3 流体动力学基础
流体动力学基础
流体动力学基础第3章流体动力学基础一、单项选择题1、当液体为恒定流时,必有()等于零。
A .当地加速度 B.迁移加速度 C.向心加速度 D.合加速度2、均匀流过流断面上各点的()等于常数。
A.p B.z+g p ρ C. g p ρ+g u 22 D. z+g p ρ+gu 223、过流断面是指与()的横断面。
A .迹线正交 B.流线正交 C.流线斜交 D.迹线斜交4、已知不可压缩流体的流速场为Ux=f(y,z),Uy=f(x),Uz=0,则该流动为()。
A.一元流B.二元流C.三元流D.均匀流5、用欧拉法研究流体运动时,流体质点的加速度a=( ). A. 22dtr d B.t u ?? C.(u ·▽)u D. t u ??+(u ·▽)u 6、在恒定流中,流线与迹线在几何上()。
A.相交B.正交C.平行D.重合7、控制体是指相对于某个坐标系来说,( ).A .由确定的流体质点所组成的流体团B.有流体流过的固定不变的任何体积 C.其形状,位置随时间变化的任何体积 D.其形状不变而位置随时间变化的任何体积.8、渐变流过流断面近似为( ).A.抛物面B.双曲面C.对数曲面D.平面9、在图3.1所示的等径长直管流中,M-M 为过流断面,N-N 为水平面,则有( ).A.p1=p2B.p3=p4C.z1+g p ρ1 =z2+g p ρ2D.z3+g p ρ3 =z4+gp ρ4 10、已知突然扩大管道突扩前后管段的管径之比21d d =0.5, 则突扩前后断面平均流速之比v1:v2=( ).A. 4B.2C.1D.0.511、根据图3.2 所示的三通管流,可得()。
A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 12、根据图3.3 所示的三通管流,可得()。
A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 13、测压管水头坡度Jp=()。
第3章流体力学连续性方程微分形式
第四节 欧拉运动微分方程的积分
du p p p du d y x 1 z ( Xdx Y Zdz dy ) ( dx dy dz ) dx dy d x y z dt dt d
<I> <II> <III>
p 2、均匀不可压缩流体,即=Const; <II>= d ( )
中心的微元六面体为控制体,边 长为dx,dy,dz,中心点压强为 p(x,y,z) 。 受力分析(x方向为例): 1.表面力
z
A'
D' M p(x,y,z) B' N
C'
p dx p x 2
dz dx D dy A
O
o’
p dx p Cx 2
B
x
∵理想流体,∴=0
左表面
y
p dx P p A ( p ) dydz M M 2 x p dx 右表面 P p A ( p ) dydz N N 2 x
2 2 2 2 2 2 ,例: 拉普拉斯算符 x y z 2
2 2 2 u u u x x x u x 2 2 2 x y z 2
第三节 流体动力学基本方程式
第四节 欧拉运动微分方程的积分
由于欧拉运动微分方程是一个一阶非线性偏微分方程组(迁移加速度的三 项中包含了未知数与其偏导数的乘积),因而至今还无法在一般情况下积分, 只能在一定条件下积分。 欧拉运动微分方程组各式分别乘以dx,dy,dz(流场任意相邻两点间距ds 的坐标分量),然而相加得:
du p p p du du y x 1 z ( Xdx Y Zdz dy ) ( dx dy dz ) dx dy d x y z dt dt dt
第三章流体动力学基础复习题
第三章流体动力学基础复习题部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑第三章流体动力学基础复习题一、概念部分1、描述流体运动的方法有和;前者以为研究对象,而后者以为研究对象。
2、流体运动的几何描述有:,,和。
3、流线有什么特点?流线、脉线和迹线有什么区别和联系?4、流体微团基本运动形式有,和变形运动等,而变形运动又包括和两种。
5、描述有旋运动几何要素有、和。
6、判断正误:理想流体不存在有旋运动是否正确?为什么?试举例说明。
7、表征涡流的强弱的参数有和。
8、在无涡流空间画出的封闭周线上的速度环量为。
9、简述汤姆孙定理的内容10、速度势函数j存在的条件是什么?流函数存在的条件是什么?11、简述流函数的物理意义的内容,并证明。
12、流网存在的条件是什么?简述流网的性质所包含的内容?13、无环量圆柱绕流运动由流、流和流叠加而成,有环量的圆柱绕流运动是无环量的圆柱绕流运动与流叠加而成。
b5E2RGbCAP14、是驻点。
通过驻点的流线一定是零流线,是否正确?为什么?零流线是。
轮廓线是。
15、描述流体运动的微分方程有、和。
写出它们的表达式。
16、纳维-斯托克斯方程中的速度只能是平均速度,是否正确?为什么?17、写出总水头和测压管水头的表达式,并说明各项的物理意义。
