高中数学优秀教案 函数的概念《函数的概念》教案
高中数学《函数的概念》公开课优秀教学设计三
⾼中数学《函数的概念》公开课优秀教学设计三1.2.1函数的概念教学设计⼀、教材分析:本节内容为《1.2.1函数的概念》,是⼈教A版⾼中《数学》必修⼀《1.2函数及其表⽰》的第⼀课.函数是中学数学最重要的基本概念之⼀,在初中,学⽣已经学习过函数的概念,它是从运动变化的观点出发,把函数看成是变量之间的依赖关系.从历史上看,初中给出的定义来源于物理公式,最初的函数概念⼏乎等同于解析式.后来,⼈们逐渐意识到定义域与值域的重要性,⽽要说清楚变量以及两个变量间变化的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了⼀定的限制.如果只根据变量观点,那么有些函数就很难进⾏深⼊研究.例如:1,当X是有理数时,f(X)=」P,当X是⽆理数时.对这个函数,如果⽤变量观点来解释,会显得⼗分勉强,也说不出X的物理意义是什么?但⽤集合、对应的观点来解释,就⼗分⾃然?函数思想也是整个⾼中数学最重要的数学思想之⼀,⽽函数概念是函数思想的基础,它不仅对前⾯学习的集合作了巩固和发展,⽽且它是学好后继知识的基础和⼯具.函数与代数式、⽅程、不等式、数列、三⾓函数、解析⼏何、导数等内容的联系也⾮常密切,函数的基础知识在现实⽣活、社会、经济及其他学科中有着⼴泛的应⽤.本节课⽤集合与对应的语⾔进⼀步描述函数的概念,让学⽣感受建⽴函数模型的过程和⽅法.⼆、学情分析:在学习⽤集合与对应的语⾔刻画函数之前,学⽣已经会把函数看成变量之间的依赖关系,同时,虽然函数⽐较抽象,但是函数现象⼤量存在于学⽣的周围,教科书选⽤了运动、⾃然界、经济⽣活中的实际例⼦进⾏分析,从实例中抽象概括出⽤集合与对应的语⾔来定义函数概念,对学⽣的抽象、归纳能⼒要求⽐较⾼,能很好的锻炼学⽣的抽象思维能⼒以及加深对函数概念的理解三、教学⽬标:(⼀)知识与技能理解函数的定义,能⽤集合与对应的语⾔来刻画函数,体会对应关系在刻画函数概念中的作⽤;了解构成函数的三要素.(⼆)过程与⽅法通过三个实例共性的分析到函数概念的形成,再对三个实例进⾏拓展,让学⽣对函数概念进⾏辨析,体现从特殊到⼀般,再从⼀般到特殊的思想⽅法,渗透了归纳推理,实现了感性认识到理性认识的升华.(三)情感、态度与价值观通过从实际问题中抽象概括函数的概念,培养学⽣的抽象概括能⼒,体会函数是描述变量之间依赖关系的重要数学模型,在此基础上学会⽤集合与对应的语⾔来刻画函数,感受数学的抽象性和简洁美.四、教学重点与难点:(⼀)教学重点体会函数是描述变量之间的依赖关系的重要数学模型,并能⽤集合与对应的语⾔来刻画函数(⼆)教学难点函数概念的理解及符号“ y⼆f (X)”的含义.五、教学策略:⾸先,通过魔术表演,体现函数在实际⽣活中的运⽤,激发学⽣进⼀步学习函数的积极性;其次,在学⽣习惯⽤解析式表⽰函数的基础上借助教科书实例,从解析法、图象法、列表法等不同的⽅式,结合函数的数与形两个⽅⾯给学⽣充分的认识,为学⽣⽤集合与对应的语⾔刻画函数打下感性基础;再次,分析讲解函数概念中的关键点时,对于对应关系f、函数关系中多对⼀的情况、值域是集合B的⼦集等较为抽象问题的理解采取放乒乓球的实验,让抽象问题具体化;最后,通过对三个实例进⾏拓展让学⽣抛开物理运动背景,⽤集合与对应的语⾔来分析函数并强调函数关系中对应关系的⽅向.六、教学基本流程:七、教学情景设计:教学流程教学内容设计意图探索新知研讨探究:分析、归纳三个实例中,变量之间关系的共同点概括出函数的定义师⽣活动师:让学⽣分组讨论三个实例中,变量之间关系的共同点? ⽣:概括出三个实例中,变量之间关系的共同点四、新课讲解⼀般地,设A, B是⾮空的数集,如果按照某种确定的对应关系f,使对于集合A中任意⼀个数X,在集合B中都有唯⼀确定的数f(x)和它对应,那么就称f : A》B为从集合A到集合B的⼀个函数,记作y = f (x), x A.其中,x叫做⾃变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)x?A}通过集合与对应的语⾔来刻画初中已学函数,使学⽣加深理解函数的本质及构成函数的基本要素.师:强调、分析概念中的关键点.①A,B是⾮空的数集;②对应关系f可以通过解析式、图象、列表来表⽰;③任意、存在、唯⼀;④符号“ y = f(x)”的含义;⑤函数三要素:定义域A、值域、对应关系.五、实验操作叫做函数的值域.动⼀动:请将A盒⼦中的所有乒乓球放⼊B盒⼦中.思考:A中的乒乓球和 B 中的格⼦都标有数字,可以把A,B看成两个⾮空数集,那么每⼀种放法是从A到B的⼀个函数吗?若是,它的值域是什么?通过放乒乓球的实验,将函数概念中:①对应关系f ;②函数关系中多对⼀的情况;③值域是集合B的⼦集.等较为抽象的问题题具体化,⽣活化.师:启发学⽣思考每⼀种⽅法实质就是⼀个对应关系,通过对应关系,可以出现多对⼀,但不可⼀对多,同时,通过实验结果理解值域是集合B的⼀个⼦集.⽣:⼩组合作讨论每⼀种放法是否为从集合A到集合B的⼀个函数.若是,则求它的值域.师:强调初、⾼中对函数定义本质是⼀样的,只是出发点不同,⽤集合与对应的语⾔来描述函数可以摆脱物理运动的束缚.1.2.1本节课教学⽬标是:正确理解函数的概念,能⽤集合与对应的语⾔刻画函数。
高中数学函数概念优秀教案
高中数学函数概念优秀教案教学目标:1. 了解函数的定义及特点;2. 掌握函数的表示方法;3. 能够通过实例识别函数;4. 能够解决与函数相关的简单问题。
教学重点:1. 函数的定义;2. 函数的表示方法;3. 函数的特点。
教学内容:一、函数的定义函数是指一种对应关系,对于集合A的每一个元素,都有唯一确定的集合B中的元素与之对应。
数学上通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
二、函数的表示方法1. 函数表达式:通常以代数式的形式表示,如y = 2x + 1;2. 函数图像:以坐标平面上的曲线或直线表示函数。
三、函数的特点1. 自变量与因变量的对应关系是一一对应的;2. 域:自变量的取值范围称为函数的定义域;3. 值域:因变量的取值范围称为函数的值域。
教学过程:一、引入概念1. 引用一个生活中的实例,让学生思考其中的对应关系是否符合函数的定义;2. 引导学生从实例中了解函数的概念。
二、讲解函数的定义及表示方法1. 老师用简单的数学表达式示范函数的表示方法;2. 通过幻灯片展示函数的图像,让学生感受函数的几何意义。
三、讲解函数的特点1. 域和值域的概念及其重要性;2. 通过实例演示函数的一一对应关系。
四、综合练习1. 学生完成一些简单的函数的表示和对应的值的计算;2. 带领学生用学到的知识解决一些实际问题。
五、总结1. 整理函数的定义、表示方法和特点,让学生进行总结;2. 引导学生思考函数在实际生活中的应用。
教学反馈:1. 学生进行简答题和计算题的练习,检查学生对函数概念的掌握情况;2. 结合学生的表现给予针对性的指导和反馈。
教学延伸:1. 学生可以进一步了解复合函数、反函数等相关知识;2. 开展更多实例分析和求解问题,提高学生对函数的理解和应用能力。
教学资源:1. 教科书资料;2. 幻灯片展示;3. 实例分析题。
教学评价:1. 老师根据学生对函数概念的理解程度,进行及时评价和反馈;2. 学生通过练习题和作业巩固所学知识,检验教学效果。
高中数学优质课《函数的概念》教学设计共4套
分析函数关系
学生分析实际问题中的函数关系, 如速度与时间的关系、成本与产量 的关系等,提高运用函数知识解决 实际问题的能力。
函数运算实践
学生进行函数运算实践,如函数的 四则运算、复合运算等,通过具体 操作加深对函数运算规则的理解。
展示评价:展示成果,互相学习
学生成果展示
学生展示自己的学习成果,如绘 制的函数图像、分析的实际问题 等,通过互相观摩和学习,拓宽
