线性规划解法
第三章线性规划的解法习题解答090426y
第三章线性规划的解法§3.1重点、难点提要一、线性规划问题的图解法及几何意义1.图解法。
线性规划问题采用在平面上作图的方法求解,这种方法称为图解法。
图解法具有简单、直观、容易理解的特点,而且从几何的角度说明了线性规划方法的思路,所以,图解法还有助于了解一般线性规划问题的实质和求解的原理。
(1)图解法适用于求解只有两个或三个变量的线性规划问题,求解的具体步骤为:1)在平面上建立直角坐标系;2)图示约束条件,找出可行域。
具体做法是画出所有约束方程(约束条件取等式)对应的直线,用原点判定直线的哪一边符合约束条件,从而找出所有约束条件都同时满足的公共平面区域,即得可行域。
求出约束直线之间,以及约束直线与坐标轴的所有交点,即可行域的所有顶点;3)图示目标函数直线。
给定目标函数Z一个特定的值k,画出相应的目标函数等值线;4)将目标函数直线沿其法线方向向可行域边界平移,直至与可行域边界第一次相切为止,这个切点就是最优点。
具体地,当k值发生变化时,等值线将平行移动。
对于目标函数最大化问题,找出目标函数值增加的方向(即坐标系纵轴值增大的方向),等值线平行上移到可行域(阴影部分)的临界点,最终交点就是取得目标函数最大值的最优解;对于目标函数最小化问题,找出目标函数值减少的方向(即坐标系纵轴值减少的方向),等值线平行下移到可行域(阴影部分)的临界点,最终交点就是取得目标函数最小值的最优解。
(2)线性规划问题的几种可能结果:1)有唯一最优解;2)有无穷多个最优解;3)无最优解(无解或只有无界解)。
2.重要结论。
(1)线性规划的可行域为一个凸集,每一个可行解对应该凸集中的一个点;(2)每一个基可行解对应可行域的一个顶点。
若可行解集非空,则必有顶点存在,从而,有可行解必有基可行解。
(3)一个基可行解对应约束方程组系数矩阵中一组线性无关的列向量,对于n 个变量m 个约束方程的线性规划问题,基可行解的个数不会超过!!()!m n n m n m C =-。
线性不等式与线性规划的解法
线性不等式与线性规划的解法线性不等式和线性规划是数学中常见的问题类型,它们在日常生活和各个领域都有广泛的应用。
本文将介绍线性不等式与线性规划的定义、解法和一些应用示例。
一、线性不等式的定义和解法线性不等式是指一个或多个变量的线性函数与一个常数之间的不等关系。
其表达形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b其中,a₁, a₂, ..., aₙ是系数,x₁, x₂, ..., xₙ是变量,b是常数。
要解决线性不等式,我们需要确定变量的取值范围,使得不等式成立。
常用的解法有以下几种:1. 图形法:将线性不等式转化为几何图形,通过观察图形与坐标轴的交点来确定解集。
2. 代入法:将线性不等式转化为等式,找到其中一个变量的解,代入到不等式中求解其他变量。
重复此过程直至得到所有解。
3. 增减法:通过增减变量值来确定解集的上下界,进而找到满足不等式的解集。
二、线性规划的定义和解法线性规划是指在一定约束条件下,通过线性函数的优化求解最大值或最小值的问题。
其表达形式为:Maximize (or Minimize) f(x₁, x₂, ..., xₙ) = c₁x₁ + c₂x₂ + ... +cₙxₙsubject to:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b₁d₁x₁ + d₂x₂ + ... + dₙxₙ ≤ b₂e₁x₁ + e₂x₂ + ... + eₙxₙ ≥ b₃...x₁, x₂, ..., xₙ ≥ 0其中,f(x₁, x₂, ..., xₙ)是目标函数,表示需要最大化或最小化的线性函数;约束条件由不等式给出,b₁, b₂, b₃是常数。
线性规划的解法主要有以下两种:1. 几何法:将约束条件转化为几何图形,通过观察图形与目标函数的相对位置关系,找到最优解。
2. 单纯形法:通过转化为标准形式,并利用单纯形表来进行迭代计算,逐步逼近最优解。
三、线性不等式和线性规划的应用示例线性不等式和线性规划广泛应用于经济学、管理学、工程学等领域。
线性规划问题的解法
线性规划问题的解法线性规划(Linear Programming,LP)是一种数学优化方法,用于求解线性约束条件下的最大化或最小化目标函数的问题。
线性规划问题在经济学、管理学、工程学等领域都具有广泛的应用,其求解方法也十分成熟。
本文将介绍线性规划问题的常用解法,包括单纯形法和内点法。
一、单纯形法单纯形法是解决线性规划问题最常用的方法之一。
它通过在可行解空间中不断移动,直到找到目标函数的最优解。
单纯形法的基本步骤如下:1. 标准化问题:将线性规划问题转化为标准形式,即将目标函数转化为最小化形式,所有约束条件均为等式形式,且变量的取值范围为非负数。
2. 初始可行解:选择一个初始可行解,可以通过人工选取或者其他启发式算法得到。
3. 进行迭代:通过不断移动至更优解来逼近最优解。
首先选择一个非基变量进行入基操作,然后选取一个基变量进行出基操作,使目标函数值更小。
通过迭代进行入基和出基操作,直到无法找到更优解为止。
4. 结束条件:判断迭代是否结束,即目标函数是否达到最小值或最大值,以及约束条件是否满足。
单纯形法的优点是易于理解和实现,而且在实际应用中通常具有较好的性能。
