴ED=CD,∵EG=5,∴CD=10,∵△ABE≌△CDF,∴AB=CD=10.25.【解答】解:(1)∵⊙O中,M点是半圆CD的中点,∴=,∴∠CAM=∠DCM,又∵∠CMA=∠NMC,∴△AMC∽△CMN,∴=,即CM2=MN•MA;(2)连接OA、DM,∵P A是⊙O的切线,∴∠P AO=90°,又∵∠P=30°,∴OA=PO=(PC+CO),设⊙O的半径为r,∵PC=2,∴r=(2+r),解得:r=2,又∵CD是直径,∴∠CMD=90°,∵CM=DM,∴△CMD是等腰直角三角形,∴在Rt△CMD中,由勾股定理得CM2+DM2=CD2,即2CM2=(2r)2=16,则CM2=8,∴CM=2.26.【解答】解:(1)∵直线l1:y=﹣x经过点A,A点的纵坐标是2,∴当y=2时,x=﹣4,∴A(﹣4,2),∵反比例函数y=的图象经过点A,∴k=﹣4×2=﹣8,∴反比例函数的表达式为y=﹣;(2)∵直线l1:y=﹣x与反比例函数y=的图象交于A,B两点,∴B(4,﹣2),∴不等式﹣x>的解集为x<﹣4或0<x<4;(3)如图,设平移后的直线l2与x轴交于点D,连接AD,BD,∵CD∥AB,∴△ABC的面积与△ABD的面积相等,∵△ABC的面积为30,∴S△AOD+S△BOD=30,即OD(|y A|+|y B|)=30,∴×OD×4=30,∴OD=15,∴D(15,0),设平移后的直线l2的函数表达式为y=﹣x+b,把D(15,0)代入,可得0=﹣×15+b,解得b=,∴平移后的直线l2的函数表达式为y=﹣x+.27.【解答】解:(1)设售价应为x元,依题意有1160﹣≥1100,解得x≤15.答:售价应不高于15元.(2)10月份的进价:10(1+20%)=12(元),由题意得:1100(1+m%)[15(1﹣m%)﹣12]=3388,设m%=t,化简得50t2﹣25t+2=0,解得:t1=,t2=,所以m1=40,m2=10,因为m>10,所以m=40.答:m的值为40.28.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.。

2020届初三中考数学一诊联考试卷含答案解析 (陕西)

2020届初三中考数学一诊联考试卷含答案解析 (陕西)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.下列运算正确的是()A.2a2+2a2=4a2B.(a2)3=a5C.a2•a3=a6D.a6÷a3=a22.下列立体图形中,主视图是矩形的是()A.B.C.D.3.今年清明小长假期问,长春净月某景区接待游客约为51700人次,数字51700用科学记数法表示为()A.51.7×103B.5.17×104C.5.17×105D.0.517×1054.如图,在一张长方形纸条上画一条截线AB ,将纸条沿截线AB 折叠,则△ABC 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形5.如图,△ABC 为直角三角形,∠C=90°,BC=2cm ,∠A=30°,四边形DEFG为矩形,cm , EF=6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt△ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt△ABC 与矩形DEFG 的重叠部分的面积为ycm 2,运动时间xs .能反映ycm 2与xs 之间函数关系的大致图象是( )A .B .C .D .6.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为( )A .48210⨯B .58210⨯C .58.210⨯D .68.210⨯7.如图,AB ⊥CD ,且AB =CD ,E 、F 是AD 上两点,CE ⊥AD ,BF⊥AD.若CE=8,BF=6,AD=10,则EF的长为()A.4B.72C.3D.528.如图的立体图形,从左面看可能是()A.B.C.D.9.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.10.下列的几何图形中,一定是轴对称图形的有()A.5个B.4个C.3个D.2个二、填空题(共4题,每题4分,共16分)11____________.12.方程32x2-﹣1xx-=3的解是_____.13.如图,矩形ABCD中,AB=5,BC=7,点E是对角线AC上的动点EH⊥AD,垂足为H,以EH为边作正方形EFGH,连结AF,则∠AFE的正弦值为_____.14.因式分解:m2﹣m= ______.三、解答题(共6题,总分54分)15.已知二次函数y=﹣x2﹣2x+3.(1)把函数关系式配成顶点式并求出图象的顶点坐标和对称轴.(2)若图象与x轴交点为A.B,与y轴交点为C,求A、B、C三点的坐标;(3)在图中画出图象.并求出△ABC面积.16.为了更好的落实阳光体育运动,学校需要购买一批足球和篮球,已知一个足球比一个篮球的进价高30元,买一个足球和两个篮球一共需要300元.(1)求足球和篮球的单价;(2)学校决定购买足球和篮球共100个,为了加大校园足球活动开展力度,现要求购买的足球不少于60个,且用于购买这批足球和篮球的资金最多为11000元.试设计一个方案,使得用来购买的资金最少,并求出最小资金数.17.图①、图②、图③均为方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.(探究)在图①中,点A、B、C、D均为格点.证明:BD平分∠ABC.(应用)在图②、图③中,点M、O、N均为格点.(1)利用(探究)的方法,在图②、图③中分别找到一个格点P,使OP平分∠MON.要求:图②、图③中所画的图形不相同,保留画图痕迹.(2)cos ∠MOP 的值为 .18.为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A 、B 两贫困村的计划,现决定从某地运送152箱鱼苗到A 、B 两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A 、B 两村的运费如表:(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A 村,其余货车前往B 村,设前往A 村的大货车为x 辆,前往A 、B 两村总费用为y 元,试求出y 与x 的函数解析式. (3)在(2)的条件下,若运往A 村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.19.先化简后求值:当1x =时,求代数式221121111x x x x x -+-⋅+-+的值. 20.某批足球的质量检测结果如下:。

2020年陕西省西安市长安区中考数学一模试卷 (含答案解析)

2020年陕西省西安市长安区中考数学一模试卷 (含答案解析)

2020年陕西省西安市长安区中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1. 下列各数:√9、227、π、√−273,其中无理数是( )A. √9B. 227C. πD. √−2732. 如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是( )A.B.C.D.3. 如图,DF 是∠BDC 的平分线,AB//CD ,∠ABD =118°,则∠1的度数为( )A. 31°B. 26°C. 36°D. 40°4. 如图,已知四边形ABCD 是菱形,点B(0,6),点C(−8,0),E 是AB 的中点,则直线DE 的解析式为( )A. y =103x −6 B. y =103x +6C. y =94x −6 D. y =94x +65. 下列计算正确的是( )A. 2a 3+a 2=3a 5B. (3a)2=6a 2C. (a +b)2=a 2+b 2D. 2a 2⋅a 3=2a 56. 如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,CD =6,点E 是AB 边的中点,点M 是线段OB 上的一动点,点N 在线段OA 上,且∠MEN =90°,则cos∠MNE 为( )A. 35B. 45C. √55D. √1057. 将直线y =−x +1向下平移3个单位,则得到的直线的表达式为( )A. y =−x +4B. y =−x −2C. y =x +4D.y =x −28. 如图,在矩形ABCD 中,BC =2,AE ⊥BD ,垂足为E ,∠BAE =30°,则tan∠DEC 的值是( )A. 1B. 12C. √32D. √339.如图,弦AB⊥OC,垂足为点C,连接OA,若OC=2,AB=4,则OA等于()A. 2√2B. 2√3C. 3√2D. 2√510.若抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. (−3,−6)B. (−3,0)C. (−3,−5)D. (−3,−1)二、填空题(本大题共4小题,共12.0分)11.不等式3x+7≥0的负整数解是______ .12.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为______.13.如图,在平面直角坐标系中,点A是反比例函数y=−12x(x<0)的图象上的一点,AC⊥y轴,垂足为C,点B在x轴的负半轴上,则△ABC的面积为______.14.如图,△ABC中,D在AC边上,BD=CD,E在BC边上,AE=AB,过点E作EF⊥BC,交AC于F.若AD=5,CE=8,则EF的长为______.三、解答题(本大题共11小题,共78.0分)15.计算:(−14)−1−|1−√3|+3tan30°+(2018−π)0.16.解分式方程:2x−2+3x2−x=117.如图,点P是⊙O外一点,请你用尺规画出一条直线PA,使得其与⊙O相切于点A,(不写作法,保留作图痕迹)18.如图,AD、BC交于点O,AC=BD,BC=AD.求证:∠C=∠D.19.某校对九年级全体学生进行了一次数学学业水平模拟测试,成绩评定分为A,B,C,D四个等级(A、B、C、D分别代表优秀、良好、合格、不合格).该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下两幅不完整的统计图.请你根据统计图提供的信息解答下列问题;(1)本次调查中,一共抽取了______名学生的成绩;(2)请将条形统计图补充完整,写出等级C的百分比______%.(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是______分,众数是______分.(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.20.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛B位于它的北偏东30°方向,且小岛与航母相距80海里,航母再航行一段时间后到达C处,测得小岛B位于它的西北方向,求此时航母与小岛的距离BC的长.21.西安市阳光酸奶厂,每天生产A,B两种酸奶共800箱.A,B两种酸奶的成本和利润如下表,设每天生产A种酸奶x箱,两种酸奶每天共获利y元.(1)请写出y关于x的函数关系式;(2)如果该酸奶厂每天至少投入成本48000元,那么每天最多获利多少元?22.A、B、C三人玩传沙包游戏,游戏规则是:第一次传沙包是由A将沙包随机地传给B,C两人中的某一人,以后的每一次传沙包都是由上次的接沙包者将沙包随机地传给其他两人中的某一人.(1)求两次传沙包后,沙包恰在B手中的概率;(2)求三次传沙包后,沙包恰在A手中的概率.23.如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若AB=4,AD=1,求线段CE的长.24.如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(−2,0)、B(4,0)、C(0,−8),与直线y=x−4交于B,D两点(1)求抛物线的解析式并直接写出D点的坐标;(2)点P为直线BD下方抛物线上的一个动点,试求出△BDP面积的最大值及此时点P的坐标;(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,直接写出点Q的坐标.25.直线EF分别与平行四边形ABCD边AB、CD交于点E、F,将图形沿直线EF对折,点A、D分別落在点A′、D′处.(1)如图1,当点A′与点C重合时,连接AF.求证:四边形AECF是菱形;(2)若∠A=60°,AD=2,AB=4,①如图2,当点A′与BC边的中点G重合时,求AE的长;②如图3,当点A′落在BC边上任意点时,设点P为直线EF上的动点,请直接写出PC+PA′的最小值____.-------- 答案与解析 --------1.答案:C解析: 【分析】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式. 分别根据无理数、有理数的定义即可判定选择项. 【解答】解:√9、227、√−273是有理数, π是无理数, 故选C .2.答案:D解析:解:从几何体的上面看共有3列小正方形,右边有2个,左边有2个,中间上面有1个, 故选:D .找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.答案:A解析:解:∵AB//CD ,∠ABD =118°, ∴∠BDC =62°, ∵DF 是∠BDC 的平分线, ∴∠FDC =31°, ∵AB//CD ,∴∠1=∠FDC =31°, 故选:A .根据平行线的性质得出∠BDC ,进而利用角平分线的定义得出∠ADC ,利用平行线的性质解答即可. 此题考查平行线的性质,关键是根据平行线的性质得出∠BDC .4.答案:C解析:【分析】本题主要考查待定系数法求一次函数的解析式,根据已知条件确定点D和E的坐标,再用待定系数法求解析式是解题的关键.【解答】解:由题意可先求得,D的坐标为(0,−6),E点的坐标为(4,3),,b=−6,设直线的解析式为y=kx+b,把D,E,的值代入可得k=94x−6.直线DE的解析式为y=94故选C.5.答案:D解析:解:A、2a3与a2不是同类项,不能合并,故A选项错误;B、(3a)2=9a2,故B选项错误;C、(a+b)2=a2+2ab+b2,故C选项错误;D、2a2⋅a3=2a5,故D选项正确,故选:D.根据合并同类项法则、积的乘方、完全平方公式、单项式乘单项式判断即可.本题考查了合并同类项法则、积的乘方、完全平方公式、单项式乘单项式,熟练掌握法则是解题的关键.6.答案:A解析:解:连接OE,∵四边形ABCD是菱形∴AC⊥BD,AO=CO=4,BO=DO=3,∴AB=√AO2+BO2=5∵点E是AB中点,∠AOB=90°∴OE=BE∴∠BOE=∠EBO∵∠MEN=∠AOB=90°∴点M,点O,点N,点E四点共圆∴∠EOB=∠MNE∴∠MNE=∠EBO∴cos∠MNE=cos∠EBO=BOAB=35故选:A.由菱形的性质可得AC⊥BD,AO=CO=4,BO=DO=3,由勾股定理可求AB=5,由直角三角形的性质可得∠BOE=∠EBO,通过证明点M,点O,点N,点E四点共圆,可得∠EOB=∠MNE=∠EBO,即可求解.本题考查了菱形的性质,等腰三角形的性质,勾股定理,求∠EOB=∠MNE是本题的关键.7.答案:B解析:【分析】本题考查一次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.根据“上加下减”的平移规律解答即可.【解答】解:由题意得:平移后的解析式为:y=−x+1−3=−x−2,即所得直线的表达式是y=−x−2.故选B.8.答案:C解析:【分析】过点C作CF⊥BD与点F,因为∠BAE=30°,所以∠DBC=30°,由BC=2,求得CF=1,BF=√3,易证△AEB≌△CFD(AAS),所以AE=CF=1,因为∠BAE=∠DBC=30°,所以BE=√33AE=√33,于是EF=BF−BE=√3−√33=23√3,在Rt△CFE中,tan∠DEC=CFEF=2√33=√32.本题考查了矩形的性质,熟练掌握含30°角直角三角形的性质是解题的关键.【解答】解:过点C作CF⊥BD与点F.∵∠BAE=30°,∴∠DBC=30°,∵BC=2,∴CF=1,BF=√3,易证△AEB≌△CFD(AAS)∴AE=CF=1,∵∠BAE=∠DBC=30°,∴BE=√33AE=√33,∴EF=BF−BE=√3−√33=23√3,在Rt△CFE中,tan∠DEC=CFEF =2√33=√32,故选:C.9.答案:A解析:解:∵弦AB⊥OC,AB=4,OC=2,∴AC=12AB=2,∴OA=√OC2+AC2=√22+22=2√2.故选:A.先根据垂径定理得出AC的长,再根据勾股定理即可得出结论.本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.10.答案:B解析:解:∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x−2)=x2−2x=(x−1)2−1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x−1+2)2−1−3=(x+1)2−4.当x=−3时,y=(x+1)2−4=0,∴得到的新抛物线过点(−3,0).故选:B.根据定弦抛物线的定义结合其对称轴,即可找出该抛物线的解析式,利用平移的“左加右减,上加下减”找出平移后新抛物线的解析式,再利用二次函数图象上点的坐标特征即可找出结论.本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数图象与几何变换以及二次函数的性质,根据定弦抛物线的定义结合其对称轴,求出原抛物线的解析式是解题的关键.11.答案:−2,−1解析:解:3x+7≥0,3x≥−7,解得:x≥−73不等式的解集是x≥−73,故不等式3x+7≥0的负整数解为−2,−1.故答案为:−2,−1.首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的负整数即可.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.12.答案:72°解析:解:∵五边形ABCDE是正五边形,∴∠EAB=∠ABC=(5−2)×180°5=108°,∵BA=BC,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°,故答案为:72°.根据五边形的内角和公式求出∠EAB,根据等腰三角形的性质,三角形外角的性质计算即可.本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键.13.答案:6解析:解:∵AC⊥y轴于点C,点B在x轴的负半轴上,∴AC//BO,∴△ABC的面积=12|k|=12|−12|=6,故答案为:6.根据反比例函数中k的几何意义,即可确定△ABC的面积=12|k|=6.本题主要考查了反比例函数系数k的几何意义.14.答案:6解析:解:在AC上截取AG=BD,连接EG,作GM⊥BC于M.∵AE=AB,BD=CD,∴∠C=∠DBC,∠ABE=∠ABE又∵∠AEB=∠C+∠EAC,∠ABE=∠CBD+∠DBA∴∠ABD=∠EAC,在△ABD和△EAG中,{AB=AE∠BAE=∠EAG BD=AG,∴△ABD≌△EAG所以AD=EG=5,∵AG=BD=DC,∴AD=CG=GE=5,∵GM⊥EC,∴EM=CM=4,在Rt△CMG中,GM=√52−42=3,∵EF⊥BC,GM⊥BC,∴MG//EF,∵EM=MC,∴FG=GC,∴GM=12EF,∴EF=6.故答案为6.在AC上截取AG=BD,连接EG,作GM⊥BC于M.只要证明△ABD≌△EAG,推出AD=EG=5,由AG=BD=DC,推出AD=CG=GE=5,由GM⊥EC,推出EM=CM=4,在Rt△CMG中,GM=√52−42=3,由MG//EF,EM=MC,推出FG=GC,可得GM=12EF,由此即可解决问题.本题考查全等三角形的判定和性质、勾股定理、等腰三角形的性质、三角形的中位线定理,平行线等分线段定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,本题的突破点是证明GM是△EFC是中位线,属于中考填空题中的压轴题.15.答案:解:原式=−4−√3+1+3×√33+1=−2.解析:直接利用负指数幂的性质以及特殊角的三角函数值和零指数幂的性质、绝对值的性质分别化简各数得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16.答案:解:化为整式方程得:2−3x=x−2,解得:x=1,经检验x=1是原方程的解,所以原方程的解是x=1.解析:分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.答案:解:连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K 交⊙O于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.解析:连接OP,作线段OP的垂直平分线MN交OP于点K,以点K为圆心OK为半径作⊙K交⊙O 于点A,A′,作直线PA,PA′,直线PA,PA′即为所求.本题考查作图−复杂作图,切线的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.答案:证明:在△ABC和△BAD中,∵AC=BD,BC=AD,AB=BA,∴△ABC≌△BAD(SSS),∴∠C=∠D.解析:此题主要考查全等三角形的判定与性质,属于基础题.根据AC=BD,BC=AD,AB=BA,即可判定△ABC≌△BAD,即可得到∠C=∠D.19.答案:(1)50;(2)30;补全图形如下:(3)55,55;(4)500×20%=100,答:估计在这次测试中成绩达到优秀的人数为100人.解析:【分析】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据等级B中男女人数之和除以所占的百分比即可得到调查的总学生数;(2)根据总学生数乘以A占的百分比求出等级A中男女的学生总数,进而求出等级A男生的人数,总人数减去其余各组人数求出等级C的男女之和人数,进而求出等级C的女生人数,补全条形统计图即可;(3)将等级D的五人成绩按照从小到大的顺序排列,找出最中间的数字即为中位数,找出出现次数最多的数字为众数;(4)用500乘以等级A所占的百分比,即可得到结果.【解答】解:(1)本次调查抽取的学生人数为(12+8)÷40%=50(人),故答案为:50;(2)∵A等级人数为50×20%=10(人),则A等级男生有10−6=4(人),C等级女生有50−(10+12+8+8+3+2)=7(人),补充条形图见答案,C等级的百分比为8+750×100%=30%,故答案为:30;(3)这5个数据重新排列为48、51、55、55、57,则这5个数据的中位数是55,众数为55,故答案为:55,55;(4)见答案.20.答案:解:过点B作BD⊥AC于点D,由题意,得:∠BAD=60°,∠BCD=45°,AB=80,在Rt△ADB中,∠BAD=60°,∴AD=12AB=40,BD=√32AB=40√3,在Rt△BCD中,∠BCD=45°,∴BD=CD=40√3,∴BC=√2BD=40√6,答:BC的距离是40√6海里.解析:过点B作BD⊥AC于点D,根据题意得到∠BAD=60°,∠BCD=45°,AC=80,解直角三角形即可得到结论.本题考查了解直角三角形的应用−方向角问题,作出辅助线构造直角三角形是解题的关键.21.答案:解:(1)依题意,得y=30x+20(800−x),即y=10x+16000.(2)依题意,得知:60x+70(800−x)≥48000,解得x≤800,由(1)知y=10x+16000,因为10>0,所以y随x的增大而增大,故当x=800时,y取最大值.y最大=10×800+16000=24000(元),答:每天最多获利24000元.解析:本题主要考查一元一次不等式及一次函数的应用.根据题意,列出利润的函数关系式及成本的关系式,解题的关键是理解题意,根据题意列得一次函数解析式.(1)根据题意,即可得y关于x的函数关系式为:y=30x+20(800−x),然后化简即可求得答案;(2)先列不等式求出A类酸奶数,然后根据(1)中的函数关系式的性质求解..22.答案:解:(1)画树状图如图:共有4种等可能的结果,两次传沙包后,沙包恰在B手中的结果只有1种,∴两次传沙包后,沙包恰在B手中的概率为14;(2)画树状图如图:共有8种等可能的结果,三次传沙包后,沙包恰在A手中的结果有2种,∴三次传沙包后,沙包恰在A手中的概率为28=14.解析:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传沙包后,沙包恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传沙包后,沙包恰在A手中的情况,再利用概率公式即可求得答案.23.答案:(1)证明:连接OE,OC;如图所示:∵DE与⊙O相切于点E∴∠OEC=90°,在△OBC和△OEC中,{OB=OE CB=CE OC=OC ,∴△OBC≌△OEC(SSS),∴∠OBC=∠OEC=90°,∴BC为⊙O的切线;(2)过点D作DF⊥BC于F;如图所示:设CE=x∵CE,CB为⊙O切线,∴CB=CE=x,∵DE,DA为⊙O切线,∴DE=DA=1,∴DC=x+1,∵∠DAB=∠ABC=∠DFB=90°∴四边形ADFB为矩形,∴DF=AB=4BF=AD=1,∴FC=x−1,Rt△CDF中,根据勾股定理得:(x+1)2−(x−1)2=16,解得:x=4,∴CE=4.解析:本题考查了全等三角形的判定与性质以及切线的判定与性质;根据切线的性质利用勾股定理计算是解决问题的关键.(1)由切线得出∠OEC=90°,证明△OBC≌△OEC,得出∠OBC=∠OEC=90°,证出BC为⊙O的切线;(2)作辅助线求出DF=AB=4,BF=AD=1,设CE=x,Rt△CDF中,根据勾股定理得:(x+1)2−(x −1)2=16,得出x =4即可.24.答案:解:(1)∵抛物线y =ax 2+bx +c(a ≠0)与x 轴的交点坐标是A(−2,0)、B(4,0), ∴设该抛物线解析式为y =a(x +2)(x −4),将点C(0,−8)代入函数解析式代入,得a(0+2)(0−4)=−8,解得a =1,∴该抛物线的解析式为:y =(x +2)(x −4)或y =x 2−2x −8.联立方程组:{y =x 2−2x −8y =x −4, 解得{x =4y =0(舍去)或{x =−1y =−5, 即点D 的坐标是(−1,−5);(2)如图所示:过点P 作PE//y 轴,交直线AB 与点E ,设P(x,x 2−2x −8),则E(x,x −4).∴PE =x −4−(x 2−2x −8)=−x 2+3x +4.∴S △BDP =S △DPE +S △BPE =12PE ⋅(x p −x D )+12PE ⋅(x B −x E )=12PE ⋅(x B −x D )=52(−x 2+3x +4)=−52(x −32)2+1258. ∴当x =32时,△BDP 的面积的最大值为1258.∴P(32,−354).(3)设直线y =x −4与y 轴相交于点K ,则K(0,−4),设G 点坐标为(x,x 2−2x −8),点Q 点坐标为(x,x −4).∵B(4,0),∴OB =OK =4.∴∠OKB =∠OBK =45°.∵QF ⊥x 轴,∴∠DQG =45°.若△QDG为直角三角形,则△QDG是等腰直角三角形.①当∠QDG=90°时,过点D作DH⊥QG于H,∴QG=2DH,QG=−x2+3x+4,DH=x+1,∴−x2+3x+4=2(x+1),解得:x=−1(舍去)或x=2,∴Q1(2,−2).②当∠DGQ=90°,则DH=QH.∴−x2+3x+4=x+1,解得x=−1(舍去)或x=3,∴Q2(3,−1).综上所述,当△QDG为直角三角形时,点Q的坐标为(2,−2)或(3,−1).解析:本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的性质、待定系数法求二次函数的表达式,等腰直角三角形的判定,合理运用分类讨论思想是解答本题的关键.(1)设抛物线的解析式为y=a(x+2)(x−4),将点C的坐标代入可求得a的值,然后将y=x−4与抛物线的解析式联立方程组并求解即可;(2)过点P作PE//y轴,交直线AB与点E,设P(x,x2−2x−8),则E(x,x−4),则PE═−x2+3x+4,然后依据S△BDP=S△DPE+S△BPE,列出△BDP的面积与x的函数关系式,然后依据二次函数的性质求解即可;(3)设直线y=x−4与y轴相交于点K,则K(0,−4),设G点坐标为(x,x2−2x−8),点Q点坐标为(x,x−4),先证明△QDG为等腰直角三角形,然后根据∠QDG=90°和∠DGQ=90°两种情况求解即可.25.答案:(1)证明:如图1,连接AC,AC交EF于点O,∵四边形ABCD是平行四边形,∴AB//CD,OA=OC,∴∠OAE=∠OCF,在△OAE和△OCF中,{∠OAE=∠OCF OA=OC∠AOE=∠COF,∴△OCF≌△OAE,∴AE=CF,∵AE//CF ∴四边形AFCE是平行四边形,由翻折得,AF=CF,∴四边形AFCE是菱形;(2)解:①如图2中,作A′H⊥AB交AB的延长线于H.在Rt△GBH中,GB=1,∠GBH=60°,∴BH=12BG=12,GH=√3BH=√32,设AE=EG=x,在Rt△EGH中,∵EG2=EH2+GH2,∴x2=(4.5−x)2+(√32)2,∴x=73,∴AE=73;②2√7.解析:【分析】本题考查四边形综合题、平行四边形的性质、菱形的判定、解直角三角形、轴对称最短问题等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用轴对称解决最短问题,属于中考压轴题.(1)先证明四边形AECF是平行四边形,再由翻折得AF=CF,则四边形AFCE是菱形;(2)①如图2中,作A′H⊥AB交AB的延长线于H.首先求出GH、BH,设AE=EG=x,在Rt△EGH 中,根据EG2=EH2+GH2,构建方程即可解决问题;②如图3中,连接AC交EF于P′,连接P′A′,作CH⊥AB交AB的延长线于H.因为A、A′关于直线EF对称,推出P′A′=P′A,推出P′A′+P′C=P′A+P′C=AC,推出当点P与P′重合时,PA′+PC的值最小,最小值=AC的长.【解答】解:(1)见答案;(2)①见答案;②如图3中,连接AC交EF于P′,连接P′A′,作CH⊥AB交AB的延长线于H.∵A、A′关于直线EF对称,∴P′A′=P′A,∴P′A′+P′C=P′A+P′C=AC,∴当点P与P′重合时,PA′+PC的值最小,最小值=AC的长,在Rt△BCH中,∵BC=2,∠CBH=60°,∴BH=1,CH=√3,∴AH=5,在Rt△ACH中,AC=√AH2+CH2=√52+(√3)2=2√7,∴PC+PA′的最小值为2√7.故答案为2√7.。

