正态分布概念
正态分布的概念及应用
• 正态分布的简介 • 正态分布的性质 • 正态分布的应用场景 • 正态分布在数据分析中的应用 • 正态分布在机器学习中的应用 • 正态分布与其他统计分布的关系
01
正态分布的简介
正态分布的定义
01
正态分布是一种连续概率分布, 描述了许多自然现象的概率分布 形态,其概率密度函数呈钟形曲 线,且具有对称性。
贝叶斯推断
正态分布在贝叶斯推断中发挥了重要作用。通过贝叶斯定理,我们可以根据先 验知识和数据更新对未知参数的估计,而正态分布可以作为先验知识的分布形 式。
核方法和支持向量机
核方法
在支持向量机(SVM)等核方法中,正态分布作为核函数的一 种形式,用于将输入空间映射到高维特征空间,从而使得线性 不可分的数据变得线性可分。
在时间序列分析中,正态分布可用于描述时间序列数据的分布特征, 并建立预测模型。
05
正态分布在机器学习中的应用
概率模型和贝叶斯推断
概率模型
正态分布是一种常用的概率分布,在贝叶斯推断中,我们常常假设某些参数服 从正态分布,以便进行统计推断。例如,在朴素贝叶斯分类器中,特征的概率 分布被假设为正态分布。
考试成绩和测试评分
考试成绩和各种测试评分也经常呈现正态分布,因为大多数人的得分集中在平均分附近, 而高分和低分的人数较少。
气温、降雨量等气候数据
气温、降雨量等自然现象数据也可以用正态分布来描述,因为它们通常遵循类似的统计规 律。
科学研究和技术开发
01 02
实验结果和测量数据
在科学实验和测量中,很多数据呈现正态分布,如放射性衰变的半衰期、 化学反应速率等。这些数据反映了物质内部微观粒子的随机运动和相互 作用。
正态分布在统计学中的地位
正态分布——概念、特征、广泛应用
正态分布——概念、特征、广泛应用一、概念指变量的频数或频率呈中间最多,两端逐渐对称地减少,表现为钟形的一种概率分布。
正态分布的由来正态分布是最重要的一种概率分布。
正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss(Carl Friedrich Gauss,1777—1855)率先将其应用于天文学家研究,故正态分布又叫高斯分布。
高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。
高斯是一个伟大的数学家,重要的贡献不胜枚举。
在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。
但随着各种理论的深入研究,高斯理论的卓越贡献日显重要。
1.正态分布的重要性正态分布是概率统计中最重要的一种分布,其重要性我们可以从以下两方面来理解:一方面,正态分布是自然界最常见的一种分布。
一般说来,若影响某一数量指标的随机因素很多,而每个因素所起的作用都不太大,则这个指标服从正态分布。
2.正态曲线及其性质3.标准正态曲线标准正态曲线N(0,1)是一种特殊的正态分布曲线,以及标准正态总体在任一区间(a,b)内取值概率。
4.一般正态分布与标准正态分布的转化由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。
只要会用它求正态总体在某个特定区间的概率即可。
5.“小概率事件”和假设检验的基本思想“小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。
这种认识便是进行推断的出发点。
关于这一点我们要有以下两个方面的认识:一是这里的“几乎不可能发生”是针对“一次试验”来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用“小概率事件几乎不可能发生的原理”进行推断时,我们也有5%的犯错误的可能。
二、正态分布的特征均数处最高以均数为中心,两端对称永远不与x轴相交的钟型曲线有两个参数:均数——位置参数,标准差——形状(变异度)参数。
正态分布的相关概念
正态分布的相关概念
一、正态分布的基本概念
正态分布是一种常见的概率分布,它描述了许多自然现象和统计数据的分布情况。
正态分布曲线呈钟形,中间高,两边低,左右对称。
二、正态分布的参数
正态分布有两个参数,即均值(μ)和标准差(σ)。
均值决定了分布的中心位置,而标准差决定了分布的宽度。
三、正态分布的性质
正态分布具有以下基本性质:
1.集中性:正态分布曲线在均值处达到最高点,向两侧逐渐下降。
这意味着大多数数据值都集中在均值附近。
2.对称性:正态分布曲线关于均值对称,即对于任何x,都有p(x)=p(-x)。
