线性规划及其解法
线性规划问题的解法
线性规划问题的解法线性规划(Linear Programming,LP)是一种数学优化方法,用于求解线性约束条件下的最大化或最小化目标函数的问题。
线性规划问题在经济学、管理学、工程学等领域都具有广泛的应用,其求解方法也十分成熟。
本文将介绍线性规划问题的常用解法,包括单纯形法和内点法。
一、单纯形法单纯形法是解决线性规划问题最常用的方法之一。
它通过在可行解空间中不断移动,直到找到目标函数的最优解。
单纯形法的基本步骤如下:1. 标准化问题:将线性规划问题转化为标准形式,即将目标函数转化为最小化形式,所有约束条件均为等式形式,且变量的取值范围为非负数。
2. 初始可行解:选择一个初始可行解,可以通过人工选取或者其他启发式算法得到。
3. 进行迭代:通过不断移动至更优解来逼近最优解。
首先选择一个非基变量进行入基操作,然后选取一个基变量进行出基操作,使目标函数值更小。
通过迭代进行入基和出基操作,直到无法找到更优解为止。
4. 结束条件:判断迭代是否结束,即目标函数是否达到最小值或最大值,以及约束条件是否满足。
单纯形法的优点是易于理解和实现,而且在实际应用中通常具有较好的性能。
但是,对于某些问题,单纯形法可能会陷入循环或者运算效率较低。
二、内点法内点法是一种相对较新的线性规划求解方法,它通过在可行解空间的内部搜索来逼近最优解。
与单纯形法相比,内点法具有更好的数值稳定性和运算效率。
内点法的基本思想是通过将问题转化为求解一系列等价的非线性方程组来求解最优解。
首先,将线性规划问题转化为等价的非线性优化问题,然后通过迭代求解非线性方程组。
每次迭代时,内点法通过在可行解空间的内部搜索来逼近最优解,直到找到满足停止条件的解。
内点法的优点是在计算过程中不需要基变量和非基变量的切换,因此可以避免单纯形法中可能出现的循环问题。
此外,内点法还可以求解非线性约束条件下的最优解,具有更广泛的适用性。
三、其他方法除了单纯形法和内点法,还有一些其他的线性规划求解方法,如对偶方法、割平面法等。
线性规划的应用与求解方法
线性规划的应用与求解方法线性规划是数学中一种重要的优化方法,被广泛应用于各个领域,如经济学、管理学、工程学等。
它可以帮助我们在给定的约束条件下,找到最优解,使得目标函数取得最大值或最小值。
本文将介绍线性规划的应用领域以及常用的求解方法。
一、线性规划的应用领域1. 生产与资源分配线性规划可以帮助企业合理安排生产资源,优化生产效率。
例如,一个工厂需要决定如何分配有限的人力、物力和财力,以满足最大产出或最小成本的要求。
线性规划可以帮助企业找到最佳的资源分配方案,提高生产效率。
2. 项目排程与调度线性规划可以用于项目排程与调度问题,帮助规划员安排项目的开始时间、结束时间和资源分配。
例如,在建设一个大型工程项目时,需要考虑多个任务的依赖关系、资源限制和时间限制,线性规划可以帮助规划员合理安排项目进度,最大程度地利用资源。
3. 物流与运输线性规划可以用于优化物流与运输问题。
例如,一个配送中心需要决定如何将货物从不同供应商配送到不同的客户,以最小化运输成本。
线性规划可以帮助物流公司找到最佳的配送路线和运输方案,提高运输效率。
4. 投资与资产配置线性规划可以用于优化投资与资产配置问题。
例如,一个投资者希望在多个资产中进行配置,以最大化收益或最小化风险。
线性规划可以帮助投资者找到最佳的资产配置方案,提高投资收益率。
二、线性规划的求解方法1. 图形法图形法是线性规划最直观的求解方法之一。
它通过绘制目标函数和约束条件所对应的直线或曲线,找到使目标函数取得最大(小)值的交点。
但是,图形法只适用于二维线性规划问题,对于多维问题并不适用。
2. 单纯形法单纯形法是线性规划最常用的求解方法之一。
它通过迭代的方式,在可行域内搜索有效解。
单纯形法首先找到一个基础解,并在每一步中通过改进的方式找到更优的基础解,直到找到最优解为止。
单纯形法可以求解多维线性规划问题,并且具有较高的效率。
3. 对偶理论对偶理论是线性规划的重要理论基础。
它将线性规划问题转化为对偶问题,并通过对偶问题的求解来获得原问题的最优解。
线性规划的定义及解题方法
线性规划的定义及解题方法线性规划是一种数学建模技术,旨在解决在约束条件下,寻求最优解的问题。
它的实际应用十分广泛,例如管理学、经济学、物流学等领域。
线性规划可以分为单目标和多目标两种,但其中比较常见的是单目标线性规划。
本文将从线性规划的定义、模型建立、求解方法等方面阐述其原理与应用。
一、线性规划的定义线性规划的定义是:在有限约束条件下,目标函数为线性的最优化问题。
它通过数学模型的建立,将涉及到的变量、约束条件与目标函数转化为线性等式或不等式的形式,从而寻找最优解。
通常,线性规划的目标是最大化或最小化某个变量,可以用以下的形式去表示:$$Z=C_1X_1+C_2X_2+……+C_nX_n $$其中,$Z$为目标函数值,$X_1, X_2,……,X_n$为待求变量,$C_1, C_2,……,C_n$为相应的系数。
在线性规划中,会涉及到许多变量,这些变量需要受到一些限制。
这些限制可以用不等式或等式来表示,这些方程式被称为约束条件。
例如:$$A_1X_1+A_2X_2+……+A_nX_n≤B$$$$X_i≥0, i=1,2,……, n $$这两个方程就代表了一些约束条件,例如目标函数系数的和不能超过某个值,若$X_i$为生产的产品数量,则需保证产量不能小于零等。
这些约束条件用于限制变量的取值范围,而目标函数则用于求解最优解。
二、线性规划的模型建立在建立线性规划模型时,需要考虑几个要素:1. 决策变量:它是模型求解的关键。
决策变量是指在模型中未知的数量,也就是需要我们寻找最优解的那些变量。
2. 目标函数:确定目标函数,既要知道最大化还是最小化,还要知道哪些变量是影响目标函数的。
3. 约束条件:约束条件通常是一组等式或不等式,代表问题的限制。
例如在一个工厂中最大的生产量、原材料的数量限制、人工的数量等等,这些都是约束条件。
4. 模型的参数:模型参数是指约束条件的系数和模型中的常数。
它们是从现实问题中提取出来的,由于模型的解法通常是数学的,因此需要具体的数值。
线性规划常见题型及解法 均值不等式(含答案)
线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。
通常代特殊点(0,0)。
(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。
线性规划常见题型及解法例析
品有直接限 制 因 素 的 是 资 金 和 劳 动 力,通 过 调 查,得
到这两种产品的有关数据如表 2.