陕西省西安市碑林区铁一中学2020届中考数学一模试题(含答案解析)

陕西省西安市碑林区铁一中学2020届中考数学一模试题(含答案解析)

陕西省西安市碑林区铁一中学2020届中考数学一模试题一、单选题1.下列各数中,其相反数等于本身的是( )A .1-B .0C .1D .a2.下列四个图形中,1∠与2∠是对顶角的是( )A .B .C .D .3.在Rt △ABC 中,∠90C =︒,如果4AC =,3BC =,那么cos A 的值为( )A .45B .35C .43D .344.如图所示的几何体的俯视图是( )A .B .C .D .5.从﹣3、﹣2、﹣1、1、2、3六个数中任选一个数记为k ,若数k 使得关于x 的分式方程11k x -+=k ﹣2有解,且使关于x 的一次函数y =(k +32)x +2不经过第四象限,那么这6个数中,所有满足条件的k 的值之和是( )A .﹣1B .2C .3D .4 6.若正比例函数y =kx (k ≠0)的图象经过A (m ,4),B (m ﹣3,10)两点,则k 的值为( ) A .﹣34 B .﹣43 C .﹣2 D .27.如图,如果△ABC ≌△DEF ,∠B=25°,∠F=45°,那么∠A=( )A .25°B .45°C .70°D .110°8.如图,OP 平分∠BOA ,∠BOA=45°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 等于( )A .4B .C .D .2 9.已知:()23x y +=,()27x y -=,则化简:()()222224xy xy x y ⎡⎤+--+⎣⎦12xy ⎛⎫÷ ⎪⎝⎭的值为( )A .4-B .2-C .2D .4二、填空题10.在π,-,130.5757757775…(相邻两个5之间的7的个数逐次加1)中,无理数有 个.11.已知点A 在反比例函数y =k x(k ≠0)的图象上,过点A 作AM ⊥x 轴于点M ,△AMO 的面积为3,则k =_____.12.如图,点B 到直线DC 的距离是指线段__________的长度.13.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).三、解答题14.在平面直角坐标系xOy 中,如图,抛物线22y mx x n =-+(m 、n 是常数)经过点(2,3)A -、(3,0)B -,与y 轴的交点为点C .(1)求此抛物线的表达式;(2)点D 为y 轴上一点,如果直线BD 和直线BC 的夹角为15º,求线段CD 的长度;(3)设点P 为此抛物线的对称轴上的一个动点,当△BPC 为直角三角形时,求点P 的坐标.15.计算: ()201220193π-⎛⎫+--- ⎪⎝⎭ 16.现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾投放桶,分别写着:有害垃圾、厨余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小丽投放了两袋垃圾.(1)直接写出小明投放的垃圾恰好是“厨余垃圾”的概率;(2)用列表法或画树状图法求小丽投放的两袋垃圾是不同类的概率17.如图,ABC 中,90C ∠=︒,30A ∠=︒(1)请用尺规作图作法,作AB 边上的垂直平分线DE ,交AC 于点D ,交AB 于点E (不要求写作法和证明,保留作图痕迹)(2)在(1)条件下,连接BD ,求证:DE CD =18.如图,点A ,B ,C ,D 在同一条直线上,AB CD =,过A ,D 分别作AF AD ⊥,ED AD ⊥,垂足分别为A ,D ,连接BE ,CF ,且BE CF =.求证:ACF DBE ∆≅∆.19.商场销售某种品牌的空调和电风扇:(1)已知购进8台空调和20台电风扇共需17400元,购进10台空调和30台电风扇共需22500元,求每台空调和电风扇的进货价;(2)已知空调标价为2500元/台,电风扇标价为250元/台.若商场购进空调和电风扇共60台,并全部打八折出售,设其中空调的数量为a 台,商场通过销售这批空调和电风扇获得的利润为w 元,求w 和a 之间的函数关系式;(3)在(2)的条件下,若这批空调和电风扇的进货价不超过45300元,商场通过销售这批空调和电风扇获得的利润又不低于6000元,问商场共有多少种不同的进货方案,哪种进货方案获得的利润最高?最高利润是多少?20.设中学生体质健康综合评定成绩为x 分,满分为100分,规定:85≤x ≤100为A 级,75≤x <85为B 级,60≤x <75为C 级,x <60为D 级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了 名学生,α= %;(2)补全条形统计图;(3)扇形统计图中C 级对应的圆心角为 度;(4)若该校共有2000名学生,请你估计该校D 级学生有多少名?21.解方程:2227341x x x x x +=+-- 22.如图,AB 是O 的直径,O 过BC 的中点D .DE AC ⊥,垂足为E .(1)求证:直线DE 是O 的切线; (2)若6BC =,O 的直径为5,求DE 的长及cosC 的值.23.如图所示是某商场楼顶停车场和汽车入口坡道设计示意图.如图,楼顶所在的直线AC 平行于地面所在的直线ME ,CD 的厚度为0.7m ,点B 和点F 在AE 上,BC AC ⊥于点C ,点B ,C ,D 在同一直线上,DF AE ⊥于点F , 3.75DF m =,30AEM ∠=︒,求汽车停车场入口AC 的长(结果精确到0.1m 1.73≈).24.如图1,在矩形纸片ABCD 中,3AB cm =,5AD cm =,折叠纸片使B 点落在边AD 上的E 处,拆痕为PQ .过点E 作EF AB ∥交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动;①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P 、Q 分别在边BA 、BC 上移动,求Rt CED ∆的内切圆半径的取值范围.参考答案1.B根据只有符号不同的两个数是互为相反数解答即可.A .1-的相反数是1,故不符合题意;B .0的相反数是0,故符合题意;C .1的相反数是-1,故不符合题意;D .a 的相反数是-a ,当a=0时,符合题意;当a ≠0时,不符合题意;故选B .本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2.D根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可判断.解:由对顶角的定义可知,四个图形中D 中∠1与∠2为对顶角.故选:D .本题考查了对顶角的定义,属于基础题,熟练掌握对顶角的概念是解决本题的关键.3.A先利用勾股定理求出AB 的长度,从而cos AC A AB =可求. ∵∠90C =︒,4AC =,3BC =∴5AB === ∴4cos 5AC A AB == 故选A本题主要考查勾股定理及余弦的定义,掌握余弦的定义是解题的关键.4.B根据几何体俯视图的定义即可得出答案.A 、D 既不是正视图也不是左视图,更不是俯视图,故这两个选项错误;B 是俯视图,故此选项正确;C 既可以是主视图同时也可以是左视图,故此选项错误.因此答案选择B.本题考查的是几何体三视图的定义,属于基础知识点,比较简单.5.B首先利用一次函数的性质,求得当k=-1,1,2,3时,关于x 的一次函数y=(k+32)x+2不经过第四象限,再利用分式方程的知识求得当k=-1,3,使得关于x 的分式方程11k x -+=k-2有解,然后再把-1和3相加即可.解:∵关于x 的一次函数y =(k +32)x +2不经过第四象限, ∴k +32>0, 解得,k >﹣1.5,∵关于x 的分式方程11k x -+=k ﹣2有解, ∴当k =﹣1时,分式方程11k x -+=k ﹣2的解是x =1-3, 当k =1时,分式方程11k x -+=k ﹣2无解, 当k =2时,分式方程11k x -+=k ﹣2无解, 当k =3时,分式方程11k x -+=k ﹣2的解是x =1, ∴符合要求的k 的值为﹣1和3,∵﹣1+3=2,∴所有满足条件的k 的值之和是2,故选:B .一次函数的性质以及分式方程是本题的考点,根据一次函数的性质及分式方程有解时求出k 的值是解题的关键.6.C利用正比例函数图象上点的坐标特征,可得出关于k ,m 的方程组,解之即可得出k 值. ∵正比例函数y =kx (k ≠0)的图象经过A (m ,4),B (m ﹣3,10)两点,∴()4103km k m =⎧⎨=-⎩, 解得:22k m =-⎧⎨=-⎩. 故选:C .本题考查了正比例函数图象上点的坐标特征以及正比例函数的性质,利用正比例函数图象上点的坐标特征,找出关于k ,m 的方程组是解题的关键.7.D因为△ABC ≌△DEF ,所以∠C=∠F=45°,所以∠A=180°-∠B -∠C=180°-25°-45°=110°.故选D.8.B利用角平分线的性质计算.解:作PE ⊥OB 于E ,∵OP 平分∠BOA ,PD ⊥OA ,PE ⊥OB ,∴PD=PE .∵∠BOA=45°,PC ∥OA , ∴∠PCE=45°.在Rt △PCE 中,PE=sin45°×PC=×,∴.即.故选B .此题主要运用了角平分线的性质、平行线的性质以及勾股定理.注意:等腰直角三角形的斜边是直倍.9.C先根据整式的运算法则对算式进行化简,再根据完全平方公式的变形求出xy ,代入即可.()()222224xy xy x y ⎡⎤+--+⎣⎦12xy ⎛⎫÷ ⎪⎝⎭()222214242x y x y xy ⎛⎫=--+÷ ⎪⎝⎭222x y xy=-⨯2xy =- ∵()23x y +=,()27x y -=,。