高中数学优质课《函数的概 念》教学设计共4套
目录
• 课程背景与目标 • 教学内容与方法 • 教学过程设计 • 学生活动设计 • 教学评价与反馈 • 教学资源与开发
01
课程背景与目标
高中数学课程标准要求
了解函数的有界性、单调性、周期 性和奇偶性等性质,理解复合函数 及分段函数的概念,了解反函数及 隐函数的概念。
分享生活中的函数实例
02
学生分享生活中与函数相关的实例,将抽象的数学概念与实际
生活相联系,提高学习兴趣。
探讨函数性质
03
学生探讨函数的性质,如单调性、奇偶性等,通过对比分析不
同函数的性质,加深对函数性质的理解。
动手实践:操作练习,巩固知识
绘制函数图像
学生动手绘制不同函数的图像, 通过观察图像的变化趋势和特征,
提问与回答 鼓励学生提出问题,并对学生的问题进行及时回 应和解答,通过学生的提问和回答情况来评价学 生的理解程度。
随堂测试 通过简短的随堂测试,了解学生对本节课内容的 掌握情况,及时发现学生的学习困难。
及时收集反馈信息,调整教学策略
01
02
03
学生反馈
在课后向学生收集对本节 课的反馈意见,包括教学 内容、教学方法、教学进 度等方面的意见和建议。
高中数学《函数的概念》教案
高中数学《函数的概念》教案教学目标:1. 理解函数的概念,了解函数在数学和现实生活中的应用。
2. 掌握函数的定义、函数图象、函数表示法等基本概念和性质。
3. 学会利用函数图象和函数式进行函数的简单分析和绘制。
教学重点:1. 函数的定义及其图象。
2. 函数的基本性质。
教学难点:1. 函数概念的深入理解。
2. 函数图象和函数式的绘制。
教学方法:1. 模块化教学法。
2. 案例教学法。
3. 讨论交流式教学法。
教学准备:1. 教学用具:黑板、彩色粉笔、多媒体设备、工具箱等。
2. 教学材料:相关数学教材、运用函数的实际问题等。
教学过程:Step 1: 引入教师首先介绍什么是函数,为什么需要函数,以及函数的应用。
引导学生思考一下:我们生活中常常用到的具有函数特性的物品有哪些?Step 2: 概念阐述1. 函数的定义:函数是一种将一个数域中的每一个元素唯一对应到另一个数域中的元素的关系。
2. 函数的符号表示:(1)函数名:y=f(x)。
(2)定义域:x。
(3)值域:y。
(4)自变量:x。
(5)因变量:y=f(x)。
3. 函数的图象:函数的图象是由函数的自变量的取值范围和函数的部分值确定的点集。
Step 3: 函数的基本性质1. 单调性:函数在定义域上的单调性分为单调递增和单调递减。
2. 奇偶性:函数的奇偶性可以根据函数的自变量的取值范围和函数值的正负性来判断。
3. 周期性:函数f(x+T)=f(x)则函数f(x)的周期为T。
4. 对称性:函数的对称性可以根据函数的自变量的取值范围和函数值的正负性来判断。
Step 4: 函数的应用1. 函数的应用在于解决实际问题。
2. 实际问题可以转化为函数形式。
例如:求公司销售额与广告投入之间的关系。
Step 5: 小结教师要求学生总结函数概念、函数图象、函数定义及其表示法等知识点,深入理解函数的基本性质和应用。
Step 6: 练习教师要求学生分别完成数学教材上的习题和课后作业。
《函数的概念》教学教案
《函数的概念》教学教案一、教学目标1. 知识与技能:(1)理解函数的定义及其基本性质;(2)能够正确运用函数的概念解决实际问题。
2. 过程与方法:(1)通过实例分析,引导学生掌握函数的定义;(2)利用数形结合,让学生理解函数的性质。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)函数的定义及其基本性质;(2)函数图像的特点。
2. 教学难点:(1)函数概念的理解;(2)函数图像的解读。
三、教学方法1. 情境导入:(1)利用生活中的实例,如温度随时间的变化,引出函数的概念;(2)引导学生观察实例中的数量关系,提出问题,引发思考。
2. 讲授法:(1)讲解函数的定义及基本性质;(2)分析函数图像的特点,引导学生理解函数的概念。
3. 讨论法:(1)分组讨论函数实例,让学生深入理解函数的概念;(2)组织学生展示讨论成果,促进学生之间的交流。
4. 实践操作:(1)让学生利用函数概念解决实际问题;(2)引导学生运用数形结合的方法,观察函数图像,理解函数性质。
四、教学过程1. 导入新课:(1)利用生活中的实例,如温度随时间的变化,引出函数的概念;(2)引导学生观察实例中的数量关系,提出问题,引发思考。
2. 讲解函数的定义及基本性质:(1)讲解函数的定义,让学生理解函数的概念;(2)介绍函数的基本性质,如单调性、奇偶性等。
3. 分析函数图像的特点:(1)让学生观察函数图像,理解函数的性质;(2)引导学生学会解读函数图像,掌握函数图像的特点。
4. 实践操作:(1)让学生利用函数概念解决实际问题;(2)引导学生运用数形结合的方法,观察函数图像,理解函数性质。
5. 课堂小结:(2)强调函数在实际问题中的应用价值。
五、课后作业1. 复习本节课所学内容,整理函数的定义及基本性质;2. 运用函数概念,解决实际问题;3. 观察函数图像,分析函数的单调性、奇偶性等性质。
高一数学函数教案5篇
高一数学函数教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、个人总结、教师总结、学生总结、企业总结、活动总结、党建总结、心得体会、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, personal summaries, teacher summaries, student summaries, enterprise summaries, activity summaries, party building summaries, reflections, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学函数教案5篇认真准备好教案帮助我们更好地掌握学生的学习进度和学习效果,及时调整教学策略和方法,成功的教案应该能够引导学生形成批判性思维和解决问题的能力,下面是本店铺为您分享的高一数学函数教案5篇,感谢您的参阅。
高中数学《函数的概念》公开课优秀教学设计三
高中数学《函数的概念》公开课优秀教学设计三教学内容:本节课的教学内容选自高中数学教材必修一第二章第一节《函数的概念》。
具体内容包括:函数的定义、函数的表示方法、函数的性质等。
教学目标:1. 理解函数的概念,掌握函数的表示方法。
2. 能够运用函数的性质解决实际问题。
3. 培养学生的逻辑思维能力和创新能力。
教学难点与重点:重点:函数的定义,函数的表示方法,函数的性质。
难点:函数概念的理解,函数性质的应用。
教具与学具准备:教具:多媒体教学设备,黑板,粉笔。
学具:教材,笔记本,铅笔。
教学过程:一、情境引入(5分钟)教师通过展示一些生活中的实际问题,如温度随时间的变化,物体的高度随时间的变化等,引导学生思考这些问题的数学模型。
二、新课导入(10分钟)1. 教师引导学生思考如何用数学语言来描述这些实际问题中的关系。
2. 教师给出函数的定义,并解释函数的概念。
3. 教师讲解函数的表示方法,包括列表法、图象法、解析法等。
三、例题讲解(10分钟)教师通过讲解一些典型的例题,让学生理解函数的性质,并学会如何运用函数的性质解决实际问题。
四、随堂练习(5分钟)教师给出一些练习题,让学生现场解答,以巩固所学知识。
五、课堂小结(5分钟)六、板书设计(5分钟)教师根据教学内容设计板书,突出函数的定义、表示方法和性质。
作业设计:1. 请用列表法、图象法、解析法各表示一个函数。
答案:列表法:y = 2x图象法:过原点,斜率为2的直线解析法:y = f(x) = 2x2. 请解释下列函数的定义域和值域:y = √(x+1),y = |x|。