但是,对于某些问题,单纯形法可能会陷入循环或者运算效率较低。
二、内点法内点法是一种相对较新的线性规划求解方法,它通过在可行解空间的内部搜索来逼近最优解。
与单纯形法相比,内点法具有更好的数值稳定性和运算效率。
内点法的基本思想是通过将问题转化为求解一系列等价的非线性方程组来求解最优解。
首先,将线性规划问题转化为等价的非线性优化问题,然后通过迭代求解非线性方程组。
每次迭代时,内点法通过在可行解空间的内部搜索来逼近最优解,直到找到满足停止条件的解。
内点法的优点是在计算过程中不需要基变量和非基变量的切换,因此可以避免单纯形法中可能出现的循环问题。
此外,内点法还可以求解非线性约束条件下的最优解,具有更广泛的适用性。
三、其他方法除了单纯形法和内点法,还有一些其他的线性规划求解方法,如对偶方法、割平面法等。
线性规划的定义及解题方法
线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划的解法
线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。
在现实生活中,许多问题都可以用线性规划求解。
如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。
线性规划的解法有多种,下面我们就来对其进行详细的介绍。
1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。
单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。
单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。
2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。
这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。
对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。
3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。
内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。
内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。
4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。
这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。
总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。
希望本文能够对您有所帮助。
线性规划原理与解法
c1 b1 a1,m 1 xm 1 a1,m 2 xm 2 ... a1n xn
z c1b1 c2b ... cmbm
cm1 ci ai,m1
i 1
m
cm 1 c1a1, m 1 c2 a2, m 1 ... cm am , m 1 xm 1 c c a i i ,m 2 m 2
i 1
对增广矩阵 作初等行变换 将基变为单位阵
1 0 0
x2 0 ... 0 a1, m 1 ... a1n b : 1 1 ... 0 a2, m 1 ... a2 n b xm 2 ...... x : m 1 bm 0 ... 1 am, m 1 ... amn : x n
第一节 线性规划求解原理
5)若约束条件为“≥”,“≤”和“=”的混合性, 则综合应用以上方法,确定初始基。
max z 3 x1 4 x2 例: x1 2 x2 ≤8 4 x ≤16 1 s.t. 4 x2 ≤12 x1 , x2≥0 max z 3x1 4 x2 0 x3 0 x4 0 x5 =8 x1 2 x2 x3 4 x x4 =16 1 s.t. x5 12 4 x2 x1 , x2 , x3 , x4 , x5≥0
xi bi
j m 1
a x (i 1, 2,..., m)
ij j
n
x1 b1 a1,m1 xm1 a1,m2 xm2 ... a1n xn x2 b2 a2,m1 xm1 a2,m2 xm2 ... a2 n xn ...... xm bm am,m1 xm1 am,m 2 xm 2 ... amn xn
线性规划问题的解法与最优解分析
线性规划问题的解法与最优解分析线性规划是一种数学建模方法,用于解决最优化问题。
它在工程、经济学、管理学等领域有着广泛的应用。
本文将介绍线性规划问题的解法和最优解分析。
一、线性规划问题的定义线性规划问题是指在一定的约束条件下,求解一个线性目标函数的最大值或最小值的问题。
线性规划问题的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject toa₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数中的系数,a₁₁,a₁₂, ..., aₙₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件中的常数,x₁,x₂, ..., xₙ为决策变量。