这意味着正态分布不受符号影响。
3.均匀分布:在远离均值的地方,正态分布的概率密度逐渐减小,但不会为0。
这意味着在远离均值的地方仍然有可能出现数据值,但概率较小。
4.渐进性:当数据量足够大时,经验分布趋向于正态分布。
这意味着随着数据量的增加,数据的分布情况越来越符合正态分布。
5.偏态性:正态分布是略微偏左的,这是因为负值比正值出现的概率稍大。
但在某些情况下,可能会出现偏态分布。
四、正态分布的应用
正态分布在统计学中有着广泛的应用。
例如,在生物医学领域,
许多生理指标(如身高、体重)的分布都呈现出正态分布的特点。
此外,在金融领域,许多金融指标(如收益率、波动率)也服从正态分布。
五、正态分布的变种
除了基本形态的正态分布外,还有许多基于正态分布的变种。
例如,t分布、F分布等都是基于正态分布的变形。
这些变种在统计学中也有着广泛的应用。
正态分布的概率计算
正态分布的概率计算正态分布是统计学中最常用的分布之一,也被称为高斯分布。
在自然界和社会科学中,许多现象都服从于正态分布。
例如,身高、体重、智力、成绩等等。
正态分布具有许多优良的性质,使得其在实际应用中得到广泛的应用。
本文将介绍正态分布的概念、性质、参数估计、假设检验以及在实际问题中的应用。
正态分布的概念正态分布是一种连续型概率分布,其概率密度函数为:$$f(x)=frac{1}{sqrt{2pi}sigma}e^{-frac{(x-mu)^2}{2sigma^2}} $$其中,$mu$ 是分布的均值,$sigma$ 是分布的标准差,$pi$ 是圆周率。
正态分布的图像呈钟形曲线,以均值为对称轴,标准差越小,曲线越尖锐。
正态分布的性质1. 正态分布的均值和标准差唯一确定了整个分布。
2. 正态分布的概率密度函数在均值处取得最大值,即$f(mu)=frac{1}{sqrt{2pi}sigma}$。
3. 正态分布的标准差越大,分布的形状越平坦,标准差越小,分布的形状越尖锐。
4. 正态分布的面积为1,即 $int_{-infty}^{+infty}f(x)dx=1$。
5. 正态分布的累积分布函数可以用标准正态分布的累积分布函数来表示,即 $F(x)=Phi(frac{x-mu}{sigma})$,其中,$Phi(z)$ 表示标准正态分布的累积分布函数。
正态分布的参数估计在实际应用中,我们常常需要根据样本数据来估计正态分布的参数,即均值和标准差。
下面介绍两种参数估计方法。
1. 极大似然估计假设我们有 $n$ 个来自正态分布 $N(mu,sigma^2)$ 的独立观测值 $x_1,x_2,cdots,x_n$。
它们的联合概率密度函数为:$$L(mu,sigma^2)=prod_{i=1}^{n}frac{1}{sqrt{2pi}sigma}e^{-fr ac{(x_i-mu)^2}{2sigma^2}}$$对 $L(mu,sigma^2)$ 取对数,得到对数似然函数:$$lnL(mu,sigma^2)=-frac{n}{2}ln(2pi)-nlnsigma-sum_{i=1}^{n}frac {(x_i-mu)^2}{2sigma^2}$$极大似然估计就是找到可以最大化对数似然函数的参数值。
心理学中正态分布名词解释
心理学中正态分布名词解释
正态分布,也称为高斯分布或钟形曲线,是心理学中常用的一个概念。
它是一
种对于自然界种种现象(例如身高、体重、智力测验分数等)的分布进行建模的数学方式。
正态分布具有以下特征:首先,它是一个连续的概率分布,可以用一个钟形曲
线来表示。
钟形曲线的峰值对应着分布的平均值,而曲线的宽度则与分布的标准差有关。
其次,正态分布是一个对称分布,即曲线左右两侧的形状是完全相同的。
最后,它具有一个重要性质,即约68%的数据落在平均值加减一个标准差的范围内,约95%的数据落在平均值加减两个标准差的范围内,约99.7%的数据落在平均值加减三个标准差的范围内。
正态分布在心理学研究中有着广泛的应用。
研究人员可以使用正态分布来描述
整体人群在某种特征上的分布情况,例如智力分数在一个年龄段内的分布。
此外,正态分布也可以用于推断统计,帮助研究人员进行假设检验、置信区间估计等等。
总结来说,正态分布是心理学中一种常见的分布模型,它可以帮助研究人员更
好地理解和描述一些心理现象的分布特征。
通过对正态分布的研究,我们可以更深入地认识人类行为和心理特征的统计规律。
正态分布的概念
正态分布的概念
正态分布,也称为高斯分布,是概率统计学中最常见的一种分布模式。