18、写出总压、全压和势压得表达式,并说明各项的物理意义。
19、简述系统和控制体的定义和特点二、计算部分1、已知拉格朗日描述:求速度与加速度的欧拉描述2、试判断下列流场的描述方式:并转换成另一种描述方式3、已知用欧拉法表示的流场速度分布规律为:试求在t=0时刻位于点<a,b>的流体质点的运动轨迹及拉格朗日法表示的速度场4、粘性流体在半径为R的直圆管内做定常流动。
设圆管截面<指垂直管轴的平面截面)上有两种速度分布,一种是抛物线分布u1(r>,另一种是1/7指数分布u2(r>:p1EanqFDPw上式中um1,um2分别为两种速度分布在管轴上的最大速度。
流体力学 第三章 流体动力学
7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2
面
6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点
三章一元流体动力学基础
第三节、流线与迹线
1、迹线(path line):运动中旳某一流体质点,在连续时间
内所占据空间点旳连线,即质点运动旳轨迹 例如:在流动旳水面上洒上某些木屑,木屑随水流漂流旳途径
欧拉法与拉格朗日法区别:
欧拉法:以固定空间为研究对象,了解质点在某一位置时 旳流动情况
拉格朗日法:以质点为研究对象,研究某一时刻质点全 部流动过程
▪在流场中,因为辨认空间比辨认某一种质点轻易。所
以,欧拉法在流体力学中被广泛采用。
▪在流动旳流体中有无数个流体质点,要用拉格朗日法描述
每个质点旳运动是很困难甚至不可能,极难实现,在流体力 学中不常采用。一般在稀薄气体动力学和数值计算中用得 较多。
三元流动旳连续性方程
利用质量守恒定律还能够导出空间流动旳连续性方 程,其体现式为
ux uy uz 0 x y z
该方程合用于不可压缩流体,对于恒定流和非恒定流均合用。
例题:P56
第六节 理想流体旳运动微分方程
(Euler’s Equation of Motion)
一、推导过程
在某一给定旳瞬间,从流动旳不可压缩性理想流体中任取一微
图3--6 连续性方程推导
u dA (u (u) ds) (dA (dA) ds) 0
s
s
(质量守恒)
u dA (u (u) ds) (dA (dA) ds) 0
s
s
u dA (udA (u) ds dA u (dA) ds (u) ds (dA) ds) 0
而合速度u与三个座标轴上旳分速度之间旳关系是:
流体动力学基本方程
Chapter 3 流体动力学基本方程例如求解定常均匀来流绕流桥墩时的桥墩受力问题:流场和桥墩表面受力由(边界条件+控制方程组)决定。
本章任务建立控制方程组,确定边界条件的近似描述和数学表达。
I 质量连续性方程(质量守恒方程) I-1方程的导出物质体(或系统)的质量恒定不变——质量守恒假设。
质量守恒假设对于很多流动问题是良好近似,分子热运动引起的系统与外界的物质交换可忽略不计。
在此假设下,对物质体τ有0dd dtτρτ=⎰。
根据输运定理,设t 时刻该系统所占控制体为CV ,对应控制面CS ,则有0CVCSd v ds tρτρ∂+⋅=∂⎰⎰⎰——质量守恒方程积分形式。
上式亦表明,CV 内单位时间内的质量减少=CS 上的质量通量。
由奥高公式得()CSCVv ds v d ρρτ⋅=∇⋅⎰⎰⎰,于是有()0CV v d t ρρτ∂⎡⎤+∇⋅=⎢⎥∂⎣⎦⎰。
考虑到τ的任意性,故有()0v t ρρ∂+∇⋅=∂,即 0d v dtρρ+∇⋅= ——质量守恒方程微分形式 I-2各项意义分析: 1)dt d ρ——流体微团密度随时间的变化率;定常流动0=∂∂t ρ;不可压缩流动0=dt d ρ;均质流体的不可压缩流动.const ρ=。
2)由0=dtmd δ(m δ为微团的质量)知11d d dt dt ρδτρδτ=-(δτ为该微团t 时刻体积),从而知v ∇⋅=流体微团体积随时间的相对变化率,即体膨胀率。
3)不可压缩流体0d dtρ=,故有 0v ∇⋅=。
由奥高公式有CVCSv ds vd τ⋅=∇⋅⎰⎰⎰,可见对于不可压缩流动,任意闭合曲面上有0CSv ds ⋅=⎰⎰。
不可压缩流动满足的0v ∇⋅=或0CSv ds ⋅=⎰⎰是对速度场的一个约束。
例1、1)定常流场中取一段流管,则由0CSv ds ⋅=⎰⎰易知:222111S V S V ρρ=;如为均质不可压缩流动,则1122V S V S =。
3流体动力学基础
思考题及答案一、选择 (1)二、例题 (4)三、问答 (61)一、选择问题:恒定流是:A、流动随时间按一定规律变化;B、流场中任意空间点的运动要素不随时间变化;C、各过流断面的速度分布相同;D、各过流断面的压强相同。
问题:非恒定流是:A、;B、;C、;D、。
问题:一元流动是:A、均匀流;B、速度分布按直线变化;C、运动参数是一个空间坐标和时间变量的函数;D、限于直线流动。
问题:均匀流是:A、当地加速度为零;B、迁移加速度为零;C、向心加速度为零;D、合加速度为零。