二、线性规划问题的解法线性规划问题的解法主要有两种:图形法和单纯形法。
1. 图形法图形法适用于二维或三维的线性规划问题。
它通过绘制约束条件的直线或平面以及目标函数的等高线或等高面,来确定最优解。
首先,将约束条件转化为不等式,并将其绘制在坐标系上。
然后,确定目标函数的等高线或等高面,并绘制在坐标系上。
最后,通过观察等高线或等高面与约束条件的交点,找到最优解。
图形法简单直观,但只适用于低维的线性规划问题。
2. 单纯形法单纯形法是一种迭代的求解方法,适用于高维的线性规划问题。
它通过在可行域内不断移动,直到找到最优解。
单纯形法的基本思想是从初始可行解开始,每次通过找到一个更优的可行解来逼近最优解。
它通过选择一个基本变量和非基本变量,来构造一个新的可行解。
然后,通过计算目标函数的值来判断是否找到了最优解。
如果没有找到最优解,则继续迭代,直到找到最优解为止。
单纯形法是一种高效的求解线性规划问题的方法,但对于大规模的问题,计算量会很大。
数学公式知识:线性规划的基本概念与解法
数学公式知识:线性规划的基本概念与解法线性规划是一种数学优化方法,它的目的是在一组线性约束条件下,最大化或最小化一个线性目标函数。
基本概念
1.线性函数
线性函数是指满足以下两个条件的函数:(1)任意两个自变量的加权和的值,等于这两个自变量各自代入函数后的加权和的值;(2)函数的系数是定值。
2.线性规划模型
线性规划模型是由线性约束条件和线性目标函数组成的模型。
线性约束条件包括不等式约束条件和等式约束条件。
线性目标函数表示需要优化的目标。
3.线性规划问题
线性规划问题是指在一组线性约束条件下,求解线性目标函数的最大值或最小值。
4.线性规划的基本形式
线性规划的基本形式是将问题转化为以下形式:最大化cT x (或最小化cT x),使得Ax≤b,x≥0,其中c、x和b都是向量,A是一个矩阵。
解法
线性规划的解法分为两种:图形法和单纯性法。
1.图形法
图形法是一种直观的方法,它使用二维或三维图形表示变量的取值范围,并在此基础上确定最优解。
2.单纯性法
单纯性法是一种基于矩阵运算的高效解法。
它通过不断地迭代,减少约束条件的个数,并在此过程中找到最优解。
线性规划在实际应用中具有广泛的应用,例如,生产成本优化、库存管理、交通运输规划等。
它是一种非常有用的工具,可以帮助管理者更有效地制定决策方案。
线性规划问题的解法与应用
线性规划问题的解法与应用线性规划是一种数学工具,被广泛应用于各个行业,例如生产、物流、财务等。
其基本思想是在各种限制条件下,求出某些目标的最优解,被称之为线性规划问题。
解决线性规划问题的方法有很多种,包括普通单纯性法、双纯性法、内点法等。
本文将简要介绍一些解决线性规划问题的方法,并探讨其应用。
一、普通单纯性法在解决线性规划问题时,大多数情况下会采用普通单纯性法。
普通单纯性法是通过对线性规划问题进行简化,来寻找一个最优解的算法。
具体而言,普通单纯性法是基于线性规划的一个关键特性实现的:也就是说,一个线性规划的可行解有一个凸的区域,而这个区域的顶点就是这个线性规划问题的最优解。
因此,普通单纯性法通过不断地沿着顶点移动来查找最优解。
普通单纯性法的优点在于算法复杂度较低,适用于许多简单的线性规划问题。
然而,由于它的原理,普通单纯性法可能会在特定情况下变得相当低效,因此我们将考虑其他方法。
二、双纯性法双纯性法是一种更复杂但最终更有效的线性规划解法。
与普通单纯性法不同的是,双纯性法以两个方法的组合方式来寻找最优解。
首先,与普通单纯性法一样,它通过着眼于最优解所在的多维坐标系的顶点来寻找最优解。
然后,它采用对迭代过程进行精细检查来确保它没有跨过最优解。
双纯性法比普通单纯性法更准确,因为它在每一步操作时都会重新确定一个可行解的凸区域,而不是只沿着现有凸区域的边界线来确定最优解。
尽管双纯性法比普通单纯性法更复杂,但在大多数情况下,它可以在更短的时间内发现最优解。
三、内点法相比之下,内点法是一种数学计算质量不错的算法,它不依赖于这个可行域的顶点。
相反,内点法使用了每个可行域内部的点,即“内点”,来寻找目标函数的最优解。
具体地说,它会构建一个搜索方向,然后在可行域的内部沿着这个方向探索最优解。
这个方法非常适用于那些具有较大维度和复杂约束条件的线性规划问题。
除此之外,值得一提的是,在线性规划的解决过程中,其中一个非常重要的问题是约束条件的表示。
线性规划问题的四种求解方法
可出直线
l0
:y
=-
2 3
x
,
把直线
l0
向右上方
平移 , 当经过可行域上点 B 时 , 直线的截距最
大 .此时 z = 12x +18y 取最大值 .解方程组
z =6x +3y +5[ 300 -(x +y)] +5(200 -x ) +9(450 -y)+6(100 +x +y)=2 x -5y +
★解题方法与技巧
线性规划问题的四种求解方法
江 苏溧 阳中 学(2 13300) 吕清 平
线性规划问题是现实生活中一类重要的应 用问题 , 它常用来研究物资调运 、生产安排 、下
时 , zmax =12 ×5 +18 ×4 =132(万美元) 答 :购买第一种机器 5 台 , 第二种机器 4 台
料等工作的资源优化配制问题 , 寻求线性规划 时能使工厂获得的年利润最大 .
