线段角度经典题目

合集下载

《线段与角度》的练习题

《线段与角度》的练习题

《线段与角度》的练习题线段与角度的练题
1. 线段练题:
a. 画一个长度为5cm的线段。

b. 根据给出的方向,画一个长度为8cm的线段。

c. 比较上面两个线段的长度。

2. 角度练题:
a. 画一个 90°的直角。

b. 画一个 45°的角度。

c. 比较上面两个角度的大小。

d. 画一个锐角。

e. 画一个钝角。

3. 混合练题:
a. 画一个以AB为边、90°为角度的直角三角形。

b. 如果一个直角三角形的直角边长为6cm,斜边长为10cm,求第三条边的长度。

c. 画一个以AC为边、45°为角度的等腰直角三角形。

d. 复以上练的内容,并回答以下问题:
- 直角三角形有几条直角边?
- 钝角的度数大于锐角的度数吗?
- 两个角度相等的直角形是什么角形?
- 直角处的两个线段称为什么?
4. 挑战题:
a. 画一个以AB为边、60°为角度的等边三角形。

b. 画一个以ABC为边、90°为角度的正方形。

c. 画一个以AD为边、120°为角度的正方形。

d. 在一个直角坐标系中画一个图形,其中包括不同角度和线段的组合。

以上是线段与角度的练习题,请按照题目要求完成。

(完整)初中数学线段与角练习题

(完整)初中数学线段与角练习题

(完整)初中数学线段与角练习题初中数学线段与角练题1. 已知线段AB的长度为5,线段BC的长度为3,求线段AC 的长度。

思路:根据线段的性质,线段AC的长度等于线段AB的长度加上线段BC的长度。

解答:线段AC的长度为5 + 3 = 8。

2. 已知线段DE的长度为4,点F是线段DE的中点,求线段EF的长度。

思路:根据线段的性质,线段EF的长度等于线段DE的长度除以2。

解答:线段EF的长度为4 ÷ 2 = 2。

3. 角XYZ的度数为37°,角YZW的度数为83°,求角XZW的度数。

思路:根据角度的性质,角XZW的度数等于角XYZ的度数加上角YZW的度数。

解答:角XZW的度数为37° + 83° = 120°。

4. 角ABC的度数为78°,角CDE的度数为42°,角BED的度数为90°,求角ABD的度数。

思路:根据角度的性质,角ABD的度数等于角ABC的度数加上角CDE的度数减去角BED的度数。

解答:角ABD的度数为78° + 42° - 90° = 30°。

5. 已知角MNO的度数为60°,角NOP的度数为120°,求角MOQ的度数。

思路:根据角度的性质,角MOQ的度数等于360°减去角MNO的度数减去角NOP的度数。

解答:角MOQ的度数为360° - 60° - 120° = 180°。

6. 已知角PQR是直角,角RPQ的度数为30°,求角RPQ的补角的度数。

思路:根据角度的性质,角RPQ的补角的度数等于90°减去角RPQ的度数。

解答:角RPQ的补角的度数为90° - 30° = 60°。

小学数学线段和角的练习题

小学数学线段和角的练习题

小学数学线段和角的练习题一、线段练习题1. 在一张纸上,画一条长为5厘米的线段AB。

将线段AB分成两段,使其中一段的长度为3厘米,找出另一段的长度。

2. 画一条长为8厘米的线段CD,将线段CD平分为三等分,找出每一段的长度。

3. 画一条长为6厘米的线段EF,将线段EF分成四段,其中有一段的长度为2厘米,找出其他三段的长度。

4. 在一张纸上,画一条长为10厘米的线段GH。

将线段GH分成五段,且其中有一段的长度为4厘米,找出其他四段的长度。

二、角的练习题1. 画一个顶点为O的角,使其大小为40°。

将这个角平分为两个相等的角,找出每个角的大小。

2. 画一个顶点为P的角,使其大小为80°。

将这个角划分为四个相等的角,找出每个角的大小。

3. 画一个顶点为Q的角,使其大小为60°。

将这个角分成三段,找出每一段的大小。

4. 画一个顶点为R的角,使其大小为120°。

将这个角平分为六个相等的角,找出每个角的大小。

三、综合练习题1. 在一张纸上,画一条长为7厘米的线段AB。

再画一个顶点为A的角,使其大小为50°。

将线段AB和角A划分为三段,找出每一段的长度和每个角的大小。

2. 画一个顶点为O的角,使其大小为30°。

将这个角平分为四个相等的角,再将每个相等的角分为五段,找出每一段的大小。

3. 在一张纸上,画一条长为12厘米的线段CD。

再画一个顶点为C的角,使其大小为70°。

将线段CD和角C分成四段,找出每一段的长度和每个角的大小。

4. 画一个顶点为P的角,使其大小为140°。

将这个角划分为五个相等的角,再将每个相等的角分为三段,找出每一段的大小和每个角的大小。

