缓蚀剂分类

合集下载

金属缓蚀剂

金属缓蚀剂

第十一讲 金属缓蚀剂陈旭俊 徐瑞芬缓蚀剂是一种在低浓度下能阻止或减缓金属在环境介质中腐蚀的物质。

缓蚀剂又叫作阻蚀剂、阻化剂或腐蚀抑制剂等。

缓蚀剂保护技术已经发展为一项重要的防腐蚀技术,广泛用在石油、冶金、化工、机械制造、动力和运输等部门。

一、缓蚀剂的分类缓蚀剂的品种繁多,常用的如亚硝酸钠、铬酸盐、磷酸盐、石油磺酸钡、亚硝酸二环已胺等,至今尚难以有统一的分类方法。

常见到的分类方法有以下几种。

1.按缓蚀剂作用的电化学理论分类(1)阳极型缓蚀剂 通过抑制腐蚀的阳极过程而阻滞金属腐蚀的物质。

这种缓蚀剂通常是由其阴离子向金属表面的阳极区迁移,氧化金属使之钝化,从而阻滞阳极过程。

例如,中性介质中的铬酸盐与亚硝酸盐。

一些非氧化型的缓蚀剂,例如苯甲酸盐、正磷酸盐、硅酸盐等在中性介质中,只有与溶解氧并存,才起到阳极抑制剂的作用。

(2)阴极型缓蚀剂 通过抑制腐蚀的阴极过程而阻滞金属腐蚀的物质。

这种缓蚀剂通常是由其阳离子向金属表面的阴极区迁移,或者被阴极还原,或者与阴离子反应而形成沉淀膜,使阴极过程受到阻滞。

例如ZnSO 4、Ca(HCO 3)2、As 3+、Sb 3+可以分别和OH-生成Zn(OH)2、Ca(OH)2沉淀和被还原为As 、Sb 覆盖在阴极表面,以阻滞腐蚀。

(3)混合型缓蚀剂这种缓蚀剂既可抑制阳极过程,又可抑制阴级过程。

例如含氮和含硫的有机化合物。

2.按化学成分分类(1)无机缓蚀剂,如铬酸盐、亚硝酸盐、磷酸盐等。

(2)有机缓蚀剂,如胺、硫脲、乌洛托品等。

3.按缓蚀剂所形成保护膜的特征分类(1)氧化膜型缓蚀剂通过使金属表面形成致密的、附着力强的氧化膜而阻滞金属腐蚀的物质。

例如,铬酸盐、重铬酸盐、亚硝酸钠等。

由于它们具有钝化作用,故又称为钝化剂。

(2)沉淀膜型缓蚀剂由于与介质中的有关离子反应并在金属表面生成有一定保护作用的沉淀膜,从而阻滞金属腐蚀的物质。

例如在中性介质中的硫酸锌、聚磷酸钠、碳酸氢钙等。

(3)吸附膜型缓蚀剂能吸附在金属表面形成吸附膜从而阻滞金属腐蚀的物质。

缓蚀剂分类

缓蚀剂分类

缓蚀剂分类可从不同的角度对缓蚀剂进行分类。

(1)按用途分类缓蚀剂按用途可分为单功能型和多功能型。

①单功能型缓蚀剂这种缓蚀剂只含有某一种基团(如氨水、乌洛托品),它们仅对钢铁类黑色金属材料制品具有缓蚀性能,而对多种有色金属,或是两种金属的连接处,其缓蚀效果不佳,有时对多种金属组合件机械制品中的铜、锌、镉等有色金属部件,需要采取隔离保护措施甚至放弃使用缓蚀剂技术。

②多功能型缓蚀剂它们的分子中含有两个或两个以上的缓蚀基团,如苯并三氮哩(BTA)及其衍生物、三氮哇系列化合物、邻硝基化合物、蔬基苯并嚏哩(MBT)、胯类化合物等缓蚀剂。

