图论和特殊图概述共75页

合集下载

离散数学——图论PPT课件

离散数学——图论PPT课件
第19页/共93页
• 完全图:一个(n,m)图G,其n个结点中每个结点均与其它n-1个结点相邻接,记为Kn。 • 无向完全图:m=n(n-1)/2 • 有向完全图:m=n(n-1) • 举例说明以上几种图。
第20页/共93页
定义补图
• 设图G=<V,E> , G’=<V,E’> ,若G’’=<V,E∪E’> 是完全图,且E∩E’= 空集,则称G’是G的补图。 • 事实上,G与G’互为补图。
正则图
• 所有结点均有相同次数d的图称为d次正则图。 • 如4阶的完全图是3次正则图,是对角线相连的四边形。 • 试画出两个2次正则图。
第27页/共93页
两图同构需满足的条件
• 若两个图同构,必须满足下列条件: (1)结点个数相同 (2)边数相同 (3)次数相同的结点个数相同
• 例子
第28页/共93页
• 图是人们日常生活中常见的一种信息载体,其突出的特点是直观、形象。图论,顾 名思义是运用数学手段研究图的性质的理论,但这里的图不是平面坐标系中的函数, 而是由一些点和连接这些点的线组成的结构 。
第8页/共93页
• 在图形中,只关心点与点之间是否有连线,而不关心点具体代表哪些对象,也不关 心连线的长短曲直,这就是图的概念。
定义图的子图
• 子图:设G=<V,E> , G’=<V’,E’> ,若V’是V的子集, E’是E的子集,则 G’是G的子图。 • 真子图:若V’是V的子集,E’是E的真子集。 • 生成子图:V’=V,E’是E的子集。 • 举例说明一个图的子图。
第18页/共93页
定义(n,m)图
• (n,m)图:由n个结点,m条边组成的图。 • 零图:m=0。即(n,0)图,有n个孤立点。 • 平凡图:n=1,m=0。即只有一个孤立点。

图论(详细)

图论(详细)
一、树及其性质
在各种各样的图中,有一类图是十分 简单又非常具有应用价值的图,这就是树。 例3:已知有六个城市,它们之间 要 架设电话线,要求任意两个城市均可以互 相通话,并且电话线的总长度最短。
如果用六个点v1…v6代表这六个城市, 在任意两个城市之间架设电话线,即在相应 的两个点之间连一条边。这样,六个城市的 一个电话网就作成一个图。由于任意两个城 市之间均可以通话,这个图必须是连通图。 并且,这个图必须是无圈的。否则,从圈上 任意去掉一条边,剩下的图仍然是六个城市 的一个电话网。图8是一个不含圈的连通图, 代表了一个电话线网。
有向图:关联边有方向. 弧:有向图的边a=(u ,v),起点u,终点v; 路:若有从 u 到 v 不考虑方向的链,且各 方向一致,则称之为从u到v的路; 初等路: 各顶点都不相同的路;
初等回路: u = v 的初等路; 连通图: 若不考虑方向是 无向连通图; 强连通图:任两点有路;
2.树和最小支撑树
v1 v6
v3
v5
图3
从以上的几个例子可以看出,我们用点和 点之间的线所构成的图,反映实际生产和 生活中的某些特定对象之间的特定关系。 一般来说,通常用点表示研究对象用点与 点之间的线表示研究对象之间的特定关系。 由于在一般情况下,图中的相对位置如何, 点与点之间线的长短曲直,对于反映研究 对象之间的关系,显的并不重要,因此, 图论中的图与几何图,工程图等本质上是 不同的。
v3
v5
v1 v6 v2
a
v1
v6
v2
b
v4
图10
v4
显然,如果图K=( V, E’ )是图G=(V, E)的一个 支撑树,那么K 的边数是p(G)-1,G中不属于 支撑树K的边数是q(G)-p(G)+1。 定理8.7 一个图G有支撑树的充要条件是G是 连通图