问题1:流速势函数存在的必要与充分条件是:A、平面无旋流动;B、理想流体平面流动;C、不可压缩流体平面流动;D、无旋流动。
为:问题2:设流速势函数j=xyz,则点B(1,2,1)处的速度uBA、5;B、1;C、3;D、2。
判断:公式(3-14)与公式(3-16)两式形式完全相同,因此其应用条件也相同。
你的回答:对错判断:土坝渗流中的流网网格一定是直线正方形网格。
你的回答:对错二、例题例1如图3-7,已知流速场为,其中C为常数,求流线方程。
解:由式得图3-7积分得:则:此外,由得:因此,流线为Oxy平面上的一簇通过原点的直线,这种流动称为平面点源流动(C>0时)或平面点汇流动(C<0时)例2已知平面流动试求:(1)t=0时,过点M(-1,-1)的流线。
(2)求在t=0时刻位于x=-1,y=-1点处流体质点的迹线。
解:(1)由式(2)由式得得得:由t=0时,x=-1,y=-1得C1=0, C2=0,则有:将:t=0,x=-1,y=-1 代入得瞬时流线xy=1最后可得迹线为:即流线是双曲线。
例3已知流动速度场为试求:(1)在t= t0瞬间,过A(x,y,z)点的流线方程;(2)在t= t0瞬间,位于A(x,y,z)点的迹线方程。
解:(1)流线方程的一般表达式为将本题已知条件代入,则有:积分得:(1+t)ln x = ln y + ln C '当t = t 0时,x =x 0,y =y 0 ,则有故过A ( x 0,y 0,z 0 )点的流线方程为(2)求迹线方程 迹线一般表达式为代入本题已知条件有:由(1)式得:当t = t 0时,x =x 0代入上式得由(2)式得: 当t = t 0时,y = y 0代入上式得故迹线方程为t是自变量,消t后得到的轨迹方程为迹线方程:例:已知流体流动的流速场为,判断该流动是无旋流还是有旋流?解:故液体流动是无旋流。
第三章流体动力学基础(1)
A Control Volume is a region in space, mass can cross its boundary 8
2019/3/27
流体力学基础
第三章 流体动力学基础
§2 流体运动中的几个基本概念
一、物理量的质点导数(全导数) • 运动中的流体质点所具有的物理量N(例如速度、压强、 密度、温度、质量、动量、动能等)对时间的变化率称 为物理量N的质点导数。 • 流体质点处于静止状态,则不存在质点导数概念; • 质点导数是针对某一物理量; • 质点导数必然是数学上多元复合函数对独立自变量t的 导数
流体微团的标识:通常取 t0 时刻该流体微团的初始空间坐标 (a, b, c )作为该流体微团的标识 (a, b, c )可以是直角坐标系下,也可以任选,只要能把所 研究的流体微团彼此区别开即可
2019/3/27
流体力学基础
2
第三章 流体动力学基础
• 拉格朗日变数 : ( a, b, c ) 和 t • 任一时刻流体微团(a, b, c )的运动空间坐标(x, y,z)
r t
(2)
2019/3/27
流体力学基础
16
第三章 流体动力学基础
• 欧拉参数转换为拉格朗日参数
若已知欧拉法表示的速度场为 v = v (r, t) = v (x, y, z, t ) 利用流体质点的速度关系式: dr/dt = v(r, t) 或分量形式: dx/dt = u(x, y, z, t) dy/dt = v(x, y, z, t) dz/dt = w(x, y, z, t) 设此组常微分方程组的解为: x = x(c1, c2, c3, t) y = y(c1, c2, c3, t) z = z(c1, c2, c3, t) 由起始条件确定积分常数,t=t0时有: a = x(c1, c2, c3, t0) b = y(c1, c2, c3, t0) c = z(c1, c2, c3, t0) 积分常数由拉格朗日参数(a, b, c)表示,获得拉氏与欧氏 参数关系:x=x (a, b, c, t), y=y (a, b, c, t), z=z (a, b, c, t), 原速度场:v = v [x(a,b,c,t), y(a,b,c,t), z(a,b,c,t), t] = v (a,b,c,t) 完成欧氏参数向拉氏参数转换 流体力学基础 17
流体动力学理论基础第三章解析
az= x
uy
ux y
uz
ux z
ay
u y t
ux
u y x
uy
u y y
uz
u y z
az
uz t
ux
uz x
uy
uz y
uz
uz z
式中第一项叫时变加速度或当地加速度 (Local Acceleration),流动过程中流体由于速度 随时间变化而引起的加速度;第二项叫位变速度 ,流动过程中流体由于速度随位置变化而引起的 加速度(Connective Acceleration)。
uz uz (x、y、z、t)
(x,y,z,t)—欧拉变量
考察不同时刻液体质点通过流场中固定空间点 的运动情况,综合足够多的固定空间点的运动情 况,得到整个液流的运动规律。——流场法