斐基喳琳中就有一OH、一N两个缓蚀基团,这些基团不仅能对铜及铜合金具有良好的缓蚀性能,而且对铁、锌、镉、银等金属具有良好的缓蚀效果。

(2)根据化学成分分类可分为无机缓蚀剂、有机缓蚀剂、聚合物类缓蚀剂。

Q无机缓蚀剂主要包括铭酸盐、亚硝酸盐、硅酸盐、聚磷酸盐等。

②有机缓蚀剂主要包括麟酸(盐)、麟梭酸、蔬基苯并嚏哇、苯并三氮哇、磺化木质素等一些含氮氧化合物的杂环化合物。

③聚合物类缓蚀剂包括一些低聚物的高分子化合物。

(3)根据电化学腐蚀的控制行为分类可分为阳极型缓蚀剂、阴极型缓蚀剂和混合型缓蚀剂。

①阳极型缓蚀剂包括无机强氧化剂,如铭酸盐、亚硝酸盐等。

其作用是在金属表面阳极区与金属离子生成致密的、附着力强的氧化物保护膜,抑制金属溶解。

阻极型缓蚀剂被称为“危险性缓蚀剂”,因为一旦剂量不足,未覆盖区将会被加速孔蚀。

因此,应用时不能低于缓蚀剂在该条件的“危险浓度”。

这类缓蚀剂同样可以减缓化学腐蚀的侵袭。

②阴极型缓蚀剂可抑制电化学阴极反应的化学药剂,如碳酸盐、磷酸盐等。

其作用是与金属反应,在阴极生成沉积保护膜。

这类缓蚀剂在用量不足时不会加速腐蚀,故又有“安全缓蚀剂”之称。

③混合型缓蚀剂某些含氮、硫或羟基的、具有表面活性的有机缓蚀剂,其分子中有两种极性相反的基团,能吸附在金属表面形成单分子吸附膜。

金属防锈缓蚀剂及其应用

金属防锈缓蚀剂及其应用

上一内容 下一内容 回主目录
返回
3、缓蚀剂的电化学理论
缓蚀剂阻滞腐蚀的阴、阳极过程(或其中 的任一过程)的进行,从而减缓腐蚀。
上一内容 下一内容 回主目录
返回
• 在酸性介质中,缓蚀剂(如砷、铋的盐类等) 能使阴极过程的超电压增大,从而使金属在酸 性溶液中的腐蚀速度降低,这就是缓蚀剂的氢 超电压理论
蚀抑制剂。
缓蚀剂特点
用量少,保护效果好 ;
具有严格的选择性
上一内容 下一内容 回主目录
返回
一、缓蚀剂的分类
1. 按缓蚀剂抑制腐蚀机理分为: 阳极型缓蚀剂、阴极型缓蚀剂和阴阳混合型缓蚀剂
2. 按使用范围分为: 酸性气体缓蚀剂、酸性溶液缓蚀剂、碱性溶液缓蚀剂 、中性溶液缓蚀剂、气相缓蚀剂
3. 按照缓蚀剂的成分来分类: 无机类缓蚀剂和有机类缓蚀剂
• 安全缓蚀剂
• 危险缓蚀剂
上一内容 下一内容 回主目录
返回
三、缓蚀剂作用影响因素 1、浓度的影响
上一内容 下一内容 回主目录
返回
2、温度的影响
第一种情况是在较低的温度范围内缓蚀效率很 高,当温度升高时,缓蚀效率变显著降低。
缓蚀剂添加量
腐蚀率 g / m 2 h
(盐酸中氯化氢含量 20℃ 40℃ 520℃ 的﹪)
等步骤制得。
• 性能与应用 • (1)它具有较好的抗湿热性能,不易水解,氧化稳定性
好,不促使油乳化和起泡。 • (2)由于油溶性好,添加量小,不影响基础油的理化性
能。 • 舰艇和热电厂的汽轮机组 • 添加量一般为1﹪左右
上一内容 下一内容 回主目录
返回
说明 • 由于(T746)有遇水不乳化的特点,故适于配制有
第2章 缓蚀剂及其应用

2--缓蚀剂

2--缓蚀剂

第2 章 缓蚀剂
第2 章 缓蚀剂
(2)酸性介质中的缓蚀剂 ) 该类缓蚀剂一般用于金属除锈及除氧化皮的酸洗过程中, 故称酸洗缓蚀剂。 该类缓蚀剂的作用是在酸溶解金属上的氧化皮、锈蚀产 物的同时,抑制酸对金属基体的溶解。酸洗缓蚀剂的缓蚀 效率按照下式计算:
不用缓蚀剂时的腐蚀速 度 − 使用缓蚀剂的腐蚀速度 不用缓蚀剂时的腐蚀速 度
第2 章 缓蚀剂
(3)油溶性缓蚀剂 ) 结构: 结构:油溶性缓蚀剂分子结构的特点是不对称性,一 般由极性和非极性的两个基团构成。常见的极性基团有
− OH ,−COOH ,− SO3 H ,− NH 2
它们与金属、水具有很强的亲和力;非极性基团主要 是烃基,具有亲油憎水性。因此,当油溶性缓蚀剂与金属 接触时,会发生缓蚀剂分子在油—金属界面的定向吸附。 — 作用机理: 作用机理:有两种理论 a:成膜理论:该理论认为,缓蚀剂分子吸附在金属表 :成膜理论: 面后,会与金属发生化学反应,生成难溶于水的钝化膜 (相膜),从而阻滞了腐蚀电池的电极过程。如BTA即属 于该类。
第2 章 缓蚀剂
一般金属为弱的电子接受体,称为软酸;而高价的金属阳 离子如Fe3+,AL3+成为硬酸,电负性较强的F、O、N化合 物中的阴离子为强的电子给予体,为硬碱,电负性较小的 S、P、Br、I等化合物的阴离子则为软碱。 硬酸与硬碱形成物理吸附,软酸与软碱形成化学吸附。 (B)化学吸附: 大部分有机缓蚀剂分子中,含有以氧、氮、硫、磷为 中心原子的极性基团,具有一定的供电子能力。两者可以 形成配位反应而发生化学吸附。该吸附具有明显的吸附选 择性。过程为不可逆,受温度影响小。化学吸附多为抑制 阳极反应。
第2 章 缓蚀剂
(2)阴极型缓蚀剂: )阴极型缓蚀剂: 酸式碳酸钙、聚磷酸盐、硫酸锌、砷离子、锑离子等, 能使阴极过程减慢,增大酸性溶液中氢析出的过电位,使 腐蚀电位向负移动。此类缓蚀剂是“安全型缓蚀剂” 作用过程:a成膜型阴极缓蚀剂,腐蚀过程在研究生成 的OH-与缓蚀剂反应生成的不溶性物质使金属表面形成膜 层,阻碍阴极反应。(硫酸锌,碳酸氢钙及镁,锰等钢铁 缓蚀剂);b增加氢离子放电过电位的缓蚀剂,在酸性溶 液中砷离子、锑离子等在金属表面析出时,提高了氢离子 放电的过电位而抑制氢离子的还原反应。 (3)混合型缓蚀剂: )混合型缓蚀剂: 同时抑制阳极反应及阴极反应,例如含氮、含硫以及 既含氮有含硫的有机化合物、琼脂、生物碱,硅酸钠,铝 酸钠等。

有机缓蚀剂

有机缓蚀剂

有机缓蚀剂有机缓蚀剂分为膦系缓蚀阻垢剂,有机胺类,芳香族唑类,羧酸盐类等几大类,具体介绍如下:一膦系缓蚀阻垢剂磷酸盐与聚磷酸盐在许多方面相似,但他们分子结构中都有C-P键,这种键比聚磷酸盐中-O-P-键要牢固的多,因此这类化合物化学稳定性好,不易水解,耐高温性能好,在使用中不会因水解生成正磷酸,从而避免了聚磷酸盐使用中导致菌藻过于繁殖的缺点。