图论的介绍ppt课件

图论的介绍ppt课件
chedules
工程项目的任务安排,如何满足限制条件,并在最短时 间内完成?
Program structure
大型软件系统,函数(模块)之间调用关系。编译器分 析调用关系图确定如何最好分配资源才能使程序更有效 率。
Graph Applications
Graph Problems and Algorithms
图论的介绍ppt课件
欧拉路径 解決哥尼斯保七桥问題
原來是一笔画问题啊!
数学家欧拉(Euler, 1707-1783) 于1736年严格的证明了上述哥尼斯堡 七桥问题无解,并且由此开创了图论的典型思维方式及论证方式
实际生活中的图论 Graph Model
电路模拟
例:Pspice、Cadence、ADS…..
哈密頓(Hamilton) 周遊世界问題
正十二面体有二十个顶点 表示世界上20个城市 各经每个城市一次 最后返回原地
投影至平面
哈密頓路径至今尚无有效方法來解決!
最短路径问題
(Shortest Path Problem)
最快的routing
最快航線
B 2
1
E
3
A
C 1
3 2F
1
3
D
3 3
G
最短路径算法Dijkstra算 法
二分图(偶图) Bipartite graphs
A graph that can be decomposed into two partite sets but not fewer is bipartite
It is a complete bipartite if its vertices can be divided into two non-empty groups, A and B. Each vertex in A is connected to B, and viceversa

《图论的介绍》课件

《图论的介绍》课件
添加副标题
图论的介绍
汇报人:
目录
PART One
添加目录标题
PART Three
图论的应用领域
PART Two
图论的基本概念
PART Four
图论的基本问题
PART Five
图论的算法和数据 结构
PART Six
图论的扩展知识
单击添加章节标题
图论的基本概念
图论的发展历程
18世纪末,欧拉提出“七桥问题”,开启了图论的先河
匹配问题
匹配问题定义:在图论中,匹配问 题是指在图中找到一组边,使得每 个顶点恰好有一条边。
最小匹配问题:在图中找到一组边, 使得边的数量最少。
添加标题
添加标题
添加标题
添加标题
最大匹配问题:在图中找到一组边, 使得边的数量最多。
完美匹配问题:在图中找到一组边, 使得每个顶点恰好有一条边,并且 边的数量最多。
图论的扩展知识
欧拉路径和欧拉回路
欧拉路径:通过图中所有边且仅通过一次的路径
欧拉回路:通过图中所有边且仅通过一次的回路
欧拉定理:一个无向图存在欧拉回路当且仅当每个顶点的度数都是偶数
应用:欧拉路径和欧拉回路在计算机科学、数学、物理等领域有广泛应用,如电路设计、网络 拓扑、图论算法等
哈密顿路径和哈密顿回路
应用
生物技术:图 论在生物工程、 生物制造和生 物能源等领域
的应用
图论的发展趋势和未来展望
应用领域:图 论在计算机科 学、物理学、 生物学等领域 的应用越来越
广泛
研究方向:图 论在算法设计、 网络优化、数 据挖掘等领域 的研究不断深

技术发展:图 论与机器学习、 深度学习等技 术的结合越来

(图论)图的基本概念(课堂PPT)

(图论)图的基本概念(课堂PPT)
15
图的度数的相关概念
在无向图G中, 最大度 △(G)=max{d(v)|v∈V(G)} 最小度 δ(G)=min{d(v)|v∈V(G)}
称度数为1的顶点为悬挂顶点,与它关联的边称为悬挂边。 度为偶数(奇数)的顶点称为偶度(奇度)顶点。
在有向图D中, 最大出度 △+(D)=max{d+(v)|v∈V(D)} 最小出度 δ+(D)=min{d+(v)|v∈V(D)} 最大入度 △-(D)=max{d-(v)|v∈V(D)} 最小入度 δ-(D)=min{d-(v)|v∈V(D)}
元素可以重复出现的集合称为多重集合或者多重集,某元 素重复出现的次数称为该元素的重复度。 例如 在多重集合{a,a,b,b,b,c,d}中, a,b,c,d的重复度分别为2,3,1,1。
4
笛卡尔积
设A,B为任意的两个集合,称{<a,b>|a∈A∧b∈B}为A与B 的笛卡尔积,记作AXB。 笛卡尔积中的是有序对<a,b>。只有a,b相等的时候才有 (a,b)=(b,a). 也只有A=B时才有AXB=BXA。
16
图的度数举例
d(v1)=4(注意,环提供2度), △=4,δ=1, v4是悬挂顶点,e7是悬挂边。
d+(a)=4,d-(a)=1 (环e1提供出度1,提供入度1),
d(a)=4+1=5。△=5,δ=3,
△+=4 (在a点达到)
δ+=0(在b点达到)
△-=3(在b点达到)
δ-=1(在a和c点达到)
例如:在图1.1中, (a)中e5与e6是平行边, (b)中e2与e3是平行边,但e6与e7不是平行边。 (a)和(b)两个图都不是简单图。