资金
成本
劳动力(工资)
单位利润
单位产品所需资金/百元
月资金供应
电子琴(架) 洗衣机(台)
量/百元
30
20
6
8
5
10
300
110
试问:怎 样 确 定 这 两 种 产 品 的 月 供 应 量,才 能 使
故选:
B.
思路与方法:本 题 运 用 数 形 结 合 思 想,采 用 了 图
组作 出 可 行 域,如 图 3 所 示 .
由
图 3 可 知,△ABC 的 面 积 即 为
所求 .
易得
S梯 形OMBC =
1
×(
2+3)×2=5,
2
图3
1
S梯 形OMAC = × (
1+3)×2=4.
2
所以 S△ABC =S梯 形OMBC -S梯 形OMAC =5-4=1.
思路与方法:本 题 中 的 可 行 域 是 三 角 形,而 这 个
不规则的三角形面积很 难 直 接 求 解,于 是 将 它 看 作 梯
解法求最值,先 在 平 面 直 角 坐 标 系 中 画 出 可 行 域,然
形 OMBC 的一部 分,利 用 梯 形 OMBC 与 梯 形 OMAC
后平行移动直线 z=3x+4y 即可求出最大值 .
ï
,
且当
b≥0
b为
íy≥0, 时,恒有ax+by≤1,求以a,
ï
îx+y≤1
坐标的点 P (
a,
b)所构成的平面区域的面积 .
解析:设 z=ax +by,根 据 题 意 可 知,想 要 ax +
线性规划的解法
线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。
在现实生活中,许多问题都可以用线性规划求解。
如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。
线性规划的解法有多种,下面我们就来对其进行详细的介绍。
1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。
单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。
单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。
2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。
这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。
对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。
3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。
内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。
内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。
4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。
这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。
总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。
希望本文能够对您有所帮助。
线性规划原理与解法
c1 b1 a1,m 1 xm 1 a1,m 2 xm 2 ... a1n xn
z c1b1 c2b ... cmbm
cm1 ci ai,m1
i 1
m
cm 1 c1a1, m 1 c2 a2, m 1 ... cm am , m 1 xm 1 c c a i i ,m 2 m 2
i 1
对增广矩阵 作初等行变换 将基变为单位阵
1 0 0
x2 0 ... 0 a1, m 1 ... a1n b : 1 1 ... 0 a2, m 1 ... a2 n b xm 2 ...... x : m 1 bm 0 ... 1 am, m 1 ... amn : x n
第一节 线性规划求解原理
5)若约束条件为“≥”,“≤”和“=”的混合性, 则综合应用以上方法,确定初始基。
max z 3 x1 4 x2 例: x1 2 x2 ≤8 4 x ≤16 1 s.t. 4 x2 ≤12 x1 , x2≥0 max z 3x1 4 x2 0 x3 0 x4 0 x5 =8 x1 2 x2 x3 4 x x4 =16 1 s.t. x5 12 4 x2 x1 , x2 , x3 , x4 , x5≥0
xi bi
j m 1
a x (i 1, 2,..., m)
ij j
n
x1 b1 a1,m1 xm1 a1,m2 xm2 ... a1n xn x2 b2 a2,m1 xm1 a2,m2 xm2 ... a2 n xn ...... xm bm am,m1 xm1 am,m 2 xm 2 ... amn xn
线性规划问题的解法与最优解分析
线性规划问题的解法与最优解分析线性规划是一种数学建模方法,用于解决最优化问题。
它在工程、经济学、管理学等领域有着广泛的应用。
本文将介绍线性规划问题的解法和最优解分析。
一、线性规划问题的定义线性规划问题是指在一定的约束条件下,求解一个线性目标函数的最大值或最小值的问题。