2020年陕西省西安市高新一中中考数学一模试卷 (含答案解析)

2020年陕西省西安市高新一中中考数学一模试卷 (含答案解析)

2020年陕西省西安市高新一中中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−2018的相反数是()A. 2018B. −2018C. 12018D. −120182.如图,BD//AC,BE平分∠ABD,交AC于点E.若∠A=40°,则∠1的度数为()A. 80°B. 70°C. 60°D. 40°3.下列运算,正确的是()A. 2x+3y=5xyB. (x−3)2=x2−9C. (xy2)2=x2y4D. x6÷x3=x24.某同学画出了如图所示的几何体的三种视图,其中正确的是()A. ①②B. ①③C. ②③D. ②5.若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象一定不经过()A. 第四象限B. 第三象限C. 第二象限D. 第一象限6.已知:如图,在△ABC中,∠C=90°,∠CAB=60°,AD平分∠BAC,点D到AB的距离DE=2cm,则BC等于()A. 2cmB. 4cmC. 6cmD. 8cm7.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,AB=1,∠ABE=45°,则BC的长为()A. √2B. 1.5C. √3D. 28.如图,在▱ABCD中,F是AD延长线上一点,连接BF交DC于点E,则图中相似三角形共有()A. 2对B. 3对C. 4对D. 5对9.如图所示,AB是⊙O的直径,CD、EF是⊙O的弦,且AB//CD//EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是().π B. 10π C. 24+4π D. 24+5πA. 25210.抛物线y=x2−2与y轴交点的坐标是()A. (0,2)B. (0,−2)C. (2,0)D. (−2,0)二、填空题(本大题共4小题,共12.0分)11.在实数−5、−√3、0、√6中最大的一个数是______12.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是______.(k≠0)在第一象限内的图13.如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=kx,则k的值为.像经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=3414.如图,O是等边△ABC内一点,OA=6,OB=8,OC=10,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为8;③四边形AOBO′的面积为24+15√3;④∠AOB=150°;⑤S△AOC+S△AOB=9√3+24,其中正确的结论是______.三、解答题(本大题共11小题,共78.0分)15.计算:|−5|−20180+(12)−1−(√3)216.先化简:1−a−1a ÷a2−1a2+2a,再选取一个合适的a值代入计算.17.在四边形ABCD中,AB=AD,请利用尺规在CD边上求作一点P,使得S△PAB=S△PAD,(保留作图痕迹,不写作法).18.如图,矩形ABCD中,AB=3,BC=5,点E是AD边上一点,BE=BC.(1)求证:EC平分∠BED.(2)过点C作CF⊥BE,垂足为点F,连接FD,求FD⋅EC的值.19.为了推动阳光体育运动的广泛开展,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为__________,图①中m的值为__________;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双⋅20.如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD//AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)21.某城市城区居民从2017年1月1日开始执行阶梯水价,收费标准如下表所示:平均月用水量不超过13.5立方米的部分超过13.5立方米不超过23立方米的部分超过23立方米的部分收费标准(元/立方米)3.84.657.18设该城市城区居民月用水量为x(立方米)时,每月应缴纳水费为y(元).(1)求该城市城区居民每月应缴纳的水费y与月用水量x之间的函数关系式;(2)该城市城区居民小华家1月份缴纳水费为79.2元,则小华家1月份的用水量是多少?22.小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色,同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,利用列表或树状图,求配成紫色的概率.23.如图,AB是⊙O的直径,点C在AB的延长线上,AD平分∠CAE交⊙O于点D,且AE⊥CD,垂足为点E,BC=3,CD=3√2.(1)求证:直线CE是⊙O的切线;(2)求⊙O的半径;(3)求弦AD的长.24.如图,开口向下的抛物线y=ax2+bx+c交x轴于A(−1,0)、B(5,0)两点,交y轴于点C(0,5),(1)求抛物线的解析式;(2)设抛物线的顶点为D,求△BCD的面积;(3)在(2)的条件下,P、Q为线段BC上两点(P左Q右,且P、Q不与B、C重合),PQ=2√2,在第一象限的抛物线上是否存在这样的点R,使△PQR为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.25.如图,四边形ABCD是⊙O的内接四边形,AB=CD.(1)如图(1),求证:AD//BC;(2)如图(2),点F是AC的中点,弦DG//AB,交BC于点E,交AC于点M,求证:AE=2DF;(3)在(2)的条件下,若DG平分∠ADC,GE=5√3,tan∠ADF=4√3,求⊙O的半径.【答案与解析】1.答案:A解析:解:−2018的相反数是2018.故选:A.只有符号不同的两个数叫做互为相反数.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.答案:B解析:解:∵BD//AC,∠A=40°,∴∠ABD=140°,又∵BE平分∠ABD,∴∠1=1∠ABD=70°,2故选:B.根据平行线的性质,得到∠ABD=140°,再根据BE平分∠ABD,即可得到∠1的度数.本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.3.答案:C解析:此题主要考查了合并同类项以及完全平方公式和积的乘方与幂的乘方、同底数幂的除法运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及完全平方公式和积的乘方与幂的乘方运算法则、同底数幂的除法运算法则分别计算得出答案.解:A.2x+3y,无法计算,故此选项错误;B.(x−3)2=x2−6x+9,故此选项错误;C.(xy2)2=x2y4,正确;D.x6÷x3=x3,故此选项错误.故选:C.4.答案:B解析:本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.5.答案:C解析:本题主要考查了一次函数图象与系数的关系,先确定出a、c的正负情况是解题的关键,也是本题的难点.先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),∵a<0,∴函数y=cx+a的图象与y轴负半轴相交,∵c>0,∴函数y=cx+a的图象经过第一、三、四象限.故选:C.6.答案:C解析:本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形两锐角互余的性质以及直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图是解题的关键.根据直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据BC=BD+CD计算即可得解.解:∵∠C=90°,∠CAB=60°,∴∠B=90°−60°=30°,∵DE⊥AB,∴BD=2DE=2×2=4cm,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴CD=DE=2cm,∴BC=BD+CD=4+2=6cm.故选C.7.答案:A解析:解:∵四边形ABCD是矩形,∴AD//BC.∴∠DEC=∠BCE.∵EC平分∠DEB,∴∠DEC=∠BEC.∴∠BEC=∠ECB.∴BE=BC.∵四边形ABCD是矩形,∴∠A=90°.∵∠ABE=45°,∴∠ABE=∠AEB=45°.∴AB=AE=1.∵由勾股定理得:BE=√AB2+AE2=√12+12=√2,∴BC=BE=√2.故选:A.由矩形的性质和角平分线的定义得出∠DEC=∠ECB=∠BEC,推出BE=BC,求得AE=AB=1,然后依据勾股定理可求得BE的长.本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC 是解题的关键.8.答案:B解析:本题主要考查了平行四边形的性质及相似三角形的判定,正确掌握相似三角形的判定是解题的关键.根据已知及相似三角形的判定方法进行分析,从而得到图中的相似三角形的对数.解:∵四边形ABCD是平行四边形,∴AD//BC,DC//AB,∴△ABF∽△DEF∽△CEB,∴相似三角形共有3对.故选B.9.答案:A解析:本题考查扇形面积的计算,圆周角定理、勾股定理,三角形的面积,本题中找出两个阴影部分面积之间的联系是解题的关键.作直径CG,连接OD、OE、OF、DG,根据勾股定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.解:作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则DG=√CG2−CD2=√102−62=8,又∵EF=8,∴DG⏜=EF⏜,∴S扇形ODG =S扇形OEF,∵AB//CD//EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=12π×52=252π.故选A.10.答案:B解析:解:令x=0,得y=−2,故抛物线与y轴交于(0,−2).故选:B.此题令x=0,可确定抛物线与y轴的交点坐标.本题考查了二次函数的性质.令x=0,可确定抛物线与y轴的交点坐标是解题关键.11.答案:√6解析:解:∵√6>0>−√3>−5,∴在实数−5、−√3、0、√6中最大的一个数是√6.故答案为:√6.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.答案:5解析:根据菱形的性质及已知条件可得△ABC为等边三角形,从而得到AC=AB后即可得解.本题考查了菱形的性质和等边三角形的判定,解答本题的关键是掌握菱形四边相等的性质,属于基础题.解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°,∴△ABC为等边三角形,∴AC=AB=5.故答案为5.13.答案:3解析:本题主要考查反比例函数图象上点的坐标特征及待定系数法求反比例函数解析式,解题的关键是根据题意表示出点D、E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.由tan∠AOD=34,可设AD=3a、OA=4a,在表示出点D、E的坐标,由反比例函数经过点D、E列出关于a的方程,解之求得a的值即可得出答案.解:因为四边形ABCD为矩形,所以AD⊥AB,BC⊥AB,AD=BC.在Rt△AOD中,tan∠AOD=ADAO =34,所以设AD=3a,则OA=4a.所以点D的坐标为(4a,3a).因为BC=AD=3a,CE=2BE,所以BE=a.所以点E的坐标为(4a+4,a).因为D,E两点都在双曲线y=kx上,所以4a×3a=a(4a+4)=k,解得a=12,k=3.所以k=3.14.答案:①②④⑤解析:解:∵∠O′BO=∠ABC=60°,∴∠O′BO−∠ABO=∠ABC−∠ABO,∴∠O′BA=∠OBC,在△BO′A和△BOC中,{BO′=BO∠O′BA=∠OBC BA=BC∴△BO′A≌△BOC(SAS).∴O′A=OC.∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,①正确;如图1,连接OO′,根据旋转的性质可知△BOO′是等边三角形,∴点O与O′的距离为8,②正确;在△AOO′中,AO=6,OO′=8,AO′=10,∴△AOO′是直角三角形,∠AOO′=90°.∴Rt△AOO′面积为12×6×8=24,又等边△BOO′面积为12×8×4√3=16√3,∴四边形AOBO′的面积为24+16√3,③错误;∠AOB=∠AOO′+∠BOO′=90°+60°=150°,④正确;如图2,将线段AO以点A为旋转中心顺时针旋转60°得到线段AO′′,连接OO′′,易证△AO′′B≌△AOC(SAS),△BOO′′是直角三角形,∠BOO′′=90°,△AOO′′是等边三角形,所以S△AOC+S△AOB=S四边形AO′′BO=S△AOO′′+S△BOO′′=9√3+24,⑤正确.故答案为①②④⑤.①证明△BO′A≌△BOC即可说明△BO′A可以由△BOC绕点B逆时针旋转60°得到;②根据旋转的性质可知△BOO′是等边三角形,则点O与O′的距离为8,②正确;③利用:四边形AOBO′的面积=等边△BOO′的面积+Rt△AOO′的面积,进行计算即可判断;④∠AOB=∠AOO′+∠BOO′=90°+60°=150°,④正确;⑤模仿原图的旋转方法,将线段AO以点A为旋转中心顺时针旋转60°得到线段AO′′,连接OO′′,根据S△AOC+S△AOB=S四边形AO′′BO=S△AOO′′+S△BOO′′即可判断.本题主要考查了旋转的性质、等边三角形的性质、全等三角形的判定和性质、勾股定理的逆定理,此题难度较大,解题的关键是通过旋转把三条线段转化到特殊三角形中,利用特殊三角形的性质进行求解,使得问题迎刃而解.15.答案:解:原式=5−1+2−3=3.解析:本题涉及绝对值、零指数幂、负指数幂、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16.答案:解:原式=1−a−1a ×a2+2aa2−1=1−a−1a×a(a+2)(a−1)(a+1) =1−a+2a+1=a+1a+1−a+2a+1=−1a+1,a取除0、−2、−1、1以外的数,如取a=10,原式=−111.解析:先将分式的除法转化为乘法进行计算,然后再算减法,最后找一个使分母不为0的值代入即可.本题考查了分式的化简求值,不仅要懂得因式分解,还要知道分式除法的运算法则.17.答案:解:如图,点P即为所求.解析:作∠A的平分线交CD边于点P,则点P即为所求.本题考查的是作图−复杂作图,熟知三角形的面积公式及角平分线的性质是解答此题的关键.18.答案:(1)证明:∵四边形ABCD是矩形,∴AD//BC,∴∠DEC=∠BCE,∵BE=BC,∴∠BEC=∠BCE,∴∠DEC=∠BEC,即EC平分∠BED.(2)解:在Rt△ABE中,AB=3,BE=BC=5,∴AE=√BE2−AB2=4,∴DE=1,在△ECD和△ECF中,{∠D=∠CFE=90∘∠DEC=∠FEC CE=CE∴△ECD≌△ECF,∴ED=EC=1,CF=CD=3,∴S四边形EFCD =2⋅S△EDC=12FD⋅EC,∴EC垂直平分线段DF,∴12FD⋅EC=2×12×3×1=3,∴FD⋅EC=6.解析:(1)由四边形ABCD是矩形,推出AD//BC,推出∠DEC=∠BCE,由BE=BC,推出∠BEC=∠BCE,推出∠DEC=∠BEC,即可解决问题.(2)在Rt△ABE中,可得AE=√BE2−AB2=4,推出DE=1,由△ECD≌△ECF,推出ED=EC=1,CF=CD=3,推出EC垂直平分线段DF,根据S四边形EFCD =2⋅S△EDC=12FD⋅EC,即可解决问题.本题考查矩形的性质、角平分线的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,记住当四边形对角线垂直时,面积等于对角线乘积的一半,属于中考常考题型.19.答案:解:(1)4015;(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为36+362=36;(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.解析:此题考查了条形统计图,扇形统计图,以及用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(2)找出出现次数最多的数即为众数,将数据按照从小到大顺序排列,求出最中间的两个数的平均数即为中位数;(3)用学校计划购买的总鞋数乘以35号运动鞋所占的百分比即可.解:(1)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100−30−25−20−10=15;故答案为40,15;(2)见答案;(3)见答案.20.答案:解:过点A作AE⊥CD,垂足为点E,由题意得,AE=BC=28,∠EAD=25°,∠EAC=43°,,在Rt△ADE中,∵tan∠EAD=DEAE所以DE=tan25°×28=0.47×28≈13.2,,在Rt△ACE中,∵tan∠EAC=CEAE所以CE=tan43°×28=0.93×28≈26,∴DC=DE+CE=13.2+26≈39(米),答:建筑物CD的高度约为39米.解析:本题考查了解直角三角形的应用,能构造直角三角形是解此题的关键.过点A作AE⊥CD,解直角三角形求出DE和CE,即可求出CD.21.答案:解:(1)由题意可得,当0≤x≤13.5时,y=3.8x,当13.5<x≤23时,y=13.5×3.8+4.65(x−13.5)=4.65x−11.475,当x>23时,y=13.5×3.8+4.65×(23−13.5)+7.18×(x−23)=7.18x−69.665;(2)∵3.8×13.5=51.3<79.2,3.8×13.5+(23−13.5)×4.65=95.475>79.2,∴79.2=4.65x−11.475,解得,x=19.5,即小华家1月份的用水量是19.5立方米.解析:本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的性质解答问题.(1)根据表格中的数据可以分别求得在各个阶段的函数解析式;(2)根据(1)中的函数解析式,可以求得小华家1月份的用水量.22.答案:解:根据题意列表如下:上面等可能出现的6种结果中,有2种情况可以得到紫色,故配成紫色的概率是26=13.解析:此题考查的是用列表法或树状图法求概率,概率公式.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.根据题意先列表,得出所有可能出现的情况数和配成紫色的情况数,再根据概率公式即可得出答案.23.答案:(1)证明:连接OD,∵AD平分∠CAE交⊙O于点D,∴∠EAD=∠DAB,∵OA=OD,∴∠ODA=∠DAB,∴∠EAD=∠ODA,∵AE⊥CD,∴∠EAD+∠EDA=90°,∴∠EDA+∠ODA=90°,即OD⊥CE,∴直线CE是⊙O的切线;(2)设⊙O的半径为r,∵BC=3,CD=3√2,∴r2+(3√2)2=(r+3)2,解得r=32;(3)连接BD,∵∠CDO=∠ADB=90°,∴∠ADO=∠CDB,∵OA=OD,∴∠ADO=∠DAO,∴∠CDB=∠CAD,∵∠C=∠C,∴△CDB∽△CAD,∴BDAD=BCCD=3√2=√22,设BD=√2k,k≠0,则AD=2k,∵AD是⊙O的直径,∴∠ADB=90°,在Rt△ADB中,AD2+BD2=AB2,即(2k)2+(√2k)2=32,解得k=√62.∴AD=√6.解析:本题主要考查圆的切线的性质与判定,勾股定理,相似三角形的判定与性质,圆周角定理等知识的综合运用,属于中档题.(1)连结OD,利用角平分线的定义证∠EDO=90°,即OD⊥CE,进而可证明结论;(2)设⊙O的半径为r,利用勾股定理可求解;(3)连结BD,易证△CDB∽△CAD,BDAD =√22,设BD=√2k,k≠0,则AD=2k,利用勾股定理可求解.24.答案:解:(1)∵抛物线y=ax2+bx+c与x轴交于两点A(−1,0),B(5,0),C(0,5),∴{a−b+c=025a+5b+c=0 c=5,解得{a=−1 b=4c=5.∴此抛物线的解析式为:y=−x2+4x+5;(2)由y=−x2+4x+5=−(x−2)2+9可知顶点D的坐标为(2,9),作DE⊥AB于E,交BC于F,如图,∴E(2,0),∵B(5,0),C(0,5),∴直线BC的解析式为y=−x+5,把x=2代入得,y=3,∴F(2,3),∴DF=9−3=6,S△BCD=S△CDF+S△BDF=12×6×2+12×6×(5−2)=12×6×5=15;(3)分三种情况:①以点P为直角顶点,∵PQ=2√2,∴RQ=√2PQ=4,∵C(0,5),B(5,0),∴OC=OB=5,∴∠OCB=∠OBC=45°,∵∠RQP=45°,∴RQ//OC,可求得直线BC的解析式为y=−x+5,设R(m,−m2+4m+5),则Q(m,−m+5),则RQ=(−m2+4m+5)−(−m+5)=4,解得m1=4,m2=1,∵点Q在点P右侧,∴m=4,∴R(4,5);②以点R 为直角顶点,∵PQ =2√2, ∴RQ =√22PQ =2, 设R(m,−m 2+4m +5)则Q(m,−m +5),则RQ =(−m 2+4m +5)−(−m +5)=2,解得m 1=5+√172,m 2=5−√172,∵点Q 在点P 右侧,∴m =5+√172, ∴R(5+√172,9−√172); ③以点Q 为直角顶点,∵PQ =2√2∴PR =√2PQ =4,∵C(0,5),B(5,0),∴OC =OB =5,∴∠OCB =∠OBC =45°,∵∠RPQ =45°,∴PR//OB ,设R(m,−m 2+4m +5),则P(m −4,−m 2+4m +5),把P(m −4,−m 2+4m +5)代入y =−x +5,得−(m −4)+5=−m 2+4m +5解得m 1=4,m 2=1,此时点P(0,5),因为点P 在线段BC 上运动,且不与B 、C 重合,所以不存在以Q 为直角顶点的情况. 综上所述:当 R(4,5)或(5+√172,9−√172)时,△PQR 为等腰直角三角形.解析:本题考查了二次函数综合题,涉及的知识点有:待定系数法求抛物线的解析式,顶点坐标,面积计算,等腰直角三角形的判定与性质,以及分类思想的应用,综合性较强,有一定的难度.(1)直接把点A(−1,0)、B(5,0),C(0,5)代入抛物线y =ax 2+bx +c ,利用待定系数法即可得出抛物线的解析式;(2)作DE⊥AB于E,交对称轴于F,根据(1)求得的解析式得出顶点坐标,然后根据S△BCD=S△CDF+ S△BDF即可求得;(3)分三种情况:①以点P为直角顶点;②以点R为直角顶点;③以点Q为直角顶点;进行讨论可得使△PQR为等腰直角三角形时点R的坐标.25.答案:(1)证明:如图1,连接AC,∵AB=CD,∴∠DAC=∠ACB,∴AD//BC;(2)如图2,延长AD到N,使DN=AD,连接NC∵AD//BC,DG//AB,∴四边形ABED是平行四边形,∴AD=BE,∴DN=BE,∴∠NDC=∠B.∵AB=CD,∴△ABE≌△CND,∴AE=CN.∵DN=AD,AF=FC,∴DF是△ANC的中位线,∴DF=12CN=12AE,∴AE=2DF;(3)如图3,连接BG,过点A作AH⊥BC,由(2)知∠AEB=∠ANC 四边形ABED是平行四边形,∴AB=DE.∵DF//CN,∴∠ADF=∠ANC,∴∠AEB=∠ADF.∵DG平分∠ADC,∴∠ADG=∠CDG.∵AD//BC,∴∠ADG=∠CED,∵AB//DG,∴∠ABC=∠DEC,∠ABC=∠NDC.可证△CDE是等边三角形,△BGE是等边三角形∴AB=DE=CE,∴解△ABE得AB=8√3,HB=4√3,AH=12,EC=DE=AB=8√3∴HC=HE+EC=9√3,∴AC=√AH2+HC2=3√43作直径AP,连接CP,∴∠ACP=90°,∠P=∠ABC=60°,∴sin∠P=ACAP =√32,∴AP=2√129.∴⊙O的半径是√129.解析:(1)由AB=CD,得到AB⏜=CD⏜,从而得到∠ACB=∠DAC,即可得到AD//BC.(2)如图2,延长AD到N,使DN=AN,连接NC,构造三角形中位线和全等三角形△ABE≌△CND,由该全等三角形的对应边相等得到:AE=CN.所以DF=12CN=12AE,即AE=2DF;(3)如图3,连接BG,过点A作AH⊥BC,构造等边三角形△CDE、△BGE.通过△ABE得AB=8√3,HB=4√3,AH=12,AC=3√43.作直径AP,连接CP,∠ACP=90°,故∠P=∠ABC=60°,由锐角三角函数的定义求得sin∠P=ACAP =√32,从而得到直径AP的长度,易得半径的长度.此题属于圆的综合题,涉及了平行四边形的性质、全等三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.。