答案:y = √(x+1)的定义域为x≥1,值域为y≥0。
y = |x|的定义域为全体实数,值域为y≥0。
课后反思及拓展延伸:本节课通过生活中的实际问题引入函数的概念,让学生能够更好地理解函数的内涵。
在讲解函数的表示方法时,通过多种方法的展示,让学生能够全面地了解函数的表示方式。
在讲解函数的性质时,通过典型的例题让学生掌握如何运用函数的性质解决实际问题。
全国高中数学教师优秀教案-《函数的概念》(重庆贺祠亮)
《函数的概念》教学设计重庆市巴县中学贺祠亮【三维目标】了解:通过丰富实例让学生了解函数是非空数集到非空数集的一个对应;了解构成函数的三要素;理解:函数概念的本质;抽象的函数符号)f的意义;()(xf x的区别f a(a为常数)与()与联系;会求一些简单函数的定义域;经历:让学生经历函数概念的形成过程,函数的辨析过程,函数定义域的求解过程以及求函数值的过程;渗透归纳推理、发展学生的抽象思维能力;体验:通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用,体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和简洁美.【教学重点】函数概念的形成,正确理解函数的概念.【教学难点】发展学生的抽象思维能力,对函数概念本质的理解.【教法选择】问题式教学法:本堂课的特点是概念教学,根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现问题中两个变量的关系,让学生归纳、概括出函数概念的本质,这也符合建构主义的教学理论.【学法选择】探究式学法:新课程要求课堂教学的着力点是尊重学生的主体地位,发挥学生的主动精神,培养学生的创新能力,使学生真正成为学习的主体,结合本堂课的特点,我倡导的是探究式学法;让学生在探究问题的过程中,通过老师的引导归纳概括出函数的概念,通过问题的解决,达到熟练理解函数概念的目的,从而让学生由“被动学会”变成“主动会学”.【教学媒体选择】教学中使用多媒体来辅助教学,其目的是充分发挥快捷、生动、形象的特点,为学生提供直观感性的材料,有助于适当增加课堂容量,提高课堂效率;同时与黑板板书相结合.【教学过程设计】(一).结构分析为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为七个阶段:(二).教学过程课题引入2010年9月5日0时14分,我国在西昌卫星发射中心用“长征三号乙”运载火箭,成功将“鑫诺六号”通信广播卫星送入太空.在“鑫诺六号”飞行期间,我们时刻关注着“鑫诺六号”离地面的距离随时间是如何变化的,数学上可以用 来描述这种运动变化中的数量关系. (函数)1.回忆旧知,引出困惑问题一:请举出初中学过的一些函数.x y 2=,2x y =,xy 1=等. 问题二:请同学们回忆初中函数的定义是什么?在一个变化过程中,有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值和它对应,那么就说y 是x 的函数,x 叫自变量.问题三:)(0R x y ∈=是函数吗?学生活动:先由学生思考回答,对产生的两种意见展开小组讨论.由于受认知能力的影响,利用初中所学函数知识很难回答这些问题,形成认知冲突,从而引出本堂课的课题(用幻灯片打出课题).让学生带着悬念、带着认知冲突学习后面的知识,这样有利于激发学生的学习欲望.2.创设情境,形成概念实例一:一枚炮弹发射后,经过s 26落到地面击中目标.炮弹的射高为m 845,且炮弹距地面的高度h (单位:m )随时间t (单位:s )变化的规律是:25130t t h -=.问题四:1.t 的范围是什么?h 的范围是什么?2.t 和h 有什么关系?这个关系有什么特点?(实例一由师生共同完成)事实上生活中这样的实例有很多,随着改革开放的深入,我们的生活水平越来越高,需求越来越大,对环境的影响也越来越重,下面请同学们自学有关臭氧层空洞的问题和恩格尔系数的问题:实例二:近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图12.1-中的曲线显示了南极上空臭氧层空洞的面积从2001~1979年的变化情况.实例三:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.表11-中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.通过先对两个实例的学生自学,然后请学生谈感受,老师提问,学生回答,师生共同完成.问题五:实例一、实例二、实例三的对应关系在呈现方式上有什么不同?问题六:以上三个实例有什么相同的特征?学生活动:让学生分组讨论交流,总结归纳出:共同特点:①都有两个非空数集B A 、;②两个数集之间都有一种确定的对应关系;③对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都有唯一确定的y 值和它对应. 问题七:满足以上共同特点的两个数集的对应关系,我们把它叫做什么呢?(先让学生说,老师再做补充)引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数.你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢?函数概念:设B A 、是非空的数集,如果按某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作A x x f y ∈=),(.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合})({A x x f ∈叫做函数的值域.显然,值域是集合B 的子集.问题八:请同学们根据现在函数的定义说说前面三个实例是否表示两个集合的函数关系? 问题九:)(0R x y ∈=是函数吗?问题十:用几何画板在平面直角坐标系中画出一段弧,并作平移和旋转,同时让学生判断这些平移和旋转中的弧是否表示函数图象.方法引导:如何判断给定的两个变量间是否具有函数关系?可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词?3.质疑解惑,剖析概念问题十一:请同学们勾画出概念中的关键词,并用简洁的语言说明.通过交流得出以下几点:① B A 、都是非空的数集;② 任意性与唯一性;③ 确定的对应关系,对应关系f 可以是解析式、图象、表格.问题十二:函数由几部分组成?三要素:定义域、值域、对应法则,缺一不可.问题十三:怎样理解符号)(x f ?在法则f 下,x 所对应的函数值,并结合生活实例说明.4.讨论研究,深化理解【例1】已知函数213)(+++=x x x f , (1)求函数的定义域;(2)求)32(),3(f f -的值;(3)当0>a 时,求)1(),(-a f a f 的值.想一想:函数的定义域该怎么求?符号()f a (a 为常数)与()f x 有哪些区别与联系? (学生先思考、计算,老师提问,师生共同完成) 5.即时训练,巩固新知练习1.求函数131)(-++-=x x x f 的定义域:练习2.已知函数,23)(3x x x f +=求)()2(a f f -+的值.学生活动:抽两位学生到讲台在黑板上分别完成(其他同学在下面完成),完成后,师生共同评价完善.6.总结反思,提高认识今天,我们在初中函数定义的基础上,运用集合与对应的语言重新刻画了函数,比较两个函数的定义,同学们有什么新的认识.引导学生思考回答,老师作适当补充.7.分层作业,自主探究作业:一、举出生活中函数的例子(两个以上),并用集合与对应的语言来描述函数;二、A 组学生做:P24 1、2、3、4;B 组学生做:必做A 组学生所做,选做P25 1题.附板书设计(提纲式)各位专家,以上就是我对这节课的教学设想,不足之处恳请各位专家批评指正.谢谢!。