所以在20世纪70-80年代以来发展极为迅速。

随着环保事业的发展,工业循环冷却水处理中磷,铬,锌,钼等排放逐渐受到严格限制,很多国家都已经制定了相应的限排标准。

而磷酸盐因其本身含磷低,缓蚀效率高,使用剂量小,还有与其他药剂共用时良好协同效应,在水处理中有着广泛的应用前景。

具体细分两类如下:(1)氨基三亚甲基膦酸氨基三亚甲基膦酸固体为结晶粉末,易溶于水,易吸潮,易于运输和使用,尤其适用于冬季严寒地区。

产品呈酸性,应避免与眼睛,皮肤或衣服接触,一旦溅到身上,应立即用水冲洗。

氨基三亚甲基膦酸具有良好的螯合、低限抑制及晶格畸变作用。

可阻止水中成垢盐类形成水垢,特别是碳酸钙垢的形成。

ATMP在水中化学性质稳定,不易水解。

在水中浓度较高时,有良好的缓蚀效果。

氨基三亚甲基膦酸用于火力发电厂、炼油厂的循环冷却水、油田回注水系统。

可以起到减少金属设备或管路腐蚀和结垢的作用。

ATMP在纺织印染等行业用作金属离子螯合剂,也可用于金属表面处理剂等。

(3)除上述产品外,还有二亚乙基三胺五亚甲基膦酸,2-膦酸基丁烷-1,2,4-三羧酸,磷酰基聚丙烯酸,亚乙基二胺四亚甲基膦酸。

2-羟基膦酸酰基乙酸,二乙烯三胺五亚甲基膦酸。

聚氧乙烯醚丙三醇膦酸酯。

二有机胺类有机胺类在水处理中属于吸附膜型缓蚀剂,他们大多在同一分子内同时存在极性吸附基和疏水基。

在清洗金属表面上用极性基吸附,形成一层吸附膜,以疏水基阻止水和溶液氧等向金属表面扩散,来抑制腐蚀反应,这种吸附膜是单分子膜,过剩的胺经常存在于液体中,用于修补膜,因此投药量小,但在中性冷却水中,如果碳钢表面不能保持清洁状态,则吸附膜型缓蚀剂很多显示出理想的缓蚀效果。

PPT课件缓蚀剂

PPT课件缓蚀剂

随着工业生产和基础设施建设的快速发展,PPT课件缓蚀剂的市场需求不断增长,尤其在汽车、石油化工、电力、航空航天等领域。
市场需求
PPT课件缓蚀剂行业的竞争格局日益激烈,企业需要不断提高产品质量和技术水平,加强品牌建设和市场营销,以获得更大的市场份额。
竞争格局
05
CHAPTER
PPT课件缓蚀剂的制备方法
输变电设备
汽车制造
在汽车制造过程中,PPT课件缓蚀剂可以用于保护汽车零部件免受腐蚀。
船舶制造
PPT课件缓蚀剂可用于船舶制造过程中,保护船体和内部设施不受腐蚀。
铁路运输
PPT课件缓蚀剂可以用于铁路运输系统,保护轨道、车辆和信号设备不受腐蚀。
PPT课件缓蚀剂可以作为切削液的添加剂,提高切削液的防锈性能。
PPT课件缓蚀剂
目录
缓蚀剂的定义与分类PPT课件缓蚀剂的应用领域PPT课件缓蚀剂的优缺点PPT课件缓蚀剂的未来发展PPT课件缓蚀剂的制备方法PPT课件缓蚀剂的实验研究与性能评价
01
CHAPTER
缓蚀剂的定义与分类
01
02
它通过在金属表面形成保护膜或改变腐蚀介质性质等方式,有效降低金属腐蚀速率。
总结词
通过化学反应将所需成分合成在一起,形成PPT课件缓蚀剂。
详细描述
化学合成法是制备PPT课件缓蚀剂的主要方法之一。在此方法中,将所需的原料通过化学反应合成在一起,形成PPT课件缓蚀剂。这种方法可以精确控制PPT课件缓蚀剂的成分和结构,从而获得更好的性能。
利用物理手段将不同性质的物质混合在一起,形成PPT课件缓蚀剂。
02
电化学性能
利用电化学工作站测试金属的腐蚀电位、腐蚀电流等参数,评估缓蚀剂对金属腐蚀的抑。

水处理剂之缓蚀剂的定义、分类与评价方法

水处理剂之缓蚀剂的定义、分类与评价方法

水处理剂之缓蚀剂的定义、分类与评价方法
1)缓蚀剂的定义
按照ASTM-G15的定义,缓蚀剂又称腐蚀抑制剂或阻蚀剂,是一种当它以适当的浓度和形式存在于环境(介质)时,可以防止或减缓腐蚀的化学物质或复合物质。

2)缓蚀剂的分类
按缓蚀剂的化学组成分类,有无机缓蚀剂和有机缓蚀剂。

按缓蚀剂对电极过程的影响分类,有阳极型缓蚀剂、阴极型缓蚀剂和混合型缓蚀剂。

按在金属表面形成保护膜的特征分类,有氧化膜型缓蚀剂、沉淀膜型缓蚀剂和吸附膜型缓蚀剂。

按缓蚀剂使用介质分类,有酸性介质缓蚀剂、中性介质缓蚀剂和碱性介质缓蚀剂。

按应用领域分类,有酸洗缓蚀剂、冷冻水用缓蚀剂、油气井酸化缓蚀剂、石油化工工艺用缓蚀剂、油田注水用缓蚀剂、锅炉水用缓蚀剂、循环冷却水用缓蚀剂等等。

3)工业水处理中缓蚀剂的评价方法
工业水处理过程中,缓蚀剂通常是作为水处理剂的一种组分与其他药剂复配使用的,因此,缓蚀剂的应用研究和作用效果的评价与工业水系统的各种参数,包括材料、水质等密切相关。

常用的评价方法有失重法、旋转挂片失重法、电化学极化曲线法(Tafel线外推法)、极化电阻法、交流阻抗谱法等,许多现代物理方法如扫描电子显微镜(SEM)、俄歇电子能谱法(AES)、X-光电子能谱法(XPS)、各种光电化学方法等常被用来研究工业水介质中缓蚀剂的作用机理。