线性规划问题的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject toa₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数中的系数,a₁₁,a₁₂, ..., aₙₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件中的常数,x₁,x₂, ..., xₙ为决策变量。
二、线性规划问题的解法线性规划问题的解法主要有两种:图形法和单纯形法。
1. 图形法图形法适用于二维或三维的线性规划问题。
它通过绘制约束条件的直线或平面以及目标函数的等高线或等高面,来确定最优解。
首先,将约束条件转化为不等式,并将其绘制在坐标系上。
然后,确定目标函数的等高线或等高面,并绘制在坐标系上。
最后,通过观察等高线或等高面与约束条件的交点,找到最优解。
图形法简单直观,但只适用于低维的线性规划问题。
2. 单纯形法单纯形法是一种迭代的求解方法,适用于高维的线性规划问题。
它通过在可行域内不断移动,直到找到最优解。
单纯形法的基本思想是从初始可行解开始,每次通过找到一个更优的可行解来逼近最优解。
它通过选择一个基本变量和非基本变量,来构造一个新的可行解。
然后,通过计算目标函数的值来判断是否找到了最优解。
如果没有找到最优解,则继续迭代,直到找到最优解为止。
单纯形法是一种高效的求解线性规划问题的方法,但对于大规模的问题,计算量会很大。
高考数学线性规划常见题型及解法[1]
高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。
现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。
可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。
二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。
数学公式知识:线性规划的基本概念与解法
数学公式知识:线性规划的基本概念与解法线性规划是一种数学优化方法,它的目的是在一组线性约束条件下,最大化或最小化一个线性目标函数。
基本概念
1.线性函数
线性函数是指满足以下两个条件的函数:(1)任意两个自变量的加权和的值,等于这两个自变量各自代入函数后的加权和的值;(2)函数的系数是定值。
2.线性规划模型
线性规划模型是由线性约束条件和线性目标函数组成的模型。
线性约束条件包括不等式约束条件和等式约束条件。
线性目标函数表示需要优化的目标。
3.线性规划问题
线性规划问题是指在一组线性约束条件下,求解线性目标函数的最大值或最小值。
4.线性规划的基本形式
线性规划的基本形式是将问题转化为以下形式:最大化cT x (或最小化cT x),使得Ax≤b,x≥0,其中c、x和b都是向量,A是一个矩阵。
解法
线性规划的解法分为两种:图形法和单纯性法。
1.图形法
图形法是一种直观的方法,它使用二维或三维图形表示变量的取值范围,并在此基础上确定最优解。
2.单纯性法
单纯性法是一种基于矩阵运算的高效解法。
它通过不断地迭代,减少约束条件的个数,并在此过程中找到最优解。
线性规划在实际应用中具有广泛的应用,例如,生产成本优化、库存管理、交通运输规划等。
它是一种非常有用的工具,可以帮助管理者更有效地制定决策方案。
线性规划问题的解法与应用
线性规划问题的解法与应用线性规划是一种数学工具,被广泛应用于各个行业,例如生产、物流、财务等。
其基本思想是在各种限制条件下,求出某些目标的最优解,被称之为线性规划问题。
解决线性规划问题的方法有很多种,包括普通单纯性法、双纯性法、内点法等。
本文将简要介绍一些解决线性规划问题的方法,并探讨其应用。
一、普通单纯性法在解决线性规划问题时,大多数情况下会采用普通单纯性法。
普通单纯性法是通过对线性规划问题进行简化,来寻找一个最优解的算法。
具体而言,普通单纯性法是基于线性规划的一个关键特性实现的:也就是说,一个线性规划的可行解有一个凸的区域,而这个区域的顶点就是这个线性规划问题的最优解。
因此,普通单纯性法通过不断地沿着顶点移动来查找最优解。
普通单纯性法的优点在于算法复杂度较低,适用于许多简单的线性规划问题。
然而,由于它的原理,普通单纯性法可能会在特定情况下变得相当低效,因此我们将考虑其他方法。
二、双纯性法双纯性法是一种更复杂但最终更有效的线性规划解法。
与普通单纯性法不同的是,双纯性法以两个方法的组合方式来寻找最优解。
首先,与普通单纯性法一样,它通过着眼于最优解所在的多维坐标系的顶点来寻找最优解。
然后,它采用对迭代过程进行精细检查来确保它没有跨过最优解。
双纯性法比普通单纯性法更准确,因为它在每一步操作时都会重新确定一个可行解的凸区域,而不是只沿着现有凸区域的边界线来确定最优解。
尽管双纯性法比普通单纯性法更复杂,但在大多数情况下,它可以在更短的时间内发现最优解。
三、内点法相比之下,内点法是一种数学计算质量不错的算法,它不依赖于这个可行域的顶点。
相反,内点法使用了每个可行域内部的点,即“内点”,来寻找目标函数的最优解。
具体地说,它会构建一个搜索方向,然后在可行域的内部沿着这个方向探索最优解。
这个方法非常适用于那些具有较大维度和复杂约束条件的线性规划问题。
除此之外,值得一提的是,在线性规划的解决过程中,其中一个非常重要的问题是约束条件的表示。
线性规划模型的求解方法
线性规划模型的求解方法线性规划是数学中的一个分支,是用来解决优化问题的方法。
一般来说,它适用于那些具有一定限制条件,但是希望达到最优解的问题。