2020-2021学年陕西省西安市中考数学第一次模拟试卷及答案解析

2020-2021学年陕西省西安市中考数学第一次模拟试卷及答案解析

陕西省中考数学一模试卷一、选择题1.的平方根是()A.±3 B.3 C.±9 D.92.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b34.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.不等式组的解集在数轴上表示正确的是()A. B.C.D.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E 为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二、填空题11.分解因式:ab2﹣4ab+4a= .12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是.15.用科学计算器计算:cos32°≈.(精确到0.01)三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.17.解分式方程:﹣=1.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)参考答案与试题解析一、选择题1.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.2.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【解答】解:所给图形的左视图为C选项说给的图形.故选C.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行分析即可.【解答】解:A、b3+a3=2b6,计算错误;B、(﹣3pq)2=﹣9p2q2,计算错误;C、5y3+3y5=15y8,计算错误;D、b9÷b3=b3,计算正确;故选:D.4.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限【考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).7.不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】坐标与图形变化﹣旋转.【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E 为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【考点】菱形的性质.【分析】连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF的度数,则∠CDF也就求得了.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【考点】二次函数图象与系数的关系.【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选D.二、填空题11.分解因式:ab2﹣4ab+4a= a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.【考点】平行四边形的性质;三角形的面积.【分析】由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB⊥AC即可求得.【解答】解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,∴S△ABC==,∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为2.故答案为:2.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是15 .【考点】多边形内角与外角.【分析】根据多边形内角和定理列出方程,解方程即可.【解答】解:由题意得,=156°,解得,n=15,故答案为:15.15.用科学计算器计算:cos32°≈ 2.68 .(精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:cos32°=3.1623×0.8480≈2.68,故答案为2.68.三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+,=2﹣﹣1+4+,=5.17.解分式方程:﹣=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).【考点】三角形的外接圆与外心.【分析】要使三棵树都在花坛的边上则应使花坛为△ABC的外接圆,故只要作出三角形两边垂直平分线的交点即为△ABC的外接圆圆心,再以此点为圆心,以此点到点A的长度为半径画圆,此圆即为花坛的位置.【解答】解:①分别以A、B为圆心,以大于AB为半径画圆,两圆相交于D、E两点,连接DE;②分别以A、C为圆心,以大于AC为半径画圆,两圆相交于G、F两点,连接GF;③直线DE与GF相交于点O,以O为圆心,以OA的长为半径画圆,则此圆即为花坛的位置.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【解答】解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人).20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;(2)首先求出DE和CE的长度,再根据S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得出结果.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,∴S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.【考点】一次函数的应用.【分析】(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.【解答】解:(1)设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴,解得,∴y=﹣90x+900.函数的定义域为5≤x≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:1234yx(x,y)1(1,2)(1,3)(1,4)2(2,1)(2,3)(2,4)3(3,1)(3,2)(3,4)4(4,1)(4,2)(4,3)(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【考点】二次函数综合题.【分析】(1)根据平移规律写出抛物线解析式,再求出M、A、B坐标即可.(2)首先证明△ABE∽△AMF,推出的值,∠BAM=90°,根据tan∠ABM=即可解决问题.(3)分点P在x轴上方或下方两种情形解决问题.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x ﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)【考点】作图—应用与设计作图.【分析】(1)根据等边三角形的性质得出∠BAD=30°,得出EF=AE;(2)根据题意得出C,M,N在一条直线上时,此时最小,进而求出即可;(3)作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求,在Rt△ABD中,求出AD的长,在Rt△MBD 中,得出MD的长,即可得出答案.【解答】解:(1)如图①,作EF⊥AB,垂足为点F,点F即为所求.理由如下:∵点E是正△ABC高AD上的一定点,∴∠BAD=30°,∵EF⊥AB,∴EF=AE;(2)如图②,作CN⊥AB,垂足为点N,交AD于点M,此时最小,最小为CN的长.∵△ABC是边长为2的正△ABC,∴CN=BC•sin60°=2×=,∴MN+CM=AM+MC=,即的最小值为.(3)如图③,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求.在Rt△ABD中,AD===480(km),在Rt△MBD中,∠MBD=∠MAF=30°,得MD=BD•tan30°=(km),所以AM=km.。

2020届初三中考数学一诊联考试卷含参考答案 (陕西)

2020届初三中考数学一诊联考试卷含参考答案 (陕西)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()A.小亮明天的进球率为10%B.小亮明天每射球10次必进球1次C.小亮明天有可能进球D.小亮明天肯定进球2.如图,AB是⊙O直径,若∠AOC=140°,则∠D的度数是()A.20°B.30°C.40°D.70°3.如图是一个仪器的零件,则这个零件的左视图为()A.B.C.D.4.如图所示的几何体,它的左视图正确的是()A.B.C.D.5.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识。

因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”。

除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧。

三段圆弧围成的曲边三角形。

图2是等宽的勒洛三角形和圆。

下列说法中错误的是A.勒洛三角形是轴对称图形B.图1中,点A到BC上任意一点的距离都相等C.图2中,勒洛三角形上任意一点到等边三角形DEF的中心1O的距离都相等D.图2中,勒洛三角形的周长与圆的周长相等6.下图是由大小相同的5个小正方体搭成的几何体,则它的主视图是()A.B.C.D.7.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M 作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM为定值.其中一定成立的是A .①②③B .①②④C .②③④D .①②③④8.下列事件中是必然事件的是( )A .打开电视机,正在播少儿节目B .湟中的中秋节晚上一定能看到月亮C .早晨的太阳一定从东方升起D .小红3岁就加入了少先队9.下列运算正确的是( )A .a •a 2=a 2B .(ab )2=abC .3﹣1=13D =10.某天的同一时刻,甲同学测得1m 的测竿在地面上的影长为0.6m ,乙同学测得国旗旗杆在地面上的影长为9.6m 。