动态模拟试验和现场挂片是评价缓蚀剂等水处理剂工业应用效果的主要方法。

缓蚀剂类型及应用

缓蚀剂类型及应用

缓蚀剂类型及应用缓蚀剂是一种化学品,它在金属表面上形成保护膜,防止金属被腐蚀。

根据它们的化学成分和作用机制,缓蚀剂可以分为几种不同的类型。

下面是一些常见的缓蚀剂类型及其应用的介绍。

1. 磷酸盐缓蚀剂:磷酸盐缓蚀剂是一种常见的无机缓蚀剂,常用于防止钢铁材料的腐蚀。

磷酸盐缓蚀剂可以与金属表面上的氧化层发生化学反应,形成一层保护性的磷酸盐薄膜。

这种薄膜可以阻止氧气和水分接触金属表面,从而防止腐蚀的发生。

2. 有机缓蚀剂:有机缓蚀剂通常是有机化合物,它们在金属表面形成一层非常薄的薄膜,以防止金属被腐蚀。

有机缓蚀剂可以通过与金属表面上的氧化层发生化学反应或吸附在金属表面上形成保护膜来实现缓蚀的作用。

有机缓蚀剂具有较好的湿润性和渗透性,在很多领域都有广泛的应用,如石油化工、建筑、汽车、军工等行业。

3. 缓蚀涂层:缓蚀涂层是一种特殊的涂料,在金属表面形成一层保护性的薄膜,以阻止金属被腐蚀。

缓蚀涂层通常由缓蚀剂和基质组成,缓蚀剂起到防腐蚀的作用,而基质则提供了涂层的保护功能。

缓蚀涂层可以根据不同的应用环境和需求进行调配,以实现最佳的缓蚀效果。

4. 缓蚀添加剂:缓蚀添加剂是一种添加到液体中的化学物质,用于防止金属在液体中腐蚀。

这些添加剂可以与液体中的金属离子发生化学反应,形成一层保护性的薄膜,以防止金属被腐蚀。

缓蚀添加剂通常用于冷却水、锅炉水、汽车冷却液等液体介质中,以延长金属设备的使用寿命。

5. 化学渗碳缓蚀剂:化学渗碳缓蚀剂是一种应用在钢铁表面的缓蚀剂,用于提高钢铁的耐蚀性。

它通过让金属表面与化学物质反应,形成一层碳化物层,从而防止钢铁材料被腐蚀。

化学渗碳缓蚀剂主要应用于汽车、机械制造、航空航天等领域,以提高金属产品的抗腐蚀性能。

缓蚀剂的应用范围广泛,涉及到多个行业和领域。

下面是一些常见的应用场景:1. 石油化工工业:石油化工设备容易受到腐蚀的侵害,常使用缓蚀剂来保护设备的表面免受腐蚀的影响。

2. 船舶和海洋工程:由于船舶和海洋设备长时间潜水在海水中,容易发生腐蚀,因此需要使用缓蚀剂来防止腐蚀的发生。

缓蚀剂分类

缓蚀剂分类

2.1.4 按应用介质分类 (1)中性介质中的缓蚀剂 是指在pH值为6-8的水溶液中使用的缓蚀剂。该类缓蚀 剂是水溶性的。 常见的缓蚀剂:聚磷酸盐、铬酸盐、硅酸盐、碳酸盐、 亚硝酸盐、苯并二氮唑、2-硫醇苯并噻唑、亚硫酸钠、氨 水、肼、环己胺、烷基胺、苯甲酸钠。 亚硝酸钠:白色结晶,吸潮后变淡黄色,但仍能使用。 易溶于水,防锈型好,对个别人皮肤有刺激。使用浓度220%,用碳酸钠(0.3-0.6%)调整pH值至9-10。适用于 黑金属,但不能用于铜。 三乙醇胺:无色或淡黄色粘稠液体,常与亚硝酸钠配 合使用,用量05.-2%。与油酸作用后可作为乳化剂,用于 配制乳化切削液,也用于气相防锈剂。 六次甲基四胺(乌洛托品):白色结晶,用量1-2%, 与其他水溶性防锈剂配合使用。 苯甲酸钠:白色结晶,可溶于水和醇类。用量几-十几 %,可与其他缓蚀剂配合使用,或涂敷在纸上。
第2 章 缓蚀剂
2.1.2按电化学机理分类 (1)阳极型缓蚀剂: 称阳极抑制型缓蚀剂,主要是抑制阳极过程而使腐蚀 速度减缓。如中性介质中的亚硝酸盐、铬酸盐、磷酸盐、 硅酸盐、苯甲酸钠等,它们能增加阳极极化,从而使腐蚀 电位正移。通常是缓蚀剂的阴离子移向金属阳极使金属钝 化。该类缓蚀剂属于“危险型”缓蚀剂,用量不足会加快 腐蚀。 作用过程:a具有强氧化作用的缓蚀剂,使金属钝化 (亚硝酸钠,高铬酸等);b具有阴极去极化性的钝化剂, 在阴极被还原,加大阴极电流,使体系的氧化还原电位向 正方移动,超过钝化电位,而使腐蚀电流达到很低的值。 (亚硝酸盐、硝酸盐与高价金属盐属于此类;铬酸盐、磷 酸盐、钼酸盐、钨酸盐等在酸性溶液中也属于此类。)
第2 章 缓蚀剂
2.1 缓蚀剂的分类 缓蚀剂种类繁多,缓蚀机理复杂,为了研究方便,常从 多种角度对缓蚀剂进行分类。 2.1.1 按照化学组成分类 (1)无机缓蚀剂: 亚硝酸盐、硝酸盐;铬酸盐、重铬酸盐;磷酸盐、多 磷酸盐;硅酸盐;钼酸盐;含砷化和物。 (2)有机缓蚀剂: 胺类;醛类;炔醇类;有机磷化合物;有机硫化合物; 羧酸及其盐类;磺酸及其盐类;杂环化合物。 无机缓蚀剂多半使金属生成不溶性钝化膜层或反应膜 层;有机缓蚀剂大部分主要因为吸附在金属表面,改变金 属表面的状态而起缓释作用(苯甲酸钠与无机缓蚀剂作用 相似)。