在实际应用中,无论是在工业、商业还是管理等领域,都可以使用线性规划模型来进行求解。
本文将详细介绍线性规划模型的求解方法,包括单纯形算法、内点法和分支定界法。
1、单纯形算法单纯形算法是线性规划求解中最常用的方法,它是基于不等式约束条件的优化算法,主要是通过这些不等式约束来定义一些可行域并寻找最优解。
单纯形算法的基本思路是将约束条件重写为等式,然后再将变量从这些等式中解出来,最后根据这些解来判断是否找到最优解。
举例来说,假设有如下线性规划的问题:$$\begin{aligned}\text { maximize } \quad &60 x_{1}+40 x_{2} \\\text { subject to } \quad &x_{1}+x_{2} \leq 100 \\&2 x_{1}+x_{2} \leq 150 \\&x_{1}+2 x_{2} \leq 120 \\&x_{1}, x_{2} \geq 0\end{aligned}$$我们可以将这些约束条件重写为等式:$$\begin{aligned}x_{3} &=100-x_{1}-x_{2} \\x_{4} &=150-2 x_{1}-x_{2} \\x_{5} &=120-x_{1}-2 x_{2}\end{aligned}$$然后我们可以利用这些等式来解出每个变量的取值,从而得到最优解。
通常情况下,单纯形算法利用较小的限制空间集合来缩小可行的解空间集合,并通过一定的规则,比如说乘子法则来找到最优的解。
2、内点法内点法则是比单纯形算法更快的一个线性规划求解方法,它通过不停地迭代,将可行域中的点从内部向最优解方向移动,从而找到最优解。
在实际应用中,内点法通常能够达到非常高的精确度,而且与单纯型算法相比,它在数值计算方面更加稳定。
线性规划的基本概念与解法
线性规划的基本概念与解法线性规划(Linear Programming,简称LP)是一种运筹学中的数学方法,用于寻找最优解决方案的问题。
它在各个领域中得到广泛应用,包括经济学、管理学、工程学等。
本文将介绍线性规划的基本概念和解法,并探讨其实际应用。
一、基本概念1. 目标函数:线性规划的目标是求解一个线性函数的最大值或最小值。
这个线性函数称为目标函数,通常以z表示。
例如,z=c1x1+c2x2+…+cnxn,其中c1、c2…cn为常数,x1、x2…xn为变量。
2. 约束条件:线性规划的约束条件是一组线性不等式或等式。
通常以Ax≤b或Ax=b的形式表示,其中A为系数矩阵,x为变量向量,b为常数向量。
3. 可行解:满足所有约束条件的解称为可行解。
可行解存在于约束条件所定义的空间中。
4. 最优解:在所有可行解中,目标函数取得最大值或最小值时的解称为最优解。
最优解可以是唯一的,也可以有多个。
二、解法方法1. 图形法:当线性规划问题为二维或三维时,可以利用图形的方法求解。
通过绘制目标函数的等高线或平面与约束条件的交点,找到目标函数的最优解。
2. 单纯形法:单纯形法是一种基于迭代的线性规划求解方法,适用于高维问题。
该方法通过不断改变基变量的取值,寻找使目标函数达到最优值的解。
3. 内点法:内点法是一种与单纯形法相比更为高效的求解线性规划问题的方法。
该方法通过在可行域内部搜索最优解,避免了对可行域的边界进行逐个检验的过程。
三、实际应用线性规划在实际问题中有着广泛的应用。
以下是几个常见的应用领域:1. 生产计划:线性规划可以用于确定生产计划中的最佳生产数量和产品组合,以最大化利润或最小化成本。
2. 资源分配:线性规划可以用于优化资源分配,例如分配有限的人力、物资和资金,以实现最佳利用和效益。
3. 供应链管理:线性规划可以用于优化供应链中的库存管理、运输计划和物流调配,以降低成本并提高响应速度。
4. 金融投资:线性规划可以用于投资组合优化,以确定最佳的资产配置,以及风险控制和收益最大化。
线性规划及其解法
非基变量 σj 为0 是 无穷多最优解
否 存在aik>0 无界解
是
找出主元素,迭代
3.5 单纯形法的灵敏度分析 --目标函数中ck的灵敏度分析
当ck变成ck +△ck 原规划最优解不变的条件是: σj ‘≤0 • 在最终的单纯形表中,xk是非基变量时
σk ‘= ck+△ck- zk= △ck +σk ≤0 即: △ck ≤-σk 例
某单纯形表中,存在着一个大于零的检 验数,但该列中所有系数小于或等于零, 说明存在无界解。
max z x1 x2 x1 x2 1 s.t. 3x1 2 x2 6 x1 , x2 0
无穷多最优解:
对于某个最优的基本可行解,如果存在 某个非基变量的检验数为零,说明有无 穷多最优解。 最优解的线性组合仍是最优解,即 X=αX1+(1-α)X2, 0≤α ≤1 max z 50 x1 50 x2
cj cB x B b x5 2 2 x2 1 x1 4 Z
x1
2
x2
2
x3 x4 x5 x6
1 -1 2a
2 1 -1 1
-1 -2
-a+8
1、把表中缺少的项目填上适当的数或式子 2、要使上表成为最优表,a应满足什么条件 3、何时有唯一最优解 4、何时有无穷多最优解 5、何时以x3替换x1
• 2、2≤a ≤4 • 3、2<a<4 • 4、 2≤a ≤4 a=2或a=4 • 5、1<a<2 • 2/1>4/2a 0<a<2
• 系数矩阵A变化时 非基变量系数变化时,最优解不变 的条件是σk ‘≤0 基变量系数变化时,需重新计算
线性规划问题的基本概念及求解方法