高中数学-《函数的概念》教案、教学设计
《函数的概念》教案、教学设计一、教学目标理解函数的概念,掌握用集合与对应的语言刻画函数。
在探究函数概念的过程中,增强观察、思考和解决问题的能力,感知函数在实际生活中的应用,体会对应关系在刻画函数概念中的作用。
二、教学重难点【重点】理解函数概念。
【难点】用集合与对应语言刻画函数。
三、教学方法讲授法、问题情境设置法、组织讨论法四、教学过程环节一:导入新课回顾初中学习的函数概念。
学生回答:设在一个变化过程中有两个变量x与y,对于x的每一个值,y都有唯一确定的值与它对应,则称x是自变量,y是x的函数。
教师继续追问:高中研究的函数概念与初中有何不同。
环节二:新课讲授(一)探究函数概念大屏呈现第一个实例,请学生在导学案中画出的图象,提出问题:1、时间t的变化范围是多少;高度h的变化范围是多少?2、100s所对应的高度是多少?3、如何才能真实反映炮弹的发射过程?请同桌两人相互讨论,得出答案。
教师说明:对于数集A中的任意一个时间t,按照对应关系,在数集B中都有唯一确定的高度h和它对应。
大屏展示实例2、3。
引导学生思考在对应关系呈现上三个实例有什么不同,有什么相同的特征。
请前后四人为以小组进行讨论,时间为5分钟,讨论结束后,请小组代表发言。
学生观察后得出例1是用解析式刻画变量间的对应关系,例2是用图象刻画变量间的对应关系,例3是用表格刻画变量之间的关系。
第二问共同点为:1、都有两个非空数集A、B2、两个数集之间都有一种确定的对应关系。
教师引导学生探究函数能否看作是两个集合之间的一种对应关系,如何重新定义函数。
师生共同归纳总结函数的概念。
强调函数的三要素为定义域、对应关系和值域。
(二)深化函数概念教师提出问题:初中学过哪些函数,它们的定义域、值域,对应法则分别是什么?引导学生画图,结合图象观察。
教师大屏幕展示正确答案,请同桌互相批改订正。
环节三:巩固提升展示四个图象,判断是否为函数。
师生共同总结判断方法,观察自变量x是否有唯一的函数值y与之对应。
高中数学《函数的概念》教学设计
《函数的概念》教学设计一、教材内容分析“函数”是中学数学的核心概念。
函数贯穿于整个高中数学的教学中,是整个高中数学的主题内容。
学生在初中已经学习过函数的概念。
初中函数的概念是: 一般地,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
如果当a x =时b y =,那么b 叫做当自变量的值为a 时的函数值。
这个定义把函数看成是两个变量之间的依赖关系。
根据这个观点,有些函数很难进行深入研究。
例如1=y ,对于这个函数,如果用变量观点来解释,会显得特别勉强。
但用高中集合、对应的观点来解释就十分自然。
在高一,学生需要建立的函数概念是:设B A ,是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作.),(A x x f y ∈= 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。
实际上,初中的函数概念和高中的函数概念本质上是一样的。
只是高中的函数概念更具有一般性,高中用集合、对应的语言描述函数概念,在初中虽然没有提及,但事实上是客观存在的,学生在解决具体问题的过程中也渗透了集合与对应的观点。
不同之处在于初中没有明确强调“确定的对应关系”,或者所接触的函数多数是有解析式的,而高中引入了用“f ”表示对应关系,用)(x f 表示集合B 中与x 对应的那个数。
在函数的概念教学中,我认为需要注意以下几点:1、集合A 和集合B 都必须是非空的数集,这与映射是不同的。
2、两个数集之间有确定的对应关系f,即对于数集A中的每一个数x,在集合B中都有唯一确定的y和它相对应。
对于集合A中的数,不能有些在B中有元素跟它对应,而有些没有;而且,在集合B中只能有一个数跟它对应,不能是两个或两个以上。
《函数的概念》教案
课题:函数的概念(一)教材:普通高中课程标准实验教材教科数学必修(1)人教版【三维目标】1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数概念,培养学生观察问题,提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.2.掌握构成函数的三要素,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性,激发学生学习的积极性.【教学重点】正确理解函数的概念,体会函数是描述变量之间的依赖关系的重要数学模型.【教学难点】函数概念及符号y=f(x)的理解.【教学方法】诱思教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观感知→观察分析→归纳类比→抽象概括,使学生在获得知识的同时,能够掌握方法、提升能力.【教学手段】多媒体课件辅助教学【教学过程设计】一、创设情景引入课题北京时间2007年10月24日18时05分,万众瞩目的“嫦娥一号”探月卫星成功发射,在“嫦娥一号”飞行期间,我们时刻关注着“嫦娥一号”离我们的距离随时间是如何变化的,数学上用函数来描述这种运动变化中的数量关系.在初中已学习过函数的概念,函数的概念从运动变化的观点描述了变量之间的依赖关系. 本节将进一步学习函数及其构成要素.二、观察分析探索新知1.实例分析(1)一枚炮弹发射后,经过26s落到地面击中目标. 炮弹的射高为845m,且炮弹距地面的高度h (单位:m )随时间t (单位:s )变化的规律是:h =130t -5t 2. (﹡)提问:你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t 的变化范围是什么?炮弹距离地面高度h 的变化范围是什么?炮弹飞行时间t 的变化范围是数集}260{≤≤=t t A ,炮弹距地面的高度h 的变化范围是数集}8450{≤≤=h h B .从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(﹡),在数集B 中都有唯一确定的高度h 和它对应.(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.提出问题:观察分析图中曲线,时间t 的变化范围是多少?臭氧层空洞面积s 的变化范围是多少?尝试用集合与对应的语言描述变量之间的依赖关系. 根据图中曲线可知,时间t 的变化范围是数集}20011979{≤≤=t t A ,臭氧层空洞面积s 的变化范围是数集}260{≤≤=S S B .对于数集A 中的任意一个时间t ,按照图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应.(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高. 表1中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.表1 “八五”计划以来我国城镇居民恩格尔系数变化情况时间(年) 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2025 5101530图126 25tSO 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001提出问题:恩格尔系数与时间之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?请仿照(1)(2)描述表中恩格尔系数和时间(年)的关系.