图论 最短路问题39页PPT
图论模型(最优连线问题最短路问题)PPT课件
(3)当(2)不能继续执行时停止。
(其思想是:在剩余边集中找边权最小的边添加到生成树中,同时又 不能产生回路即以局部的最优谋求全局的最优。)
上述的描述实际上是最小生成树的逐 步生长过程,上例的最小生成树如下:
A 5
1 3
D
8 E
水厂
9
B 7
6 10
著名数学家欧拉
七桥问题
图的基本概念
无 向 图
1 定义:由顶点和边组成的图形称为图。 有 向 图
赋
权
图
2 边e与顶点u、v相关联。顶点u与v相邻。
e
u
边e1与e2相邻。
e1
v
e2
u=v时,边e称为环。
3度
定义:与顶点v关联的边的数目称为顶点的度数, 记为d(v)。(注:环算2度。)
对于有向图的顶点的度数,还可分为出度 d ( v ) 和 入度 d ( v ) 。
u3
u6
0 8
1
6
u8
5
10
5
2
6
1
1
u4
10
u7
第五步:min{8,11,11,9,8,12,7,11,11},u3。
u2
1
2
u5
3
2
7
5
3
9
u1
u3
u6
0
8
7
1
6
u8
5
10
5
2
6
1
1
u4
10
u7
第六步:min{11,12,11,11,9},u7。
u2
1
2
《最短路问题》课件
3 最短路问题的历史
渊源
最短路问题最早由荷兰 数学家 Edsger Dijkstra 在 1956 年提出。
最短路问题的定义
图论中的最短路问 题指什么?
在无向连通图或有向连通图 中,从某一起点到其余各顶 点的最短路径。
什么是路径长度?
路径长度是指路径上边或弧 的权值之和。
什么是无环图?
无环图指不存在环的图,可 以用拓扑排序求解最短路。
《最短路问题》PPT课件
欢迎来到最短路问题的世界。在本课件中,我们将介绍四种最短路算法及其 应用,并分析它们的优缺点。
问题背景
1 什么是最短路问题? 2 为什么需要解决最
短路问题?
最短路问题是计算从源 节点到目标节点的最短 路径的问题。它是图论 中的一个经典算法问题。
很多实际问题都涉及到 最短路径的计算,比如 电网、交通、通信等领 域。
Floyd-Warshall算法解决的是所有点对之间 的最短路径问题,可以处理有向图或负边权 图。
Bellman-Ford算法
Bellman-Ford算法解决的是有向图中含有负 权边的单源最短路径问题。
A*算法
A*算法综合了贪心和广度优先搜索,在启发 函数的帮助下,可以高效解决带权图上的单 源最短路径问题。
算法示例
1
Step 1
假设我们要求从 A 点到其他各点的最
Step 2
2
短路径。
首先初始化 A 点到其他各点的距离为
无穷大,A 点到自身的距离为 0。
3
Step 3
找到 A 点的直接邻居,更新其距离值。
Step 4
4
重复 Step 3,直到所有节点的距离值 都已经更新。
总结
数学建模最短路问题PPT课件
实现Kruskal算法的MATLAB程序: %加权图的存储结构采用边权矩阵[b(i,j)]m×3 b=[1 1 1 2 2 3 3 4
24535455 8 1 5 6 7 9 10 3]; [B,I]=sortrows(b’,3); B=B’; m =size(b,2); n=5; t=1:n; k=0; T=[ ]; c = 0;
1
8
5
1
55
3
44
9
22
7
6 10
33
51 1 421 1 4 22 3 34 5 5 78 inf 196 5 3
第16页/共54页
实现Prim算法的MATLAB程序: a=[0 8 inf 1 5;8 0 6 inf 7;inf 6 0 9 10;1 inf 9 0 3;…
5 7 10 3 0]; T=[ ]; e=0; v=1; n=5; sb=2:n; %1代表第一个红点,sb代表 白点集。 for j=2:n %构造初始候选边的集合
0
7
9
W
0 5 1 2 0 3 9
0 4 6
0
3 0
因 G 是无向图,故 W 是对称矩阵.