值线值的大小知 , 当等值线经过可行域上点 C 成本如下表 :
时 , 等值线的值最小 .z 有最小值 5650 元 , 此时 x =0 、y =300 , 故甲地产品运往 B 地 ;乙地产 品运往 A 、B 、C 三地分别为 200 吨 、150 吨 、400
甲乙丙 维生素 A(单位 / 千克) 600 700 400
解 设每天生产甲 、乙产品的件数分别是
维生素 B (单位 / 千克) 800 400 500
成本(单位 / 千克) 11 9 4
某食物营养所想用 x 千克甲种食物 , y 千 克乙种食物 , z 千克丙种食物配成 100 千克混合 物 , 并使混合物至少含有 56000 单位维生素 A 和 63000 单位维生素 B
线性规划模型的求解方法
线性规划模型的求解方法线性规划是数学中的一个分支,是用来解决优化问题的方法。
一般来说,它适用于那些具有一定限制条件,但是希望达到最优解的问题。
在实际应用中,无论是在工业、商业还是管理等领域,都可以使用线性规划模型来进行求解。
本文将详细介绍线性规划模型的求解方法,包括单纯形算法、内点法和分支定界法。
1、单纯形算法单纯形算法是线性规划求解中最常用的方法,它是基于不等式约束条件的优化算法,主要是通过这些不等式约束来定义一些可行域并寻找最优解。
单纯形算法的基本思路是将约束条件重写为等式,然后再将变量从这些等式中解出来,最后根据这些解来判断是否找到最优解。
举例来说,假设有如下线性规划的问题:$$\begin{aligned}\text { maximize } \quad &60 x_{1}+40 x_{2} \\\text { subject to } \quad &x_{1}+x_{2} \leq 100 \\&2 x_{1}+x_{2} \leq 150 \\&x_{1}+2 x_{2} \leq 120 \\&x_{1}, x_{2} \geq 0\end{aligned}$$我们可以将这些约束条件重写为等式:$$\begin{aligned}x_{3} &=100-x_{1}-x_{2} \\x_{4} &=150-2 x_{1}-x_{2} \\x_{5} &=120-x_{1}-2 x_{2}\end{aligned}$$然后我们可以利用这些等式来解出每个变量的取值,从而得到最优解。
通常情况下,单纯形算法利用较小的限制空间集合来缩小可行的解空间集合,并通过一定的规则,比如说乘子法则来找到最优的解。
2、内点法内点法则是比单纯形算法更快的一个线性规划求解方法,它通过不停地迭代,将可行域中的点从内部向最优解方向移动,从而找到最优解。
在实际应用中,内点法通常能够达到非常高的精确度,而且与单纯型算法相比,它在数值计算方面更加稳定。
线性规划的基本概念与解法
线性规划的基本概念与解法线性规划(Linear Programming,简称LP)是一种运筹学中的数学方法,用于寻找最优解决方案的问题。
它在各个领域中得到广泛应用,包括经济学、管理学、工程学等。
本文将介绍线性规划的基本概念和解法,并探讨其实际应用。
一、基本概念1. 目标函数:线性规划的目标是求解一个线性函数的最大值或最小值。
这个线性函数称为目标函数,通常以z表示。
例如,z=c1x1+c2x2+…+cnxn,其中c1、c2…cn为常数,x1、x2…xn为变量。
2. 约束条件:线性规划的约束条件是一组线性不等式或等式。
通常以Ax≤b或Ax=b的形式表示,其中A为系数矩阵,x为变量向量,b为常数向量。
3. 可行解:满足所有约束条件的解称为可行解。
可行解存在于约束条件所定义的空间中。
4. 最优解:在所有可行解中,目标函数取得最大值或最小值时的解称为最优解。
最优解可以是唯一的,也可以有多个。
二、解法方法1. 图形法:当线性规划问题为二维或三维时,可以利用图形的方法求解。
通过绘制目标函数的等高线或平面与约束条件的交点,找到目标函数的最优解。
2. 单纯形法:单纯形法是一种基于迭代的线性规划求解方法,适用于高维问题。
该方法通过不断改变基变量的取值,寻找使目标函数达到最优值的解。
3. 内点法:内点法是一种与单纯形法相比更为高效的求解线性规划问题的方法。
该方法通过在可行域内部搜索最优解,避免了对可行域的边界进行逐个检验的过程。
三、实际应用线性规划在实际问题中有着广泛的应用。
以下是几个常见的应用领域:1. 生产计划:线性规划可以用于确定生产计划中的最佳生产数量和产品组合,以最大化利润或最小化成本。
2. 资源分配:线性规划可以用于优化资源分配,例如分配有限的人力、物资和资金,以实现最佳利用和效益。
3. 供应链管理:线性规划可以用于优化供应链中的库存管理、运输计划和物流调配,以降低成本并提高响应速度。
4. 金融投资:线性规划可以用于投资组合优化,以确定最佳的资产配置,以及风险控制和收益最大化。