根据上表,可知时间t的变化范围是数集}=Nttt≤A,恩格≤,19912001∈{*尔系数y的变化范围是数集}8.=yyB. 并且,对于数集A中的任意≤53{≤9.37一个时间t,根据表1,在数集B中都有唯一确定的恩格尔系数y和它对应.2.问题探讨以上三个实例有什么不同点和共同点?活动:让学生分小组讨论交流,请小组代表汇报讨论结果.归纳以上三个实例,可看出其不同点是:实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图像刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系.其共同点是:①都有两个非空数集A,B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应.记作.Af→:B3.归纳概括引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数,你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢?活动:让学生分组讨论交流,讨论归纳出:(1)函数的概念:一般地,设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称xx=y∈f(A),ABf→:为从集合A到集合B的一个函数,记作.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合}xxf∈叫做函数的值域.(){A显然,值域是集合B的子集.(2)函数的本质:两个非空数集间的一种确定的对应关系.(3)函数的构成要素:定义域、对应关系、值域.强调:①值域由定义域和对应关系唯一确定;②f(x)是函数符号,f表示对应关系,f(x)表示x对应的函数值,绝对不能理解为f与x的乘积.在不同的函数中f的具体含义不同,由以上三个实例可看出对应关系可以是解析式、图象、表格等.函数除了可用符号f(x)表示外,还可用g(x),F(x)等表示.三、新知演练及时反馈1. 提出问题:一次函数、二次函数、反比例函数的定义域、值域、对应关系分别是什么?并用函数的概念来描述这些函数.设计意图:通过集合与对应的语言来刻画初中已学函数,使学生加深理解函数的本质及构成函数的基本要素.2. 思考辨析:(1)1y(x∈R)是函数吗?=(2))0x=xy是函数吗?(≥±(3)x3=1-是函数吗?y-+x方法引导:如何判断给定的两个变量间是否具有函数关系?可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词?由学生总结得到:(1)理解函数的定义应注意:①符号“f:A→B”表示从A到B的一个函数;②函数是非空数集A到非空数集B上的一种对应;③集合A中数的任意性,集合B中数的唯一性.(2)判断函数的标准可以简化成:两个非空数集A,B,一个对应关系.提出问题:在三个实例中,按照一定的对应关系,能看作从B到A的函数吗?你能举出函数的实例吗?设计意图:使学生更深刻理解函数的概念,培养学生的数学应用意识.3.练习反馈下列图像中不能作为函数y=f(x)图像的是( B )四、提炼总结 分享收获 1. 本节课探讨了用集合和对应的语言描述函数的概念,并引进了函数符号y =f (x ).2. 突出了函数概念的本质:两个非空数集间的一种确定的对应关系.3.明确了构成函数的三要素:定义域、对应关系、值域.五、布置作业1. 举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、对应关系和值域.2.课本P 24 习题1.2 1、3、4六、板书设计教案说明函数是高中数学的重要内容之一.它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础. 因此,函数概念是中学数学最重要的基本概念之一,本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法,初步运用函数思想理解和处理生活、社会中的简单问题.《函数的概念》的教学需要两课时,本节课是第一课时,是一节函数的概念课.学生在初中已学习过函数的概念,概念从运动的观点刻画了两变量之间的相互依赖关系,在已有认识的基础上,让学生学会用集合与对应的语言来刻画函数的概念,并体会函数是描述客观世界中变量间依赖关系的重要模型,是本节课的教学重点. 本节课的教学难点是:函数概念及符号y=f(x)的理解. 函数的概念比较抽象,但函数现象大量存在于学生周围,因此本节课教学设计的整体指导思想是:让学生通过观察分析,去发现,并归纳概括出函数的概念,从而更好的理解函数的概念,熟练的去应用概念解决问题. 通过本节课的学习,进一步培养学生观察问题,提出问题的探究能力;培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,学会数学表达和交流,发展数学应用意识;同时使学生感受到学习函数的必要性,激发学生学习的积极性.本节课对重难点的处理方法是:(1)为了让学生抽象概括出函数的概念,首先以三个实际问题引入,让学生认识到生活中充满着变量间的依赖关系,先建立起函数的背景,为学生理解函数概念打下感性基础. 在三个不同的实例中,通过对关键词的强调和引导,给学生思考、探索的空间,让学生发现、概括出它们的共同特征. 进而引导学生从实际问题中抽象概括出函数的概念,培养了学生的抽象概括能力. 教学中让学生体验数学发现和创造的历程,提高分析问题,解决问题的能力. 高一的学生是以感性思维为主的年龄阶段,在第一个例子中,通过动画演示炮弹的发射过程,让学生更清晰直观的感知:对于每一个时间t,都有唯一确定的高度h与它对应. 这样设计符合他们的认知规律,化抽象为直观,学生更容易理解. 第二、三个例子,让学生仿照前例,尝试用集合与对应的语言去描述两个变量之间的依赖关系,学会数学表达和交流.由学生抽象概括出函数的概念,其间经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,进一步提高了学生的数学思维能力;教学中注重培养学生积极主动,勇于探索的学习方式. 本节课选自运动、自然界、经济生活中用三种不同方法表示的函数,既可以让学生感受到函数在许多方面的广泛应用,又可以使学生意识到对应关系不仅可以是明确的解析式,也可以是形象直观的曲线和表格,为下一节函数的表示方法描下伏笔.(2)为了使学生正确理解函数的概念,首先让学生用集合与对应的语言来刻画初中已学函数,使学生加深理解函数的本质及构成函数的基本要素. 其次通过思考辨析,由学生讨论、列举出函数的例子,再次加深对函数概念的理解,同时也培养了学生的数学应用意识. 最后启发学生对本节课学习的内容进行总结,提醒学生重视研究问题的方法和过程.爱因斯坦说过:“单纯的专业知识灌输只能产生机器,而不可能造就一个和谐发展的人才”,因此,数学学习的核心是思考,没有思考就没有真正的数学. 在本节课的教学中,我以学生作为活动的主体, 总是创设恰当的问题情境,引导学生积极思考,大胆探索,最大限度地调动学生积极参与教学活动,在教学难点处适当放慢节奏,给学生充分的时间进行思考与讨论,适时地给予适当的思维点拨,必要时进行大面积提问,让学生做课堂的主人,充分发表自己的意见.这样既有利于化解难点、突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃,让学生在生生互动、师生互动中掌握知识,提升能力.教学过程中既注重锻炼学生独立解决问题的能力,又注重对学生交流合作意识和创新意识的培养.通过本节课的教学,希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.。
高一数学教案:函数的概念4篇