第27页/共54页
迭代 次数
1 2 3 4 5 6 7 8
最后标记:
l (v) z (v)
u1
u2
0
02
2
l(ui )
u3 u4
u5
18
8
8
3
8
7
02 17
3
u1 u1
u1 u6
u2
u6 u7
因此, 可采用树生长的过程来求指定顶点到其余顶点 的最短路.
第三节 最短路问题PPT课件
定义: 给定一个赋权有向图,即给了一个有向图
G=(V,A,W) ,对每一个弧aij =(vi,vj)∈A , 相应地有权w(aij ) =wij ∈V1 ,又给定 G中的 两个顶点vs ,vt 。设 P是G 中从vs 到 vt的一条路,
定义路 P的权是 P中所有弧的权之和,记为W(P)
。最短路问题就是要在所有从vs 到vt 的路中,求 一条权最小的路,即求一条从vs 到vt 的路P* ,
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
则resent= vk,
, 。 Sk Sk1 vk
Tk Tk1 vk
若k=n,则结束,否则转第二步。
6
例 用Dijkstra算法求前面例子中从v1到各点的最短路。
v2 1
6 2
v5
2
v9
6
3
v1
3 v3 6
3 4 10
1
2
v4
10
4
v6 2 v7
v8
7
图上标号法:
v2 v1,6 1
v5
v1, ∞ 2
转步骤二。
29
用逐次逼近算法求从V1到V6的最短路
v2
5
4
v1
-3
5
7
v3
v6 v4 6
2
v5
30
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
运筹学课件:最短路问题
Operation Research
实例1
第八讲
Operation Research
实例2 求从1出发到5的最大流
第八讲
Operation Research
第八讲
Operation Research
实例
第八讲
Operation Research
第八讲
第八讲
Operation Research
网络最大流的基本概念(6)
增广链的基本概念
第八讲
Operation Research
第八讲
Operation Research
第八讲
Operation Research
实例:寻找图中增广链
第八讲
Operation Research
第八讲
网络最大流的基本概念(7)
直到 D(k-1)=D(k)
dij(k)=min{dir(k-1)+drj(k-1)}
矩阵的计算次数k
Operation Research
实例(1) 求图中任意两点之间的最短ch
第八讲
Operation Research
第八讲
Operation Research
Operation Research
求解步骤
(1)标号过程
第八讲
Operation Research
(2)调整过程
第八讲
我们的目标是尽快找到一条从起点vs到终点vt的增广链, 所以没必要在中途多停留,即对已标号的vi,每次只检查 一个相邻点vj,再给vj标号,没有必要检查vi的所有相邻点, 这样一次可改进一条增广链,只到没有增广链为止
(2)起点发出的流的总和(称为流量),必须等于终点接收的流的总 和;
最短路(图)
最短路最短路问题(short-path problem):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点(通常是源节点和阱节点)之间总权和最小的路径就是最短路问题。
最短路问题是网络理论解决的典型问题之一,可用来解决管路铺设、线路安装、厂区布局和设备更新等实际问题。
单源最短路径包括确定起点的最短路径问题,确定终点的最短路径问题(与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。
在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。
)算法可以采用Dijkstra 算法。
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra 算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