它在许多自然和社会现象中都具有重要的应用,是数据分析和建模的基石之一。
正态分布的概念可以通过以下几个方面来说明:
概率密度函数:正态分布可以通过概率密度函数来描述,其数学表达式为:
f(x) = (1 / (σ√(2π))) * e^(-((x-μ)^2) / (2σ^2))
其中,μ是均值,σ是标准差,e是自然对数的底。
概率密度函数呈钟形曲线,具有对称性。
均值和标准差:正态分布的均值确定了曲线的中心位置,标准差决定了曲线的宽度。
均值和标准差的不同取值会导致不同形状的正态分布。
中心极限定理:正态分布具有重要的统计性质。
根据中心极限定理,当样本容量足够大时,无论原始数据的分布是什么样的,样本均值的分布会近似服从正态分布。
举例说明:正态分布可以在许多实际情况中得到应用。
例如,在人口统计中,身高和体重往往服从正态分布。
在财务领域,股票收益率的变动也通常近似服从正态分布。
另外,许多测量误差、温度变化、考试成绩等都可以用正态分布进行建模和分析。
正态分布的重要性在于它提供了一种统计工具,可以帮助我们描述和理解真实世界中的现象。
通过正态分布的概念和特性,我们可以
对数据进行分析、判断概率和进行推断。
这使得正态分布成为了概率统计学中最为重要的工具之一。
正态分布——概念特征广泛应用
正态分布——概念特征广泛应用正态分布,也称为高斯分布或钟形曲线,是概率论中一种非常重要的分布。
它在统计分析和科学研究中得到了广泛的应用。
正态分布具有许多独特的特征,它的形状是对称的,呈现出一个钟形曲线,其均值、方差和标准差等统计量能够完全描述它的特征。
正态分布的概念:正态分布是一种连续型的概率分布,它的概率密度函数可以通过以下公式表示:f(x) = (1 / (σ * √(2 * π))) * exp(-((x - μ) ^ 2) / (2 *σ ^ 2))其中,μ表示正态分布的期望值或均值,σ表示正态分布的标准差,π是圆周率。
正态分布的特征:1.对称性:正态分布呈现出对称的特点,也就是说,在均值两侧的概率曲线是完全相同的,即左右对称。
2.唯一性:正态分布具有唯一的均值和标准差。
均值决定了曲线的中心位置,标准差决定了曲线的形状和宽度。
3.分布范围:正态分布的取值范围是无限的,即负无穷到正无穷。
4.弱偏态性:正态分布的偏态系数为0,即偏度为0。
偏态系数用于衡量概率分布的非对称性,当偏态系数大于0时,分布呈现正偏态,即右侧的尾部比左侧的尾部更长。
正态分布的广泛应用:1.统计学:正态分布在统计学中得到广泛的应用,特别是在参数估计和假设检验中。
许多常见的统计模型,如回归模型和时间序列模型,都是基于正态分布假设进行建模的。
2.自然科学:正态分布在自然科学中的应用非常广泛。
例如,物理学中的测量误差通常是服从正态分布的,因此在物理实验中,我们常常使用正态分布进行误差处理。
3.金融学:正态分布在金融学中扮演着重要的角色。
金融市场的大多数价格变动和收益率变动都呈现出近似正态分布的特征,这是基于大量的市场参与者和随机性的结果。
4.社会科学:正态分布也在社会科学中得到广泛的应用。
例如,人口统计数据、心理测量、学生考试成绩等,都可以使用正态分布进行描述。
5.质量管理:正态分布还在质量管理中发挥着重要的作用。
许多质量控制方法,如过程控制图、质量能力指数等,都基于正态分布的性质。
正态分布的概念和特点
正态分布的概念和特点
正态分布是一种概率分布,它的特点是集中性、对称性和均匀变动性。
1.集中性:正态曲线的高峰位于正中央,即均数所在的位置。
2.对称性:正态分布曲线以均数所在的位置为中心左右对称且曲线两段无线趋近于横轴。
3.均匀变动性:正态分布曲线以均数所在的位置为中心均匀向左右两侧下降。
另外,正态分布函数公式如下:μ为均数,σ为标准差。
μ决定了正态分布的位置,与μ越近,被取到的概率就越大,反之越小。
σ描述的是正态分布的离散程度。
σ越大,数据分布越分散曲线越扁平;σ越小,数据分布越集中曲线越陡峭。
以上特点在生产条件不变的情况下,可以广泛应用于产品的强力、抗压强度、口径、长度等指标的预测,以及同一种生物体的身长、体重等指标,同一种种子的重量,测量同一物体的误差,弹着点沿某一方向的偏差,某个地区的年降水量,以及理想气体分子的速度分量等等。
高考正态分布知识点
高考正态分布知识点在统计学中,正态分布是一种重要的概率分布,也被称为钟形曲线或高斯分布。
在高考数学中,正态分布是一个常见的考察点,学生需要了解和掌握与正态分布相关的概念、性质和应用。
下面将详细介绍高考正态分布的知识点。