欧拉法不直接追究质点的运动过程,而是研究各时 刻质点在流场中的变化规律。将个别流体质点运动过程 置之不理,而固守于流场各空间点。通过观察在流动空 间中的每一个空间点上运动要素随时间的变化,把足够 多的空间点综合起来而得出的整个流体的运动情况。
显然,在欧拉描述中,各空间点上的物理量(实际上是通 过此点的流体质点所具有的物理量)是随时间变化的。因此, 流体的运动参数应该是空间坐标和时间的函数。如流体的速 度、压强和密度可以表示为
z
t时刻
M (x,y,z) O
x
y
ux ux (x, y, z,t) uy uy (x, y, z,t) uz uz (x, y, z,t)
算子
全质 导点 数导
数
d dt
=
t
+ (u )
时变导数 当地导数 局部导数
位变导数 迁移导数 对流导数
流体力学讲义 第三章 流体动力学基础
第三章流体动力学基础本章是流体动力学的基础。
主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。
此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。
第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
图3-1为流线谱中显示的流线形状。
(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。
流线是欧拉法分析流动的重要概念。
图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。
图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。
所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。
图3-5中烟火的轨迹为迹线。
(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。
流体力学3-动力学
二、流体动力学基本概念
1. 流束:指在流体中沿流动方向分离出一块基本元面积dA、长为 L的一束流体。 元流(微细流):指断面无穷小的流束。 总流:指无数微细流的总和。
微元流束
图 3-2 总流和微元流束
3. 流速
质点流速(点速):指过流断面上各质点的速度,以“u”表示,m/s 断面平均流速(流速): 指过流断面上各质点的速度的平均值,以“W” 表示,m/s 4.流量:指单位时间内通过某一断面积流体的量。 ① 体积流量(Q):指单位时间内通过某一断面积流体的体积。m3/s ② 质量流量(m):指单位时间内通过某一断面积流体的质量。Kg/s ③ 重量流量(G):指单位时间内通过某一断面积流体的重量。 三者之间关系: m = ρQ G = mg = ρQg 体积流量Q与流速W之间关系: Q = WA (A—流体通过的某一断面面积)
Q1 = Q2
W1 A1 = W2 A2
Q1 = Q2 + Q3
分流时:
W1 A1 = W2 A2 + W3 A3
Q1 + Q2 = Q3
合流时:
W1 A1 + W2 A2 = W3 A3
§3-4 流体流动伯努利方程
伯努利方程从功能原理出发,描述流体在外力作用下是按照什 么规律来运动的,从而求出流速的绝对值等。
ρw12
2
= ( ρ − ρ a ) gZ 2 + P2 +
2 ρ w2
2
+ ∆ P1− 2
对于1,3 断面的伯努利方程如下:
不同条件下临界流速Wk不同;但是临界雷诺数Rek都是相同的, 其值约为2000,
Re ≤ 2000 层流 2000 < Re < 4000 过渡态 Re ≥ 4000 紊流
流体力学 第3章流体动力学基础
第3章 流体动力学基础教学提示:流体力学是研究流体机械运动的一门学科,与理论力学中分析刚体运动的情况相似。
如研究的范围只限于流体运动的方式和状态,则属于流体运动学的范围。
如研究的范围除了流体运动的方式和状态以外,还联系到流体发生运动的条件,则属于流体动力学的范围。
前者研究流体运动的方式和速度、加速度、位移等随空间与时间的变化,后者研究引起运动的原因和流体作用力、力矩、动量和能量的方法。
如前所述,流体力学的研究方法是基于连续介质体系的,重点研究由流体质点所组成的连续介质体系运动所产生的宏观效果,而不讨论流体分子的运动。
与处于相对平衡状态下的情况不同,处于相对运动状态下的实际流体,粘滞性将发生作用。
由于流体具有易流动性和粘滞性的影响,因此流体力学的研究方法与固体力学有明显的区别。
教学要求:流体运动的形式虽然多种多样的,但从普遍规律来讲,都要服从质量守恒定律、动能定律和动量定律这些基本原理。
在本章中,我们将阐述研究流体流动的一些基本方法,讨论流体运动学方面的一些基本概念,应用质量守恒定律、牛顿第二运动定律、动量定理和动量矩定理等推导出理想流体动力学中的几个重要的基本方程:连续性方程、欧拉方程、伯努利方程、动量方程、动量矩方程等,并举例说明它们的应用。