缓蚀剂的分类及应用

缓蚀剂的分类及应用

缓蚀剂的分类及应用缓蚀剂是一种用于减缓金属腐蚀速度的化学物质。

它们可以通过改善金属表面的化学稳定性来防止腐蚀发生。

缓蚀剂广泛应用于许多行业,例如石油、化工、航空航天、汽车、建筑等,以保护金属结构的耐久性。

下面将对缓蚀剂的分类及应用进行详细阐述。

缓蚀剂的分类可以从不同的角度进行划分,常见的分类方法包括化学成分、使用方式和可溶性。

按照化学成分,缓蚀剂可分为有机缓蚀剂和无机缓蚀剂。

有机缓蚀剂通常基于含有氮、硫、氯、杂环等元素的化合物,它们可以通过形成稳定的保护膜来抑制金属腐蚀的发生。

常见的有机缓蚀剂有胺类、硫化合物、有机酸等。

例如,胺类缓蚀剂常用于碳钢的腐蚀防护,它们能够与金属形成络合物,阻止氧和水的进一步侵蚀。

硫化合物则常用于防止非铁金属的腐蚀,其活性硫原子可以与金属的表面形成抗腐蚀的层。

无机缓蚀剂的主要成分是金属盐类,常用的无机缓蚀剂有铬酸盐、亚硝酸盐、钼酸盐等。

这些化合物能够与金属表面发生反应,生成致密的氧化膜或盐膜,从而减缓金属腐蚀的发生。

根据使用方式,缓蚀剂可分为直接添加型和包覆型。

直接添加型缓蚀剂是指将缓蚀剂直接添加到腐蚀介质中,以达到减缓腐蚀速度的效果。

它们可以通过与金属表面形成保护膜或与腐蚀介质中的有害成分发生反应来实现防腐效果。

包覆型缓蚀剂则是将缓蚀剂作为一层涂层包裹在金属表面,起到隔离和保护的作用。

这种缓蚀剂通常包括腐蚀抑制剂、树脂、填料等。

它们具有很好的附着性和防腐能力,可以在一定程度上抵抗外界环境的侵蚀。

根据可溶性,缓蚀剂可以分为溶于水的缓蚀剂和溶于油的缓蚀剂。

溶于水的缓蚀剂一般用于水介质的防腐。

它们会在水中形成保护膜,降低腐蚀电位,减缓金属的腐蚀速度。

这种缓蚀剂可以直接溶解在水中使用,也可以加入到液体清洗剂、冷却液、燃料等中进行使用。

溶于油的缓蚀剂主要用于润滑油、润滑脂等润滑介质的腐蚀防护。

它们能够形成微膜,在金属表面起到抗腐蚀的作用,阻止润滑介质对金属的侵蚀。

缓蚀剂在各个行业有着广泛的应用,其中一些主要应用领域如下:1. 石油化工行业:缓蚀剂常用于防止管道、储罐等设备在酸性环境中的腐蚀。

缓蚀剂的种类、机理及应用

缓蚀剂的种类、机理及应用
缓蚀剂 氧化膜 这样生成的钝化膜中常常含有缓蚀剂的成分。
三、成膜理论 指缓蚀剂与金属作用生成钝化膜,或者与介质中的离子反应生成沉积 层而使金属缓蚀,分为氧化膜、沉积膜和胶体膜三种。 2.沉积膜 它是由缓蚀剂与阴极反应产物生成难溶性氢氧化物。例如: O2+ 2H2O +4e == 4OH- , Zn2+ + 2OH- == Zn(OH) 2↓ 缓蚀剂 沉积膜 或者与阳极反应产物生成不溶性膜,例如: 2NaOH+Fe2+ ==Fe(OH)2↓+2Na+ HPO42- +Fe2+ ==FeHPO4↓ ; HORNH3(氨基醇)+Fe3+ + 3Cl== [HORNH3][FeCl3]↓ 加入HPO42- ,HORNH3可以阻止无保护性的Fe(OH)2向具有保护性的 Fe(OH)3转化。
三、成膜理论 指缓蚀剂与金属作用生成钝化膜,或者与介质中的离子反应生成沉积 层而使金属缓蚀,分为氧化膜、沉积膜和胶体膜三种。 1.氧化膜 它的形成是由于缓蚀剂本身的氧化作用或溶解氧的氧化作用所致。例 如:
2Fe + 2Na2SO4 + 2H2O == Fe2O3 (γ-)+Cr2O3(s) + 4NaOH
三、按照应用环境分类 按照应用环境可以将缓蚀剂分为四类:
(1)酸性溶液用缓蚀剂:适用于酸性介质,如乌洛托品、
咪唑啉、苯胺、硫脲和三氯化锑; (2)碱性溶液用缓蚀剂:适用于碱性介质,如硝酸钠、 硫化钠、过磷酸钙; (3)中性溶液用缓蚀剂:适用于天然水和盐水,如六偏
磷酸钠、葡萄糖酸锌、硫酸锌;
(4)气相缓蚀剂:适用于仓库和包装袋内,如碳酸环己 胺、苯甲酸戊胺。
合理使用缓蚀剂是防止和减缓金属及其合 金在特定腐蚀环境中产生腐蚀的有效手段。由 于它不需要改变原有设备和工艺过程,只是向 腐蚀环境添加某些无机、有机化学物质就可阻 止或减缓金属材料的腐蚀,因此在国民经济的

缓蚀剂分类

缓蚀剂分类

缓蚀剂及其发展现状在很久以前,人们就发现往腐蚀介质中添加少到不至于改变介质性质的某化学物质能够明显抑制腐蚀的发生。

这就是缓蚀剂(英文:Corrosioninhibitor)。

按照其应用的环境,缓蚀剂可分为酸性介质缓蚀剂、中性介质缓蚀剂。

本论文主要研究中性盐水介质中的缓蚀剂,故仅对中性介质用缓蚀剂的发展作以回顾和展望。

中性介质中使用的缓蚀剂又分为无机缓蚀剂、有机缓蚀剂、聚合物缓蚀剂等。

1.3.1无机缓蚀剂较早应用的无机缓蚀剂有铬酸盐、重铬酸盐、硅酸盐、亚硝酸盐、钼酸盐、锌盐、磷酸盐。

这些无机缓蚀剂在应用中被证明是有效的,而今有的仍被广泛的应用,后来又发展应用了聚磷酸盐。

但是,无机缓蚀剂的应用有很多缺点。

例如,无机缓蚀剂的用量一般较大,这就增加了应用的成本。

并且,多数无机缓蚀剂对环境是不友好的,其应用从而受到制约。

目前,无机缓蚀剂的使用多数是与有机缓蚀剂复配。

这样,不但大大减少了其用量,而且由于两者之间的协同效应也提高了其缓蚀效果。

1.3.2有机缓蚀剂有机缓蚀剂是含N、P、S等杂原子的有机化合物。

根据所含杂原子的不同有机缓蚀剂又可分为以下几类。

(1)含氮类有机缓蚀剂这类缓蚀剂应用最早,最广。

盐水体系中常用的是有机胺类吸附型缓蚀剂,该类缓蚀剂是通过氮原子吸附到钢铁表面而疏水基团伸展于水相形成一种致密的物理膜,阻挡介质与钢铁表面的接触,从而降低腐蚀速度。