一、正态分布的定义和性质1. 正态分布的定义:正态分布是指在数理统计中,如果随机变量X服从一个数学期望为μ、方差为σ²的正态分布,则记为X~N(μ, σ²),其中N表示正态分布。
2. 正态分布的性质:(1)正态分布是对称的,其均值、中位数和众数都相等,即μ=中位数=众数。
(2)正态分布的图像呈现出典型的钟形曲线。
(3)正态分布的曲线在均值两侧呈现出逐渐减小的趋势,但是永远不会到达横轴。
(4)正态分布的曲线关于均值μ对称。
(5)正态分布的标准差σ越大,曲线越矮胖;标准差σ越小,曲线越瘦高。
(6)约68%的数据落在均值±1个标准差范围内;约95%的数据落在均值±2个标准差范围内;约99.7%的数据落在均值±3个标准差范围内。
二、正态分布的概率计算1. 标准正态分布:标准正态分布是指均值为0,标准差为1的正态分布。
记为Z~N(0, 1)。
对于标准正态分布,我们可以通过计算标准正态分布表来得到对应的概率值。
2. 普通正态分布:当随机变量X服从正态分布N(μ, σ²)时,可以进行标准化处理,将X转化为一个服从标准正态分布的随机变量Z。
即Z=(X-μ)/σ,这样就得到了一个标准正态分布。
对于普通正态分布,可以通过标准正态分布表和标准化公式来计算相应的概率值。
3. 概率计算:对于正态分布,我们常常需要计算在某个区间范围内的概率值。
对于标准正态分布,可以利用标准正态分布表查找对应的概率值。
对于普通正态分布,可以将其转化为标准正态分布进行计算。
三、正态分布的参数估计1. 样本均值的抽样分布:在统计学中,我们经常需要对总体的均值进行估计。
对于正态分布,样本均值的抽样分布也是一个正态分布,并且其均值等于总体均值,方差等于总体方差除以样本容量的平方根。
正态分布的基本概念
正态分布的基本概念正态分布,也称为高斯分布,是自然界中最常见的分布形式之一,它在各种领域中都有着广泛的应用。
正态分布的特点是具有对称性、单峰性和钟形曲线形状,其分布密度函数可以用数学公式表示。
在统计学中,正态分布是一种重要的概率分布,它在数据分析、假设检验、回归分析等领域中起着重要的作用。
本文将介绍正态分布的基本概念,包括概率密度函数、期望值、标准差、正态分布的性质和应用等方面。
一、概率密度函数正态分布的概率密度函数可以用以下公式表示:f(x) = 1 / (σ * √(2π)) * e^(-(x-μ) / (2σ)) 其中,μ是分布的期望值,σ是分布的标准差,e是自然常数,π是圆周率。
这个公式描述了正态分布的形状,其中的μ和σ控制了正态分布曲线的位置和形状。
正态分布的概率密度函数曲线是一个钟形曲线,对称于μ处。
二、期望值在正态分布中,期望值是分布的中心位置,也是分布的均值。
期望值可以用以下公式表示:E(X) = μ其中,X是一个随机变量,μ是分布的期望值。
正态分布的期望值是在分布曲线中心位置处,也是分布的对称轴。
三、标准差标准差是用来衡量数据分散程度的一个指标。
在正态分布中,标准差是分布曲线的宽度。
标准差可以用以下公式表示:σ = √(E((X-μ)))其中,E((X-μ))是随机变量X的方差,也是衡量数据分散程度的常用指标。
正态分布的标准差决定了分布曲线的宽度,标准差越大,曲线越宽。
四、正态分布的性质正态分布具有以下性质:1. 对称性:正态分布的概率密度函数是对称的,即分布曲线左右两侧的面积相等。
2. 单峰性:正态分布的概率密度函数只有一个峰值。
3. 随机变量的线性组合仍然服从正态分布:如果X和Y是两个服从正态分布的随机变量,那么它们的线性组合aX+bY仍然服从正态分布,其中a和b是常数。
4. 中心极限定理:当样本量足够大时,任何分布的样本均值都服从正态分布。
五、正态分布的应用正态分布在各种领域中都有着广泛的应用,例如:1. 数据分析:正态分布是数据分析中最常见的分布形式之一,通过对数据进行正态分布分析,可以了解数据的分布情况、异常值和数据分散程度等信息。
正态分布名词解释电大
正态分布名词解释正态分布是一种常见的概率分布,用于描述各种随机现象。
本文将介绍正态分布的概念、特征、含义以及应用。
一、正态分布的概念正态分布是一种连续型概率分布,它具有两个参数:均值和标准差。
均值是分布的中心点,标准差是分布的分散程度。
正态分布的概率密度函数呈钟形,左右对称,中间高,两边低。
二、正态分布的特征1. 中心对称:正态分布的概率密度函数关于均值对称,即对于任意 x,有 f(x)=f(-x)。
2. 左右对称:正态分布的概率密度函数在均值处取得最大值,即f(μ)=max{f(x)}。