3.1 流体运动的描述方法要研究流体运动的规律,就要建立描述流体运动的方法。
在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。
3.1.1 拉格朗日法拉格朗日法是瑞士科学家欧拉首先提出的,法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用。
该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。
按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标),,(c b a (即当时间t 等于起始值0t 时的坐标)以及时间t 的单值连续函数。
若以r 代表任意选择的质点在任意时间t 的矢径,则: ),,,(t c b a r r = (3-1) 式中,r 在x 、y 、z 轴上的投影为x 、y 、z ;a 、b 、c 称为拉格朗日变量。
流体动力学基础
(2-64)
②.偏心环状缝隙流 当两圆柱不同心,而偏心时,设偏心距为e, 两圆柱同心时的缝隙为δ,如图2-31。
则偏心环缝的流量为(详见P45页推导):
d 3 p d q (1 1.5 2 ) 12l 2
式中,ε=e/δ为偏心比。 所以,当v=0时,是压差流;
q C g A0 2p /
式中,Cg为流量系数,它是实际流量qr与理想流量qt之比 值。即:
Cg=qr / qt =Cc•Cυ
Cc为孔口收缩系数(Cc=A2/A0)。
不同的孔口有不同的Cg值。 1)薄壁孔(孔口的长径比): 图2-25a,此时,可定无沿程损失,只有
进口处的局部损失,
弯曲、管道截面积变化、液压元件等)而产生的 阻力损失,称为局部压力损失,其计算公式为:
p m
2
2
式中,ξ为局部损失系数(查表2-5、2-6、2-7 可得,P35~36),υ为液体过流断面上平均速度, ρ为液体密度。
(4)管道系统总压力损失Δp总和:
Δp总=∑Δpl+∑Δpm =∑λ(L/d)(ρυ2/2)+∑ξ(ρυ2/2) (举例,例2-7,P37~38) (习题3:练习2-5、2-6、2-7、2-8)
压差流的流量计算公式为(详细推导见42-43页):
q1
b 3 p 1 2l
(2-57)
②.剪切流(图2-28) 缝隙两端无压差,设上平板以速度 沿正向运动,下平板不动。缝隙中 流体在上平板带动下层层移动,称 这种流动为剪切流。 剪切流的流量计算公式为(详细推 导见43页):
当δ/d<<1时,可将环状缝隙展开成平面计算, 流量的计算为(此时,b=πd,由式(2-57)得):
第三讲 流体动力学基础
流体静压力矢量: F= -∫ApdAn
三、 流体静压力的两个重要特性。 1、流体静压力的方向总是沿受作用面法线方向。
2、平衡流体内任一点处的静压强的数值与其作用 面的方向无关,它只是该点空间坐标的函数。
10
§2-2 流体的平衡微分方程(欧拉平衡微分方程)
1 p f z
1、流量 单位时间内通过某一过流断面的流体量。体积流量qv或Q表示,质量流量 qm 。 qv vdA v A 体积流量(m3/s): A
质量流量(kg/s):
qm ρ vdA ρv A
A
2、净通量 在流场中取整个封闭曲面作为控制面,封闭曲面内的空间称为控制体。 流过全部封闭控制面A的流量称为净流量,或净通量。
动量修正系数是无量纲数,它的大小取决于总流过水断面的流速分布, 分布越均匀,β 值越小,越接近于1.0。
41
层流流速分布
湍流流速分布
断面流速分布 圆管层流 圆管紊流 旋转抛物面 对数规律
动能修正系数
动量修正系数 β =4/3 β =1.02~1.05
=2.0 =1.05~1.1
42
§3-3 连续方程式(一元流动)
绝对真空 p=0
15
第三章
流体动力学基础
16
3-1描述流体运动的两种方法
流体运动实际上就是大量流体质点运动的总和。
描述流体的运动参数在流场中各个不同空间位置上随时 间 连续变化的规律。
拉格朗日法(Lagrange):流体质点 着眼点不同
跟踪追迹法
欧拉法( Euler):空间 设立观察站法
17
一、 拉格朗日法与质点系
32
流线的性质:
1. 在某一时刻,过某一空间点只有一条流线。流线不能 相交,不能突然转折。三种例外: 驻点 相切点
流体动力学基础
1.3 流体动力学基础 教案目录 电子课件【掌握内容】(1)基本概念:流量、流速、压头等(2)质量流量、体积流量之间关系(3)流态判断(4)连续性方程的表达式、物理意义及计算(5)伯努利方程的表达式、物理意义及计算(6)流体阻力的种类及产生的原因【理解内容】(1)管道截面上的速度分布(2)阻力计算(3)简单管路、串联管路、并联管路计算【了解内容】(1)伯努利方程的应用(2)动量方程1.3.1基本概念1.3.1.1流量与流速(1)流量:单位时间内流过管道任一截面的流体量,称为流量。