高一数学教案:函数的概念高一数学教案:函数的概念精选4篇(一)教案标题:函数的概念教学目标:1. 理解函数的基本概念;2. 能够根据给定的函数定义进行函数值的计算;3. 能够掌握函数的图像表示方法。
教学准备:1. PowerPoint或黑板;2. 教材《高中数学》;3. 教学PPT或教学黑板稿。
教学步骤:步骤一:引入问题(5分钟)1. 通过生活中的例子引导学生思考“什么是函数?”;2. 引导学生记忆和理解“自变量”和“因变量”的概念。
步骤二:函数的定义(10分钟)1. 引导学生学习教科书上的函数定义;2. 解释函数的定义中自变量、因变量和对应规律的含义;3. 通过一些例子帮助学生理解函数的定义。
步骤三:函数的表示方法(10分钟)1. 引导学生学习函数的表示方法;2. 介绍函数的表格表示和解析式表示;3. 通过具体例子的计算来展示函数的表示方法。
步骤四:函数值的计算(15分钟)1. 引导学生学习函数值的计算方法;2. 通过给定函数和自变量求因变量的例子来演示函数值的计算。
步骤五:函数的图像表示(15分钟)1. 引导学生学习函数的图像表示方法;2. 通过函数表格和坐标系画出函数的图像;3. 解释图像上自变量和因变量的含义;4. 引导学生发现函数图像的特点,如单调性和奇偶性。
步骤六:练习与总结(10分钟)1. 给学生提供一些练习题,加深对函数的理解和掌握;2. 回顾课堂内容,让学生总结函数的概念和表示方法。
教学延伸:1. 引导学生进一步探究函数的性质,如定义域、值域、单调性等;2. 引导学生学习更复杂的函数概念,如反函数、复合函数等。
教学反思:通过讲解函数的概念和表示方法,学生能够初步理解函数的含义和计算方法。
在教学过程中,可以适当增加一些生动的例子和练习,培养学生的兴趣和动手能力。
在教学结束前,可以布置一些相关的课后作业,巩固学生的学习成果。
高一数学教案:函数的概念精选4篇(二)教学目标:1. 理解函数的概念,掌握函数的基本性质;2. 掌握函数的表示法:显式表示法、隐式表示法和参数表示法;3. 能够根据题目要求选择适当的函数表示法。
高中数学教案函数的概念和性质
高中数学教案函数的概念和性质高中数学教案:函数的概念和性质一、引言数学中的函数是一个重要的概念,它在各个领域有着广泛的应用。
本教案将引导学生深入理解函数的概念和性质,帮助他们掌握函数的基本知识和运用方法。
二、函数的基本概念1. 函数的定义函数是一种特殊的关系,它将一个集合的元素(自变量)映射到另一个集合的元素(因变量)。
表示函数的通常形式为:y = f(x),其中x 为自变量,y为因变量。
2. 自变量和因变量自变量是函数的输入值,因变量是函数的输出值。
例如,在一条直线的方程y = 2x + 1中,自变量为x,因变量为y。
3. 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
在确定一个函数时,需要确定定义域和值域的范围。
三、函数的性质1. 单调性函数的单调性描述了函数是否在定义域上单调递增(或递减)。
学生可以通过观察函数的图像、导数的符号等方式来判断函数的单调性。
2. 奇偶性函数的奇偶性描述了函数图像关于原点的对称性。
奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
学生可以通过观察函数的表达式来判断函数的奇偶性。
3. 周期性函数的周期性描述了函数图像在一定范围内是否重复出现。
周期函数的图像在每个周期内有一定的规律性。
例如,正弦函数、余弦函数都是周期函数。
4. 极值函数的极值包括最大值和最小值。
学生可以通过求导数、观察函数的图像等方式来确定函数的极值,并进一步分析极值的性质。
四、函数的应用1. 函数在图像绘制中的应用学生可以利用函数的性质,绘制各种形式的函数图像。
通过掌握函数的基本形态和特点,可以更好地理解函数的性质和规律。
2. 函数在实际问题中的应用函数在实际问题中的应用非常广泛。
学生可以通过函数的建模,解决各种实际问题,如距离、速度、面积等。
五、教学活动1. 观察函数图像让学生观察不同函数的图像,帮助他们理解函数的概念和性质。
2. 求解函数的性质让学生通过求导数、观察函数的表达式等方式,判断函数的性质,并进一步分析其特点。
高一数学教案《函数概念》
高一数学教案《函数概念》高一数学教案《函数概念》高一数学教案《函数概念》篇1一、教材分析^p函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。
函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在详细的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。
这一章内容浸透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深化的影响。
本节《函数的概念》是函数这一章的起始课。
概念是数学的根底,只有对概念做到深化理解,才能正确灵敏地加以应用。
本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。
也为进一步学习函数这一章的其它内容提供了方法和根据。
二、重难点分析^p二、重难点确实定根据对上述对教材的分析^p 及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。
三、学情分析^p1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并详细研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了根底。
2、不利因素:函数在初中虽已讲过,不过较为浅薄,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析^p 、概括的才能比较高,学生学起来有一定的难度。
四、目的分析^p1、理解函数的概念,会用函数的定义判断函数,会求一些最根本的函数的定义域、值域。
2、通过对实际问题分析^p 、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的才能。
3、通过对函数概念形成的探究过程,培养学生发现问题,探究问题,不断超越的创新品质。
五、教法学法本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探究。
《函数的概念》教学设计
《函数的概念》教学设计第一篇:《函数的概念》教学设计《函数的概念》教学设计教材分析:函数作为初等数学的核心内容,贯穿于整个初等数学体系之中函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。
在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段对函数的概念加入“对应”,这一章内容渗透了函数的思想、特殊到一般,数形结合思想,从感性到理性,数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响教学目标:知识与技能:(1)理解函数的概念,;(2)能够正确使用“区间”的符号表示某些集合。
2过程与方法:通过学生自身对实际问题分析、抽象与概括,培养了抽象、概括、归纳知识以及建模等方面的能力;3情感与价值观:以熟知的生活实例引入,激发了学习数学的兴趣,增强其数学应用意识、创新意识。
相互合作学习,增强其合作意识体会合作学习的重要性。
教法:启发探究为主,讨论法为辅学法:观察分析、自主探究、合作交流教学重点:理解函数的实际背景,用集合与对应的语言来刻画函数教学难点:理解函数的实际背景,用集合与对应的语言来刻画函数教学过程:一、复习引入:.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x和,对于x的每一个值,都有唯一确定的值与之对应,此时是x的函数,x是自变量,是因变量。