陕西省西安市2020年中考数学一模试卷解析版

陕西省西安市2020年中考数学一模试卷解析版

中考数学一模试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.-2020的绝对值是( )A. -2020B. 2020C. -D.2.如果有一个正方体,它的展开图可能是下列四个展开图中的( )A. B. C. D.3.下列计算正确的是( )A. (x-8y)(x-y)=x2+8y2B. (a-1)2=a2-1C. -x(x2+x-1)=-x3+x2-xD. (6xy+18x)÷x=6y+184.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于( )A. 2B. -2C. 4D. -45.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为( )A. 15°B. 35°C. 25°D. 40°6.在平面直角坐标系中,将直线y=3x的图象向左平移m个单位,使其与直线y=-x+6的交点在第二象限,则m的取值范围是( )A. m>2B. m<2C. m>6D. m<67.如图,已知四边形ABCD中,AC平分∠BAD,AB=AC=5,AD=3,BC=CD.则点C到AB的距离是( )A.B.C. 3D. 28.如图,矩形ABCD中,AB=,BC=3,AE⊥BD于E,则EC=( )A.B.C.D.9.如图,△ABC内接于⊙O,AC=5,BC=12,且∠A=90°+∠B,则点O到AB的距离为( )A.B.C.D. 410.二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,-7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是( )A. 有最小值9B. 有最大值9C. 有最小值8D. 有最大值8二、填空题(本大题共4小题,共12.0分)11.将实数0,-,2.7,-1.4,0.14用“<”号连接起来应为______.12.任意五边形的内角和与外角和的差为______度.13.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的负半轴上,反比例函数y=(x<0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为6,则k的值等于______.14.如图,线段BC和动点A构成△ABC,∠BAC=120°,BC=3,则△ABC周长的最大值______.三、解答题(本大题共11小题,共78.0分)15.计算:16.先化简,再求值:(x+1)÷(2+),其中x=-.17.如右图,已知点P是线段MN外一点,请利用直尺和圆规画一点Q,使得点Q到M、N两点的距离相等,且点Q与点M、P在同一条直线上.(保留作图痕迹)18.如图,AB∥CF,D,E分别是AB,AC上的点,DE=EF.求证:△ADE≌△CFE.19.某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.等级频数频率优秀2040%良好合格10m%不合格5n%请根据以上信息,解答下列问题:优秀良(1)本次调查随机抽取了______名学生;表中m=______,n=______;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.20.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB=25cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C 处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).21.甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OPQ和线段EF,分别表示甲、乙两人与A地的距离y甲、y乙与他们所行时间x(h)之间的函数关系(1)求线段OP对应的y甲与x的函数关系式并注明自变量x的取值范围;(2)求y乙与x的函数关系式以及乙到达A地所用的时间;(3)经过______小时,甲、乙两人相距2km.22.为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是______;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.23.已知在Rt△ABC中,∠C=90°;以斜边AB上的一点O为圆心作圆O,与AC、BC分别相切与点D、E.(1)求证:CD=CE;(2)若AC=8,AB=10;求AD的长.24.已知二次函数L与y轴交于点C(0,3),且过点(1,0),(3,0).(1)求二次函数L的解析式及顶点H的坐标(2)已知x轴上的某点M(t,0);若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;试说明四边形CHC′H′为平行四边形.(3)若平行四边形的边与某一条对角线互相垂直时,称这种平行四边形为“和谐四边形”;在(2)的条件下,当平行四边形CHC′H′为“和谐四边形”时,求t的值.25.问题提出:(1)如图1,在四边形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD的面积为______;问题探究:(2)如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=2,BC=3,在AD、CD上分别找一点E、F,使得△BEF的周长最小,并求出△BEF的最小周长;问题解决:(3)如图3,在四边形ABCD中,AB=BC=2,CD=10,∠ABC=150°,∠BCD=90°,则在四边形ABCD中(包含其边沿)是否存在一点E,使得∠AEC=30°,且使四边形ABCE的面积最大.若存在,找出点E的位置,并求出四边形ABCE的最大面积;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:根据绝对值的概念可知:|-2020|=2020,故选:B.根据绝对值的定义直接进行计算.本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】A【解析】【分析】本题主要考查的是几何体的展开图,利用带有数的面的特点及位置解答是解题的关键.由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:由原正方体的特征可知,含有4,6,8的数字的三个面一定相交于一点,而选项B 、C、D中,经过折叠后与含有4,6,8的数字的三个面一定相交于一点不符.故选A.3.【答案】D【解析】解:∵(x-8y)(x-y)=x2-9xy+8y2,故选项A错误;∵(a-1)2=a2-2a+1,故选项B错误;∵-x(x2+x-1)=-x3-x2+x,故选项C错误;∵(6xy+18x)÷x=6y+18,故选项D正确;故选:D.根据各个选项中的式子可以计算出正确的结果,本题得以解决.本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.4.【答案】B【解析】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=-2,故选:B.利用待定系数法求出m,再结合函数的性质即可解决问题.本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】C【解析】解:∵直尺的两边互相平行,∠1=65°,∴∠3=65°,∴∠2=90°-65°=25°.故选:C.先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.6.【答案】A【解析】解:将直线y=3x的图象向左平移m个单位可得:y=3(x+m),联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第二象限,∴,解得:m>2.故选:A.将直线y=3x的图象向左平移m个单位可得:y=3(x+m),求出直线y=3(x+m),与直线y=-x+6的交点,再由此点在第二象限可得出m的取值范围.本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于0、纵坐标大于0.7.【答案】C【解析】解:在AB上截取AE=AD=3,连接CE,过C作CF⊥AB于F点.∵AC平分∠BAD,∴∠BAC=∠DAC.在△ADC与△AEC中,∵,∴△ADC≌△AEC(SAS),∴CE=CD.∵CD=CB,∴CE=CB.∵CF⊥BE,∴CF垂直平分BE.∵AB=5,∴BE=2,∴EF=1,∴AF=4,在Rt△ACF中,∵CF2=AC2-AF2=52-42=9,∴CF=3.故选:C.在AB上截取AE=AD=3,连接CE,过C作CF⊥AB于F点,根据SAS定理得出△ADC≌△AEC,故可得出CE=CD,再由垂直平分线的性质求出AF的长,根据勾股定理即可得出结论.本题考查的是全等三角形的判定与性质,角平分线的性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.8.【答案】D【解析】解:作EF⊥BC于F,∵四边形ABCD是矩形,∴AD=BC=3,AB=CD=,∠BAD=90°.∴tan∠ADB==,∴∠ADB=30°,∴∠ABE=60°,∴在Rt△ABE中cos∠ABE===,∴BE=,∴在Rt△BEF中,cos∠FBE===,∴BF=,∴EF==,∴CF=3-=,在Rt△CFE中,CE==.故选:D.作EF⊥BC于F,构造Rt△CFE中和Rt△BEF,由已知条件AB=,BC=3,可求得∠ADB=30°,所以Rt△CFE和Rt△BEF都可解,从而求出BE,BF的长,再求出CF的长,在Rt△CFE中利用勾股定理可求出EC的长.本题考查了矩形的性质,解直角三角形,以及勾股定理的运用.具有一定的综合性.9.【答案】B【解析】解:作直径CD,连BD,过O作OM⊥AB于M,过B作BN⊥CD于N,如图,则∠CBD=90°,∵∠A=90°+∠ABC,∴∠A=∠ABD,∴∠ABD+∠D=∠A+∠D=180°,∴CD∥AB,∴∠BDC=∠ABC,∴=,∴BD=AC=5.∴OM=BN,在Rt△ABD中,CD==13,∵×BN×CD=×BC×BD,∴BN═==,∴OM=,即点O到AB的距离为.故选:B.作直径CD,连BD,过O作OM⊥AB于M,过B作BN⊥CD于N,如图,利用圆周角定理得到∠CBD=90°,再证明CD∥AB得到•∠BDC=∠ABC,所以BD=AC=5.然后利用勾股定理计算出CD,再利用面积法求出BN即可.本题考查了三角形的外心与外接圆:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理.10.【答案】B【解析】解:∵二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),∴,解得,∴二次函数为y=x2-7x,∵A(7,0),B(0,-7),∴直线AB为:y=x-7,设C(x,x-7),则D(x,x2-7x),∴CD=x-7-(x2-7x)=-x2+8x-7=-(x-4)2+9,∴1<x<7范围内,有最大值9,故选:B.根据待定系数法求得抛物线的解析式好我在想AB的解析式,设C(x,x-7),则D(x ,x2-7x),根据图象的位置即可得出CD=-(x-4)2+9,根据二次函数的性质即可求得.本题考查了二次函数的性质,待定系数法求一次函数的解析式,求二次函数的解析式,表示出CD的关系式是解题的关键.11.【答案】-<-1.4<0<0.14<2.7【解析】解:将实数0,-,2.7,-1.4,0.14用“<”号连接起来应为-<-1.4<0<0.14<2.7.故答案为:-<-1.4<0<0.14<2.7.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.【答案】180【解析】解:任意五边形的内角和是180×(5-2)=540度;任意五边形的外角和都是360度;所以任意五边形的内角和与外角和的差为540-360=180度.故答案为:180.利用多边形的内角和公式求出五边形的内角和,再结合其外角和为360度,即可解决问题.考查了多边形内角与外角,本题利用多边形的内角和公式及多边形的外角和即可解决问题.13.【答案】-2【解析】解:设点A的坐标为(a,0),点C的坐标为(c,),则-a•=6,点D的坐标为(,),∴,解得,k=-2,故答案为-2.根据题意,可以设出点C和点A的坐标,然后利用反比例函数的性质和菱形的性质即可求得k的值,本题得以解决.本题考查反比例函数系数k的几何意义、反比例函数的性质、菱形的性质、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想解答.14.【答案】3+2【解析】解:延长BA到D,使AD=AC,连接CD,作△BCD的外接圆⊙O,∵AD=AC,∴△ABC的周长为:AB+BC+AC=AB+BC+AD=BD+BC.∵BC=3,∴当BD的长度最大时,△ABC周长最大,∴当点A与点O重合时,BD为⊙O的直径,BD最大.设⊙O的半径为r,连接OB,OC,过点O作OE⊥BC于点E,∵∠BAC=120°,∴∠BOE=∠AOB=60°.∵BC=3,OE⊥BC,∴BE=,∴=sin60°,∴=,∴r=,∴BD的最大值为2r=2.∴△ABC周长的最大值为3+2.故答案为:3+2.延长BA到D,使AD=AC,连接CD,作△BCD的外接圆⊙O,当BD的长度最大时,△ABC 周长最大,而BD为⊙O的直径时,BD最大.设⊙O的半径为r,连接OB,OC,过点O作OE⊥BC于点E,根据垂径定理得出BE的长,再用正弦函数得出OB的长度,则BD 的最大值可得,从而△ABC周长的最大值可得.本题考查了三角形的外接圆、垂径定理及解直角三角形等知识点,正确构造三角形的外接圆是解题的关键.15.【答案】解:原式=1-1+3+4+3×=1-1+3+4+=7+.【解析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.【答案】解:(x+1)÷(2+)=(x+1)÷=(x+1)=,当x=-时,原式==.【解析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.【答案】解:作MN的垂直平分线l,连接并延长PM交l于点Q.点Q即为所求作的点.【解析】作线段MN的垂直平分线与射线PM的交点即为所求作的点.本题考查了复杂作图,解决本题的关键是作线段的垂直平分线.18.【答案】解:∵AB∥CF,∴∠ADE=∠F,在△ADE和△CFE中,,∴△ADE≌△CFE(ASA).【解析】首先根据AB∥CF可得∠ADE=∠F,再加上对顶角∠AED=∠CEF,和条件DE=EF 可利用ASA证明△ADE≌△CFE.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA 、AAS、HL.19.【答案】50 20 10【解析】解:(1)本次调查随机抽取了20÷40%=50名学生,=20%,=10%,∴m=20,n=10,故答案为:50,20,10;(2)补全条形统计图如图所示;(3)2000×=1400人,答:该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有1400人.(1)用优秀的人数除以优秀的人数所占的百分比即可得到总人数;(2)根据题意补全条形统计图即可得到结果;(3)全校2000名乘以“优秀”和“良好”等级的学生数所占的百分比即可得到结论.本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.【答案】解:过点B作BG⊥D′D于点G,延长EC、GB交于点F,∵AB=25,DE=50,∴sin37°=,cos37°=,∴GB≈25×0.60=15,GA≈25×0.80=20,∴BF=50-15=35,∵∠ABC=72°,∠D′AB=37°,∴∠GBA=53°,∠CBF=55°,∴∠BCF=35°,∵tan35°=,∴CF≈=50,∴FE=50+130=180,∴GD=FE=180,∴AD=180-20=160,∴安装师傅应将支架固定在离地面160cm的位置.【解析】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.过B作BG⊥D′D于点G,延长EC、GB交于点F,根据锐角三角函数的定义即可求出答案.21.【答案】或【解析】解:(1)设线段OP对应的y甲与x的函数关系式为y甲=kx(k≠0),12=k,得k=18,即线段OP对应的y甲与x的函数关系式为y甲=18x(0<x<);(2)设y乙与x的函数关系式为y乙=ax+b,,解得,即y乙与x的函数关系式为y乙=-4.5x+12,当y乙=0时,-4.5x+12=0,解得x=,∴乙到达A地所用的时间小时;(3)|(-4.5x+12)-18x|=2,-4.5x+12-18x=2或18x-(-4.5x+12)=2,解得,x=或x=,∴经过或小时,甲、乙两人相距2km.故答案为:或.(1)根据函数图象中的数据,利用待定系数法可以求得线段OP对应的y甲与x的函数关系式;(2)利用待定系数法可以求得y乙与x的函数关系式以及乙到达A地所用的时间;(3)根据(1)和(2)中的函数解析式,可以求得经过多少小时,甲、乙两人相距2km .本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22.【答案】(1)(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率==.【解析】解:(1)因为有A,B,C3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是;故答案为.(2)见答案【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【答案】(1)证明:连接OD、OE,∵AC、BC都与圆O相切,∴OE⊥BC,OD⊥AC,又∠C=90°,∴四边形OECD为矩形,∵OD=OE,∴四边形OECD为正方形,∴CD=CE;(2)解:设圆O的半径为r,在Rt△ABC中,BC===6,∵OD⊥AC,∠C=90°,∠A=∠A,∴△AOD∽△ABC,∴=,即=,解得,r=,∴AD=AC-CD=8-=.【解析】(1)连接OD、OE,根据切线的性质、正方形的判定定理得到四边形OECD 为正方形,根据正方形的性质证明结论;(2)根据勾股定理求出BC,证明△AOD∽△ABC,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.24.【答案】解:(1)设二次函数L的解析式为:y=ax2+bx+c(a≠0)由题意可得:解得:∴二次函数L的解析式为:y=x2-4x+3,∵y=x2-4x+3=(x-2)2-1,∴顶点H的坐标(2,-1)(2)∵若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;∴CM=C'M,HM=H'M,∴四边形CHC′H′为平行四边形;(3)∵点C(0,3),点H(2,-1)∴直线CH解析式为:y=-2x+3;若CC'⊥CH时,则CC'解析式为:y=x+3,当y=0时,0=t+3,∴t=-6;若HH'⊥CH时,则HH'解析式为:y=x-2,当y=0时,0=t-2,∴t=4∵若抛物线L关于点M对称的新抛物线为L′,且点C、H的对应点分别为C′,H′;∴点C'(2t,-3),点H'(2t-2,1)若CH'⊥HH',则H'C2+H'H2=CH2,∴(2t-2-0)2+(3-1)2+(2t-2-2)2+(1+1)2=(0-2)2+(3+1)2,∴t=若CC'⊥CH',则H'C2+C'C2=C'H'2,∴(2t-2-0)2+(3-1)2+(2t-0)2+(3+3)2=(0-2)2+(3+1)2,∴△<0,方程无解;综上所述:t=或4或-6.【解析】(1)利用待定系数法可求解析式,由配方法可求顶点坐标;(2)由中心对称的性质可得CM=C'M,HM=H'M,可得结论;(3)分四种情况讨论,由两点距离公式和一次函数的性质可求解.本题是二次函数综合题,考查了二次函数的性质,平行四边形的判定,中心对称的性质,一次函数的性质,两点距离公式等知识,熟练运用这些性质进行推理是本题的关键.25.【答案】(1)3;(2)如图,作点B关于AD的对称点M,作点B关于CD的对称点N,连接MN,交AD 于点E,交CD于点F,过点M作MG⊥BC,交CB的延长线于点G,∵点B,点M关于AD对称∴BE=EM,AB=AM=2,∴BM=4∵点B,点N关于CD对称∴BF=FN,BC=CN=3∴△BEF的周长=BE+BF+EF=NF+EF+EM=MN∵∠ABC=135°,∴∠GBM=45°,且GM⊥BG,∴∠GBM=∠GMB=45°∴BG=GM,且BG2+GM2=BM2,∴BG=4=GM,∴GN=BG+BC+CN=4+3+3=10,∴在Rt△GMN中,MN===2∴△BEF的最小周长为2(3)作△ABC的外接圆,交CD于点E,连接AC,AE,过点A作AM⊥CD于点M,作BN⊥AM于点N,∵四边形ABCE是圆内接四边形∴∠ABC+∠AEC=180°∴∠AEC=30°,∵BN⊥AM,AM⊥CD,∠BCD=90°,∴四边形BCMN是矩形∴BC=MN=2,BN=CM,∠CBN=90°,∵∠ABC=150°,∴∠ABN=60°,且BN⊥AM∴∠BAN=30°,∴BN=AB=1,AN=BN=∴AM=+2,CM=1∵∠AEC=30°,AM⊥CE,∴AE=2AM=2+4,ME=AM=3+2∴CE=CM+ME=4+2=AE∴点E在AC垂直平分线上,∵S四边形ABCE=S△ABC+S△ACE,且S△ABC是定值,AC长度是定值,点E在△ABC的外接圆上,∴当点E在AC的垂直平分线上时,S四边形ABCE最大∴S四边形ABCE=S四边形ABCM+S△AME=××1+=8+4【解析】解:(1)∵AB=BC,AD=CD=3,∠BAD=∠BCD=90°∴△ABD≌△CBD(SAS)∴∠ADB=∠CDB,且∠ADC=60°∴∠ADB=∠CDB=30°,且∠BAD=∠BCD=90°∴AB=BC=∴四边形ABCD的面积=2××3×=3故答案为:3(2)见答案;(3)见答案。

陕西省西安市2019-2020学年中考一诊数学试题含解析

陕西省西安市2019-2020学年中考一诊数学试题含解析

陕西省西安市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC 的度数可能是( )A .①②③B .①②④C .①③④D .①②③④2.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( )A .11B .16C .17D .16或173.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论:①ΔADB ΔADC S S =;②当0<x <3时,12y y <;③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小.其中正确结论的个数是( )A .1B .2C .3D .44.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A.7 B.8 C.9 D.105.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.6.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D.﹣1 20187.不等式组310xx<⎧⎨-≤⎩中两个不等式的解集,在数轴上表示正确的是A.B.C.D.8.计算211aaa---的结果是()A.1 B.-1 C.11a-D.2211+-aa9.下列运算正确的是()A4=2 B.327C182=9 D2 3310.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B.23C.25D.71011.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y412.下列说法中,正确的是()A.长度相等的弧是等弧B.平分弦的直径垂直于弦,并且平分弦所对的两条弧C.经过半径并且垂直于这条半径的直线是圆的切线D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径二、填空题:(本大题共6个小题,每小题4分,共24分.)13.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.14.函数的自变量的取值范围是.15.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是_____.16.如图,线段AB 是⊙O 的直径,弦CD⊥AB,AB=8,∠CAB=22.5°,则CD的长等于___________________________.17.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.18.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =40°,则∠OAC =____度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)对于平面直角坐标系xOy 中的任意两点M ()11 ,x y ,N ()22,x y ,给出如下定义:点M 与点N 的“折线距离”为:(),d M N =12x x -+12y y -.例如:若点M(-1,1),点N(2,-2),则点M 与点N 的“折线距离”为:()(),1212336d M N =--+--=+=.根据以上定义,解决下列问题:已知点P(3,-2). ①若点A(-2,-1),则d(P ,A)= ;②若点B(b ,2),且d(P ,B)=5,则b= ;③已知点C (m,n )是直线y x =-上的一个动点,且d(P ,C)<3,求m 的取值范围.⊙F 的半径为1,圆心F 的坐标为(0,t),若⊙F 上存在点E ,使d(E ,O)=2,直接写出t 的取值范围.20.(6分)如图,直角坐标系中,直线12y x =-与反比例函数k y x =的图象交于A ,B 两点,已知A 点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x =-沿x 轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P 在y 轴正半轴上运动,当线段PA 与线段PC 之差达到最大时,求点P 的坐标.21.(6分)甲、乙两人分别站在相距6米的A 、B 两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C 处发出一球,乙在离地面1.5米的D 处成功击球,球飞行过程中的最高点H 与甲的水平距离AE 为4米,现以A 为原点,直线AB 为x 轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.22.(8分)关于x 的一元二次方程230x m x m -++=有两个实数根,则m 的取值范围是( ) A .m≤1 B .m <1 C .﹣3≤m≤1 D .﹣3<m <123.(8分)在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在CD 上,CF=AE ,连接BF ,AF . (1)求证:四边形BFDE 是矩形;(2)若AF 平分∠BAD ,且AE=3,DE=4,求tan ∠BAF 的值.24.(10分)如图,在△ABC 中,∠A =45°,以AB 为直径的⊙O 经过AC 的中点D ,E 为⊙O 上的一点,连接DE ,BE ,DE 与AB 交于点F.求证:BC 为⊙O 的切线;若F 为OA 的中点,⊙O 的半径为2,求BE 的长.25.(10分)如图1,在等边三角形ABC 中,CD 为中线,点Q 在线段CD 上运动,将线段QA 绕点Q 顺时针旋转,使得点A 的对应点E 落在射线BC 上,连接BQ ,设DAQ α∠=(060α<<o o 且30α≠o ).。

2020年陕西省中考数学一模试卷(含答案解析)

2020年陕西省中考数学一模试卷(含答案解析)

2020年陕西省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−12的倒数是()A. −2B. 2C. 12D. −122.一个直角三角形绕其直角边旋转一周得到的几何体可能是()A. B.C. D.3.下列计算正确的是()A. x3·x=x3B. x3−x2=xC. −x3·(−x)2=x5D. x6÷x=x54.如图,AB//CD,CE平分∠ACD交AB于E,若∠A=120°,则∠AEC=()A. 20°B. 25°C. 30°D. 50°5.某商场一天中售出李宁牌运动鞋10双,其中各种尺码的鞋的销售量如下表所示,则这10双鞋的尺码组成的一组数据中,众数和中位数分别为()鞋的尺寸(单位:厘米)23.52424.52526销售量(单位:双)12241A. 25,25B. 24.5,25C. 26,25D. 25,24.756.下列在正比例函数y=−4x的图象上的点是()A. (1,4)B. (−1,−4)C. (4,−1)D. (0.5,−2)7. 如图,在菱形ABCD 中,∠A =60°,AD =8,P 是AB 边上的一点,E ,F 分别是DP ,BP 的中点,则线段EF 的长为( )A. 8B. 2√5C. 4D. 2√2 8. 点A(1,m)在函数y =2x 的图象上,则m 的值是( )A. 1B. 2C. 12D. 09. 如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE的最小值为( )A. 32B. 2√10−2C. 2√13−2D. 410. 将抛物线y =−x 2向左移动2个单位,再向上移动3个单位后,抛物线的顶点为( )A. (2,3)B. (2,−3)C. (−2,3)D. (−2,−3)二、填空题(本大题共4小题,共12.0分)11. 在实数117,−(−1),π3,√1.21,313113113,√5中,无理数有______个.12. 不等式12x −5≤1−32x 的正整数解是______ .13. 如图,过y 轴上任意一点P ,作x 轴的平行线,分别与反比例函数y =−6x 和y =2x 的图象交于点A 和点B ,若C 为x 轴上任意一点,连接AC ,BC ,则△ABC 的面积为_________.14.在Rt△ABC中,∠ACB=90°.AC=6,BC=8,分别以它的三边为直径向上作三个半圆,则阴影部分面积为.三、计算题(本大题共1小题,共5.0分)15.解方程:xx+2−2x2−4=1.四、解答题(本大题共10小题,共73.0分)16.17.计算:(√3+1)×(√3−1)−√8+|1−√2|17.如图,△ABC的顶点在正方形网格的格点上,D是边AB上一点,请在其它边上找一点E,连接DE后,使得到的新三角形与△ABC相似.要求用无刻度的直尺作图,且作出两种不同的情况.18.如图,正方形ABCD中,E、F分别是边CD、DA上的点,且CE=DF,AE与BF交于点M.求证:AE⊥BF.19.东营市“创建文明城市”活动如火如荼的展开.某中学为了搞好“创城”活动的宣传,校学生会就本校学生对东营“市情市况”的了解程度进行了一次调查测试.经过对测试成绩的分析,得到如下图所示的两幅不完整的统计图(A:59分及以下;B:60−69分;C:70−79分;D:80−89分;E:90−100分).请你根据图中提供的信息解答以下问题:(1)求该校共有多少名学生;(2)将条形统计图补充完整;(3)在扇形统计图中,计算出“60−69分”部分所对应的圆心角的度数.20.如图,从地面B处测得热气球A的仰角为45°,从地面C处测得热气球A的仰角为30°,若BC为240米,求:热气球A的高度.21.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?22.小华和小军做摸卡片游戏,规则如下:甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为−7,−1,3.乙袋中的三张卡片所标的数值为−2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.若点A在第一象限,则小华胜,若点A在第三象限则小军胜.这个游戏对双方公平吗?请说明理由.23.如图,在△ABC中,∠A=60°,⊙O是△ABC的外接圆,过点B作⊙O的切线,交CO的延长线于点D,CD交⊙O于点E.(1)求证:BC=BD;(2)若BC=3,求CD的长.x2+bx+c交24.如图,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,B(3,5),抛物线y=−12 x轴于点C,D两点,且经过点B.(1)求抛物线的表达式;(2)在抛物线上是否存在点F,使得△ACF的面积等于5,若存在,求出点F的坐标;若不存在,说明理由;(3)点M(4,k)在抛物线上,连接CM,求出在坐标轴的点P,使得△PCM是以∠PCM为顶角以CM为腰的等腰三角形,请直接写出P点的坐标.25.如图,在平面直角坐标系中,A(−4√3,0)、B(0,−4),D为直线AB上一点,且D点横坐标为−√3,y轴上有一动点P,直线l经过D、P两点.(1)求直线AB的表达式和D点坐标;(2)当∠ADP=105°时,求点P坐标;(3)在直线l上取点Q(m,n)且mn=3√3,现过点Q作QM⊥y轴于M,QN⊥x轴于N.问:是否存在点P,使得直线DQ分长方形ONQM为两部分,其中所分成的三角形面积是△PDB面积的一半?若存在,直接写出P点坐标;若不存在,请说明理由.【答案与解析】1.答案:A的倒数是−2.解析:解:−12故选:A.根据倒数的定义求解.本题主要考查了倒数的定义,解题的关键是熟记定义.2.答案:D解析:本题考查了点线面体的相关知识点,熟记各种平面图形旋转得到的立体图形是解题关键.根据直角三角形绕直角边旋转是圆锥,可得答案.解:将一个直角三角形绕它的一条直角边旋转一周得到的几何体是圆锥,故选D.3.答案:D解析:本题考查同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.利用同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.解:A.应为x3·x=x3+1=x4,故本选项错误;B.x3−x2没有同类项,不能合并,故本选项错误;C.−x3·(−x)2=−x2+2=−x5,故本选项错误;D.应为x6÷x1=x5,故本选项正确.故选D.4.答案:C解析:解:∵AB//CD,∠A=120°,∴∠ACD=60°,∵CE平分∠ACD,∴∠ECD=∠AEC=30°,∵AB//CD,∴∠AEC=∠ECD=30°,故选C.直接利用平行线的性质得出∠ACD=70°,再利用角平分线的性质得出答案.此题主要考查了平行线的性质以及角平分线的性质,正确得出∠ACD的度数是解题关键.5.答案:D解析:解:从小到大排列此数据为:23.5、24、24、24.5、24.5、25、25、25、25、26,中间两个数是24.5和25,则中位数是(24.5+25)÷2=24.75;数据25出现了四次,出现的次数最多,则众数是25.故选:D.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.此题考查了中位数和众数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.注意众数可以不止一个.6.答案:D解析:解:A、∵当x=1时,y=−4×1=−4≠4,∴此点不在正比例函数y=−4x图象上,故本选项错误;B、∵当x=−1时,y=(−4)×(−1)=4≠−4,∴此点不在正比例函数y=−4x图象上,故本选项错。