①体积流量:单位时间内流过管道任一截面的流体体积,以符号V 表示,单位为m 3/s ②质量流量:单位时间内流过管道任一截面的流体质量,以符号M 表示,单位为kg/s(2)流速:单位时间内流体的质点在流动方向上流过的距离称为流速.FV w = (m/s ) (3)质量流量与体积流量和平均流速间的关系。
wF V =(m 3/s )ρρwF V M == (kg/s )对于气体: 222111T V p T V p = 122112T T p p V V = (m 3/s ) 122111221122T T p p w T T p p F V F V w === (m/s ) [例题1-4] 某硅酸盐窑炉煅烧后产生的烟气量为10万m 3/h ,该处压强为负100Pa ,气温为800℃,经冷却后进入排风机,这时的风压为负1000Pa ,气温为200℃,求这时的排风量(不计漏风等影响)。
解: 1p =101325-100=101225Pa , 2p =101325-1000=100325Pa1T =273+800=1073K 2T =273+200=473K1V =1.0×105m 3/h 2V =1073473100325101225100.15⨯⨯⨯ =4.44×104 (m 3/h)硅酸盐窑炉系统中,可近似认为1p =2p =0p (大气压),1211212273273t t V T T V V ++== (m 3/s ) 1.3.1.2稳定流与非稳定流运动流体全部质点所占的空间称为流场。
水力学:第三章 流体动力学理论基础
若过水断面为渐变流,则在断面上 得
g
积分可
p
(z
p
Q
g
) gdQ ( z
p
g
) g dQ ( z
u x t p t 0 u y t 0 t u z
非恒定流:流场中任何点上有任何一个运动要素是随 时间而变化的。
6
二、 迹线与流线
拉格朗日法研究个别流体质点在不同时刻的运动情况 ,引出了迹线的概念。 欧拉法考察同一时刻流体质点在不同空间位置的运动 情况引出了流线的概念。
u x x
t
0
0
u y y
常数
u z z 0
22
二、 恒定不可压缩总流的连续性方程
液流的连续性方程是质量守恒定律的一种特殊方式。 取恒定流中微小流束如图所示: 因液体为不可压缩的连续介质,有
1 2
根据质量守恒定律在dt时段内
流入的质量应与流出的质量
)于1738年首先推导出来的。
28
二、实际流体恒定元流的能量方程
理想流体没有粘滞性无须克服内摩擦力而消耗能量,
其机械能保持不变。
对实际流体,令单位重量流体从断面1-1流至断面2-2
所失的能量为
hw
'
。则1-1断面和2-2断面能量方程为:
p1
z1
g
u1
2
2g
z2
p2
g
u2
2
2g
hw
相等。
u 1 dA 1 dt u 2 dA 2 dt u 1 dA 1 u 2 dA 2
流体动力学基础
第三章流体动力学基础(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章 流体动力学基础习 题一、单选题1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是( )A .加速运动B .减速运动C .匀速运动D .不能确定2、血管中血液流动的流量受血管内径影响很大。
如果血管内径减少一半,其血液的流量将变为原来的( )倍。
A .21B .41C .81D .1613、人在静息状态时,整个心动周期内主动脉血流平均速度为 m/s ,其内径d =2×10-2m ,已知血液的粘度η =×10-3 Pa·S,密度ρ=×103 kg/m 3,则此时主动脉中血液的流动形态处于( )状态。
A .层流B .湍流C .层流或湍流D .无法确定4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为( )m/s 。
A .30B .40C .45D .60 5、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为( )。
A .1m/sB .2m/sC .3 m/sD .4 m/s6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为( )。
A .1×10-3 m 3/sB .2×10-3 m 3/sC .1×10-4 m 3/sD .2×10-4 m 3/s 7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为( )mm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法一:
∴=y+C(x)
而 ∴C(x)=-2x+C1
故=y-2x+C1
方法二:
积分得:=y-2x+C1
(2)
故满足连续性方程,存在流函数。
方法一:
积分:
∴C(y)=-2y2+C2
故= 2x2-2y2+C2
方法二:
积分得:= 2x2-2y2+C2
例3已知流场的流函数y=ax2-ay2;
1.实际流体区别与理想流体有何不同?理想流体的运动微分方程与实际流体的运动微分方程有何联系?