线性规划问题的基本概念及求解方法线性规划是一种优化方法,用于找到一个线性方程的最大或最小值,同时满足一组线性约束条件。
线性规划问题广泛应用于经济、工业、运输、物流等各个领域。
本文将讲述线性规划问题的基本概念和求解方法。
一、线性规划的基本概念线性规划问题可表示为:$\max_{x} z = c^Tx$$\text{s.t.} \qquad Ax \leq b$其中,x表示决策变量,z表示目标函数,c和b为常数系数,A为系数矩阵。
目标函数表示要最大化或最小化的数量,约束条件表示限制决策变量取值的条件。
二、线性规划的求解方法线性规划问题的求解方法有两种,即图形法和单纯形法。
1. 图形法图形法是一种用图形的方式来求解线性规划问题的方法。
它可以用于二元线性规划问题求解,但对于多元线性规划问题,它的应用受到了限制。
对于二元线性规划问题,我们可以将目标函数表示为直线,约束条件表示为线段,然后在可行域内寻找能让目标函数最大或最小的点。
2. 单纯形法单纯形法是一种通过交换决策变量的取值来寻找最优解的方法。
它通过构建初始单纯形表格,逐步利用高斯消元法将问题转化为标准型,然后不断交换基变量和非基变量,直到找到最优解。
单纯形法在求解多元线性规划问题时具有广泛的应用,因为它能够较快地寻找最优解。
但是,它也存在一些问题,例如当问题的维度较高时,算法的计算复杂度会相应增加,计算机的处理能力也会受到限制。
三、线性规划的应用线性规划在各个领域中都有着广泛的应用。
以下是一些典型的应用案例:1. 运输问题运输问题是一种线性规划问题,旨在确定一组产品从生产场所运往销售场所的最优方案。
这种问题通常涉及到对物流成本、物流时间等多种因素的优化。
2. 设备维护问题设备维护问题是一种线性规划问题,旨在通过优化设备的维护策略来最大化设备的使用寿命和效益。
这种问题通常涉及到对机器的使用寿命、维修成本、机器停机时间等多种因素的优化。
3. 生产计划问题生产计划问题是一种线性规划问题,旨在通过对原材料和生产线的安排来优化产品的生产过程。
线性规划的解法
线性规划的解法线性规划(Linear Programming)是数学优化的一个重要分支,旨在寻求一组最优解,以满足一系列线性约束条件。
在实际问题中,线性规划方法被广泛应用于资源分配、生产调度、运输计划等领域。
本文将介绍线性规划的解法及其应用。
一、线性规划问题的描述与模型建立线性规划问题可以用数学模型来描述,一般表示为:$max\{c^Tx | Ax \leq b, x \geq 0\}$其中,$c$表示目标函数的系数向量,$x$表示决策变量的值向量,$A$和$b$分别表示约束条件的系数矩阵和常数向量。
解决线性规划问题的关键是确定目标函数和约束条件,以及求解最优解的方法。
二、单纯形法(Simplex Method)单纯形法是解决线性规划问题最常用的方法之一,由乔治·丹尼格(George Dantzig)于1947年提出。
该方法基于下面的原理:从一个顶点出发,沿着边界不断移动到相邻的顶点,直到找到目标函数的最大(或最小)值。
具体而言,单纯形法的步骤如下:1. 将线性规划问题转化为标准形式(如果不满足标准形式)。
2. 选择一个初始基本可行解。
3. 判断当前解是否为最优解,若是,则结束;否则,进行下一步。
4. 选择一个进入变量和一个离开变量,即确定下一个顶点。
5. 进行变量的调整,即计算新的基本可行解。
6. 重复3-5步,直到找到最优解。
三、内点法(Interior Point Method)内点法是另一种常用的线性规划求解方法,其优点是能够在多项式时间内找到最优解。
与单纯形法相比,内点法不需要从一个顶点移动到相邻的顶点,而是通过在可行域内搜索,在每次迭代中逐渐接近最优解。
内点法的基本思路是通过寻找原问题的拉格朗日对偶问题的最优解来解决线性规划问题。
它通过引入一个额外的人工变量,将原问题转化为一个等价的凸二次规划问题,并通过迭代的方式逐步逼近最优解。
四、应用举例线性规划方法在各个领域都有广泛的应用。
线性规划的基本概念与形解法
线性规划的基本概念与形解法线性规划(Linear Programming)是运筹学中一种重要的数学方法,用于解决一类特定的优化问题。
它的基本思想是在一组线性约束条件下,找到一个目标函数值最优的决策变量取值。
一、线性规划的基本概念1. 目标函数与约束条件线性规划的目标是要最大化或最小化一个线性函数,称为目标函数。
同时,还存在一组线性等式或线性不等式的约束条件,这些约束条件限制了决策变量的取值范围。
2. 决策变量与决策向量决策变量是指我们需要做出决策的量,它们的具体取值将会影响目标函数的结果。
通常用x1, x2, ..., xn表示决策变量,构成一个决策向量x。
3. 线性约束条件与可行解集线性约束条件是对决策变量的约束,通常表示为一组线性等式或不等式。
所有满足线性约束条件的决策向量构成了可行解集。
4. 最优解与最优值线性规划的最优解是指在满足约束条件的前提下,使目标函数达到最大值或最小值的决策向量。
最优值则是目标函数在最优解处的取值。
二、线性规划的形解法1. 图解法对于二维或三维的线性规划问题,可以通过绘制约束条件的图形来解决。
首先将目标函数用等值线或平面表示出来,然后确定可行解集的范围,在可行解集内寻找目标函数的最优解。
2. 单纯形法单纯形法是一种常用的求解线性规划问题的方法。
它通过在可行解空间内移动顶点来逐步逼近最优解。
单纯形法的基本步骤包括初始化、构造初始单纯形表、选取离基变量和入基变量、计算新的单纯形表等。