3. 长尾:正态分布的概率密度函数在x=μ时取得最大值,但随着 x 离μ越来越远,概率密度函数逐渐变得平缓,呈现出长尾特征。
4. 标准化:将正态分布标准化,即将其转化为均值为 0,标准差为 1 的分布,称为标准正态分布。
三、正态分布的含义正态分布表示的是一个随机变量的分布情况,它具有以下含义: 1. 均值是分布的中心点,反映了随机变量的平均水平。
2. 标准差是分布的分散程度,反映了随机变量的离散程度。
3. 正态分布的概率密度函数呈钟形,说明随机变量取值集中在均值附近,离均值越远的取值概率越小。
四、正态分布的应用正态分布在统计学中具有广泛的应用,下面列举几个主要的应用: 1. 假设检验:正态分布是许多统计假设检验的基础,例如 t 检验、F 检验等。
2. 置信区间:正态分布可以用来计算置信区间,用于估计总体参数。
3. 预测分析:正态分布可以用来进行预测分析,例如预测销售量、股票价格等。
4. 质量控制:正态分布可以用于质量控制,例如通过正态分布来判断一个产品是否合格。
总之,正态分布是一种重要的概率分布,它在统计学中有着广泛的应用。
第三节 正态分布
主要内容: 主要内容: 一、正态分布概念 二、正态分布的特点 三、应用
一、正态分布概念
正态分布又称高斯分布,常态分布,是一种数据的 波动规律的表达,主要反映了试验的随机误差。
强度分组为横坐标,以频数为纵坐标,绘成强 度—频数直方图
12 10 8 6 4 2 0 18 20 22 24 26 3 7 5 2 10
应用
1.可疑数据的舍弃; A. 莱 特 准 则 ( 3σ 原 则 ) : 由 于 落 在 (u3σ,u+3σ)的概率为99.73%,处在3σ之外的 概率(即误差概率)仅为0.27%,接近0,对于 常规一般仅进行几十次的测量,如处在3σ之 外则说明属于随机误差,应剔除。 由于次判据是建立在n趋向于无穷得基础上得, 所以当n有限时,尤其是n较小时这一判据并不 十分可靠。但是由于其使用方便,故常常被使 用。
(一)正交设计的基本方法
试验设计包括三方面的内容: 1. 因素和水平选择 2. 误差控制:试验方案的制定 3. 数据处理:分析试验结果
一般来说,为保证结论的可靠性,在选取因素时 应把所有影响较大的因素选入试验,某些因素 之间可能还有交互作用,所谓交互作用,就是 这些因素在同时改变水平时,其效果会超过单 独改变某一因素水平时的效果。影响较大的因 素还应包括那些单独变化水平时效果可能不太, 大与其他因素同时变化时交互作用较大的因素, 这样才能保证试验的代表性。因素变化越多越 好,取值不能少于3个,这样才能看出曲线,看 出其变化的趋势。某一因素取值变化的次数即 水平数,为了减少试验次数,往往取两水平(现 行工艺水平和新工艺水平)或三水平(低于现行 工艺水平或理论值、现行工艺水平、高于现行 工艺水平)。 水平变化的范围不宜太大。
且从图12-2还可以看出,按趋势,增加 水分与碾压料重、抗折强度,还有可能 提高,因此还应扩大试验范围,试探其 强度趋势。
正态分布简介
正态分布
一:正态分布的概念和和图形
正态分布的概率密度函数为:
(-∞< X <+
∞) 式中,有4个常数,μ 为总体均数,σ 为总体标准差,π为圆周率,e 为自然
,π,e 为固定常数,仅X 为变量,代表图形上横轴的数值,f(X)为纵轴数
分布曲线。
正态分布曲线是一簇曲线。
二:正态分布图的特点
1 对称的钟型(在均数处最高) 2两侧逐渐下降 3两端在无穷远处与横轴无限接近。
三:正态分布的特征
特征一 正态分布是一单峰分布,高峰位置在均数X= μ 处。
特征二 正态分布以均数为中心,左右完全对称。
特征三 正态分布取决于两个参数,即均数μ 和标准差σ μμ
μ 变小,曲线沿横轴向左移动。
σ
示数据的离散程度,若σσ 。
特征四 有些指标不服从正态分布,但通过适当变换后服从正态分布,如对数正态分布。
特征五 正态分布曲线下的面积分布是有规律的。
无论σ
μ,
①正态密度函数曲线与横轴间的面积恒等于1或100%;
②正态分布是对称分布。
其对称轴为直线X=μX>μX<μ等,各占50%;
四:标准正态分布
将正态分布变量作标准化变换,就得到均数为0,标准差为1的标准正态分布 标准化变换公式: 正态分布的概率密度函数方程就简化为标准正态分布的概率密度函数方程:
,(-∞< u <+∞) 22
()21()2X f X e μσσπ--= f σμ
-=X u 2221)(u e u -=π
ϕ。
有关正态分布的解释
正态分布的数理统计学概念:
如果随机变量(X)的概率密度函数为:
f x
1
e
x-∞2 <x<+∞
2 2