表示方法有:解析法、列表法、图象法二、概念情景引入:思考1:(本P1)给出三个实例:A.一枚炮弹发射,经26秒后落地击中目标,射高为84米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。
B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。
(见本P1图).国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。
“八五”计划以来我们城镇居民的恩格尔系数如下表。
人教版高中数学必修第一册函数的概念教案
函数的概念一、课题:函数的概念二、教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.三、教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法那么是核心,定义域是灵魂.四、教学过程:〔一〕主要知识:1.对应、映射、像和原像、一一映射的定义;2.函数的传统定义和近代定义;3.函数的三要素及表示法.〔二〕主要方法:1.对映射有两个关键点:一是有象,二是象惟一,缺一不可;2.对函数三要素及其之间的关系给以深刻理解,这是处理函数问题的关键;3.理解函数和映射的关系,函数式和方程式的关系.〔三〕例题分析:例1.〔1〕A R =,{|0}B y y =>,:||f x y x →=;〔2〕*{|2,}A x x x N =≥∈,{}|0,B y y y N =≥∈,2:22f x y x x →=-+;〔3〕{|0}A x x =>,{|}B y y R =∈,:f x y →=上述三个对应〔2〕是A 到B 的映射.例2.集合{}(,)|1M x y x y =+=,映射:f M N →,在f 作用下点(,)x y 的象是(2,2)x y ,那么集合N = 〔 D 〕()A {}(,)|2,0,0x y x y x y +=>>()B {}(,)|1,0,0x y xy x y =>>()C {}(,)|2,0,0x y xy x y =<<()D {}(,)|2,0,0x y xy x y =>>解法要点:因为2x y +=,所以2222x y x y +⋅==.例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,那么映射f 的个数是 〔 D 〕()A 8个 ()B 12个 ()C 16个 ()D 18个解法要点:∵()x f x +为奇数,∴当x 为奇数1-、1时,它们在N 中的象只能为偶数2-、0或2,由分步计数原理和对应方法有239=种;而当0x =时,它在N 中的象为奇数1-或1,共有2种对应方法.故映射f 的个数是9218⨯=.例4.矩形ABCD 的长8AB =,宽5AD =,动点E 、F 分别在BC 、CD 上,且CE CF x ==,〔1〕将AEF ∆的面积S 表示为x 的函数()f x ,求函数()S f x =的解析式;〔2〕求S 的最大值.解:〔1〕2111()408(5)5(8)222ABCD CEF ABE ADF S f x S S S S x x x ∆∆∆==---=--⨯⨯--⨯⨯-22113113169()22228x x x =-+=--+. ∵CE CB CD ≤≤,∴05x <≤,∴函数()S f x =的解析式:2113169()()(05)228S f x x x ==--+<≤; 〔2〕∵()f x 在(]0,5x ∈上单调递增,∴max (5)20S f ==,即S 的最大值为20.例5.函数()f x 对一切实数x ,y 均有()()(21)f x y f y x y x +-=++成立,且(1)0f =, 〔1〕求(0)f 的值;〔2〕对任意的11(0,)2x ∈,21(0,)2x ∈,都有12()2log a f x x +<成立时,求a 的取值X 围. 解:〔1〕由等式()()(21)f x y f y x y x +-=++,令1x =,0y =得(1)(0)2f f -=, 又∵(1)0f =,∴(0)2f =-.〔2〕由()()(21)f x y f y x y x +-=++,令0y =得()(0)(1)f x f x x -=+,由〔1〕知(0)2f =-,∴2()2f x x x +=+. ∵11(0,)2x ∈,∴22111111()2()24f x x x x +=+=+-在11(0,)2x ∈上单调递增,∴13()2(0,)4f x +∈. 要使任意11(0,)2x ∈,21(0,)2x ∈都有12()2log a f x x +<成立,当1a >时,21log log 2a a x <,显然不成立.当01a <<时,21log log 2a a x >,∴0113log 24a a <<⎧⎪⎨≥⎪⎩,解得14a ≤<∴a 的取值X围是4.〔四〕巩固练习:1.给定映射:(,)(2,)f x y x y xy →+,点11(,)66-的原象是11(,)32-或12(,)43-.2.以下函数中,与函数y x =相同的函数是 〔 C 〕()A 2x y x =()B 2y =()C lg10x y =()D 2log 2x y =3.设函数3,(10)()((5)),(10)x x f x f f x x -≥⎧=⎨+<⎩,那么(5)f =8.。
高中数学函数教案优秀教案
高中数学函数教案优秀教案教学内容: 函数的定义、函数的性质、函数的图像、函数的运算、复合函数教学目标:1. 了解函数的定义和性质,掌握函数的基本概念;2. 能够根据函数的图像进行函数的分析和运算;3. 能够熟练地进行函数的运算和复合函数的求解。
教学步骤:一、引入导入: (5分钟)1. 引入函数的概念,让学生通过举例子来理解什么是函数;2. 通过实际生活中的例子,让学生了解函数的作用和重要性。
二、函数的定义和性质的讲解: (15分钟)1. 给出函数的定义,让学生理解函数的概念;2. 讲解函数的性质,包括定义域、值域、奇偶性等;3. 通过例题让学生掌握函数的性质和特点。
三、函数的图像及运算: (20分钟)1. 给出不同类型函数的图像,让学生通过观察和分析来学习函数的特点;2. 讲解函数的运算规则,包括加减乘除、复合函数等;3. 通过练习题来巩固学生对函数的运算能力。
四、复合函数的求解: (15分钟)1. 讲解复合函数的概念和求解方法;2. 通过例题让学生掌握复合函数的求解技巧;3. 提出挑战性问题,让学生运用所学知识解决问题。
五、课堂练习及总结: (10分钟)1. 分发练习题,让学生独立进行练习;2. 在学生完成练习后,进行讲解和答疑;3. 总结本节课的重点内容,梳理函数的知识点。
教学反思:通过本节课的教学,学生对函数的概念、性质、图像、运算和复合函数等方面有了更深入的了解。
在教学中,通过举例、讲解和练习相结合的方式,提高了学生对函数学习的兴趣和理解能力。
希望学生能够在课后继续进行复习和巩固,进一步提高对函数的理解和运用能力。
以上是本节课的教案内容,希朥对教学有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:函数的概念(一)
教材:普通高中课程标准实验教材教科数学必修(1)
人教版
授课教师:河南郑州外国语学校乔会娜
2008年10月
【三维目标】
1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数概念,培养学生观察问题,提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.