以上是小学数学线段和角的练习题,通过解答这些题目可以加深对线段和角的理解,并提升数学应用能力。

希望能对你的学习有所帮助!。

培优专题02 与三角形有关的线段和角的问题-解析版

培优专题02 与三角形有关的线段和角的问题-解析版

培优专题02 与三角形有关的线段和角的问题1.(2022·全国·八年级专题练习)如图,在ABC V 中,20AB =,18AC =,AD 为中线.则ABD △与ACD △的周长之差为( )A .1B .2C .3D .4【答案】B 【分析】利用三角形中线的定义、三角形的周长公式进行计算即可得出结果.【详解】Q 在ABC V 中,AD 为中线,BD CD \=.ABD C AB BD AD =++Q △,ACD C AC CD AD =++△,20182ABD ACD C C AB AC \-=-=-=V V .故选:B .【点睛】本题考查三角形的中线的理解与运用能力.三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.明确三角形的中线的定义,运用两个三角形的周长的差等于两边的差是解本题的关键.2.(2022·全国·八年级专题练习)如图,ABC V 的面积是2,AD 是ABC V 的中线,13AF AD =,12CE EF =,则CDE △的面积为( )A .29B .16C .23D .49【答案】A【分析】根据中线的性质即可求出S △ACD ,然后根据等高时,面积之比等于底之比,即可依此求出3.(2022·四川成都·七年级期中)如图,ABC V 中,12Ð=Ð,G 为AD 中点,延长BG 交AC 于E ,F 为AB 上一点,且CF AD ^于H ,下列判断,其中正确的个数是( )①BG 是ABD V 中边AD 上的中线;②AD 既是ABC V 中BAC Ð的角平分线,也是ABE V 中BAE Ð的角平分线;③CH 既是ACD V 中AD 边上的高线,也是ACH V 中AH 边上的高线.A .0B .1C .2D .3【答案】C【分析】根据三角形的高,中线,角平分线的定义可知.【详解】解:①G 为AD 中点,所以BG 是ABD △边AD 上的中线,故正确;②因为12Ð=Ð,所以AD 是ABC V 中BAC Ð的角平分线,AG 是ABE △中BAE Ð的角平分线,故错误;③因为CF AD ^于H ,所以CH 既是ACD △中AD 边上的高线,也是ACH V 中AH 边上的高线,故正确.故选:C .【点睛】熟记三角形的高,中线,角平分线是解决此类问题的关键.4.(2018·江苏省江阴市第一中学七年级期中)如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为1,则满足条件的点C 个数是( )A .5B .6C .7D .8【答案】B 【分析】据三角形ABC 的面积为1,可知三角形的底边长为2,高为1,或者底边为1,高为2,可通过在正方形网格中画图得出结果.【详解】解:C 点所有的情况如图所示:由图可得共有6个,故选:B .【点睛】本题考查了三角形的面积的求法,此类题应选取分类的标准,才能做到不遗不漏,难度适中.5.(2022·江苏·七年级专题练习)如图, D 、E 分别在∆ABC 的边 BC 、AC 上,13CD BC =,13CE AC =,CD = 1 ,CE = 1 ,AC , AD 与 BE 交于点O ,已知∆ABC 的面积为 12,则∆ABO 的面积为()A .4B .5C .6D .76.(2019·天津市静海区第二中学八年级期中)如图,在△ABC 中,∠B=70°,∠C=40°,AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的度数是()A .15°B .16°C .70°D .18°7.(2021·安徽·中考真题)两个直角三角板如图摆放,其中90BAC EDF Ð=Ð=°,45E Ð=°,30C Ð=°,AB 与DF 交于点M .若//BC EF ,则BMD Ð的大小为( )A .60°B .67.5°C .75°D .82.5°【答案】C 【分析】根据//BC EF ,可得45FDB F Ð=Ð=°,再根据三角形内角和即可得出答案.【详解】由图可得6045B F Ð=°Ð=°,,∵//BC EF ,∴45FDB F Ð=Ð=°,∴180180456075BMD FDB B Ð=°-Ð-Ð=°-°-°=°,故选:C .【点睛】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.8.(2022·广西贵港·七年级期末)如图7,AB ⊥BC ,AE 平分∠BAD 交BC 于E ,AE ⊥DE ,∠1+∠2=90°,M ,N 分别是BA ,CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F .