陕西省2020年中考数学一模试卷解析版

陕西省2020年中考数学一模试卷解析版
17. 如图,已知锐角△ABC,点 D 是 AB 边上的一定点,请用尺 规在 AC 边上求作一点 E,使△ADE 与△ABC 相似.(作出 符合题意的一个点即可,保留作图痕迹,不写作法.)
18. 在正方形 ABCD 中,M、N 分别是边 CD、AD 的中点,连接 BN,AM 交于点 E.求证:AM⊥BN.
21. 某市为了倡导居民节约用水,生活用自来水按阶梯 式水价计费.如图是居民每户每月的水(自来水) 费 y(元)与所用的水(自来水)量 x(吨)之间
第 4 页,共 17 页
的函数图象.根据下面图象提供的信息,解答下列问题: (1)当 17≤x≤30 时,求 y 与 x 之间的函数关系式; (2)当一户居民在某月用水为 15 吨时,求这户居民这个月的水费; (3)已知某户居民上月水费为 91 元,求这户居民上月用水量多少吨?
中考数学一模试卷
题号 得分




总分
一、选择题(本大题共 10 小题,共 30.0 分) 1. 的倒数是( )
A.
B.
C.
D.
2. 如图,将直角三角形绕其一条直角边所在直线 l 旋转一周,得到的几何体 是( )
A.
B.
C.
D.
3. 下列计算正确的是( )
A. a3+a2=a5
B. a3-a2=a
19. 为了庆祝六一儿童节,红旗中学七年级举办了文艺演出,该校学生会为了了解学生 最喜欢演出中的哪类节目,对这个年级的学生进行了抽样调查.我们根据调查结果 绘制了两幅统计图. 请依据以下两幅统计图提供的相关信息,解答下列问题: (1)本次抽样调查了多少名学生?
第 3 页,共 17 页
(2)补全两幅统计图; (3)若该校七年级有 800 名学生,求这些学生中最喜欢歌唱类节目的人数.

2020年陕西省西安市长安区中考数学一模试卷

2020年陕西省西安市长安区中考数学一模试卷

2020年陕西省西安市长安区中考数学一模试卷一、选择题(本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列四个实数中,是无理数的为( ) A .2-B .0C .27D .32.(3分)如图所示的几何体的左视图是( )A .B .C .D .3.(3分)如图,直线//AB CD ,70A ∠=︒,30E ∠=︒,则C ∠等于( )A .30︒B .40︒C .60︒D .70︒4.(3分)如果分式||11x x -+的值为0,那么x 的值为( ) A .1-B .1C .1-或1D .1或05.(3分)下列计算正确的是( ) A .66122a a a += B .25822232-÷⨯= C .271120()a a a a -=-g gD .223331()(2)2ab a b a b --=g6.(3分)我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( )A .427510⨯B .42.7510⨯C .122.7510⨯D .1127.510⨯7.(3分)如图,ABD ∆是以BD 为斜边的等腰直角三角形,BCD ∆中,90DBC ∠=︒,60BCD ∠=︒,DC 中点为E ,AD 与BE 的延长线交于点F ,则AFB ∠的度数为( )A .30︒B .15︒C .45︒D .25︒8.(3分)若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( )A .2m „B .2m <C .2m …D .2m >9.(3分)如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(4,2)10.(3分)如图,BC 是半圆O 的直径,D ,E 是¶BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE .如果70A ∠=︒,那么DOE ∠的度数为( )A .35︒B .38︒C .40︒D .42︒二、填空题(本题共4个小题,每小题3分,共12分,只要求填写最后结果)11.(3分)计算14893-的结果是 . 12.(3分)一副三角板如图放置,点C 在FD 的延长线上,//AB CF ,90F ACB ∠=∠=︒,30E ∠=︒,45A ∠=︒,122AC =,CD 的长 .13.(3分)在光明中学组织的全效师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是 .14.(3分)在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分A ,B ,C ,D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是 .三、解答题(本题共10个小题,共78分,解答题应写出文字说明,证明过程或推演步骤) 15.(7分)计算:221631()3969a a a a a +-+÷+--+. 16.(7分)解分式方程:31133x x-=--. 17.(6分)已知如图,ABC ∆中,AB AC =,用尺规在BC 边上求作一点P ,使BPA BAC ∆∆∽(保留作图痕迹,不写作法).18.(8分)学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:)min 进行了抽样调查,并将抽查得到的数据分成5组,下面是未完成的频数、频率分布表和频数分布扇形图:组别 课前预习时间/t min频数(人数)频率 1 010t <„ 22 1020t <„ a0.10 3 2030t <„ 16 0.324 3040t <„ bc540t …3请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为 ,表中的a = ,b = ,c = ; (2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级共有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数.19.(8分)某商场的运动服装专柜,对A ,B 两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表:第一次 第二次 A 品牌运动服装数/件 20 30 B 品牌运动服装数/件30 40 累计采购款/元1020014400(1)问A ,B 两种品牌运动服的进货单价各是多少元?(2)由于B 品牌运动服的销量明显好于A 品牌,商家决定采购B 品牌的件数比A 品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件B 品牌运动服? 20.(8分)在菱形ABCD 中,点P 是BC 边上一点,连接AP ,点E ,F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠. 求证:(1)ABF DAE ∆≅∆;。

2020届陕西省西安市高新一中中考数学一模试卷(有解析)

2020届陕西省西安市高新一中中考数学一模试卷(有解析)

2020届陕西省西安市高新一中中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.在|−2|,0,1,−1这四个数中,最大的数是()A. |−2|B. 0C. 1D. −12.如图,由几个相同的小正方体搭成一个几何体,它的俯视图是()A.B.C.D.3.如图,直线m//n,∠1=70°,∠ADB=30°,则∠A=()A. 50°B. 40°C. 30°D. 20°4.下列四组点中,可以在同一个正比例函数图象上的一组点是()A. (2,−3),(−4,6)B. (−2,3),(4,6)C. (−2,−3),(4,−6)D. (2,3),(−4,6)5.下面合并同类项正确的是()A. 3x+2x2=5x3B. 2a2b−a2b=1C. −ab−ab=0D. −x2y+x2y=06.如图,A、B、C分别是小正方形的三个顶点,且每个小正方形的边长均为1,则sin∠BAC的值为()A. 12B. √22C. 1D. √37.如图,在平面直角坐标系中,直线l1对应的函数表达式为y=2x,将直线l1向左平移,使之分别与x、y轴交于点A、B,若OA=2,则线段OB的长为()A. 3B. 4C. 2√2D. 2√38.如图,在矩形ABCD中,对角线AC,BD交于点O,AE⊥BD于点E,∠AOB=45°,则∠BAE的大小为()A. 15°B. 22.5°C. 30°D. 45°9.直角三角形两直角边的长分别为3和4,则此直角三角形斜边上的中线长为()A. 1.5B. 2C. 2.5D. 510.二次函数y=x2+x的图象与y轴的交点坐标是()A. (0,1)B. (0,−1)C. (0,0)D. (−1,0)二、填空题(本大题共4小题,共12.0分)11.分解因式:3ax2−3ay2=______ .12.如图,矩形ABCD中,AB=2,AD=3,点P是边AD上一点,联结BP,过点P作PE⊥BP,交DC于E点,将△ABP沿直线PE翻折,点B落在点B′,若△B′PD为等腰三角形,则AP的长为______.13.已知点A、B分别是x轴、y轴上的动点,点C、D是某函数图象上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是反比图象上的其中一个伴侣正方形.则这个伴侣正方形的边长例函数y=2x是.14. 已知直线y =x +6与x 轴,y 轴围成一个三角形,则这个三角形面积为 . 三、解答题(本大题共11小题,共86.0分)15. 计:(1016)−1+π−.14)0−sn60°−√12+1−3√3|;(a +−4−5a−1)÷(1a −1a 2−a )其中a =2+√3.16. (本小题8分) 解分式方程17. 如图所示,C 、D 两点的横坐标分别为2,3,线段CD =1;B 、D 两点的横坐标分别为−2,3,线段BD =5;A 、B 两点的横坐标分别为−3,−2,线段AB =1.(1)如果轴上有两点M(,0),N(,0)( < ),那么线段MN 的长为 .(2)若点P(3, ),Q(3,)( < ),那么线段PQ 的长为 . (3)已知点E ,F ,请在坐标系中画出线段EF ,并直接写出线段EF 长度.18. 如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落在平面上的M点处,CM 交AD 于点N .(1)求证:△AMN≌△CDN ;(2)若CD=3,∠BAC=60°,求ND的长.19. 为了了解学生对体育活动的喜爱情况,某校对参加足球、篮球、乒乓球、羽毛球这四个课外活动小组的人员分布情况进行抽样调査,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面问题.(1)此次共调査了______名同学,扇形统计图中的篮球部分所占的圆心角的度数是______;(2)直接将条形统计图补充完整;(3)如果该校共有1000名学生参加这四个课外活动小组,而每个前最多只能辅导本组的20名学生,请通过计算确定学校需要为乒乓球课外活动小组至少准备多少名教师?20. 一个人从山底爬到山顶,需先爬45°的山坡200米,再爬30°的山坡100米,求山高AB.21. 对非负实数x“四舍五入”到个位的值记为.即当n为非负整数时,若,则=n.如:,…根据以上材料,解决下列问题:(1)填空①若,则x 应满足的条件:;②若,则x应满足的条件:;(2)求满足的所有非负实数x的值.22. PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.根据PM2.5检测网的空气质量新标准,从某市2013年全年每天的PM2.5日均值标准值(单位:微克/立方米)监测数据中随机地抽取25天的数据作为样本,并根据检测数据制作了尚不完整的频数分布表和条形图:空气质量等级PM2.5日均值标准值频数频率优0~3510.04良35~75m0.2轻度污染75~150110.44中度污染150~20050.2重度污染200~300n a严重污染大于30010.04(1)求出表中m,n,a的值,并将条形图补充完整;(2)以这25天的PM2.5日均值来估计该年的空气质量情况,估计该年(365天)大约有多少天的空气质量达到优或良;(3)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球。

陕西西安长安区2020年中考第一次模拟考试数学试卷(含答案)

陕西西安长安区2020年中考第一次模拟考试数学试卷(含答案)

陕西西安长安区2020年中考第⼀次模拟考试数学试卷(含答案)陕西西安长安区2020年中考第⼀次模拟考试数学试卷⼀、选择题(共10⼩题,每⼩题3分,计30分,每⼩题只有⼀个选项是符合题意的) 1. 32-的相反数是() 32.A 32.B - 23.C 23.D -2. 下⾯的⼏何体是由⼀个长⽅体和圆柱体组成,则它们的俯视图为() .A. B. C. D. 3. 下列计算正确的是()532.A a a a =+ 1)1.(B 22+=+a a C.532a a a =? D.132-=-a a a4. 如图,AB//CD ,EF 交AB 、CD 于点E 、F,FG 平分∠EFD ,若∠AEF=70°,则∠EGF 的⾓度为()A.70°B.35°C.50°D.55°5. 设点A (a 2+1,b )是正⽐例函数y=-2x 的图象上⼀点,则下列不等式⼀定成⽴的是() A. b>-2 B.b<-2 C.b ≥-2 D.b ≤-26. 如图,在ΔABC 中,F 在BC 上,AC=CF ,CD ⊥AF ,垂⾜为D ,E 为AB 的中点,AC=6,BC=10,则ED 的长为()A.4B.3C.25D.2 7.将⼀次函数y=-2x-2的图象先向左平移3个单位,再向下平移2个单位,得到的函数图象的表达式为() A.y=-2x+7 B.y=-2x-7 C.y=-2x-10 D.y=-2x+108.如图,在等边ΔABC中,D、E分别在AC、AB边上,且AC=3AD ,AB=2BE,则下列结论中错误的是()A.∠AED=∠CBDB.BD=2EDC.ED=EBD.∠ADE=∠CDB9.如图,⊙O的直径AB=4cm,弦AD=2cm,AC平分∠DAB,则弦AC的长为()A.32cm B.3cm C.5cm D.27cm(第6题图)(第8题图)(第9题图)10.若⼀个⼆次函数y=ax2+bx+c(a>0)的图象经过五个点A(-1,n),B(3,n),C(m+1,y1), D(1-m,y2)和E(1,y3),则下列关系正确的是()A.y1>y2>y3B.y1=y2>y3C.y1D.y3>y1>y2⼆、填空题(共4⼩题,每⼩题3分,计12分)11.不等式组<-93121xx的整数解有个.12.⼀个正多边形的内⾓和是外⾓和的3倍,则这个正多边形的⼀个内⾓的度数是度.13.如图,点P的坐标为(6,4),PM⊥x轴于点M,PN⊥y轴于点N,反⽐例函数xky=的图象交PM于点A,交PN 于点B,若四边形OAPB的⾯积为18,则k= .14.如图,在等腰直⾓三⾓形ABC中,∠C=90°,AC=8,点F是AB的中点,点D. E分别在AC、BC边上运动,且始终保持DF⊥EF,则ΔCDE⾯积的最⼤值是______.(第13题图)(第14题图)18.某校为了解学⽣的安全意识情况,在全校范围内随机抽取部分学⽣进⾏问卷调查,根据调查结果,把学⽣的安全意识分成“淡薄”、“⼀般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查⼀共抽取了名学⽣,其中安全意识为“很强”的学⽣占被调查学⽣总数的百分⽐是;(2)请将条形统计图补充完整;(3)该校有1800名学⽣,现要对安全意识为“淡薄”、“⼀般”的学⽣强化安全教育,根据调查结果,估计全校需要强化安全教育的学⽣约有名.19.在 ABCD中,点E、F分别在AD、BC上,且AE=CF,BE、DF分别交AC于点M、N.求证:BM=DN.20.2018年3⽉2⽇,500架⽆⼈机在西安创业咖啡街区的夜空绽放,西安⾼新区⽤“硬科技”打造了最具独特的风景线,2018“西安年,最中国”以⼀场华丽的视觉盛宴完美收官.当晚,某兴趣爱好者想⽤⼿中的⽆⼈机测量⼤雁塔的⾼度.如图,是从⼤雁塔正南⾯看到的正视图,兴趣爱好者将⽆⼈机上升⾄离地⾯185⽶⾼⼤雁塔正东⾯的F点,此时,他测得F点到塔顶A点的俯视⾓为30°,同时也测得F点到塔底C点的俯⾓为45°,已知塔底边⼼距OC=23⽶,请你帮助该⽆⼈机爱好者计算出⼤雁塔的⼤体⾼度(结果精确到0.1⽶)?(413==,).1.121.为了贯彻落实“精准扶贫”精神,某单位决定运送⼀批物资到某贫困村,货车⾃早上8时出发⾏驶⼀段路程后发现未带货物清单,便⽴即以50km/h的速度回返,与此同时单位派车去送清单,途中相遇拿到清单后,货车⼜⽴即掉头并开到⽬的地.整个过程中货车⾏驶路程(km)与⾏驶时间t(h)的函数图像如图所⽰.(1)两地相距 172 千⽶,当货车司机拿到清单时,离出发地 62 千⽶.(2)试求出途中BC段的函数表达式,并计算出中午12点时,货车离贫困村还有多少千⽶?22.“压岁钱”,我国汉族民俗,在历史上分为两种形式,⼀种是长辈给⼩孩发钱,意为镇压邪祟,因“岁”与“祟”谐⾳,所以俗称“压岁钱”,祝愿⼩孩健康吉利,平平安安;另⼀种是晚辈给长辈发钱,此时,“岁”指“年岁”,意在期盼⽼⼈健康长寿.今年除⼣,按往年惯例,⼩红⽗母给爷爷、奶奶压岁钱之时,⼩红与弟弟也拿出了各⾃的部分压岁钱向爷爷、奶奶表⽰祝福与感恩之意.为活跃新年⽓氛,4⼈⽤相同的红包装了他们各⾃的祝福.钱数分别为;150元,300元,600元,600元,让两位⽼⼈拼拼⼿⽓,规定:⼆⽼各⾃先抽⼀次记为⼀轮,之后再抽⼀轮结束,每轮均是奶奶先抽.(1)第⼀轮奶奶抽到600元的概率是多少?(2)第⼀轮奶奶抽到的钱数是爷爷抽到的钱数的2倍的概率是多少?(请⽤列表法或树状图法求解)22.如图,AB为⊙O的直径,P在BA的延长线上,C为圆上⼀点,且∠PCA=∠B.(1)求证;PC与⊙O相切.(2)若PA=4,⊙O的半径为6,求BC的长.23.如图,直线c x y +-=21与x 轴交于点A (4,0),与y 轴交于点B ,抛物线c bx x y ++-=221经过点A ,B. (1)求抛物线表达式;(2)点p 为抛物线上的⼀动点,过点P 作垂直于x 轴的直线分别交x 轴和直线AB 于M 、N 两点,若P 、M 、N三点中恰有⼀点是其他两点所连线段的中点(三点重合除外),请求出此时点P 的坐标.25.(1)如图1,⊙O 内接等边三⾓形ABC ,请在⊙O 上求作⼀点P ,使得ΔPBC 是⼀个含有60°⾓的直⾓三⾓形.(2)请在如图2所⽰的长⽅形ABCD 的边上画出所有使∠AMB=90°的点M ;在如图3所⽰的长⽅形的边上画出所有使∠ANB=60°的点N.(3)如图4,在ΔABC 中,∠ABC=60°,BC=12,AD 是BC 边上的⾼,且AD=33,点E 、F 分别是AB 、AC 的中点,在BC 边上是否存在⼀点Q ,使∠EQF=60°,若存在,求出BQ 的长;若不存在,请说明理由.答案:1.A2.B3.C4.B5.D9.A 10.B 11. 5 12. 135 13. 6 14. 8 15.解:原式=3-613-233=++?16.解:1)1(212-122)1()1)(1()2(2122+-=++=--?-+--+=x x x x x x x x x x x x 原式将31-=x 代⼊原式,41311312-=+---=)(原式 17.18.解:(1)调查的总⼈数是:18÷15%=120(⼈),安全意识为“很强”的学⽣占被调查学⽣总数的百分⽐是:36120=30%. 故答案是:120,30%;(2)安全意识“较强”的⼈数是:120×45%=54(⼈),;(3)估计全校需要强化安全教育的学⽣约1800×12+18120=450(⼈),故答案是:450.19.证明:∵四边形ABCD 是平⾏四边形∴AB=CD ,AB//CD,∠BAE=∠DCF 在ΔABE 和ΔDCF 中=∠=∠=CF AE DCF BAE CD AB ∴ΔABE ≌ΔDCF (SAS )∴∠ABE=∠CDF ∵AB//CD ∴∠BAC=∠ACD 在ΔABM 和ΔCDN 中 ??∠=∠=∠=∠CDF ABE CDAB ACD BAC ∴ΔABM ≌ΔCDN(ASA) ∴BM=DN20.解:如图,过点F 作FD ⊥BC 的延长线于点D,过点A 作 AE ⊥FD 于E.∵AO ⊥BD ∴∠AOD=90° ∵FD ⊥BD ,AE ⊥DF ∴∠FDC=∠AED=90° ∴四边形AODE 是矩形∴AE=OD=208m故⼤雁塔的⼤体⾼度为65.1m. 21.解:(1)172-50×(5-2.8)=62(km)(2)设BC 段的函数表达式为s=50t+b,将C (5,172)代⼊得-172bb解得78=故BC段的函数表达式为s=50t-78到中午12点时,x=4,将x=4代⼊得 s=50×4-78=122 172-122=50(km)故到中午12点时,货车离贫困村还有50千⽶.(2)23.(1)证明∵AB是⊙O的直径∴∠ACB=90°∴∠B+∠CAB=90°∵OA=OC∴∠CAB=∠ACO∵∠PCA=∠B∴∠ACO+∠PCA=90°即∠PCO=90°∴PC⊥OC⼜∵点C在圆上∴PC与⊙O相切.综上所述,P 点坐标为(1,3)或(-21,821)或(-2,-3) 25.(1)如图1,连接BO 交⊙O 于点P ,或者连接CO 交⊙O 于点P ’,点P 、P ’即为所求 (2)如图2,以AB 为直径画圆与矩形ABCD 的交点M 即为所求.如图3,分别以A 、B 为圆⼼,AB 长为半径画弧,交于⼀点E ,则ΔABE 为等边三⾓形,∠AEB=60°,作ΔABE 的外接圆,圆与矩形的交点即为N 点.(弦AB 对的圆周⾓为60°)(3)存在∠EQF 可看作圆内弦FE 所对的圆周⾓,故弦EF 所对的圆⼼⾓为120°,记圆⼼为O ,连接OE ,OQ.,取EF 中点H ,过点H 作HM ⊥BC 于M ,故∠EOH=60°,EH=3621EF 2在Rt ΔEHO 中,∠EOH=60°,故3223360sin ==∴=OE OE EH ,OH=3∴OM=2333321OH -MH =-?= 在Rt ΔOMQ 中,根据勾股定理得QM=2 53)23(3222=-)(∴BQ 1=BM-QM=25362531221-=-?,BQ 2=BM+MQ =2 5362531221+=+?。