2.掌握构成函数的三要素,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性,激发学生学习的积极性.
【教学重点】正确理解函数的概念,体会函数是描述变量之间的依赖关系的重要数学模型.
【教学难点】函数概念及符号y=f(x)的理解.
【教学方法】诱思教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观感知→观察分析→归纳类比→抽象概括,使学生在获得知识的同时,能够掌握方法、提升能力.
【教学手段】多媒体课件辅助教学
【教学过程设计】
一、创设情景引入课题
北京时间2007年10月24日18时05分,万众瞩目的“嫦娥一号”探月卫星成功发射,在“嫦娥一号”飞行期间,我们时刻关注着“嫦娥一号”离我们的距离随时间是如何变化的,数学上用函数来描述这种运动变化中的数量关系.
在初中已学习过函数的概念,函数的概念从运动变化的观点描述了变量之间的依赖关系. 本节将进一步学习函数及其构成要素.
二、观察分析探索新知
1.实例分析
(1)一枚炮弹发射后,经过26s落到地面击中目标. 炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2. (﹡)
提问:你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t的变化范围是什么?炮弹距离地面高度h的变化范围是什么?
炮弹飞行时间t的变化范围是数集}
=t
A,炮弹距地面的高度h
≤
t
26
{≤
的变化范围是数集}
=h
h
B.
{≤
≤
845
从问题的实际意义可知,对于数集A中的任意一个时间t,按照对应关系(﹡),在数集B中都有唯一确定的高度h和它对应.
(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题.图1中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况.
提出问题:观察分析图中曲线,时间t 的变化范围是多少?臭氧层空洞面积s 的变化范围是多少?尝试用集合与对应的语言描述变量之间的依赖关系. 根据图中曲线可知,时间t 的变化范围是数集}20011979{≤≤=t t A ,臭氧层空洞面积s 的变化范围是数集}260{≤≤=S S B .
对于数集A 中的任意一个时间t ,按照图中曲线,在数集B 中都有唯一确定的臭氧层空洞面积S 和它对应.
(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高. 表1中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
表1 “八五”计划以来我国城镇居民恩格尔系数变化情况
时间(年)
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 城镇居民家庭
恩格尔系数
(%) 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9
提出问题:恩格尔系数与时间之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?请仿照(1)(2)描述表中恩格尔系数和时间(年)的关系.
根据上表,可知时间t 的变化范围是数集},20011991{*∈≤≤=N t t t A ,恩格尔系数y 的变化范围是数集}8.539.37{≤≤=y y B . 并且,对于数集A 中的任
20
25 5
10
15
30
图1
26 25
t
S
O 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001
意一个时间t,根据表1,在数集B中都有唯一确定的恩格尔系数y和它对应.
2.问题探讨
以上三个实例有什么不同点和共同点?
活动:让学生分小组讨论交流,请小组代表汇报讨论结果.
归纳以上三个实例,可看出其不同点是:实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图像刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系.
其共同点是:①都有两个非空数集A,B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应.记作.
A
f→
:B
3.归纳概括
引导学生思考:在三个实例中,大家用集合与对应的语言分别描述了两个变量之间的依赖关系,其中一个变量都是另一个变量的函数,
你能否用集合与对应的语言来刻画函数,抽象概括出函数的概念呢?
活动:让学生分组讨论交流,讨论归纳出:
(1)函数的概念:
一般地,设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称
x
x
y∈
=
f
:为从集合A到集合B的一个函数,记作.
(A
A
B
),
f→
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合}
x
f∈叫做函数的值域.
x
{A
)
(
显然,值域是集合B的子集.
(2)函数的本质:两个非空数集间的一种确定的对应关系.
(3)函数的构成要素:定义域、对应关系、值域.
强调:①值域由定义域和对应关系唯一确定;
②f(x)是函数符号,f表示对应关系,f(x)表示x对应的函数值,绝对不能理解为f与x的乘积.在不同的函数中f的具体含义不同,由以上三个实例可看出对应关系可以是解析式、图象、表格等.函数除了可用符号f(x)表示外,还可用g(x),F(x)等表示.
三、新知演练及时反馈
1. 提出问题:
一次函数、二次函数、反比例函数的定义域、值域、对应关系分别是什么? 并用函数的概念来描述这些函数.
设计意图:通过集合与对应的语言来刻画初中已学函数,使学生加深理解函数的本质及构成函数的基本要素.
2. 思考辨析:
(1) 1=y (x ∈R )是函数吗? (2))0(≥±=x x y 是函数吗? (3)x x y -+=13-是函数吗?
方法引导:如何判断给定的两个变量间是否具有函数关系?
可依据定义,依据定义中的哪几个要点?要注意函数概念中的哪些关键词? 由学生总结得到:(1)理解函数的定义应注意:
①符号“f:A →B ”表示从A 到B 的一个函数;
②函数是非空数集A 到非空数集B 上的一种对应;
③集合A 中数的任意性,集合B 中数的唯一性.
(2)判断函数的标准可以简化成:两个非空数集A ,B ,一个对应关系.
提出问题:在三个实例中,按照一定的对应关系,能看作从B 到A 的函数吗?
你能举出函数的实例吗?
设计意图:使学生更深刻理解函数的概念,培养学生的数学应用意识.
3.练习反馈
下列图像中不能作为函数y =f (x )图像的是( B )
四、提炼总结 分享收获 1. 本节课探讨了用集合和对应的语言描述函数的概念,并引进了函数符号y =f (x ).
x y O x y O x y O A
B C D
x y
O
2. 突出了函数概念的本质:两个非空数集间的一种确定的对应关系.
3.明确了构成函数的三要素:定义域、对应关系、值域.
五、布置作业
1. 举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、对应关系和值域.
2.课本P24 习题1.2 1、3、4
六、板书设计。