下列结论:①AB ∥CD ;②∠AEB +∠ADC =180°;③DE 平分∠ADC ;④∠F =135°,其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【分析】先根据AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,∠EAM 和∠EDN 的平分线交于点F ,由三角形内角和定理以及平行线的性质即可得出结论.【详解】解:标注角度如图所示:∵AB ⊥BC ,AE ⊥DE ,∴∠1+∠AEB =90°,∠DEC +∠AEB =90°,∴∠1=∠DEC ,又∵∠1+∠2=90°,∴∠DEC +∠2=90°,∴∠C =90°,∴∠B +∠C =180°,9.(2022·全国·八年级课时练习)如图,将ABC V 沿DH HG EF 、、翻折,三个顶点恰好落在点O 处.若140Ð=°,则2Ð的度数为( )A .12B .60°C .90°D .140°【答案】D【分析】根据翻折变换前后对应角不变,故∠B =∠EOF ,∠A =∠DOH ,∠C =∠HOG ,∠1+∠2+∠HOD +∠EOF +∠HOG =360°,进而求出∠1+∠2的度数.【详解】解:∵将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,∴∠B =∠EOF ,∠A =∠DOH ,∠C =∠HOG ,∠1+∠2+∠HOD +∠EOF +∠HOG =360°,∵∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°,∴∠1+∠2=360°-180°=180°,∵∠1=40°,∴∠2=140°,故选:D .【点睛】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOD +∠EOF +∠HOG =∠A +∠B +∠C =180°是解题关键.10.(2022·全国·八年级专题练习)如图,a b ∥,一块含45°的直角三角板的一个顶点落在直线b 上,若15854¢Ð=°,则∠2的度数为( )A .1036¢°B .1046¢°C .10354¢°D .10454¢°【答案】C 【分析】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,根据等腰三角板的特点可求出∠4,根据三角形内角和即可求出∠5,再根据平角的性质即可求出∠3,进而根据两直线平行同位角相等即可求出∠2.【详解】设∠2的同位角为∠3,∠3的邻补角为∠5,三角板的一个锐角为∠4,如图,∵直角三角板含一个45°的锐角,∴该三角板为等腰三角形,∴∠4=45°,∵∠1=58°54′,又∵在三角形中有∠1+∠4+∠5=180°,∴∠5=180°-(∠1+∠4)=180°-(58°54′+45°)=180°-103°54′=76°6′,∵∠3+∠5=180°,∴∠3=180°-∠5=180°-76°6′=103°54′,∵a b ∥,∴∠2=∠3,∴∠2=103°54′,故选:C .【点睛】本题主要考查了平行线的性质以及三角形的内角和等知识,掌握两直线平行同位角相等是解答本题的关键.11.(2022·江苏·盐城市初级中学七年级期中)如图,AD 是ABC V 的高,45BAD Ð=°,65C =°∠,则BAC Ð=________.【答案】70°【分析】先由直角三角形的性质求得∠DAC ,然后再根据线段的和差求解即可.【详解】解:AD Q 是ABC V 的高,90ADC °\Ð=,∵65C =°∠=9025DAC C °\Ð-Ð=o ,254570BAC DAC BAD °°°\Ð=Ð+Ð=+=.故答案为:70°.【点睛】本题主要考查了角的和差、直角三角形的性质、三角形高的性质等知识点,掌握直角三角形两锐角互余是解答本题的关键.12.(2022·江苏·扬州中学教育集团树人学校七年级期中)如图,在△ABC 中,点D 在BC 上,点E 、F 在AB 上,点G 在DF 的延长线上,且∠B =∠DFB ,∠G =∠DEG ,若29BEG Ð=°,则∠BDE 的度数为_____.【答案】58°【分析】设BED x Ð=,则29G DEG x Ð=Ð=+°,再根据三角形的内角和定理可得1222EDG x Ð=°-,根据三角形的外角性质可得122B DFB x Ð=Ð=°-,然后在BDE V 中,根据三角形的内角和定理即可得.