几类线性规划问题的解法分析
线性规划问题经常出现在高考数学试题中.此类问题通常会要求同学们从实际问题中抽象出二元一次不等式,在了解二元一次不等式的几何意义的基础上,画出二元一次不等式组所表示的平面区域,并求出最优解.但问题中的目标函数经常会有所变化,常见的形式有直线型、分式型、平方型,且解法各不相同.下面结合实例,谈一谈三类线性规划问题的解法.一、直线型目标函数直线型的目标函数一般形如z =ax +by (ab ≠0),这类问题通常要求根据二元一次不等式组,求目标函数z =ax +by (ab ≠0)的最值.求解此类线性规划问题,一般需将函数z =ax +by 转化为直线的斜截式方程:y =-a b x +z b,根据二元一次不等式组画出可行域后,在可行域内讨论直线的截距zb的最值.通过求直线的截距zb的最值来间接求出z 的最值.例1.设x ,y 满足ìíîïïx -y ≥0,x +y -2≤0,y ≥-2,则z =2x +y 的最大值为.解:画出ìíîïïx -y ≥0,x +y -2≤0,y ≥-2,表示的可行域,如图1中的阴影部分所示,由{x +y -2≤0,y ≥-2,可得{x =4,y =-2,平移直线y =-2x +z ,可知当直线y =-2x +z 经过点()4,-2时,该直线在纵轴上的截距最大,即在()4,-2点处,z 取大值,可得z max =2×4-2=6.由于直线的截距有正有负,所以取最值的情形有所不同.当b >0时,截距zb取最大值,此时z 也取最大值,当截距zb 取最小值时,z 也取最小值;当b <0时,截距z b 取最大值,此时z 取最小值,当截距z b取最小值时,z 取最大值.图1图2例2.某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5kg ,其中动物饲料不能少于谷物饲料的15.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅能保证供应谷物饲料50000kg ,问怎样混合饲料,才使成本最低.解:设每周需用谷物饲料x kg,动物饲料y kg,每周总的饲料费用为z 元,由题意可得ìíîïïïïx +y ≥35000,y ≥15x ,0≤x ≤50000,y ≥0,则z =0.28x +0.9y ,作出以上不等式组所表示的平面区域,如图2中阴影部分所示,联立x +y =35000和y =15x ,可得x =875003,y =175003,则A (875003,175003),作一组平行直线y =-2890+10z9(即图2中虚线),当直线经过可行域内的点A (875003,175003)时,直线的纵截距最小,此时z 最小.故当x =875003,y =175003时,即将谷物饲料和动物饲料按5:1的比例混合时,成本最低.本题是一道实际应用问题.解答此类线性规划问题,需首先仔细读题,根据题意设出变量,建立关于变量的不等关系式以及目标函数.而本题中的目标函数为直线型,所以需将其转化为直线的截距式,在可行域内寻找直线的截距取最小值时的点,即可解题.一般地,线性目标函数的最优解一般会在可行域的顶点或边界处取得,我们可以重点研究可行域的顶点或边界上的点.二、分式型目标函数分式型目标函数一般形如z =y -bx -a.求解此类线性规划问题,需根据目标函数的几何意义:已知点(a ,b )与可行域内的点(x ,y )连线的斜率.当斜率取最大值时,z 取最大值;当斜率取最小值时,z 取最小值.而直线的斜率k =tan a 受倾斜角a 影响:(1)当倾斜角a 为魏上茗43当直线经过点(1,6)时,直线的斜率取得最大值,最大值为6;当直线经过点直线的斜率最小,此时yx取得最小值,最小的取值范围是éëùû95,6,所以本题选A.本题的可行域在第一象限,所以只需讨论直线的范围内的变化情况,可将直线y=zx在可行域内找出直线的倾斜角最大或即斜率取最值时的点,即可解题.图4图5例5.设实数x,y满足ìíîïïx+y-6≥0,x+2y-14≤0,2x+y-10≤0,则x2+y的最小值为____.解:x2+y2表示可行域内的点P(x,y)到原点的距离,作出不等式组表示的平面区域,如图5中的阴影部分所示,过点O作OA垂直于直线x+y-6=0,垂足为A在可行域内),所以原点到直线x+y-6=0的距离,就是点P(x,y)到原点距离的最小值,由点到直线的图3。
数学建模:常见的线性规划问题求解方法
数学建模:常见的线性规划问题求解方法1. 引言在数学建模中,线性规划是一种常见的数学模型。
它通常用于求解优化问题,在多个约束条件下找到使目标函数最大或最小的变量值。
本文将介绍几种常见的线性规划问题求解方法。
2. 单纯形法单纯形法是一种经典且高效的线性规划问题求解方法。
它通过不断移动基变量和非基变量来搜索可行解集,并在每次移动后更新目标函数值,直到达到最优解。