3. 对偶理论线性规划的对偶理论是一种与原问题相对应的新问题。
通过对原问题的约束条件进行转置,构建对偶问题,并通过对偶问题的求解求得原问题的最优解。
对偶理论在某些情况下可以更快地找到最优解。
4. 整数线性规划整数线性规划是线性规划的一种扩展形式,它要求决策变量为整数。
由于整数约束的引入,整数线性规划一般比普通线性规划更加困难,求解方法也更加复杂,常用的方法包括分支定界法和割平面法等。
三、线性规划的应用领域线性规划广泛应用于各个领域,包括生产计划、资源分配、供应链管理、投资组合、运输调度等。
线性规划的基本概念与解法
优势:线性规划可以帮助企业快速找到最优的生产计划方案,提高生产效率,降低成本, 增加利润。
运输问题
添加项标题
定义:在多个供应点和需求点之间,如何分配有限的资源以达到 最大效益或满足某些特定条件的问题。
06
线性规划的发展趋势与展望
线性规划算法的改进与优化
算法优化:提高求解速度和精度,减少计算量 混合整数规划:将整数条件引入线性规划,解决更复杂的问题 启发式算法:采用启发式策略加速求解,适用于大规模问题 并行计算:利用多核处理器并行计算,提高求解效率
大数据背景下线性规划的应用拓展
线性规划在大数据时代的应用场景 线性规划在数据挖掘和机器学习中的应用 大数据对线性规划算法的挑战和机遇 线性规划在大数据分析中的未来展望
线性规划的数学模型
目标函数:要求最大或最小化 的线性函数
约束条件:决策变量的限制条 件,一般为线性不等式或等式
定义域:决策变量的取值范围
线性规划问题:在满足约束条 件下,求目标函数的最大或最 小值
线性规划的几何意义
线性规划问题可以转化为在可行域内寻找一组最优解 线性规划的目标函数可以表示为可行域上的一组直线 最优解通常位于可行域的顶点或边界上 线性规划问题可以转化为求解一系列线性方程组
人工智能与线性规划的结合展望
人工智能技术在 优化问题中的应 用
线性规划问题在 人工智能领域的 实际应用
人工智能算法与 线性规划算法的 结合方式
未来人工智能与 线性规划结合的 发展趋势和展望
感谢观看
汇报人:XX
初始解的调整:如果初始基本可行解不满足最优性条件,需要进行调整以获得更好的解。
线性规划学习线性规划的解法
线性规划学习线性规划的解法线性规划是一种数学优化方法,用于解决一类特定的最优化问题。
线性规划的主要目标是在给定的线性约束条件下,找到一个线性目标函数的最大值或最小值。
本文将介绍线性规划的基本概念和解法。
Ⅰ. 线性规划的基本概念线性规划问题通常可以表示为以下形式:给定一组线性约束条件和一个线性目标函数,求解目标函数的最大值或最小值。
其中,线性约束条件可以表示为一组形如ax1 + bx2 + … + c ≤ d的不等式,线性目标函数为z = cx1 + dx2 + … + e。
Ⅱ. 线性规划的解法线性规划问题的求解方法有多种,下面将介绍其中两种常用的解法:单纯形法和内点法。
1. 单纯形法单纯形法是一种逐步改进的方法,通过迭代寻找最优解。
具体步骤如下:(1)初始化:将线性规划问题转化为标准型,并找到一个可行基本解。
(2)选择进基变量:从非基变量中选择一个可以增大目标函数值的变量作为进基变量。
(3)选择出基变量:由于选择进基变量而产生的新的解是非可行解,需要选择一个基变量作为出基变量,并进行调整。
(4)迭代:重复进行步骤2和步骤3,直到找到满足条件的最优解。
2. 内点法内点法是一种基于迭代的方法,通过寻找线性规划问题的可行解来逼近最优解。
具体步骤如下:(1)初始化:将线性规划问题转化为标准型,并找到一个可行解。
(2)构造路径方程:引入一个路径参数,并构造路径方程,将线性规划问题转化为一系列等价的非线性问题。
(3)迭代:通过求解路径方程的解,逐步逼近最优解。
Ⅲ. 实例分析下面通过一个实例来说明线性规划问题的解法。
假设有一家制造公司生产两种产品A和B,分别需要通过机器X和机器Y进行加工。
机器X每小时可工作6小时,机器Y每小时可工作4小时。
产品A通过机器X加工需要1小时,产品B需要2小时;产品A通过机器Y加工需要2小时,产品B需要1小时。
产品A的利润为3万元,产品B的利润为2万元。
问该公司如何安排生产,才能使利润最大化?解:首先,设产品A的产量为x,产品B的产量为y,则目标函数为z = 3x + 2y。
三类线性规划问题及其解法
方法集锦线性规划问题是指在线性约束条件下求线性目标函数的最大值或最小值问题,重点考查同学们的建模、运算、分析能力.本文主要探讨三种不同类型目标函数的线性规划问题及其解法.一、z =ax +by 型若目标函数为z =ax +by 型(直线型),我们一般需先将目标函数变形为:y =-a b x +zb,通过求直线的截距的最值间接求出z 的最值,这样便将求目标函数最值问题转化为求直线的截距的最值.①若b >0,当y =-a b x +z b截距最大时z 最小,当截距最小时z 最大;若b <0,当y =-a b x +zb截距最大时z 最大,当截距最小时z 最小.例1.已知x ,y 满足约束条件ìíîïïïï2x +y ≤40,x +2y ≤50,x ≥0,y ≥0,则z =3x +2y 的最大值为_____.解:将z =3x +2y 变形为y =-32x +z2.作出如图1所示的可行域,由图可知当y =-32x +z 2过点A 时,直线的截距最大,则{2x +y =40,x +2y =50,解得ìíîx =10,y =20,此时z max =70.