实际流体具有粘性,存在切应力;实际流体的运动微分方程中等式的左边比理想流体运动微分方程增加了由于粘性而产生的切应力这一项。
2.连续性微分方程有哪几种形式?不可压缩流体的连续性微分方程说明了什么问题?
一般形式,恒定流,不可压缩流;质量守恒。
例2:对于下面平面点源汇流动,如图3-32:
(1)问是无旋流还是有旋流;
(2)若是无旋流,求其速度势;
(3)求平面流动的流函数;
(4)求压强分布。
解:
(1)因
图3-32
所以为无旋流。
(2)对于点源汇流动,为方便起见采用极坐标示(如图a),此时:
因:
上式中积分常数可任意给定,现取积分常数C'等于0,由该式可见,等势线是一簇以原点为圆心的同心圆(r=const)
问题:何谓渐变流,渐变流有哪些重要性质?
答案:渐变流是指沿程逐渐改变的流动。渐变流的性质:流线之间的夹角很小即流线几乎是平行的,同时流线的曲率半径又很大(即流线几乎是直线),其极限是均匀流,过水断面可看作是平面。渐变流的加速度很小,惯性力也很小,可以忽略不计。
问题:何谓渐变流,渐变流有哪些重要性质?
D、 限于直线流动。
问题:均匀流是:
A、当地加速度为零;B、迁移加速度为零;
C、向心加速度为零; D、合加速度为零。
问题1:流速势函数存在的必要与充分条件是:
A、平面无旋流动; B、理想流体平面流动;
C、不可压缩流体平面流动;D、无旋流动。
问题2:设流速势函数j=xyz,则点B(1,2,1)处的速度uB为:
流网(flow net):不可压缩流体平面流动中,在流体质点没有旋转速度的情况下,流线族与等势线族构成的正交网格。
流网的性质:
1)等势线与等流函数线处处正交。
2)流网中每一网格的边长之比等于j和y的增值之比(Dj/Dy),若取Dj=Dy,则流网网格为正方形网格。
流网原理已广泛用于理想流体势流中的速度场、压强场求解,如土坝渗流等。
2.什么是有旋流、无旋流?它们各有什么特点?
答案:有旋流:质点具有绕自身任意轴旋转的角速度,wx、wy、wz中至少有一个不等于0。
无旋流:质点不具有绕自身任意轴旋转的角速度,即wx=wy=wz=0。
算一算:不可压缩流体对下面的运动是否满足连续性条件?
(1)
(2)
(3)
(1)不连续;(2)连续;(3)连续
6.欧拉法、拉格朗日方法各以什么作为其研究对象?对于工程来说,哪种方法是可行的?
欧拉法以流场为研究对象,拉格朗日方法以流体质点为研究对象;在工程中,欧拉法是可行的。
想一想:1.粘性流有可能是无旋流吗?为什么?可能;粘性可忽略的情况。例如水和空气,静止时是无涡的,由于它们的粘滞性很小,当它们由静止过渡到运动时,在短距离内可以认为是无涡运动。又如水从水库或大小水箱流入容器时可认为是无涡流动。再如在很宽的矩形顺坡渠道中,在距渠壁较远的纵剖面上,液体质点也可以认为是无旋流。
(1)证明此流动是无涡流;(2)求出相应的速度势函数;(3)证明流线与等势线正交。
解: (1)该流场为二元流,速度分量与流函数的关系式如下:
所以此流动为无涡流,存在速度势函数。
(2)求速度势函数
(1)
现在来确定C(y);为此将上式对y取偏导数,得
因而C'(y)=0,即C(y)=C(y为常数)
将上式代入(1)式,即得到流速势函数= -2axy+C
流函数存在条件是不可压缩平面流;势函数存在条件是有势流;若是不可压缩平面势流则均满足拉普拉斯方程形式
5.流函数有哪些物理意义?
(1)流函数等值线 就是流线。
(2)不可压缩流体的平面流动中,任意两条流线的流函数之差dy等于这两条流线间所通过的单位宽度流量dq。
6.什么是流网?流网有些什么性质?有哪些应用?
3.欧拉运动微分方程组在势流条件下的积分形式的应用与沿流线的积分有何不同?
形式完全相同,但含义不一样。势流条件下积分形式是针对理想流体的恒定有势流动中的任何质点,而不局限于同一流线。沿流线积分形式是针对理想流体恒定流流动中同一条流线的质点。
4.流函数、势函数的存在条件各是什么?它们是否都满足拉普拉斯方程形式?为什么?
3.欧拉运动微分方程组在势流条件下的积分形式的应用与沿流线的积分有何不同?