则该随机变量服从正态2分布。
式中σ为总体标准差;μ为总体均数;
π为圆周率,即3.14159···;e为自然对数的
底,即2.71828···。
✓ 若某一随机变量的概率密度函数(频率曲线方程) 为上式,则称该变量X服从参数为μ和σ的正态分布, 记为:X~N(μ,σ2)。
144~
25
145.5
147~
20
148.5
150~
9
151.5
153~
3
154.5
156~
2
157.5
159~162
1
160.5
合计
118
—
频数
频数分布图一(又称直方图)
30
20
10
0 130.5 133.5 136.5 139.5 142.5 145.5 148.5 151.5 154.5 157.5 160.5
身高(X)大于 155(cm)的概率为: PX x2 155 PU u2
u2
x2 s
x
155 144.29 5.41
1.98
PX x2 155 PU u2 PU u2 1.98 1 1.98 1 0.97615 0.02385
该地 13 岁正常女孩身高在 135 厘米以下者占正常女孩总人数的 4.272%,身高 在 155 厘米以上者占正常女孩总人数的 2.385%。
标准正态分布曲线下对称于0的区间,面积相等,各占50%,即左右 各为0.5。
标准正态分布曲线的纵坐标与面积关系图
有关正态分布的解释
百分位数法: 适用于资料服从偏态分布时。 公式:
双侧 1-α参考值范围:P100 2 ~P1001 2
单侧 1-α参考值范围:> P100 或< P1001
例题参见教科书。
标准正态分布
标准正态分布曲线下对称于0的区间,面积相等,各占50%,即 左右各为0.5。
标准正态分布曲线的纵坐标与面积关系图
即纵坐标从-∞移到u所对应区域的面积为上图红色区域面积的 大小,这样一个区域的面积我们用Ф(u)表示,可通过查标准正
态分布曲线面积分布表得到Ф(u)的大小。
u值查表所对应的面积是区间(-∞,u)所对应的面积,即Ф(u)。
图一:
图二: 图三:
图四:
✓ 当有一随机变量X服从正态分布N(μ,σ2),若要求某
一区间(x1,x2)的曲线与横轴围成的面积时,无须运 用积分学知识求从x1移到x2所对应区域的面积大小来得 到这一区间所对应的面积。此时,我们可以通过变量 变换,把X转变成u,即把一般的正态分布变换为标准 正态分布,通过求标准正态分布区间(u1,u2)所对应的面 积来间接求得一般正态分布区间(x1,x2)所对应的面 积。
正态分布的特征及其面积规律
➢ 正态分
布曲线
max
位于横
轴上方,
呈钟形。
➢ 正态分 布曲线 f(x) 以均数 所在处 最高, 且以均 数为中 心左右
对称。
0
µ
➢ 正态分布曲线由两个参数决定,即总体均数μ和总体标准差σ。在σ不变的 情况下,函数曲线形状不变,若μ变大时,曲线位置向右移;若变小时, 曲线位置向左移,故称μ为位置参数。在μ不变的情况下,函数曲线位置 不变,若σ变大时,曲线形状变的越来越“胖”和“矮”;若σ变小时, 曲线形状变的越来越“瘦”和“高”,故称σ为形态参数或变异度参数。
正态分布[2-2]
(X − X) u=
S
3.曲线下对称于 的区间,面积相等。 曲线下对称于0的区间,面积相等。 曲线下对称于 的区间 4.曲线下横轴上的面积为 曲线下横轴上的面积为100%或1。 曲线下横轴上的面积为 或 。
正态分布是一种对称分布,其对称轴为直线 正态分布是一种对称分布,其对称轴为直线X=µ, , 即均数位置,理论上: 即均数位置,理论上: µ±1σ范围内曲线下的面积占总面积的 ± 范围内曲线下的面积占总面积的 范围内曲线下的面积占总面积的68.27% µ±1.96σ范围内曲线下的面积占总面积的 ± 范围内曲线下的面积占总面积的95% 范围内曲线下的面积占总面积的 µ±2.58σ范围内曲线下的面积占总面积的 ± 范围内曲线下的面积占总面积的99% 范围内曲线下的面积占总面积的 实际应用中: 实际应用中: 范围内曲线下的面积占总面积的68.27% ±1 S范围内曲线下的面积占总面积的 范围内曲线下的面积占总面积的 范围内曲线下的面积占总面积的95% ±1.96 S范围内曲线下的面积占总面积的 范围内曲线下的面积占总面积的 范围内曲线下的面积占总面积的99% ±2.58 S范围内曲线下的面积占总面积的 范围内曲线下的面积占总面积的
u=
X −µ
σ
二、正态分布的特征
1. 关于 心,左右对称。 左右对称。 2. 在 在 处取得概率密度函数的最大值, 处取得概率密度函数的最大值, 处有拐点,表现为钟形曲线。 处有拐点,表现为钟形曲线。即正 拐点 对称。 对称。即正态分布以均数为中