Dijkstra算法代码1#include <string.h>2#include<algorithm>3using namespace std;45const int maxnum = 100;6const int maxint = 99999999;78int dist[maxnum];9int prev[maxnum];//记录当前点的前一个结点10int c[maxnum][maxnum];11int n,line;1213void dijkstra(int n,int v,int *dist,int *prev,int c[maxnum][maxnum])//v代表源点14{15 bool s[maxnum];//判断是否已存入该点到S中16 for(int i = 1;i <= n;++i)17 {18 dist[i] = c[v][i];19 s[i] = 0;20 if(dist[i] == maxint)//代表当前点与源点没有直接相连21 prev[i] = 0;22 else23 prev[i] = v;//代表当前点的前一个节点是v,即源点24 }25 dist[v] = 0;//源点到源点的距离初始化为026 s[v] = 1;//源点已被遍历过,标记为12728 for(int i = 2;i <= n;++i)29 {30 int tmp = maxint;31 int u = v;32 for(int j = 1;j <= n;++j)33 {34 if((!s[j]) && dist[j] <tmp)//该点没有被遍历到并且源点到j点的距离小于记录的距离35 {36u = j;//记录下这一点37tmp = dist[j];//记录下这一点到源点的距离38 }39 }40 //找到距离最短的点退出循环41 s[u] = 1;//标记该点已经遍历过4243 for(int j = 1;j <= n;++j)44 {45 if((!s[j]) && c[u][j] <maxint)//j没有被遍历过并且从u到j还有这条路径46 {47 int newdist = dist[u] + c[u][j];//新的距离是从源点到u的距离加上从u到的距离48 if(newdist <dist[j])//如果新的距离比原来到j的距离要短49 {50 dist[j] = newdist;//则更新dist数组51 prev[j] = u;//标记j的前一个节点是u52 }53 }54 }55 }56}5758void searchpath(int *prev,int v,int u)//查找从v到u的最短路径59{60 int que[maxnum];//保存路径61 int tot = 1;62 que[tot] = u;//把终点存入路径数组63 tot++;64 int tmp = prev[u];65 while(tmp != v)66 {67 que[tot] = tmp;68 tot++;69tmp = prev[tmp];70 }71 que[tot] = v;72 for(int i = tot;i >= 1;--i)73 {74 if(i != 1)75 printf("%d->",que[i]);76 else77 printf("%d\n",que[i]);78 }79}808182int main()83{84 scanf("%d",&n);//输入结点数85 scanf("%d",&line);//输入路径数目86 int p,q,len;87 for(int i = 1;i <= n;++i)//初始化存储数组88 {89 for(int j = 1;j <= n;++j)90 {91 c[i][j] = maxint;92 }93 }94 for(int i = 1;i <= line;++i)//往存储数组里存放路径95 {96 scanf("%d%d%d",&p,&q,&len);97 if(len <c[p][q])//如果两个点之间有多条路,取路径较短的那一条98 c[p][q] = len;99 c[q][p] = len;//该语句根据实际情况写,用于无向路径中100 }101 for(int i = 1;i <= n;++i)//初始化标记数组102 dist[i] = maxint;//该数组记录从起点到该点的最短路径长度103104105 dijkstra(n,1,dist,prev,c);106 printf("从源点到最后一个顶点的最短路径长度为:%d\n",dist[n]);107 printf("从源点到最后一个顶点的路径为:");108 searchpath(prev,1,n);109}全局最短路求图中所有的最短路径。
运筹学05_图与网络分析2-最短路幻灯片PPT
-1
v5
6
-3
2
1 -3
v1
-1 -2
v3
1 v6
7
v8
8 -5 2
3
1
-5
v4
v7
-1
终 点
lij
P(t)1j
起 v1 v2 v3 v4 v5 v6 v7 v8 t=1 t=2 t=3 t=4 点
v1 0 -1 -2 3 0 0 0 0
v2 6 0 2 -1 -5 -5 -5
v3 -3 0 -5 1 -2 -2 -2 -2
运筹学05_图与网络分析2-最短 路幻灯片PPT
本PPT课件仅供大家学习使用 请学习完及时删除处理 谢谢!