图论-总结PPT课件

图论-总结PPT课件
q-p+1条弦。 (2) 若G是一个(p,q)连通图,则T至少有多少个圈?(q-p+1) 若G是一个(p,q)连通图,则T有多少个圈? 若G是一个(p,q)连通图,则T至少(多)有多少个生成树?
.
16
第三节 割点、桥和割集
3.1 割点和桥(割边)
定义1 设v是图G的一个顶点,若G-v的支数大于 G的支数,则称顶点v为图G的一个割点(如图)。
degu + degv≥p-1,
则G是连通的。[这个定理是一个充分条件]
定理3 设G=(V,E)是至少有一个顶点不是弧立顶 点的图。若对任意v∈V,degv为偶数,则G中 有回路。
定理4 若图G中的两个不同顶点u与v间有两条不 同的路联结,则G中有回路。
.
6
例1 若G是一个恰有两个奇度顶点u和v的无向图,则 G连通G+uv连通。
.
8
第五节 欧拉图(Euler)
5.1 欧拉图
定义1 设(G,V)是一个图,则包含图的所有顶 点和所有边的闭迹称为欧拉闭迹;存在一 条欧拉闭迹的图称为欧拉图。
定理1 图G是欧拉图当且仅当G是连通的且每 个顶点的度都是偶数。
(定理1对多重图也成立)
.
9
第六节 哈密顿图
6.1 哈密顿图 定义1 设G是一个图,则图G中包含G的所有顶
数称为顶点v的度,记为degv。 定理1 (握手定理)设G=(V,E)是一个具有p个顶点q条边的图,
则G中各顶点度的和等于边的条数q的两倍,即∑degv=2q。 推论1任一图中,度为奇数的顶点的数目必为偶数。
.
3
定义3 设G是图,若Δ(G)=δ(G)=r,即G的每个顶点的 度都等于r,则G称为r度正则图。

第章图论基本概念

第章图论基本概念

n
n
n
d(vi ) 2m, 且
d (vi ) d (vi ) m
i 1
i 1
i 1
此二定理是欧拉1736年给出,是图论的基本定理
12
握手定理推论
推论 任何图 (无向或有向) 中,奇度顶点的个数是偶数.
证 设G=<V,E>为任意图,令
V1={v | vV d(v)为奇数} V2={v | vV d(v)为偶数} 则V1V2=V, V1V2=,由握手定理可知
2m d(v) vV2
由于2m, d(v) 均为偶数,所以 d(v) 为偶数,但因为V1中
vV2
vV1
顶点度数为奇数,所以|V1|必为偶数.
13
图的度数列
1 . V={v1, v2, …, vn}为无向图G的顶点集,称d(v1), d(v2), …, d(vn)为G的度数列
简单图是极其重要的概念
10
顶点的度数
定义14.4 (1) 设G=<V,E>为无向图, vV, d(v)——v的度数, 简称度 (2) 设D=<V,E>为有向图, vV,
d+(v)——v的出度 d(v)——v的入度 d(v)——v的度或度数 (3) (G)(最大度), (G)(最小度) 无向图中 (4) +(D), +(D), (D), (D), (D), (D) (5) 度数为1的点称为悬挂点,关联的边为悬挂边; 奇顶点度与偶度顶点
24
14.3 图的连通性
无向图的连通性 (1) 顶点之间的连通关系:G=<V,E>为无向图
① 若 vi 与 vj 之间有通路,则 vivj ② 是V上的等价关系 R={<u,v>| u,v V且uv} (2) G的连通性与连通分支 ① 若u,vV,uv,则称G连通 ② V/R={V1,V2,…,Vk},称G[V1], G[V2], …,G[Vk]为连通分

图论与特殊图概述77页PPT

图论与特殊图概述77页PPT
图论与特殊图概述
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
ቤተ መጻሕፍቲ ባይዱ
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非