该方法适用于标准形式和松弛法形式的线性规划问题。
2.1 算法步骤1.初始化:确定基变量和非基变量,并计算初始相应坐标。
2.计算检验数:根据当前基变量计算检验数,选取检验数最小的非基变量作为入基变量。
3.计算转角系数:根据入基变量计算转角系数,并选择合适的出基变量。
4.更新表格:进行行列交换操作,更新表格中的各项值。
5.结束条件:重复2-4步骤,直至满足结束条件。
2.2 优缺点优点: - 单纯形法的时间复杂度较低,适用于小规模线性规划问题。
- 可以处理带等式约束和不等式约束的线性规划问题。
缺点: - 在某些情况下,单纯形法会陷入梯度消失或梯度爆炸的情况,导致无法找到最优解。
- 处理大规模问题时,计算量较大且可能需要较长时间。
3. 内点法内点法是另一种常见的线性规划求解方法。
与单纯形法不同,内点法通过在可行域内搜索目标函数的最优解。
它使用迭代过程逼近最优解,直到满足停止条件。
3.1 算法步骤1.初始化:选取一个可行解作为初始点,并选择适当的中心路径参数。
2.计算对偶变量:根据当前迭代点计算对偶变量,并更新目标函数值。
3.迭代过程:根据指定的迭代更新方程,在可行域内搜索目标函数的最优解。
4.结束条件:重复2-3步骤,直至满足结束条件。
3.2 优缺点优点: - 内点法相对于单纯形法可以更快地收敛到最优解。
- 在处理大规模问题时,内点法的计算效率更高。
缺点: - 内点法需要选择适当的中心路径参数,不当的选择可能导致迭代过程较慢。
- 对于某些复杂的线性规划问题,内点法可能无法找到最优解。
线性规划的解法
线性规划的解法线性规划(Linear Programming)是数学优化的一个重要分支,旨在寻求一组最优解,以满足一系列线性约束条件。
在实际问题中,线性规划方法被广泛应用于资源分配、生产调度、运输计划等领域。
本文将介绍线性规划的解法及其应用。
一、线性规划问题的描述与模型建立线性规划问题可以用数学模型来描述,一般表示为:$max\{c^Tx | Ax \leq b, x \geq 0\}$其中,$c$表示目标函数的系数向量,$x$表示决策变量的值向量,$A$和$b$分别表示约束条件的系数矩阵和常数向量。
解决线性规划问题的关键是确定目标函数和约束条件,以及求解最优解的方法。
二、单纯形法(Simplex Method)单纯形法是解决线性规划问题最常用的方法之一,由乔治·丹尼格(George Dantzig)于1947年提出。
该方法基于下面的原理:从一个顶点出发,沿着边界不断移动到相邻的顶点,直到找到目标函数的最大(或最小)值。
具体而言,单纯形法的步骤如下:1. 将线性规划问题转化为标准形式(如果不满足标准形式)。
2. 选择一个初始基本可行解。
3. 判断当前解是否为最优解,若是,则结束;否则,进行下一步。
4. 选择一个进入变量和一个离开变量,即确定下一个顶点。
5. 进行变量的调整,即计算新的基本可行解。
6. 重复3-5步,直到找到最优解。
三、内点法(Interior Point Method)内点法是另一种常用的线性规划求解方法,其优点是能够在多项式时间内找到最优解。
与单纯形法相比,内点法不需要从一个顶点移动到相邻的顶点,而是通过在可行域内搜索,在每次迭代中逐渐接近最优解。
内点法的基本思路是通过寻找原问题的拉格朗日对偶问题的最优解来解决线性规划问题。
它通过引入一个额外的人工变量,将原问题转化为一个等价的凸二次规划问题,并通过迭代的方式逐步逼近最优解。
四、应用举例线性规划方法在各个领域都有广泛的应用。
线性规划的基本概念与解法
优势:线性规划可以帮助企业快速找到最优的生产计划方案,提高生产效率,降低成本, 增加利润。
运输问题
添加项标题
定义:在多个供应点和需求点之间,如何分配有限的资源以达到 最大效益或满足某些特定条件的问题。
06
线性规划的发展趋势与展望
线性规划算法的改进与优化
算法优化:提高求解速度和精度,减少计算量 混合整数规划:将整数条件引入线性规划,解决更复杂的问题 启发式算法:采用启发式策略加速求解,适用于大规模问题 并行计算:利用多核处理器并行计算,提高求解效率
大数据背景下线性规划的应用拓展
线性规划在大数据时代的应用场景 线性规划在数据挖掘和机器学习中的应用 大数据对线性规划算法的挑战和机遇 线性规划在大数据分析中的未来展望
线性规划的数学模型
目标函数:要求最大或最小化 的线性函数
约束条件:决策变量的限制条 件,一般为线性不等式或等式
定义域:决策变量的取值范围
线性规划问题:在满足约束条 件下,求目标函数的最大或最 小值
线性规划的几何意义
线性规划问题可以转化为在可行域内寻找一组最优解 线性规划的目标函数可以表示为可行域上的一组直线 最优解通常位于可行域的顶点或边界上 线性规划问题可以转化为求解一系列线性方程组
人工智能与线性规划的结合展望
人工智能技术在 优化问题中的应 用