21
2
6
5
08
7
1
1
7
2
1
9
32
5
3
9
79
6
6
11 2 13
431 4
9
1
10
21
2
6
5
08
7
1
1
7
2
1
9
32
5
3
9
79
6
6
11 2 13
431 4
9
1
10
一般的最短路问题描述:
给定一个赋权有向图D=(V,A),对每一个弧a=(vi,vj),相应地有权
3
3
v2
3
6
v6
2
53
v3
4
4
3
v4
5
2.5
1
2
7
v7
2
8.5 v9
4 v8 9
最短路算法上课ppt
优点
缺点
优点
优点
效率低,需要遍历所有点(特别是有时候不需要最优解)、运算中占用空间大
缺点
算法简明易懂、并且一定能得到最优解
优点
Dijkstra算法可能不是最优先使用的方法,因为算法的运算速度效率,往往要比精确度更加重要
实际运用
但似乎在实际运行时效果并不理想! 这样利用Dijkstra算法设计一个属于我们自己的导航系统啦。
最佳优先搜索简介
这个算法的运算流程跟Dijkstra的流程类似,只不过它考察的是选取点到终点的距离,并且这个距离的权值是评估出来的,这也就是启发式的思想。举例说明,如果说目标的终点在北面,那么越靠近北面的点权值就越小,那么算法在搜索过程中,所加入点集的点就会倾向于北面,因此不用搜索全图东南西北,更多的是搜索北面的点,速度来说会优于Dijkstra算法很多。
01
A*算法能够解决有固定障碍物的路径规划问题,并且能很快地给出解,但是当障碍物是移动的时候,我们又应该如何对算法进行改从而给出解呢?
02
一个典型问题:AGV小车线路规划!
智能码头:AGV
AGV中文名:自动导引小车
是自动化码头水平运输系统中用于搬运集装箱的搬运设备。
其主要职责:就是在规定的时间窗口范围内完成堆场和岸桥之间实现集装箱的传送。
一
算法的描述上看去相当复杂,我们给出下面例子来具体说明整个算法的运行流程!
首先我们要有如下概念:
假设P:v→km是从顶点v到km的一条最短路径,那对这条路径上任意其他一点ki,都有 P上关于v→ ki的子路径为v到点ki的最短路径。
即最短路径的子路径仍然是最短路径,最短路算法本质上上基于这种思想展开的。
最短路问题及相关算法介绍
最短路问题(课堂PPT)
5
0
5
V2
3
6 5 5 V6
V1 4
7 2
V4 7
1
6
8
V5 4
V3
V7
4
6
(4)找出所有与v1,v2,v3相邻的未标记的点v4,v5,v6,求出
从v1直接到这些点的距离(v1->v4:7)以及经过v2到这些点 的距离(v1->v2->v4:11;v1->v2->v5:10;v1->v2->v6:8)以及 经过v3到这些点的距离(v1->v3->v4:6;v1->v3->v5:12)找出 这些距离中最短的路径为v1->v3->v4,最短距离为L14=6, 将v4标记为6
3 2 4 1
时间
2 3 3 2
25
0
5
V2
3
6 5 5 V6
V1 4
7 2
V4 7
1
6
8
V5 4
V3
V7
4
(2)找出同v1相邻的未标号的点有v2,v3,v4,求出从
v1到其所有相邻点的距离(v1->v2:5;v1->v3:4;v1>v4:7),距离最短路径为v1->v3,最短距离为L13=4, 将v3标记为4
0
5
V2
3
6 5 5 V6
5
0
5
V2
3
6 6 5 5 V6
V1 4
7 2
V4 7
1
6
8
V5 4
V3
V7
4
7
(5)找出所有与v1,v2,v3,v4相邻的未标记的点v5,v6,求出
运筹学最短路邮递员问题PPT课件
•
新的T(vj)=min{老的T(vj),p(vi)+ ωij }
• 若T(vj)= p(vi)+ ωij ,则记k(vj )=vi(前点标记);
• 3°找出具有最小T标号的点,将其标号改为p标号。若vt 已获得p
标号,则已找到最短路,由k(vt)反向追踪,就可找出vs 到vt 的最
短路径,p(vt)就是vs 到vt 的最短距离。否则,转2°。
p(v2)
=3 3
p(v1) v1
p(v=30)
=4
6
v2
51 1
v4
7 4
v5
v3 3 2
5
v7
26 v6 9 15
v8
T(v4)=min{6,4+1}=5, k(v4 )=v3