【详解】解:设BED x Ð=,29BEG Ð=°Q ,29BED G DEG BEG x Ð=Ð=Ð=++\а,1801222EDG G DEG x \Ð=°-Ð-Ð=°-,122BED B DFB EDG x \Ð=Ð=Ð=а-+,()()180********BED BDE B x x Ð+=\Ð=°-а-°-=+°,故答案为:58°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,熟练掌握三角形的内角和定理是解题关键.13.(2022·江苏·扬州市江都区第三中学七年级阶段练习)如图,∠A =45°,∠BCD =135°,∠AEB 与∠AFD 的平分线交于点P .下列结论:①EP ⊥FP ;②∠AEB +∠AFD =∠P ;③∠A =∠PEB +∠PFD .其中正确的结论是______.∵∠AEB与∠AFD的平分线交于点∴12BEPAEP AEB=Ð=ÐÐ∵∠BCD=135°,∴∠BCF=180°-∠BCD=45°14.(2022·全国·八年级专题练习)如图,在△ABC中,AM是△ABC的角平分线,AD是△ABC的高线.猜想∠MAD、∠B、∠C之间的数量关系,并说明理由.15.(2022·全国·八年级单元测试)在△ABC中,BC=8,AB=1;(1)若AC是整数,求AC的长;(2)已知BD是△ABC的中线,若△ABD的周长为10,求△BCD的周长.【答案】(1)8(2)17【分析】(1)根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”得7<AC<9,根据AC是整数得AC=8;(2)根据BD是△ABC的中线得AD=CD,根据△ABD的周长为17和AB=1得AD+BD=9,即可求解.(1)由题意得:BC﹣AB<AC<BC+AB,∴7<AC<9,∵AC是整数,∴AC=8;(2)如图所示:∵BD是△ABC的中线,∴AD=CD,∵△ABD的周长为10,∴AB+AD+BD=10,∵AB=1,∴AD+BD=9,∴△BCD的周长=BC+BD+CD=BC+AD+CD=8+9=17.【点睛】本题考查的是三角形的三边关系、三角形的中线的定义,掌握三角形两边之和大于第三边、两边之差小于第三边是解题的关键.16.(2022·河南周口·七年级期末)如图.AD为△ABC的中线,BE为△ABD的中线,EF⊥BC于点F.(1)在△BEF中,请指出边EF上的高;(2)若BD=5,EF=2,求△ACD的面积;(3)若AB=m,AC=n,若△ACD的周长为a,请用含m,n,a的式子表示△ABD的周长.【答案】(1)边EF上的高是BF;(2)S△ACD=10;(3)△ABD的周长为m+a-n.【分析】(1)根据三角形高的定义即可得出边EF上的高是BF;(2)先求得△BDE的面积,然后根据三角形的中线将三角形分成两个三角形得到S△ABE=S△BDE=5,进一步得到S△ACD=S△ABD=10;(3)利用三角形周长公式即可求得.(1)解:∵EF⊥BC于点F,17.(2022·陕西渭南·七年级期末)如图,点A 在CB 的延长线上,点F 在DE 的延长线上,连接AF ,分别与BD 、CE 交于点G 、H .已知∠1=52°,∠2=128°.(1)探索BD 与CE 的位置关系,并说明理由;(2)若∠C =78°,求∠A 的度数.【答案】(1)BD CE ∥,理由见解析(2)50°【分析】(1)由152DGF Ð=Ð=°,∠2=128°,得到∠DGF +∠2=180°,利用“同旁内角互补,两直线平行”可证出BD CE ∥;(2)由BD CE ∥得到78ABD C Ð=Ð=°,由三角形内角和定理求解即可.(1)BD CE ∥,理由:∵152DGF Ð=Ð=°,∠2=128°,∴252128180DGF Ð+Ð=°+°=°,∴BD CE ∥.(2)∵BD CE ∥,∵78ABD C Ð=Ð=°,∴1801180785250A ABD Ð=°-Ð-Ð=°-°-°=°.【点睛】本题考查了平行线的判定与性质、三角形内角和定理,解题的关键是熟练掌握相关性质和定理.18.(2022·江苏·兴化市乐吾实验学校七年级阶段练习)(1)【问题背景】如图1的图形我们把它称为“8字形”,请说明A B C D Ð+Ð=Ð+Ð;(2)【简单应用】如图2,AP 、CP 分别平分BAD Ð、BCD Ð,若35ABC Ð=°,15ADC Ð=°,求P Ð的度数;(3)【问题探究】如图3,直线AP 平分BAD Ð的外角FAD Ð,CP 平分BCD Ð的外角BCE Ð,若35ABC Ð=°,29ADC Ð=°,请猜想P Ð的度数,并说明理由;(4)【拓展延伸】在图4中,若设C a Ð=,B b Ð=,13CAP CAB Ð=Ð,13CDP CDB Ð=Ð,试问P Ð与C Ð、B Ð之间的数量关系为:___.(用a 、b 表示P Ð,不必说明理由)【答案】(1)见解析(2)25P Ð=°(3)32P Ð=°;理由见解析。