线性规划问题在 人工智能领域的 实际应用
人工智能算法与 线性规划算法的 结合方式
未来人工智能与 线性规划结合的 发展趋势和展望
感谢观看
汇报人:XX
初始解的调整:如果初始基本可行解不满足最优性条件,需要进行调整以获得更好的解。
线性规划学习线性规划的解法
线性规划学习线性规划的解法线性规划是一种数学优化方法,用于解决一类特定的最优化问题。
线性规划的主要目标是在给定的线性约束条件下,找到一个线性目标函数的最大值或最小值。
本文将介绍线性规划的基本概念和解法。
Ⅰ. 线性规划的基本概念线性规划问题通常可以表示为以下形式:给定一组线性约束条件和一个线性目标函数,求解目标函数的最大值或最小值。
其中,线性约束条件可以表示为一组形如ax1 + bx2 + … + c ≤ d的不等式,线性目标函数为z = cx1 + dx2 + … + e。
Ⅱ. 线性规划的解法线性规划问题的求解方法有多种,下面将介绍其中两种常用的解法:单纯形法和内点法。
1. 单纯形法单纯形法是一种逐步改进的方法,通过迭代寻找最优解。
具体步骤如下:(1)初始化:将线性规划问题转化为标准型,并找到一个可行基本解。
(2)选择进基变量:从非基变量中选择一个可以增大目标函数值的变量作为进基变量。
(3)选择出基变量:由于选择进基变量而产生的新的解是非可行解,需要选择一个基变量作为出基变量,并进行调整。
(4)迭代:重复进行步骤2和步骤3,直到找到满足条件的最优解。
2. 内点法内点法是一种基于迭代的方法,通过寻找线性规划问题的可行解来逼近最优解。
具体步骤如下:(1)初始化:将线性规划问题转化为标准型,并找到一个可行解。
(2)构造路径方程:引入一个路径参数,并构造路径方程,将线性规划问题转化为一系列等价的非线性问题。
(3)迭代:通过求解路径方程的解,逐步逼近最优解。
Ⅲ. 实例分析下面通过一个实例来说明线性规划问题的解法。
假设有一家制造公司生产两种产品A和B,分别需要通过机器X和机器Y进行加工。
机器X每小时可工作6小时,机器Y每小时可工作4小时。
产品A通过机器X加工需要1小时,产品B需要2小时;产品A通过机器Y加工需要2小时,产品B需要1小时。
产品A的利润为3万元,产品B的利润为2万元。
问该公司如何安排生产,才能使利润最大化?解:首先,设产品A的产量为x,产品B的产量为y,则目标函数为z = 3x + 2y。
三类线性规划问题及其解法
方法集锦线性规划问题是指在线性约束条件下求线性目标函数的最大值或最小值问题,重点考查同学们的建模、运算、分析能力.本文主要探讨三种不同类型目标函数的线性规划问题及其解法.一、z =ax +by 型若目标函数为z =ax +by 型(直线型),我们一般需先将目标函数变形为:y =-a b x +zb,通过求直线的截距的最值间接求出z 的最值,这样便将求目标函数最值问题转化为求直线的截距的最值.①若b >0,当y =-a b x +z b截距最大时z 最小,当截距最小时z 最大;若b <0,当y =-a b x +zb截距最大时z 最大,当截距最小时z 最小.例1.已知x ,y 满足约束条件ìíîïïïï2x +y ≤40,x +2y ≤50,x ≥0,y ≥0,则z =3x +2y 的最大值为_____.解:将z =3x +2y 变形为y =-32x +z2.作出如图1所示的可行域,由图可知当y =-32x +z 2过点A 时,直线的截距最大,则{2x +y =40,x +2y =50,解得ìíîx =10,y =20,此时z max =70.在画出可行域后,我们通过观察图形便能很快确定当直线经过A 点时y =-32x +z2的截距最大,此时z 最大,解方程组便可求得z 的最值.图1图2图3二、z =y -bx -a型对于目标函数为z =y -bx -a (斜率型)的线性规划问题,我们一般要依据y -bx -a的几何意义来求解.首先,根据线性约束条件画出可行域,将z 看作是可行域内的动点P (x ,y )与定点A (a ,b )连线的斜率,求得斜率的最值便可求出z 的最值.例2.已知x ,y 满足约束条件ìíîïïx -y +1≤0,x >0,x ≤1,求z =yx的最大值.解析:该目标函数为斜率型,可将z 看作是可行域内的动点P (x ,y )与原点连线的斜率,求出斜率的最值即可.解:作出如图2所示的可行域,将z =yx变形为z =y -0x -0,可将z 看作可行域内任意一点P (x ,y )与原点的连线的斜率.由图2可知当直线过交点A 时,PO 的斜率最大,{x -y +1=0,x =1,解得ìíîx =1,y =2,所以z max =2.三、z =(x -a )2+(y -b )2型当遇到目标函数为z =(x -a )2+(y -b )2(距离型)的线性规划问题时,我们可以把z 看作可行域内动点P (x ,y )与定点A (a ,b )的距离的平方,结合可行域找到最值点,利用两点间的距离公式便能求出z 的最值.