正是由于起作用的是物理膜,其应用有很大的局限性。

如高温会发生物理膜脱附而失去缓蚀效果,它也阻挡不了氯离子的穿透。

这类缓蚀剂的代表是季铵盐、胺类、酰胺类。

包括直链及环状化合物。

(2)含硫类缓蚀剂作为盐水体系用的含硫类缓蚀剂的发展是近十几年的事情。

这类缓蚀剂的代表是硫氰酸盐及硫脲类化合物。

据资料介绍,该类缓蚀剂主要应用在高温环境中,而在低温(低于120"C)盐水中,其缓蚀效果不超过50%。

该类缓蚀剂的作用机理尚不清楚。

一般认为,硫原子在一定的温度下与金属发生化学反应(是腐蚀过程)。

几种无机缓蚀剂

几种无机缓蚀剂

几种无机缓蚀剂①亚硝酸盐它易溶于水,一般配成2%~20%水溶液,并常加入0.3%~0∙6%的NO2CO3调节PH在8〜10之间。

它对黑色金属(钢、铁、锡合金等)缓蚀效果好,而对于CU等有色金属则无效。

NaNO2之所以能起到缓蚀作用,主要是因为NO」可以使铁氧化并生成高价难溶的氧化物而沉积在金属表面。

亚硝酸盐的缓蚀性能极大地依赖于溶液中侵蚀性离子(如CL、NO;等)的浓度和它们自身的浓度。

当亚硝酸钠浓度低时,它可能促进腐蚀;只有达到一定浓度时,亚硝酸钠才具有好的缓蚀作用。

因此,亚硝酸钠属于“危险性缓蚀剂”。

研究发现亚硝酸盐有致癌作用,使其应用受到了限制。

近年来,人们着手寻求亚硝酸钠的代用品,并取得了一定的成绩,如苯甲酸钠的芳环上同时引入硝基、漠、碘等的衍生物,可获得与亚硝酸钠相近或优良的防锈效果。

属于这一类型的衍生物有:对碘化苯甲酸三乙醇胺、对丁氯基苯甲酸钠、3,5■二漠-4•甲氧基苯甲酸钠及二硝基水杨酸等。

②磷酸盐作为水溶液中缓蚀剂的磷酸盐有:磷酸钠、磷酸氢二钠、三聚磷酸钠、六偏磷酸钠等。

磷酸氢二钠是很弱的缓蚀剂,浓度增大时则成为腐蚀的促进剂。

磷酸钠的缓蚀作用比二钠盐要好,当其浓度增大时,缓蚀作用明显增加。

实验表明,Na2HPO4对钢、铸铁、铅等防锈有效,但能促进CU的腐蚀;六偏磷酸钠可作钢、铸铁、铅的缓蚀剂,但对Cu、Al有相反作用。

另外,磷酸盐与铭酸盐混合使用,有缓蚀协同效应,PH在6∙5~6.0时,效果最佳。

③铭酸盐和重铭酸盐K2CQ4xK2Cr2O7是有色金属通用的水溶性缓蚀剂,对黑色金属也有良好的缓蚀作用。

其缓蚀机理一般认为是由于它与亚铁盐作用生成了难溶的三氧化二铭(Cr2O3)与氧化铁(Fe2O3∙Fe3O4)组成的保护膜。

铭酸盐的缓蚀作用与溶液中的其他阴离子(如SOl、NO:等)有关。

这些腐蚀性阴离子的浓度越大,铭酸盐的临界浓度也越大,其中以CL的影响为最大。

另外,铭酸盐的保护浓度还与溶液的温度有关,温度升高,保护浓度也增大。

缓蚀剂的种类机理及应用

缓蚀剂的种类机理及应用

§1.1 缓蚀剂的分类 缓蚀剂,即一种延缓腐蚀的制剂,又叫腐蚀抑制剂或阻止剂,是指向
腐蚀介质中加入少量或微量的化学物质,通过物理、化学或物化反应而阻 止、减缓金属的腐蚀速度,同时还保持着金属材料原来的物理、化学及机 械性能。
按照作用机理分类 按照成分分类
按照应用环境分类
一、按照作用机理分类 根据缓蚀剂对电极过程的抑制作用,可将其分为阳极、阴极和混合型
合理使用缓蚀剂是防止和减缓金属及其合 金在特定腐蚀环境中产生腐蚀的有效手段。由 于它不需要改变原有设备和工艺过程,只是向 腐蚀环境添加某些无机、有机化学物质就可阻 止或减缓金属材料的腐蚀,因此在国民经济的 各个部门得到广泛的应用。本章将介绍有关缓 蚀剂的类型、作用原理及缓蚀剂技术的应用。
缓蚀剂
1.1缓蚀剂的种类 1.2缓蚀剂的机理 1,3缓蚀剂的应用
图图66--22 阳阳极抑极制抑型制缓型蚀缓作用蚀原作理用原理
图6-3 阴极去极化型 缓蚀作用原理
二、吸附理论
吸附理论指缓蚀剂本身或次生产物吸附在金属表面上形成保护性的隔 离层,或消活性区,或改变双电层结构等,从而达到缓蚀的目的。
吸附可分为物理吸附和化学吸附两类。 物理吸附是靠库仑引力或范德华力,属于远程吸附,其速度快、过程 可逆,常呈多分子层,多数表现为阴极性缓蚀,与金属表面电荷密切相关。 化学吸附是靠化学键来实现的,属于近程吸附。譬如活性区的金属离 子浓度高,有部分金属离子处于过渡状态而停留在金属表面,含N,S,P 和O的缓蚀剂与活性区的金属过渡态形成配位键,吸附在金属表面,从而 阻止金属溶蚀。化学吸附速度快、不可逆,常呈单分子层,多数表现为阳 极性缓蚀,具有一定的化学选择性。
胺、苯甲酸戊胺。
§1.2 缓蚀机理
由于缓蚀剂种类繁多,缓蚀机理错综复杂,主要有以下三种理论。