形式完全相同,但含义不一样。 势流条件下积分形式是针对理想流体的恒定有势流动中的任何质点,而不局限于同一流线。 沿流线积分形式是针对理想流体恒定流流动中同一条流线的质点。
想一想:平面流体流动中的固体壁面可以看作是一条流函数等值线吗?可以,因为固体壁面往往可作为零流线来考虑。
解:
故液体流动是无旋流。
例:有二种的二元液流,其流速可表示为:(1)ux= -2y,uy=3x; (2)ux=0,uy=3xy。
试问这两种液流是不可压缩流吗?
解:(1)
符合不可压缩流的连续性方程。
所以是不可压缩流。
(2)
不符合不可压缩流的连续性方程。
所以不是不可压缩流。
例1:平面点源(汇)流动,如图3-27: 。(1)问是否为有势流。(2)若有势,求流速势。(3)是否为不可压缩流体。(4)求平面流动的流函数。
1.实际流体与理想流体有何不同?理想流体的运动微分方程与实际流体的运动微分方程有何联系?
实际流体具有粘性,存在切应力;实际流体的运动微分方程中等式的左边比理想流体运动微分方程增加了由于粘性而产生的切应力这一项。
2.(1)连续性微分方程有哪几种形式?(2)不可压缩流体的连续性微分方程说明了什么问题?
(1)一般形式,恒定流,不可压缩流;(2)质量守恒。
将:t=0,x=-1,y=-1代入得瞬时流线
xy=1
最后可得迹线为:
即流线是双曲线。
例3已知流动速度场为
试求:(1)在t=t0瞬间,过A(x0,y0,z0)点的流线方程;
(2)在t=t0瞬间,位于A(x0,y0,z0)点的迹线方程。
解:(1)流线方程的一般表达式为
将本题已知条件代入,则有:
积分得:(1+t)lnx= lny+ lnC'
2.流线、迹线各有何性质?色线有些什么作用?
流线的性质: a、同一时刻的不同流线,不能相交。 b、流线不能是折线,而是一条光滑的曲线。 c、流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。色线可用来显示流体的流动轨迹。
3.实际水流中存在流线吗?引入流线概念的意义何在?
不存在。引入流线概念是为了便于分析流体的流动,确定流体流动趋势。
因此,流线为Oxy平面上的一簇通过原点的直线,这种流动称为平面点源流动(C>0时)或平面点汇流动(C<0时)
例2已知平面流动
试求:(1)t=0时,过点M(-1,-1)的流线。
(2)求在t=0时刻位于x=-1,y=-1点处流体质点的迹线。
解:(1)由式
(2)由式
得
得
得:
由t=0时,x=-1,y=-1得C1=0,C2=0,则有:
思考题及答案
一、选择
问题:恒定流是:
A、流动随时间按一定规律变化;
B、流场中任意空间点的运动要素不随时间变化;
C、各过流断面的速度分布相同;
D、各过流断面的压强相同。
问题: 非恒定流是:
A、 ;B、 ;
C、 ; D、 。
问题:一元流动是:
A、均匀流;
B、速度分布按直
4.“只有当过水断面上各点的实际流速均相等时,水流才是均匀流”,该说法是否正确?为什么?
不对。均匀流是指运动要素沿程不发生改变,而不是针对一过水断面。
5.问题:恒定流、均匀流等各有什么特点?
答案:恒定流是指各运动要素不随时间变化而变化, ,恒定流时流线迹线重合,且时变加速度等于0。
均匀流是指各运动要素不随空间变化而变化, ,均匀流时位变加速度等于0。
当t=t0时,x=x0,y=y0,则有
故过A(x0,y0,z0)点的流线方程为
(2)求迹线方程
迹线一般表达式为
代入本题已知条件有:
由(1)式得:
当t=t0时,x=x0代入上式得
由(2)式得:
当t=t0时,y=y0代入上式得
故迹线方程为
t是自变量,消t后得到的轨迹方程为迹线方程:
例:已知流体流动的流速场为 ,判断该流动是无旋流还是有旋流?
A、5; B、1;C、3; D、2。
判断:公式(3-14)与公式(3-16)两式形式完全相同,因此其应用条件也相同。
你的回答: 对错
判断:土坝渗流中的流网网格一定是直线正方形网格。
你的回答: 对错
二、例题
例1如图3-7,已知流速场为 ,其中C为常数,求流
线方程。
解:由式 得
图3-7
积分得:
则:
此外,由 得:
答案:渐变流是指沿程逐渐改变的流动。渐变流的性质:流线之间的夹角很小即流线几乎是平行的,同时流线的曲率半径又很大(即流线几乎是直线),其极限是均匀流,过水断面可看作是
1.什么是流线、迹线、色线?它们有何区别?
流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。迹线(path line)是指某一质点在某一时段内的运动轨迹线。色线又称脉线,是源于一点的很多流体质点在同一瞬时的连线。