在画出可行域后,我们通过观察图形便能很快确定当直线经过A 点时y =-32x +z2的截距最大,此时z 最大,解方程组便可求得z 的最值.图1图2图3二、z =y -bx -a型对于目标函数为z =y -bx -a (斜率型)的线性规划问题,我们一般要依据y -bx -a的几何意义来求解.首先,根据线性约束条件画出可行域,将z 看作是可行域内的动点P (x ,y )与定点A (a ,b )连线的斜率,求得斜率的最值便可求出z 的最值.例2.已知x ,y 满足约束条件ìíîïïx -y +1≤0,x >0,x ≤1,求z =yx的最大值.解析:该目标函数为斜率型,可将z 看作是可行域内的动点P (x ,y )与原点连线的斜率,求出斜率的最值即可.解:作出如图2所示的可行域,将z =yx变形为z =y -0x -0,可将z 看作可行域内任意一点P (x ,y )与原点的连线的斜率.由图2可知当直线过交点A 时,PO 的斜率最大,{x -y +1=0,x =1,解得ìíîx =1,y =2,所以z max =2.三、z =(x -a )2+(y -b )2型当遇到目标函数为z =(x -a )2+(y -b )2(距离型)的线性规划问题时,我们可以把z 看作可行域内动点P (x ,y )与定点A (a ,b )的距离的平方,结合可行域找到最值点,利用两点间的距离公式便能求出z 的最值.例3.已知x ,y 满足约束条件ìíîïïx -y +1≤0,2x -y -2≤0,x ≥1,则z =x 2+y 2的最小值为_____.解析:该目标函数为距离型,可将z 看作是可行域内任意一点P (x ,y )到原点的距离的平方,求得PO 两点间距离的最小值,便可求得z 的最小值.解:将z =x 2+y 2变形为z =(x -0)2+(y -0)2,作出如图3所示的可行域,由图可知点A 到原点的距离最小,{x -y +1=0,x =1,解得ìíîx =1,y =2,所以z min =5.可见,解答线性规划类问题的基本思路是,(1)根据线性约束条件画出可行域;(2)将目标函数变形为直线型、斜率型、距离型;(3)在可行域内移动直线、点,找出最值点;(4)联立交点处的直线方程,求出最值点的坐标;(5)将点的坐标代入目标函数中求得最值.(作者单位:中国烟台赫尔曼·格迈纳尔中学)44。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cj cB x B b x5 2 2 x2 1 x1 4 Z
x1
2
x2
2
x3 x4 x5 x6
1 -1 2a
2 1 -1 1
-1 -2
-a+8
1、把表中缺少的项目填上适当的数或式子 2、要使上表成为最优表,a应满足什么条件 3、何时有唯一最优解 4、何时有无穷多最优解 5、何时以x3替换x1
• 2、2≤a ≤4 • 3、2<a<4 • 4、 2≤a ≤4 a=2或a=4 • 5、1<a<2 • 2/1>4/2a 0<a<2
• 系数矩阵A变化时 非基变量系数变化时,最优解不变 的条件是σk ‘≤0 基变量系数变化时,需重新计算
软件中如何识别无穷多最优解情况P112
• 如果在最终表上检验数为零的非基 变量是松弛变量或剩余变量: 计算机输出的约束条件栏中有一个 约束条件的松弛变量或剩余变量为 零,且其对偶价格也为零,表明有 无穷多最优解。
在所有检验数大于零的非基变量中,选一个下标 最小的作为入基变量。 在存在两个或两个以上最小比值时,选一个下标 最小的基变量作为出基变量。
引入松弛变量、人工变量 列出初始单纯形表
小结
计算非基变量各列检验数σj 否 否 唯一最优解
所有 σj≤0? 否 找出最大正σk
是
基变量中 有人工变量? 是 是 无可行解
第三步:基变换
确定入基变量
若σj> 0,对应的变量xj就可作为入其 变量,当有一个以上检验数大于零时, 从中找出最大的一个。σk=max{σj|σj> 0} 。 确定出基变量 bi bl xl称为出基变量 min | aik 0 aik alk alk称为主元素
50 x1 1 0 0
100 x2 0 0 1
0 x3 1 -2 0
0 x4 0 1 0
0 x5 -1 1 1
zj
σj =cj-zj
50
0Leabharlann 100050
-50
0
0
50
-50
习题1:下表为用单纯形法计算时某一步 的表格。已知该线性规划的目标函数为 maxz=5x1+3x2,约束形式为≤,x3,x4为松 驰变量,表中解代入目标函数后得z=10
第四步:重复二、三步直到计算结束 为止。
cj→ CB 0 0 XB x3 x4 b 50 150 50 x1 1 2 100 x2 0 0 0 x3 1 0 0 x4 0 1 0 x5 -1 -1
100
x2
zj σj =cj-zj
250
0
0 50
1
100 0
0
0 0
0
0 0
1
100 -100
cj→ CB 50 0 100 XB x1 x4 x2 b 50 50 250
确定初始基本可行解:
• 约束条件全部是“≤”时,为每个约束 条件加上一个松弛变量,化为标准形, 则系数矩阵中含有一个单位矩阵,以此 为基,得到初始基本可行解为: X=(0,0,…b1,b2,…,bm) • 约束条件为=或≥时,化标准形后,一 般不含单位矩阵,可以添加人工变量构 造一个单位矩阵作为基(人工基)。
• 如果在最终单纯形表上,检验数为 零的非基变量是一般决策变量。 在计算机输出中,若有一个取值为 零的决策变量其相差值也为零,说 明有无穷多最优解。
大M法的求解过程(P87-88)