防冻液中常用的缓蚀剂

防冻液中常用的缓蚀剂

防冻液中常用的缓蚀剂lube 2010-05-11 19:16:30 阅读90 评论0 字号:大中小订阅1、硼砂:也叫四硼酸钠。

可以有效防止钢和锌的锈蚀,同时具有很好的缓冲作用。

缺点是能促进铝合金的传热腐蚀,同时还有一定的毒性。

2、磷酸盐:常用磷酸钠和磷酸氢钠。

对钢和铁都具有一定的缓蚀作用,同时具有很好的缓冲作用。

缺点是容易与水中的钙、镁离子反应生成水垢,降低冷却系统的传热性能。

3、亚硝酸盐:氧化型缓蚀剂,常用亚硝酸钠。

具有很好的防止铸铁汽缸衬里点蚀性能,多用于重负荷冷却液。

但在对钢铁进行保护时存在一个临界浓度:高出时具有很好的保护作用,低于时易产生局部点蚀。

显著的缺点是有毒,有致癌作用。

4、硝酸盐:氧化型缓蚀剂,常用硝酸钠。

对钢铁有一定的保护作用,同时具有很好的防止铝合金点蚀的性能。

5、钼酸盐:非氧化型缓蚀剂,常用钼酸钠。

使用过程中需要合适的氧化剂一起作用才能在金属表面生成保护膜。

与亚硝酸盐有协同缓蚀作用,通常配合使用。

6、硅酸盐:是铝和铝合金的特效缓蚀剂,可以有效降低铝泵发生气穴腐蚀的概率,对钢铁和有色金属有一定的防护作用,常用偏硅酸钠和偏硅酸钾。

硅酸盐在使用过程中存在的主要问题是稳定性差,经过一段时间的储存和使用后容易形成凝胶状物质析出,使防腐蚀性能降低。

另外凝胶容易堵塞管道和附在散热器内表面,降低传热效果。

水中的钙、镁离子反应也会沉淀析出。

解决硅酸盐凝胶析出的方法主要是使用硅酸盐稳定剂。

7、巯基苯并噻唑(MBT):铜的阳极型缓蚀剂,能在金属表面与铜生成一层附着力强且难溶的保护膜,防止铜溶解。

缺点是随pH值的降低溶解度有所下降,也会发生巯基基团的离解导致不溶物析出。

在氧气或氧化剂作用下可能发生氧化反应生成二硫化物导致不溶物析出。

8、苯并三氮唑(BTA)和甲基苯并三氮唑(TTZ):铜的特效缓蚀剂。

活性氯等的存在会降低其缓蚀效率。

9、芳香酸盐:非氧化型缓蚀剂,常用苯甲酸钠等。

10、脂肪酸盐:碳数4以上的一元酸或碳数6以上的二元酸,具有一定的pH缓冲能力。

缓蚀剂的分类

缓蚀剂的分类

缓蚀剂的分类由于缓蚀剂应用十分广泛,产品种类繁多,以缓蚀剂作用机理的复杂性,迄今为止,尚缺乏一个既能把各种缓蚀剂分门别类又能反映出缓蚀剂组成、结构特征和缓蚀剂作用机理内在联系的完善和分类方法。

常见的分类方法有以下几种:(1)按缓蚀剂的化学组成分类无机类缓蚀剂:包括有:硝酸盐、亚硝酸盐、铬酸盐、重铬酸盐、磷酸盐、多聚磷酸盐、钼酸盐、钨酸盐、硅酸盐、碳酸盐、硼酸盐、砷化物、硫化物、硫酸盐等有机类缓蚀剂:包括有:胺类、咪哗啉类、醛类、羧酸盐类、杂环化合物、炔醇类、季铵盐、苯甲酸盐、有机磷化合物、有机硫等(2)按对电极过程的影响分类根据缓蚀剂在介质中对金属电化学腐蚀过程的影响分为阳极型、阴极型和混合型缓蚀剂。

①阳极型缓蚀剂,又称阳极抑制型缓蚀剂,例如:铬酸盐、重铬酸盐、硝酸盐、亚硝酸盐、正磷酸盐、钼酸盐、硅酸盐、苯甲酸盐等。

它们能增加阳极极化,从而使腐蚀电位正移,通常是阳极型缓蚀剂的阴离子移向阳极表面使金属钝化,减缓腐蚀。

②阴极型缓蚀剂,又称阴极抑制型缓蚀剂,例如:聚磷酸盐、硫酸锌、酸式碳酸钙、砷化物、锑化物等,它们在介质中使金属腐蚀电位向负移,增加了酸溶液中氢析出的过电位,使阴极过程减慢受阻,腐蚀降低。

③混合型缓蚀剂,又称混合抑制型缓蚀剂,例如:含氮、含硫及既含氮又含硫的有机化合物、琼脂、生物碱等,它们对阴极过程和阳极过程同时起抑制作用,腐蚀电位变化不大,但腐蚀电流却减少很多。

这类缓蚀剂可分为三类:含氮的有机化合,如胺类、咪唑啉类、季铵盐类和有机胺的亚硝酸盐等;含硫的有机化合物,又硫醇、醚、环状含硫有机化合物等;含硫、氮的有机化合物如硫脲及其衍生物等,以及含磷有机化合物、炔醇类化合物、醛类、羧酸盐类化合物等。

(3)按缓蚀剂在金属表面形成保护膜特征分类①氧化膜型缓蚀剂,这类缓蚀剂例如铬酸盐重铬酸盐、亚硝酸盐等,它们在介质中可使铁的表面氧化成γ-Fe2O3保护膜,从而抑制铁在介质中的腐蚀。