态曲线在横轴上方均数处最高。 态曲线在横轴上方均数处最高。
双侧---过高、 双侧 过高、过低均异常 过高
异常
正常
正常
异常
异常
正常
异常
正态分布的概念及表和查表方法
正态分布的概念及表和查表方法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March正态分布概念及图表正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A·棣莫弗在求二项分布的渐近公式中得到。
.高斯在研究测量误差时从另一个角度导出了它。
P·S·拉普拉斯和高斯研究了它的性质。
是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。
其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。
当μ = 0,σ = 1时的正态分布是标准正态分布。
目录1历史发展2定理3定义▪一维正态分布▪标准正态分布4性质5分布曲线▪图形特征▪参数含义6研究过程7曲线应用▪综述▪频数分布▪综合素质研究▪医学参考值历史发展正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。
但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。
这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。
在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。
这要到20世纪正态小样本理论充分发展起来以后。
拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2-4 频数分布与正态分布曲线示意图
一、正态分布的概念和特征
1.正态分布曲线的数学函数表达式:
X服从的概率密度函数f(x)
f (X)
1
1( X )2
e2
2
(-<X< )
X为连续随机变量,μ为X值的总体均数, σ2 为总体方差,记为X~N( μ , σ2)
1.正态分布
正态分布的分布密度函数为:f(x)=σ
解析:从正态曲线的图像可知,该正态曲线关于直线 x=20
对称,最大值为 2
1 ,所以 π
μ=20,
1= 2π·σ 2
1 ,解得 π
σ=
2.于是概率密度函数的解析式为 f(x)=2 1πe-x-4202,x∈(-∞,+∞).
总体随机变量的期望是 μ=20,方差是 σ2=( 2)2=2.
正态分布 (Normal distribution)
正态分布
概述
正态分布是描述连续型变量值分布 的曲线,医学上许多资料近似服从正态 分布。
正态分布在统计推断上有重要的作用。 直方图的频数分布与正态分布
(见图2-4)
频数(f)
25 20 15 10
5 0
2.30~ 2.90~ 3.50~ 4.10~ 4.70~ 5.30~
(5)最值性:当 x=μ时, f, ( x)取得最大值
1
2
σ越大,曲线越“矮胖”,表示总体的分布越
分散;反之σ越小,曲线越“瘦高”,表示总体
的分布越集中.
(6) 几 何 性 : 参 数 μ 和 σ
y
的统计意义:E(x)=μ,曲
线的位置由μ决定
;D(x)=σ2, 曲 线 的 形 状
由σ决定.
o
x
正态分布曲线下面积的含义
101名正常成年女子血清胆固醇分布
0.14 0.12 0.1 0.08 0.06 0.04 0.02
0 12.0 14.5 17.0 19.5 22.0 24.5 27.0 29..1 0.08 0.06 0.04 0.02
0 12.00 14.50 17.00 19.50 22.00 24.50 27.00 29.50 32.00
(1)试求考试成绩X位于区间(70,110)内的概率是多少? (2)若这次考试共有2 000名考生,试估计考试成绩在 (80,100)之间的考生大约有多少人? [思路点拨]
正态 分布
―→
确定μ,σ 的值
―→
正态分布在三个特 殊区间上的概率
―→
求 解
[精解详析] ∵X~N(90,100),
∴μ=90,σ= 100=
1 2πe
-x-2σμ2 2
,x
∈(-∞,+∞),其中 μ 表示 均值,σ2(σ>0)表示 方差 .通
常用 X~N(μ,σ2)表示 X 服从参数为 μ 和 σ2 的正态分布.