min f 2 x1 3 x2 350 x1 x2 x1 125 s.t. 2 x1 x2 600 x1 , x2 0 max( f ) 2 x1 3 x2 Ma1 Ma2 x1 x2 x3 x6 350 x1 x4 x7 125 s.t. 2 x1 x2 x5 600 x1 , x2 , x3 , x4 , x5 , x6 , x7 0
第一章 线性规划及其解法
§1 线性规划问题及其一般数学模型(掌握)
§2 线性规划问题的图解法(掌握)
§3 线性规划问题的单纯形解法(了解)
3.1 单纯形法的基本思路
确定初始基本可行解
检查是否为 最优解? 否 确定改善方向
是
求最优解的目标函数值
求新的基本可行解
3.2 单纯形法的计算步骤 第一步:求出LP的初始基本可行 解,列出初始单纯形表。
某单纯形表中,存在着一个大于零的检 验数,但该列中所有系数小于或等于零, 说明存在无界解。
max z x1 x2 x1 x2 1 s.t. 3x1 2 x2 6 x1 , x2 0
无穷多最优解:
对于某个最优的基本可行解,如果存在 某个非基变量的检验数为零,说明有无 穷多最优解。 最优解的线性组合仍是最优解,即 X=αX1+(1-α)X2, 0≤α ≤1 max z 50 x1 50 x2
• 非基变量xk的系数pk变成pk’ σk ‘=ck-cB B-1 pk’ ≤0 最优解不变,否则继续进行迭代。 • 基变量的系数发生变化 通常需要重新计算
复习:关于灵敏度分析
• 当目标函数系数ck变化时: 原规划最优解不变的条件是: σj ‘≤0 (情况一;情况二)P30图3-4 • 当右端项bi变化时: 原规划最优基不变的条件是: 新解的每一个分量大于等于零。即: B-1(b+△b)= B-1 b+ B-1 △b≥0
• 作业: • P25(6)第6小题 • 当c1值从2变为2.5,c2值从3变为2.5时, 其最优解是否变化?为什么? • 正确方法用 c1 2.5
c2 2.5 1 c1 1 1 c2 3
• 只有当计算机求解时,才用百分百法则。
• P36(4) • 最优解为x1=8.5 x2=1.5 x3=0 x4=0 • 目标函数为:maxZ=2x1+x2-x3+x4
初始单纯形表:
cj→ CB 0 0 0 XB x3 x4 x5 zj σj =cj-zj b 300 400 250 50 x1 1 2 0 0 50 100 x2 1 1 1 0 100 0 x3 1 0 0 0 0 0 x4 0 1 0 0 0 0 x5 0 0 1 0 0
第二步:最优性检验
cB x B 0 x5 2 x2 1 x1 Z
cj
1 b 2 1 4
x1
2
x2
2
x3
0
x4
0
x5
0
x6
0 0 1 1
0 1 0 2
1 -1 2a
2a-2
2 1 -1 1
1 0 0 0
-1 -2
-a+8
4-a
1、把表中缺少的项目填上适当的数或式子 2、要使上表成为最优表,a应满足什么条件 3、何时有唯一最优解 4、何时有无穷多最优解 5、何时以x3替换x1
3.4 单纯型法的几种特殊情况 --无可行解
用单纯形法求解得到最优解时,人工 变量大于零,说明无可行解。
max z 20 x1 30 x2 3 x1 10 x2 150 x1 30 s.t. x1 x2 40 x1 , x2 0
无界解:
如果是退化现象,可能经过6次迭代 后得到的单纯形表与第0次单纯形表 一样,这样就出现了循环。
为了避免这种现象,当存在两个和 两个以上最小比值时,选一个下标 最小的基变量为出基变量。
习题二、下表是求某极大化线性规划问题计算得到的 单纯形表,表中无人工变量,a为待定常数, a取何值时, 以下结论成立。
x2
zj σj =cj-zj
250
0
50 0
1
c2 0
0
50 -50
0
0 0
1
C2-50 50-c2
约束方程右端常数项灵敏度分析
原规划最优基不变的条件: B-1(b+△b)= B-1 b+ B-1 △b≥0 原规划最优基改变的条件: B-1(b+△b)至少有一个分量小于零。
约束方程系数矩阵A灵敏度分析
XB X6
Cj CB b
2 a
0 X1
3
0 X2
0
0 X3
-14/3
28 X4
0
1 X5
1
2 X6
1
X2 0 5 X4 28 0 Cj-Zj
6 0 b
d e c
2 f 0
0 1 0
5/2 0 -1
0 0 g
• a=7, • b=-6,c=0,d=1,e=0,f=1/3,g=0
最优解。
复习
单纯型法的几种特殊情况
x1
X3 2 X1 a Cj-zj C d b
x2
0 e -1
x3
1 0 f
x4
1/5 1 g
1、求a-g的值;2、表中给出的解是否为 最优解?
• a=2,b=0,c=0,d=1,e=4/5,f= 0,g=-5 • 表中给出的解为最优解。
习题2:目标函数为max Z =28x4+x5+2x6, 约束形式为“≤”,且x1,x2,x3为松弛变 量,表中的解代入目标函数中得Z=14,求 出a--g的值,并判断是否最优解?
如例1:
max z 50 x1 100 x2 0 x3 0 x4 0 x5
300 x1 x2 x3 2 x x x4 400 1 2 s.t. x2 x5 250 x1 , x2 , x3 , x4 , x5 0 系数矩阵为: 1 1 1 0 0 2 1 0 1 0 初始可行基 0 1 0 0 1 X=(0,0,300,400,250)基本可行解
x1 x2 2 x x 1 2 s.t. x2 x1 , x2