由于它们具有钝化作用,故这类缓蚀剂又称“钝化剂”,它们又可细分为阳极抑制型(如铬酸钠和重铬酸钠)钝化剂和阴极去极化型(如亚硝酸钠)钝化剂两类。

缓蚀剂的分类

缓蚀剂的分类

缓蚀剂有多种分类方法,可从不同的角度对缓蚀剂分类。

[1][2]化学成分可分为无机缓蚀剂、有机缓蚀剂、聚合物类缓蚀剂。

①无机缓蚀剂无机缓蚀剂主要包括铬酸盐、亚硝酸盐、硅酸盐、钼酸盐、钨酸盐、聚磷酸盐、锌盐等。

②有机缓蚀剂有机缓蚀剂主要包括膦酸(盐)、膦羧酸、琉基苯并噻唑、苯并三唑、磺化木质素等一些含氮氧化合物的杂环化合物。

③聚合物类缓蚀剂聚合物类缓蚀剂主要包括聚乙烯类,POCA,聚天冬氨酸等一些低聚物的高分子化学物。

控制部位根据缓蚀剂对电化学腐蚀的控制部位分类,分为阳极型缓蚀剂,阴极型缓蚀剂和混合型缓蚀剂。

①阳极型缓蚀剂阳极型缓蚀剂多为无机强氧化剂,如铬酸盐、钼酸盐、钨酸盐、钒酸盐、亚硝酸盐、硼酸盐等。

它们的作用是在金属表面阳极区与金属离子作用,生成氧化物或氢氧化物氧化膜覆盖在阳极上形成保护膜。

这样就抑制了金属向水中溶解。

阳极反应被控制,阳极被钝化。

硅酸盐也可归到此类,也是通过抑制腐蚀反应的阳极过程来达到缓蚀目的。

阳极型缓蚀剂要求有较高的浓度,以使全部阳极都被钝化,一旦剂量不足,将在未被钝化的部位造成点蚀。

②阴极型缓蚀剂抑制电化学阴极反应的化学药剂,称为阴极型缓蚀剂。

锌的碳酸盐、磷酸盐和氢氧化物,钙的碳酸盐和磷酸盐为阴极型缓蚀剂。

阴极型缓蚀剂能与水中、与金属表面的阴极区反应,其反应产物在阴极沉积成膜,随着膜的增厚,阴极释放电子的反应被阻挡。

在实际应用中,由于钙离子、碳酸根离子和氢氧根离子在水中是天然存在的,所以只需向水中加入可溶性锌盐或可溶性磷酸盐。

③混合型缓蚀剂某些含氮、含硫或羟基的、具有表面活性的有机缓蚀剂,其分子中有两种性质相反的极性基团,能吸附在清洁的金属表面形成单分子膜,它们既能在阳极成膜,也能在阴极成膜。

阻止水与水中溶解氧向金属表面的扩散,起了缓蚀作用,巯基苯并噻唑、苯并三唑、十六烷胺等属于此类缓蚀剂。

保护膜类除了中和性能的水处理剂,大部分水处理用的缓蚀剂的缓蚀机理是在与水接触的金属表面形成一层将金属和水隔离的金属保护膜,以达到缓蚀目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1醛类
醛类缓蚀剂主要使用的是甲醛。

由于醛类具有极性基团—CHO,其中心原子O有两对孤对电子,它与Fe的d电子轨道形成配位键而吸附在金属表面从而抑制了金属的腐蚀。

2含硫类活性剂
硫醇:R—SH,R:C12~C18
3含氧类活性剂
表面活性剂的非极性基定向排列成了疏水膜保护层。

膜的强度与碳链长度有关,膜厚而致密则屏蔽效应好,但随碳链增长,它在水中或酸中溶解性降低。

4磺酸盐活性剂
烷基磺酸钠:R—SO3Na R:C12~C18
烷基苯磺酸钠:R:C8~C14
5胺类
胺类化合物的氮原于有自由电子对,使其具有亲核性。

例如烷基胺在盐酸中有如下反应:
烷基胺作缓蚀剂,R通常为C12~C18
6吡啶类缓蚀剂
吡啶类缓蚀剂是目前国内外广泛使用的酸液缓蚀剂。

我国各油田常用的7701、7623和7461-102都是吡啶类缓蚀剂。

例如:7701缓蚀剂主要成分为氯化苄基吡啶,是由制药厂的吡啶釜渣在乙醇等试剂中与氯化苄反应制得。

如果用喹啉替换吡啶,就可得到类似的缓蚀剂氯化苄基喹啉季铵盐。

7炔醇类
与吡啶类一样,炔醇类缓蚀剂是应用最为广泛的另一类有机缓蚀剂。

它性能稳定,尤其适用于高温。

国内外常用的炔醇类缓蚀剂有:乙炔醇CHCOH、丁炔二醇
HOCH2CCCH2OH、丙炔醇HOCH2CCH、己炔醇C3H7CH(OH)CCH、辛炔醇CH3(CH2)4CH(OH)CCH以及由炔醇同胺类、醛(酮)类合成的多元化合物。

其中乙炔醇、丙炔醇及其衍生物最常用,如美国的A-130、A-170,我国的7801等。

炔醇类缓蚀剂常与胺类缓蚀剂及碘化钾、碘化亚铜复配使用,可用于200~260℃温度范围。

炔醇类缓蚀剂的作用机理被认为是炔烃通过π键与金属铁表面形成络合薄膜,从而防止了酸的侵蚀。

用红外光谱分析了辛炔醇在钢表面上形成的薄膜之后发现,被吸附的炔醇在酸介质中与钢铁表面首先在炔键处加氢形成烯醇,然后脱水生成共扼二烯,共扼二烯能发生聚合反应生成齐聚体(O1igoner)膜:
存在于钢表面上的齐聚膜是类似于煤油脂一样的粘稠状物质,其中也存在有未作用的辛炔醇。

由于聚合成膜作用,辛炔醇牢固吸附于钢铁表面,甚至高温和浓盐酸都很难破坏吸附膜。

随温度增加,辛炔醇缓蚀效果更为明显,而且在浓酸中的效果更优于稀酸。

8曼尼希(Mannich)碱
高温(120~210℃)、高浓度的条件下,可用曼尼希碱(胺甲基化反应产物,如:甲烷基酮、甲醛与二甲胺反应物;苯乙酮、甲醛与环己胺反应产物或苯乙酮、甲醛与松香胺的反应产物)与炔醇或曼尼希碱、炔醇与含氮化合物复配作缓蚀剂。

通常对盐酸使用的缓蚀剂同样适用于氢氟酸。

对氢氟酸,含氮含硫化合物(如:二苯基硫脲、二苄基亚砜、2-巯基苯并三唑)和炔醇化合物(如:1-氯-3-(β羟基-乙氧基)-3-甲基-1-丁炔)有特别好的缓蚀作用。

9缓蚀增效剂、缓蚀剂与其他添加剂的配伍性
(1)缓蚀增效剂
某些添加剂的作用不同于缓蚀剂,但它们可提高有机缓蚀剂的效率,这类添加剂称为缓蚀增效剂。

常用的缓蚀增效剂为碘化钾、钾化亚铜、氯化亚铜和甲酸。

将这些添加剂加到含有缓蚀剂的配方中可大幅度提高缓蚀剂的效率和使用温度。

(2)缓蚀剂与其他添加剂的配伍性
任何能改变缓蚀剂在钢表面吸附趋势的添加剂均能改变缓蚀剂的有效性。

例如,因各种目的而加到酸中的表面活性剂可能形成溶解缓蚀剂的胶束。

这可以降低缓蚀剂在金属表面的吸附趋势,无机盐互溶剂也能影响缓蚀剂的吸附。

因此,应尽可能将那些能降低缓蚀剂性能的添加剂加到前置液和后置液中,而不应加到酸溶液中。

相关文档
最新文档