图论与特殊图概述

图论与特殊图概述

malform
acm
样例
m acm
m m malform
m mouse
模型
• 以26个英文字母作为顶点。 • 对于每一个单词,在图中从它的首字母向 末字母连一条有向边。
模型
• 问题转化为在图中寻找一条不重复地经过 所有边的路径,即欧拉路径。 • 这个问题能够在O(|E|)时间内解决。
实例:PKU 2337
如果E的每一条边都是无向边, 则称G为无向 图(如图1); 如果E的每一条边都是有向边, 则称 G为有向图(如图2); 否则, 称G为混合图. 图 1 并且常记
V = {v1, v2, … , vn}, |V | = n ; E = {e1, e2, … , em}(ek=vivj ) , |E | = m.
图1
图2
欧拉图
欧拉回路
• 无数热衷于此的人试图解决这个问题,但均以失败 告终。问题传到了欧拉(Leonhard Euler, 1707-1783)那里,立即引起了这位大数学家的 重视。经过悉心研究,欧拉终于在1736年发表了 论文《哥尼斯堡的七座桥》,不但成功地证明了“ 七桥问题”无解,而且找到了对于一般图是否存在 这类回路的充要条件。后人为了纪念欧拉这位伟大 的数学家,便将这类回路称为欧拉回路。
有向欧拉图的判定
• 有向图存在欧拉回路的充要条件: 基图连通且所有顶点入度等于出度。 • 有向图存在欧拉路径的充要条件: 基图连通且存在某顶点入度比出度大1,另 一顶点出度比入度大1,其余顶点入度等于 出度。
欧拉回路存在性的判断
• 欧拉回路问题可以分为无向图中的欧拉回路和欧拉通路,有向图中 的欧拉回路和欧拉通路。这几个问题大抵相像。 • 有向欧拉回路有: • 定理:假设有像多重图D有性质:当忽略有向边上的方向时,得到 的图是连通的,那么D有有向欧拉回路当且仅当D的每个顶点的入 度和出度相等。 • 类似的,对有向欧拉通路有: • 定理:D有有向欧拉通路,当且仅当除两个不同顶点B和C之外, D的其它顶点的入度和出度相等,且B的出度比入度大1,C的入度 比出度大1。在这种情况下,有向欧拉通路自B出发,至C终止。 • 由上面的定理可以知道,如果要判断一个有向图的欧拉回路是否存 在,需要先判断连通性,再判断出度入度。对于无向图,判断方法 类似。 • 判断连通性可以通过DFS或者并查集来实现。

图论与特殊图概述共77页文档

图论与特殊图概述共77页文档
里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
图论与特殊图概述4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。

第七章图的基本概念

第七章图的基本概念
有向简单图的补图可类似定义.
例 互补
互补
•观察下列图有何特点?
a
a
b
a
b
a
b
c
b
dc
d
c
c d
d
图(a)
图(b)
图(c)
图(d)
图(a)、图(b)、图(c)和图(d)所表示的 图形实际上都是一样的。
定义7.10 设两个无向图G1=<V1,E1>,G2=<V2,E2>,
如果存在双射函数:V1→V2,使得对于 任意的e=(vi,vj)∈E1当且仅当e'=( (vi), (vj))∈E2,并且e与e'的重数相同,则称G1 与G2是同构的,记作G1≌G2.
e4
v4
e5
v3
定义7.4 设无向图G=<V,E>,vi, vj∈V, ek,el∈E.
(1)若存在一条边e以vi、vj为端点,即e=(vi, vj), 则称vi, vj是彼此相邻的,简称相邻的.
(2)若ek, el至少有 一个公共端点,则 称ek, el是彼此相 邻的,简称相邻 的.
e1
e2
v2 v5
e3
v1 e6
e4
v4
e5
v3
• 对有向图若ek=〈vi,vj〉,除称vi, vj是ek的端 点外,还称vi是ek的始点, vj是ek的终点,vi邻接 到vj,vj邻接于vi.
e2
v1 e1
v2
v5
e3
e4
e5 e7
e8
v3
e6
v4
定义7.5
• 设G=<V,E>为一无向图,vi∈V,称vi作为边 的端点的次数之和为vi的度数,简称度,记作 d(vi).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档