2020年陕西省西安市末央区中考数学一模试卷(含答案解析)

2020年陕西省西安市末央区中考数学一模试卷(含答案解析)

2020年陕西省西安市末央区中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.3的相反数是()A.﹣3B.3C.D.﹣2.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.3.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.4.在平面直角坐标系中,若点P(m﹣2,m+1)在第二象限,则m的取值范围是()A.m<﹣1B.m>2C.﹣1<m<2D.m>﹣15.下列正比例函数中,y随x的值增大而增大的是()A.y=﹣2020x B.y=(﹣1)x C.y=(﹣π﹣3)x D.y=(1﹣π2)x6.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④7.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A.B.C.D.8.如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.πC.D.9.在Rt△ABC中,∠C=90°,AB=10,BC=6,则cos A的值是()A.B.C.D.10.已知点A(﹣3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,若y1>y2≥n,则m的取值范围是()A.﹣3<m<2B.﹣C.m>﹣D.m>2二.填空题(共4小题,满分12分,每小题3分)11.比较大小:5.12.∠1还可以用表示,若∠1=62.16°,那么62.16°=°′″.13.如图,在平面直角坐标系xOy中,反比例函数y=﹣在第二象限的图象上有一点A,过点A=.作AB⊥x轴于点B,则S△AOB14.如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向旋转90°得到点F,则线段AF的长的最小值.三.解答题(共11小题,满分78分)15.计算:+|1﹣|﹣2×+()﹣116.附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.17.如图,△ABC,AB=AC=10,BC=16.(1)作△ABC的外接圆O(用圆规和直尺作图,不写作法,但要保留作图痕迹)(2)求OA的长.18.萧山区2020教师招聘有拉开序幕,这给很多有志于教育事业的人员很多机会.下面是今年报考人数统计表(数学)招聘岗位招聘计划 报考人数 高中教师1 研究生 高中 数学10高中教师2 普通 高中 数学19 初中教师 普通 初中 数学12 55 小学教师1 普通 城区与八镇数学 18 83 小学教师2 普通 其他 数学21 93 (1)根据上表信息,请制作补完下面的扇形统计图和上述表格.(2)录取比例最小的是多少?最大的是多少?(3)如果是你(本科毕业),仅从录取比例上看,你会选择报考哪个岗位?19.已知:如图,在菱形ABCD 中,E 、F 分别是BC 和DC 边上的点,且EC =FC .求证:∠AEF =∠AFE .20.如图,游客在点A 处坐缆车出发,沿A ﹣B ﹣D 的路线可至山顶D 处.已知AB =BD =800米,∠α=75°,∠β=45°,求山高DE (结果精确到1米).【参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732,=1.414】21.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A,B两种笔记本作为奖品,已知A,B两种每本分别为12元和20元,设购入A种x本,B种y本.(1)求y关于x的函数表达式.(2)若购进A种的数量不少于B种的数量.①求至少购进A种多少本?②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有本(直接写出答案)22.车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.23.已知,AB为⊙O的直径,弦CD⊥AB于点E,在CD的延长线上取一点P,PG与⊙O相切于点G,连接AG交CD于点F.(Ⅰ)如图①,若∠A=20°,求∠GFP和∠AGP的大小;(Ⅱ)如图②,若E为半径OA的中点,DG∥AB,且OA=2,求PF的长.24.已知抛物线y=x2+mx+n的图象经过点(﹣3,0),点(1,0)(1)求抛物线解析式;(2)求抛物线的对称轴和顶点坐标.25.如图,在Rt△ABC中,∠ACB=90°,AB=5,过点B作BD⊥AB,点C,D都在AB上方,AD 交△BCD的外接圆⊙O于点E.(1)求证:∠CAB=∠AEC.(2)若BC=3.①EC∥BD,求AE的长.②若△BDC为直角三角形,求所有满足条件的BD的长.(3)若BC=EC=,则=.(直接写出结果即可)2020年陕西省西安市末央区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】依据相反数的定义回答即可.【解答】解:3的相反数是﹣3.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【分析】根据几何体的展开图,可得答案.【解答】解:A、不能折叠成正方体,故选项错误;B、不能折成圆锥,故选项错误;C、不能折成三棱柱,故选项错误;D、能折成圆柱,故选项正确.故选:D.【点评】本题考查了展开图折叠成几何体,熟记常见几何体的展开图是解题关键.3.【分析】根据中心对称图形,轴对称图形的定义进行判断.【解答】解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.4.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组求解即可.【解答】解:∵点P(m﹣2,m+1)在第二象限,∴,解得﹣1<m<2.故选:C.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.【分析】先根据正比例函数中,y随x的增大而增大判断出k的符号,再对各选项进行分析即可.【解答】解:∵正比例函数中,y随x的值增大而增大,∴k>0,A、﹣2020<0,故本选项错误;B、﹣1≈1.73﹣1=0.73>0,故本选项正确;C、﹣π﹣3<0,故本选项错误;D、1﹣π2<0,故本选项错误.故选:B.【点评】本题考查的是正比例函数的性质,熟知正比例函数y=kx(k≠0),当k>0时,y随x 的增大而增大是解答此题的关键.6.【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【解答】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.(5)(6)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.故选:D.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等,两直线平行,内错角相等.7.【分析】根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.【点评】本题主要考查图形的变化类,解题的关键是根据题意弄清题干规定的运算规则,并将图形的变化问题转化为数字问题.8.【分析】连接OB,OC,根据圆周角定理得到∠BOC=60°,得到△OBC是等边三角形,求出OB,根据弧长公式计算即可.【解答】解:连接OB,OC,由圆周角定理得,∠BOC=2∠BAC=60°,又OB=OC,∴△OBC是等边三角形,∴OB=BC=2,∴劣弧==,故选:A.【点评】本题考查的是圆周角定理,等边三角形的判定和性质,弧长的计算,掌握弧长公式是解题的关键.9.【分析】先根据勾股定理求得AC=8,再依据余弦函数的定义求解可得.【解答】解:在Rt△ABC中,∠C=90°,AB=10,BC=6,由勾股定理得:AC==8,∴cos A=,故选:A.【点评】本题主要考查勾股定理,解题的关键是熟练掌握勾股定理及锐角三角函数的定义.10.【分析】根据点A(﹣3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,点P(m,n)是该抛物线的顶点,y1>y2≥n,可知该抛物线开口向上,对称轴是直线x=m,则<m,从而可以求得m的取值范围,本题得以解决.【解答】解:∵点P(m,n)是该抛物线的顶点,∴抛物线的对称轴为x=m,∵点A(﹣3,y1),B(2,y2)均在抛物线y=ax2+bx+c上,且y1>y2≥n,∴<m,解得m>,故选:C.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.二.填空题(共4小题,满分12分,每小题3分)11.【分析】根据实数大小比较的方法比较即可.【解答】解:∵5=,∴5>.故答案为:>.【点评】本题考查了实数大小的比较,熟练掌握实数大小的比较方法是解题的关键12.【分析】依据角的表示方法以及度分秒的换算进行解答即可.【解答】解:由图可得,∠1还可以用∠BCE表示;∵0.16°=9.6′,0.6′=36″,∴62.16°=62°9′36″,故答案为:∠BCE,62,9,36.【点评】本题主要考查了度分秒的换算,度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.13.【分析】根据题意和反比例函数的性质,可以求得△AOB的面积,本题得以解决.【解答】解:设点A的坐标为(a,﹣),∵反比例函数y=﹣在第二象限的图象上有一点A,过点A作AB⊥x轴于点B,∴S==2,△AOB故答案为:2.【点评】本替考查反比例函数系数k的几何意义,解答本题的关键是明确题意,利用反比例函数的性质和数形结合的思想解答.14.【分析】根据题意先证明△ADE≌△CDF,则CF=AE=1,根据三角形三边关系得:AF≤AC ﹣CF,可知:当F在AC上时,AF最小,所以由勾股定理可得AC的长,可求得AF的最小值.【解答】解:如图,连接FC,AC,AE.∵ED⊥DF,∴∠EDF=∠EDA+∠ADF=90°,∵四边形ABCD是正方形,∴AD=CD,∠ADC=90°,∴∠ADF+∠CDF=90°,∴∠EDA=∠CDF,在△ADE和△CDF中∵,∴△ADE≌△CDF(SAS),∴CF=AE=1,∵正方形ABCD的边长为2,∴AC=2,∵AF≥AC﹣CF,∴AF≥2﹣1∴AF的最小值是2﹣1;故答案为:2﹣1.【点评】本题考查了正方形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,解本题的关键是确定AF最小时,F在线段AC上,是一道中等难度的试题.三.解答题(共11小题,满分78分)15.【分析】直接利用绝对值的性质以及负指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=3+﹣1﹣+3=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.【分析】先将已知条件化简,可得:(x﹣y)2+(x﹣z)2+(y﹣z)2=0.因为x,y,z均为实数,所以x=y=z.将所求代数式中所有y和z都换成x,计算即可.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.【点评】本题中多次使用完全平方公式,但使用技巧上有所区别,要仔细琢磨,灵活运用公式,会给解题带来益处.17.【分析】(1)可按尺规作图的方法进行作图.(作其中两条边的垂直平分线,以此交点为圆心,圆心到三角形任何一顶点的距离为半径作圆);(2)可通过构建直角三角形来求解.连接OA,OC,OA⊥BC.先在三角形ACD中求出AD的值,然后在三角形ODC中,用半径表示OD,OC,根据勾股定理求出半径.【解答】解:(1)如图,点O即为所求的点.(2)连接OA交BC于D,连接OC.因为AB=AC,所以由垂径定理,得OA⊥BC于D,BD=CD=8.在Rt△ADC中,AD===6.设OC=OA=R,则OD=R﹣6.在Rt△OCD中,由OC2=OD2+CD2,得R2=(R﹣6)2+82,解得R=,∴OA=.【点评】本题考查了作图﹣复杂作图、勾股定理和垂径定理,要注意本题中外接圆的作法.18.【分析】(1)根据初中教师的招聘计划和所占的百分比求出招聘总人数,再分别乘以所占的百分比求出高中教师1和高中教师2的人数,用各部分的招聘计划除以总招聘人数求出所占的百分比,然后补全统计图即可;(2)根据招聘计划和所报人数解答;(3)根据各岗位的录取比例选择即可.【解答】解:(1)招聘总计划为:12÷20%=60,高中教师1:60×5%=3,高中教师2:60×10%=6,小学教师1:×100%=30%,小学教师2:×100%=35%;依次填入:3,6;(2)高中教师1:×100%=30%,高中教师2:×100%≈31.58%,初中教师:×100%≈21.82%,小学教师1:×100%≈21.69%,小学教师2,为×100%≈22.58%;所以,录取比例最小的是小学教师1,最大的是高中教师2;(3)高中教师2.【点评】本题考查的是扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.19.【分析】由四边形ABCD是菱形,即可求得AB=AD,∠B=∠D,又由EC=FC知BE=DF,根据SAS,即可证△ABE≌△ADF得AE=AF,从而得证.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,BC=DC,∠B=∠D,∵EC=FC,∴BE=DF,在△ABE和△ADF中,∴△ABE≌△ADF(SAS);∴AE=AF,∴∠AEF=∠AFE.【点评】此题考查了菱形的性质与全等三角形的判定与性质,解题的关键是熟练掌握菱形的性质,注意菱形的四条边都相等,对角相等.20.【分析】在R△ABC中,求出BC=AB•cos75°≈800×0.26=208m,在Rt△BDF中,求出DF 的长,由四边形BCEF是矩形,可得EF=BC,由此即可解决问题.【解答】解:由题意得:∠ACB=∠BFD=90°,EF=BC,在Rt△ABC中,∠ACB=90°,cosα=,∴BC=AB•cos75°=80×0.259=207.2.∴EF=BC=207.2,在Rt△BDF中,∠BFD=90°,sinβ=,∴DF=BD•sin45°=800×=400×1.414=565.6.∴DE=DF+EF=565.6+207.2=772.8≈773(米).∴山高DE约为773米.【点评】本题考查解直角三角形的应用,锐角三角函数、矩形的性质等知识,解题的关键是学会利用直角三角形解决问题,属于中考常考题型.21.【分析】(1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;(2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;②设B种的数量m本,C种的数量n本,根据题意找出m,n的关系式,再根据调换后C种的数量多于B种的数量,列出不等式,可求解.【解答】解:(1)∵12x+20y=1200,∴y=,(2)①∵购进A种的数量不少于B种的数量,∴x≥y,∴x≥,∴x≥,∵x,y为正整数,∴至少购进A种40本,②设A种的数量为x本,B种的数量y本,C种的数量c本,根据题意得:12x+20y+8c=1200∴y=∵C种的数量多于B种的数量∴c>y∴c>∴c>,∵购进A种的数量不少于B种的数量,∴x≥y∴x≥∴c≥150﹣4x∴c>,且x,y,c为正整数,∴C种至少有30本故答案为30本.【点评】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.22.【分析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【解答】解:(1)选择A通道通过的概率=,故答案为:;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.【点评】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.23.【分析】(Ⅰ)连接OG,在Rt△AEF中,∠A=20°,可得∠GFP=∠EFA=70°,因为OA =OG,所以∠OGA=∠A=20°,因为PG与⊙O相切于点G,得∠OGP=90°,可得∠AGP=90°﹣20°=70°.;(Ⅱ)如图,连结BG,OG,OD,AD,证明△OAD为等边三角形,得∠AOD=60°,所以∠AGD =30°,因为DG∥AB,所以∠BAG=∠AGD=30°,在Rt△AGB中可求得AG=6,在Rt△AEF 中可求得AF=2,再证明△GFP为等边三角形,所以PF=FG=AG﹣AF=6﹣2=4.【解答】解:(Ⅰ)连接OG,∵CD⊥AB于E,∴∠AEF=90°,∵∠A=20°,∴∠EFA=90°﹣∠A=90°﹣20°=70°,∴∠GFP=∠EFA=70°,∵OA=OG,∴∠OGA=∠A=20°,∵PG与⊙O相切于点G,∴∠OGP=90°,∴∠AGP=∠OGP﹣∠OGA=90°﹣20°=70°.(Ⅱ)如图,连结BG,OG,OD,AD,∵E为半径OA的中点,CD⊥AB,∴OD=AD=OA,∴△OAD为等边三角形,∴∠AOD=60°,∴∠AGD=∠AOD=30°,∵DG∥AB,∴∠BAG=∠AGD=30°,∵AB为⊙O的直径,OA=2,∴∠AGB=90°,AB=4,∴AG=AB•cos30°=6,.∵OG=OA,∴∠OGA=∠BAG=30°,∵PG与⊙O相切于点G,∴∠OGP=90°,∴∠FGP=90°﹣30°=60°,∵∠AEF=90°,AE=,∠BAG=30°,∴AF=2,∠GFP=∠EFA=60,∴△GFP为等边三角形,∴PF=FG=AG﹣AF=6﹣2=4.【点评】本题考查圆的切线的性质,等边三角形的判定和性质,直角三角形的性质.解题的关键是掌握圆的切线的性质.24.【分析】(1)利用待定系数法把(﹣3,0),(1,0)代入二次函数y=x2+mx+n中,即可算出m、n的值,进而得到函数解析式;(2)将(1)中所得解析式化为顶点式,可得结果.【解答】解:(1)∵二次函数y=x2+mx+n过点(﹣3,0),C(1,0),∴解得:,二次函数的解析式为y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的对称轴为直线x=﹣1,顶点坐标为:(﹣1,﹣4).【点评】此题主要考查了待定系数法求二次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.25.【分析】(1)利用圆的内接四边形的性质以及等角的余角相等的性质易证明出结论成立;(2)延长AC交BD于点F,利用平行线等分线段和相似三角形对应边成比例求解即可;(3)利用勾股定理和相似三角形分别求出AE和BD的长,依据对应边等高三角形的面积比是对应边之比,进而求解;【解答】证明:(1)∵四边形BCED内接于⊙O∴∠AEC=∠DBC又∵DB⊥AB∴∠ABC+∠DBC=90°又∵∠ACB=90°∴在Rt△ABC中,∠CAB+∠ABC=90°∴∠DBC=∠CAB∴∠CAB=∠AEC(2)①如图1延长AC交BD于点F,延长EC交AB于点G.∵在Rt△ABC中,AB=5,BC=3∴由勾股定理得,AC=4又∵BC⊥AF,AB⊥BF∠AFB=∠BFC∴Rt△AFB∽Rt△BFC∴=∴BC2=CF•AC即9=CF•4,解得,CF=又∵EC∥BD∴CG⊥AB∴AB•CG=AC•BC即5CG=4×3,解得,CG=又∵在Rt△ACG中,AG=∴AG==又∵EC∥DB∴∠AEC=∠ADB由(1)得,∠CAB=∠AEC∴∠ADB=∠CAB又∵∠ACB=∠DBA=90°∴Rt△ABC∽Rt△DBA∴=即=,解得AD=又∵EG∥BD∴=即=,解得AE=②当△BDC是直角三角形时,如图二所示∵∠BCD=90°∴BD为⊙O直径又∵∠ACB=90°∴A、C、D三点共线即BC⊥AD时垂足为C,此时C点与E点重合.又∵∠DAB=∠BAC,∠ACB=ABD=90°∴Rt△ACB∽Rt△ABD∴=即=,解得AD=又∵在Rt△ABD中,BD=∴BD==③如图三,由B、C、E都在⊙O上,且BC=CE=∴=∴∠ADC=∠BDC即DC平分∠ADB过C作CM⊥BD,CN⊥AD,CH⊥AB垂足分别为M、N.,H.