2.正态分布密度函数满足以下性质 (1)函数图像关于直线 x=μ 对称. (2)σ(σ>0)的大小决定函数图像的 “胖”“瘦” .
(8 分)
4.某年级的一次信息技术测验成绩近似服从正态分布 N(70,102),如果规定低于60分为不及格,求: (1)成绩不及格的学生占多少? (2)成绩在80~90之间的学生占多少?
解 : (1) 设 学 生 的 得 分 为 随 机 变 量 X , X ~ N(70,102),如图所示,则 μ=70,σ=10,P(70- 10<X<70+10)=0.683, ∴不及格的学生的比为 12×(1-0.683)=0.158 5, 即成绩不及格的学生占 15.85%.
3. 3个特殊结论 若 X : N (, 2 ) ,则
区间
,
2 , 2
3 , 3
取值概率
0.6826 0.9544 0.9974
通常服从于正态分布N(μ,σ2)的随机变量X在区间(μ-3σ,
μ+3σ)外取值的概率只有
. 0.3%
1.正态分布完全由参数μ和σ确定,因此可把正态 分布记作N(μ,σ2).
1.已知随机变量 X 服从正态分布 N(4,σ2),则 P(X
>4)=
()
A.15
B.14
1
1
C.3
D.2
解析:由正态分布密度函数的性质可知,μ=4 是该
函数图像的对称轴,∴P(X<4)=P(X>4)=12.
答案:D
[例2] (8分)在某次数学考试中,考生的成绩X服从一 个正态分布,即X~N(90,100).
2.要正确理解μ,σ的含义.若X~N(μ,σ2),则 EX=μ,DX=σ2,即μ为随机变量X取值的均值,σ2为 其方差.
2.正态曲线的性质
(1)非负性:曲线 f, (x) 在轴的上方,与x轴
不相交(即x轴是曲线的渐近线).
(2)定值性:曲线f, (x) 与x轴围成的面积为1.
(3)对称性:正态曲线关于直线 x=μ对称, 曲线成“钟形”. (4)单调性:在直线 x=μ的左边, 曲线是上升的; 在直线 x=μ的右边, 曲线是下降的.
(2)因为 P(X≥5)=P(X≤-3), 所以 P(X≥5)=12[1-P(-3<X≤5)] =12[1-P(1-4<X≤1+4)] =12[1-P(μ-2σ<X≤μ+2σ)] =12(1-0.954) =0.023.
[一点通] 对于正态分布N(μ,σ2),由x=μ是正态曲 线的对称轴知,
(1)对任意的a,有P(X<μ-a)=P(X>μ+a); (2)P(X<x0)=1-P(X≥x0); (3)P(a<X<b)=P(X<b)-P(X≤a).
1.表示变量值(x)在【a-b】区间变量值 所占全部(总体)变量值的比例或概率 (p)。
2变量值在整个曲线下的面积为100%,或 出现的概率为1。
[例1] 设X~N(1,22),试求: (1)P(-1<X≤3);(2)P(X≥5). [思路点拨] 首先确定μ=1,σ=2,然后根据三个特 殊区间上的概率值求解. [精解详析] 因为X~N(1,22), 所以μ=1,σ=2. (1)P(-1<X≤3)=P(1-2<X≤1+2)=P(μ-σ<X≤μ+σ) =0.683.
(2)成绩在 80~90 之间的学生的比为 12[P(50< X< 90)-P(60< X< 80)] =12×(0.954-0.683)=0.135 5, 即成绩在 80~90 之间的学生占 13.55%.
2.如图所示,是一个正态分布密度曲 线.试根据图像写出其正态分布的 概率密度函数的解析式,并求出总 体随机变量的期望和方差.
(2 分)
(1)P(70<X<110)=P(90-2×10<X<90+2×10)=0.954,
即成绩 X 位于区间(70,110)内的概率为
(5 分)
(2)P(80<X<100)=P(90-10<X<90+10)=0.683,
∴2 000×0.683=1 366(人).
即考试成绩在(80,100)之间的考生大约有 1 366 人.