线段与角度练习题

线段与角度练习题

线段与角度练习题一、线段练习题1. 在直角坐标系中,已知点A(-2, 3)和B(4, -1),求线段AB的长度。

解析:根据两点之间的距离公式,设AB的长度为d,有:d = √[(x2-x1)² + (y2-y1)²]= √[(4-(-2))² + (-1-3)²]= √[6² + (-4)²]= √[36 + 16]= √52= 2√13所以线段AB的长度为2√13。

2. 在平面内,已知线段CD的中点为E,且CE = 2m,DE = 4m。

求线段CD的长度。

解析:由线段中点定理得:CE² + DE² = CD²代入已知条件:2² + 4² = CD²4 + 16 = CD²20 = CD²CD = √20 = 2√5所以线段CD的长度为2√5。

二、角度练习题1. 已知角A的度数为30°,角A的补角的度数为多少?解析:角A的补角为90°减去角A的度数:补角度数 = 90° - 30° = 60°所以角A的补角的度数为60°。

2. 已知角B的度数为60°,角B的余角的度数为多少?解析:角B的余角为90°减去角B的度数:余角度数 = 90° - 60° = 30°所以角B的余角的度数为30°。

3. 在平面内,已知角C的度数为45°,角C的补角的度数为多少?解析:角C的补角为90°减去角C的度数:补角度数 = 90° - 45° = 45°所以角C的补角的度数为45°。