∵在Rt△ACB中AB=5,BC=∴AC=2又∵在Rt△ACB中CH⊥AB∴AB•CH=AC•BC即5CH=2×解得,CH=2∴MB =2又∵DC 平分∠ADB∴CM =CN又∵在Rt △CHB 中BC =5,CH =2∴HB =1∴CM =CN =1又∵在△DCN 与△DCM 中∴△DCN 与△DCM (AAS )∴DN =DM设DN =DM =x则BD =x +2,AD =x +在Rt △ABD 中由AB 2+BD 2=AD 2得,25+(x +2)2=(x +)2 解得,x =∴BD =BM +MD =2+= 又由(1)得∠CAB =∠AEC ,且∠ENC =∠ACB∴△ENC ∽△ACB∴===2∴NE =2又∵在Rt △CAN 中CN =1,AC =2∴AN === ∴AE =AN +NE =+2 又∵S △BCD =BD •CM ,S △ACE =AE •CN ,CM =CN∴===故=【点评】本题综合考察了圆内接四边形的性质,以及等弧对等弦,等弧所对的圆周角相等与相似三角形的判定,勾股定理的运用,全等三角形的证明等多个知识点,需要认真分析,属于偏难题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西省西安市中考数学一模试卷一、选择题1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|2.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为()A.B.C. D.3.下列计算正确的是()A.a3+a2=a5 B.a3﹣a2=a C.a3•a2=a6 D.a3÷a2=a4.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:用电量(度)12014016180200户数23672则这20户家庭该月用电量的众数和中位数分别是()A.180,160 B.160,180 C.160,160 D.180,1805.如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=()A.112°B.124°C.128° D.140°6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.菱形D.正方形7.如图,在平面直角坐标系中,有一条通过点(﹣3,﹣2)的直线L,若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)均在直线L上,则下列数值的判断哪个是正确的()A.a=3 B.b>﹣2 C.c<﹣3 D.d=28.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1 C.h2=h1D.h2=h19.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.210.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1)B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大二、填空题11.分解因式:mn2+6mn+9m=.14.如图,在直角坐标系中,直线y=6﹣x与y=(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为、.15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE=.13.用科学计算器计算:12×tan13°=(结果精确到0.01).三、解答题16.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.17.先化简,再求值:,其中.18.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)19.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?20.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.21.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.25.如图,抛物线y=x2﹣x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=﹣2x上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.26.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.陕西省西安市中考数学一模试卷参考答案与试题解析一、选择题1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|【考点】有理数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:因为正实数都大于0,所以>0,又因为正实数大于一切负实数,所以>﹣2,所以>﹣0.1所以最大,故D不对;又因为负实数都小于0,所以0>﹣2,0>﹣0.1,故C不对;因为两个负实数绝对值大的反而小,所以﹣2<﹣0.1,故B不对;故选A.2.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为()A.B.C. D.【考点】简单组合体的三视图.【分析】找到从上面所看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从上面看,这个几何体有三行四列,且第一列有3个小正方形,二、四列有1个小正方形、第三列有2个小正方形;故选C.3.下列计算正确的是()A.a3+a2=a5 B.a3﹣a2=a C.a3•a2=a6 D.a3÷a2=a【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a3与a2不是同类项,不能合并,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、a3÷a2=a,正确.故选D.4.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:180200用电量(度)12014016户数23672则这20户家庭该月用电量的众数和中位数分别是()A.180,160 B.160,180 C.160,160 D.180,180【考点】众数;中位数.【分析】根据众数和中位数的定义就可以解决.【解答】解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列后,处于中间位置的两个数是160,160,那么由中位数的定义可知,这组数据的中位数是÷2=160.故选:A.5.如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=()A.112°B.124°C.128° D.140°【考点】平行线的性质.【分析】根据邻补角的定义求出∠BAC,再根据角平分线的定义求出∠3,然后利用两直线平行,同旁内角互补列式求解即可.【解答】解:∵∠1=68°,∴∠BAC=180°﹣∠1=180°﹣68°=112°,∵AE平分∠BAC,∴∠3=∠BAC=×112°=56°,∵AC∥BD,∴∠2=180°﹣∠3=180°﹣56°=124°.故选B.6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.菱形D.正方形【考点】旋转对称图形.【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.【解答】解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.故选D.7.如图,在平面直角坐标系中,有一条通过点(﹣3,﹣2)的直线L,若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)均在直线L上,则下列数值的判断哪个是正确的()A.a=3 B.b>﹣2 C.c<﹣3 D.d=2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,根据此函数为减函数,利用增减性分析解答即可.【解答】解:如图,可得此一次函数是减函数,因为﹣2<0,所以可得a>b,因为﹣3<﹣1<0,可得c<d<﹣2,故选C.8.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1 C.h2=h1D.h2=h1【考点】三角形中位线定理.【分析】直接根据三角形中位线定理进行解答即可.【解答】解:如图所示:∵O为AB的中点,OC⊥AD,BD⊥AD,∴OC∥BD,∴OC是△ABD的中位线,∴h1=2OC,同理,当将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则h2=2OC,∴h1=h2.故选C.9.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.2【考点】垂径定理;勾股定理.【分析】作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,根据垂径定理得到AE=BE=AB=2,DF=CF=CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到OP=OE=.【解答】解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,则AE=BE=AB=2,DF=CF=CD=2,在Rt△OBE中,∵OB=,BE=2,∴OE==1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,而OE=OF=1,∴四边形OEPF为正方形,∴OP=OE=.故选B.10.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1)B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大【考点】抛物线与x轴的交点;二次函数的性质.【分析】判断各选项,点C的坐标可以令x=0,得到的y值即为点C的纵坐标;令y=0,得到的两个x值即为与x轴的交点坐标A、B;且AB的长也有两点坐标求得,对函数的增减性可借助函数图象进行判断.【解答】解:A,令x=0,y=1,则C点的坐标为(0,1),正确;B,令y=0,x=±1,则A(﹣1,0),B(1,0),|AB|=2,正确;C,由A、B、C三点坐标可以得出AC=BC,且AC2+BC2=AB2,则△ABC是等腰直角三角形,正确;D,当x>0时,y随x增大而减小,错误.故选D.二、填空题11.分解因式:mn2+6mn+9m=m(n+3)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再对余下的多项式利用完全平方公式继续分解.【解答】解:mn2+6mn+9m=m(n2+6n+9)=m(n+3)2.故答案为:m(n+3)2.14.如图,在直角坐标系中,直线y=6﹣x与y=(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为4、12.【考点】反比例函数系数k的几何意义;一次函数的图象.【分析】先求出两图象的交点坐标,从而得出矩形面积和周长.【解答】解:把y=6﹣x与y=联立到一个方程组中,解得x=3+和3﹣,y=3﹣和3+.在本题中x1=3﹣,y1=3+,所以矩形面积=x1y1=4,周长=2(x1+y1)=12.故矩形面积和周长分别为4和12.故答案为:4、12.15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是7.2.【考点】切线的性质;垂线段最短.【分析】三角形ABC中,利用勾股定理的逆定理判断得到∠C为直角,利用90度的圆周角所对的弦为直径,得到EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB时,即CD是圆的直径的时,EF长度最小,求出即可.【解答】解:∵在△ABC中,AB=15,AC=12,BC=9,∴AB2=AC2+BC2,∴△ABC为RT△,∠C=90°,即知EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB,即CD是圆的直径时,EF长度最小,最小值是=7.2.故答案为:7.2.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE=60°.【考点】菱形的性质.【分析】先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.【解答】解:在菱形ABCD中,∠ADC=120°,∴∠BAD=180°﹣120°=60°,∴∠BAO=∠BAD=×60°=30°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣30°=60°.故答案为:60°.13.用科学计算器计算:12×tan13°= 2.77(结果精确到0.01).【考点】计算器—三角函数;近似数和有效数字.【分析】正确使用计算器计算即可,注意运算顺序.【解答】解:12×tan13°≈12×0.231≈2.77.故答案为:2.77.三、解答题16.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.17.先化简,再求值:,其中.【考点】分式的化简求值;二次根式的化简求值.【分析】先将括号内通分,合并;再将除法问题转化为乘法问题;约分化简后,在原式有意义的条件下,代入计算即可【解答】解:===,当时,原式===.18.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)【考点】作图—复杂作图;角平分线的性质;垂径定理.【分析】作∠AOB的角平分线,作MN的垂直平分线,以角平分线与垂直平分线的交点为圆心,以圆心到M点(或N点)的距离为半径作圆.【解答】解:如图所示.圆P即为所作的圆.19.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据各部分所占的百分比的和等于1求出坐姿不良所占的百分比,然后求出被抽查的学生总人数,然后求出站姿不良与三姿良好的学生人数,最后补全统计图即可;(2)根据(1)的计算即可;(3)用总人数乘以坐姿和站姿不良的学生所占的百分比,列式计算即可得解.【解答】解:(1)坐姿不良所占的百分比为:1﹣30%﹣35%﹣15%=20%,被抽查的学生总人数为:100÷20%=500名,站姿不良的学生人数:500×30%=150名,三姿良好的学生人数:500×15%=75名,补全统计图如图所示;(2)100÷20%=500(名),答:这次被抽查形体测评的学生一共是500名;(3)5万×(20%+30%)=2.5万,答:全市初中生中,坐姿和站姿不良的学生有2.5万人.20.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】本题考查平行四边形性质的应用,要证AB=AF,由AB=CD,可以转换为求AF=CD,只要证明△AEF≌△DEC即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD.∴∠F=∠2,∠1=∠D.∵E为AD中点,∴AE=ED.在△AEF和△DEC中∴△AEF≌△DEC.∴AF=CD.∴AB=AF.21.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).【考点】解直角三角形的应用.【分析】首先根据AC∥ME,可得∠CAB=∠AE28°,再根据三角函数计算出BC的长,进而得到BD的长,进而求出DF即可.【解答】解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)利用待定系数法求出一次函数解析式即可,根据当生产数量至少为10吨,但不超过50吨时,得出x的定义域;(2)根据总成本=每吨的成本×生产数量,利用(1)中所求得出即可.【解答】解:(1)利用图象设y关于x的函数解析式为y=kx+b,将(10,10)(50,6)代入解析式得:,解得:,y=﹣x+11(10≤x≤50)(2)当生产这种产品的总成本为280万元时,x(﹣x+11)=280,解得:x1=40,x2=70(不合题意舍去),故该产品的生产数量为40吨.23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)【考点】列表法与树状图法.【分析】先画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率.【解答】解:画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;所以棋子走E点的可能性最大,棋子走到E点的概率==.24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【考点】切线的判定;圆周角定理.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.25.如图,抛物线y=x2﹣x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=﹣2x上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.【考点】二次函数综合题.【分析】(1)根据二次函数的顶点坐标的求法得出顶点坐标,再代入一次函数即可求出a的值;(2)根据二次函数解析式求出与x轴的交点坐标即是A,B两点的坐标;(3)根据平行四边形的性质得出D点的坐标,即可得出D′点的坐标,即可得出答案.【解答】解:(1)∵抛物线y=x2﹣x+a其顶点在直线y=﹣2x上.∴抛物线y=x2﹣x+a,=(x2﹣2x)+a,=(x﹣1)2﹣+a,∴顶点坐标为:(1,﹣+a),∴y=﹣2x,﹣+a=﹣2×1,∴a=﹣;(2)二次函数解析式为:y=x2﹣x﹣,∵抛物线y=x2﹣x﹣与x轴交于点A,B,∴0=x2﹣x﹣,整理得:x2﹣2x﹣3=0,解得:x=﹣1或3,A(﹣1,0),B(3,0);(3)作出平行四边形ACBD,作DE⊥AB,在△AOC和△BDE中∵∴△AOC≌△BED(AAS),∵AO=1,∴BE=1,∵二次函数解析式为:y=x2﹣x﹣,∴图象与y轴交点坐标为:(0,﹣),∴CO=,∴DE=,D点的坐标为:(2,),∴点D关于x轴的对称点D′坐标为:(2,﹣),代入解析式y=x2﹣x﹣,∵左边=﹣,右边=×4﹣2﹣=﹣,∴D′点在函数图象上.26.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.【考点】位似变换;等边三角形的性质;勾股定理;正方形的性质.【分析】(1)利用位似图形的性质,作出正方形EFPN的位似正方形E′F′P′N′,如答图①所示;(2)根据正三角形、正方形、直角三角形相关线段之间的关系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的边长;(3)设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),求得面积和的表达式为:S=+(m﹣n)2,可见S的大小只与m、n的差有关:①当m=n时,S取得最小值;②当m最大而n最小时,S取得最大值.m最大n最小的情形见第(1)(2)问.【解答】解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=x.∵E′F′+AE′+BF′=AB,∴x+x+x=3+,∴x=,即x=3﹣3,(x≈2.20也正确)(3)如图②,连接NE、EP、PN,则∠NEP=90°.设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=,PE=n.∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).∴S=m2+n2=PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m﹣n)2.∵AD+DE+EF+BF=AB,即m+m+n+n=+3,化简得m+n=3.∴S= [32+(m﹣n)2]= +(m﹣n)2①当(m﹣n)2=0时,即m=n时,S最小.∴S最小=;②当(m﹣n)2最大时,S最大.即当m最大且n最小时,S最大.∵m+n=3,3.由(2)知,m最大=3﹣9+(m最大﹣n最小)2]∴S最大= [= [9+(3﹣3﹣6+3)2]=99﹣54….≈5.47也正确)(S最大54,S最小=.综上所述,S最大=99﹣。

相关文档
最新文档