T(v6)=min{7,4+2}=6, k(v6 )=v3
目前,点v4 具有最小T标号,将其标号改为p标号: p(v4)=5;
向继续前进,则最先到达终点vt 的流所走过的路径一定是最短的。
为了实现这一想法,对假想流依次到达的点,依次给予p标号,表
示vs到这些点的最短距离。对于假想流尚未到达的点给予T标号,
表示vs到这些点的最短距离的估计值。具体作法如下:
• 1°标p(vs)=0,其余点标T(vi)=+∞;
• 2°由刚刚获得p标号的vi 点出发,改善它的相邻点vj 的T标号,即
对于点v2 :d(v2)=min{16+31,22+23,30+18,41}=41, v对2→于v点6 v;1 :d(v1)=min{16+41,22+31,30+23,41+18,59}
试确定一个五年内的设备更新计划,使五年内总支出最小。
教案图论.ppt
K=3 +1=4 ∵ min{u6,u7,u8,u9} =min{10,9,12,} =9= u7
∴ 点v7得永久标号, 7=5 ,
X2={v1,v4 ,v3 , v2, v5,v7},X2={v6 ,v8 ,v9}, 在vj∈X5中,临时标号不变。
vi Xk
ui
w( vi , v' )
v 'X k
使上式达到最小值的点v’ 可取为vk+1。
计算过程中可采用标号方法。
Xk中的点,ui 值是vs 到vi 的最短路长度,相应的 点记“永久”标号;
XK中的点,ui值是vs到vi的最短路长度的上界, 相应的点记“临时”标号,供进一步计算使用。
前点标号i : 表示点vs到vj的最短路上vj的前一点。 如i=m,表示vs到vj的最短路上vj前一点是vm。
∴ 点v8得永久标号, 8=5 ,
即从v1到v8的最短路长为u8=12,
∵ 8=5 , 5=2 , 2=3 , 3=1 ,
知从v1到v8 的最短路为:
P1,8=P(v1,v3 , v2, v5,v8)
v2 1
v5
2
v9
6 2
6
3
v1
3 v3 6
3 4 10
1
2
v4
10
4
v6 2 v7
v8
问题:①本例中,v1到v9的最短路?
6
1
2
10
v4
1,1
v5 1, ∞ 2
6
3
4 10
4
v6
2
v7
第三章最短路问题PPT学习教案
对于B中的每一条弧<i,j>,计算 , k<i,j>=b(i)+l<i,j>,求出使k<i,j>最 小的弧<c,d>.
将弧<c,d>加粗,令b(d)=k<c,d>, vd成为已标号点 是
是否还有未标号的顶点
第14页/共52页
计算结束
否
§3.3 标号法好不 好
现在来讨论标号法好不好?要回答这个问题,首先 应该明确一下什么叫“好”,什么叫“不好”.一般 说来,主要的好坏标准是计算起来快不快不快(还有 比的标准,例如容不容易拿上计算机计算;是否易 于普及等等),或者说,用这个方法计算时,需要进 行的运算次数多不多.当然,运算次数越少越好.
(8, 0, 0) (3,5, 0) (3, 2,3) (6, 2, 0) (6, 0, 2) (1,5, 2) (1, 4,3) (4, 4, 0).
第6页/共52页
大家也许会认为,这两个例子本来就不很难, 把它转化成图论问题,倒相当麻烦,有什么好处呢? 其实这种做法还是很有好处的.因为在转化前,想解 决这些问题,只能用凑的办法,或者最多是凭经验. 而转化成图论问题以后,就可以用一种系统的方法 解决了.
第2页/共52页
现在我们就来构造一个图G,它的顶点就是这10 种情况,G中的边是按照下述原则来连的;如果情况 甲经过一次渡河可以变成情况乙,那么就在情况甲 与乙之间连一条边.
MWSV MWS MWV WSV MS
WV
W
S
V
Ø
第3页/共52页
例如,MWSV经过一次渡河可以变成WV(人带着羊 过河,左岸留下狼和白菜),又例如MWV经过一次渡 河可以变为W(人带着白菜过河,留下狼),或变为V. 当然反过来,W也可以变为MWV(人带着白菜从右岸返 回左岸).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
图论 最短路问题
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
ห้องสมุดไป่ตู้