例3.已知x ,y 满足约束条件ìíîïïx -y +1≤0,2x -y -2≤0,x ≥1,则z =x 2+y 2的最小值为_____.解析:该目标函数为距离型,可将z 看作是可行域内任意一点P (x ,y )到原点的距离的平方,求得PO 两点间距离的最小值,便可求得z 的最小值.解:将z =x 2+y 2变形为z =(x -0)2+(y -0)2,作出如图3所示的可行域,由图可知点A 到原点的距离最小,{x -y +1=0,x =1,解得ìíîx =1,y =2,所以z min =5.可见,解答线性规划类问题的基本思路是,(1)根据线性约束条件画出可行域;(2)将目标函数变形为直线型、斜率型、距离型;(3)在可行域内移动直线、点,找出最值点;(4)联立交点处的直线方程,求出最值点的坐标;(5)将点的坐标代入目标函数中求得最值.(作者单位:中国烟台赫尔曼·格迈纳尔中学)44。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单线性规划
例1:设y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+--≥-≥36
34123443y x y x y x (1)求目标函数y x z 32+=的最小值与最大值
(2)求目标函数2434-+-=y x z 的最小值与最大值
练习:设变量,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩
,
(1)求2z x y =+的最大值和最小值.
(2)求610z x y =+的最大值和最小值.
例2.设,,x y z 满足约束条件组13201
01
x y z y z x y ++=⎧⎪+≥⎪⎨≤≤⎪⎪≤≤⎩,求264u x y z =++的最大值和最小值.
例3(参考).已知,x y 满足不等式组230236035150x y x y x y -->⎧⎪+-<⎨⎪--<⎩
,求使x y +取最大值的整数,x y .
解:不等式组的解集为三直线1l :230x y --=,2l :2360x y +-=,3l :35150x y --=所围成的三角形内部(不含边界),设1l 与2l ,1l 与3l ,2l 与3l 交点分别为,,A B C ,则,,A B C
坐标分别为153(,)84A ,(0,3)B -,7512(,)1919
C -, 作一组平行线l :x y t +=平行于0l :0x y +=,
当l 往0l 右上方移动时,t 随之增大,
∴当l 过C 点时x y +最大为6319
,但不是整数解, 又由75019
x <<知x 可取1,2,3, 当1x =时,代入原不等式组得2y =-, ∴1x y +=-;
当2x =时,得0y =或1-, ∴2x y +=或1;
当3x =时,1y =-, ∴2x y +=,
故x y +的最大整数解为20x y =⎧⎨=⎩或31x y =⎧⎨=-⎩. 说明:最优整数解常有两种处理方法,一种是通过打出网格求整点,关键是作图要准确;另一种是本题采用的方法,先确定区域内点的横坐标范围,确定x 的所有整数值,再代回原不等式组,得出y 的一元一次不等式组,再确定y 的所有相应整数值,即先固定x ,再用x 制约y .
A
C x y O 1l 3l 2l
线性规划问题中目标函数常见类型梳理
一 基本类型——直线的截距型(或截距的相反数)
例1.已知实数x 、y 满足约束条件0503x y x y x +≥⎧⎪-+≥⎨⎪≤⎩
,则24z x y =+的最小值为( )
A .5
B .-6
C .10
D .-10
二 直线的斜率型
例2.已知实数x 、y 满足不等式组2240
x y x ⎧+≤⎨≥⎩,求函数31y z x +=+的值域.
三 平面内两点间的距离型(或距离的平方型)
例 3. 已知实数x 、y 满足10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩
,则22448w x y x y =+--+的最值为
___________.
四 点到直线的距离型
例4.已知实数x 、y 满足22
21,42x y u x y x y +≥=++-求的最小值。
同步训练:已知实数x 、y 满足220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩
,则目标函数22z x y =+的最大值是____。
五 变换问题研究目标函数
例5.已知⎪⎩
⎪⎨⎧≥≤+≥a x y x x y 2,且y x z +=2的最大值是最小值的3倍,则a 等于( ) A .31或3 B .31 C .52或2 D .5
2。