4. 在平面内,已知角D为直角,求角D的补角和余角的度数。

解析:直角的度数为90°,所以角D的补角为90° - 90° = 0°(零度)。

中考数学复习线段和角的计算专项训练题含答案

中考数学复习线段和角的计算专项训练题含答案

中考数学复习线段和角的计算专项训练题1.已知线段AB=10 cm,在直线AB上有一点C,且BC=2 cm,则线段AC 的长为( )A.12 cm B.8 cm C.12 cm或8 cm D.不能确定2. 如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且点D是AC的中点,则AC的长等于( )A.3 cm B.6 cm C.11 cm D.14 cm3. 如图所示,C,D为线段AB上的两点,则下列各式中错误的是( )A.AB=AD+DB B.CB=AB-AC C.CB-DB=CD D.CB-DB=AC4. 如图,AB=12 cm,C为AB上的一点,D是AC的中点,E是BC 的中点,则DE的长是()A.3 cm B.6 cm C.7.5 cm D.9 cm5. 一个角是70°18′,则这个角等于( )A.70.18° B.70.3° C.70.018° D.70.03°6. 如图,∠1+∠2等于( )A.60° B.90° C.110° D.180°7. 如图,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对A.南偏西60° B.南偏西30° C.北偏东60° D.北偏东30°8. 已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC =______________________.9. 如图,长度为12 cm的线段AB的中点为M,C为线段MB上一点,且MC∶CB =1∶2,则线段AC的长度为 cm.10. (1)27.38°=____°____′____″;(2)26°30′36″=_______°.11. 如图,已知∠EOA=90°,射线OD在北偏东35°的方向,反向延长射线OD于点C,∠DOE的度数为____,∠AOC的度数为______.12. 如图,已知线段AD=6 cm,线段AC=BD=4 cm,E,F分别是线段AB,CD的中点,求线段EF的长.13. 已知线段AB=8 cm,延长AB到C,使BC=7 cm,D是AB的中点,E是AC的中点,求线段DE的长.14. 已知线段AB=10 cm,直线AB上有一点C,且BC=4 cm,M是线段AC 的中点,求AM的长.15. 如图,C是线段AB的一个三等分点,点D在线段CB上,CD∶DB=17∶2,且CD-AC=3,求线段AB的长.16. 如图,O为直线AB上一点,∠COE=90°,OF平分∠AOE,∠COF=30°,求∠BOE的度数.17. 如图,BD平分∠ABC,BE分∠ABC为2∶5两部分,∠DBE=21°,求∠ABC的度数.18. 如图,已知∠AOB=40°,以O为顶点,OB为边作∠BOC=10°,若OD平分∠AOC,求∠AOD的度数.参考答案: 1---7 CBDBB BA 8. 11cm 或5cm 9. 810. (1) 27 22 48 (2) 26.5111. 35° 55°12. 解:AB =AD -BD =6-4=2 cm ,因为E 是AB 的中点,所以AE =12AB =1cm ;CD =AD -AC =6-4=2 cm ,因为F 是CD 的中点,所以DF =12CD =1 cm ;所以EF =AD -AE -DF =6-1-1=4 cm13. 解:因为AB =8 cm ,BC =7 cm ,所以AC =AB +BC =15 cm.又D ,E 分别为AB ,AC 的中点,所以AD =12AB =4 cm ,AE =12AC =7.5 cm ,所以DE =AE-AD =3.5 cm14. 解:(1)当C 点在线段AB 的外部时,如图①,AC =AB +BC =10+4=14 cm ,因为M 是线段AC 的中点,所以AM =12AC =7 cm ;(2)当C 点在线段AB的内部时,如图②,AC =AB -BC =10-4=6 cm ,因为M 是线段AC 的中点,所以AM =12AC =3 cm15. 解:设CD =17x ,则BD =2x ,CB =19x ,因为C 是AB 的一个三等分点.所以AC =12BC =192x ,由CD -AC =3得:17x -192x =3,解得x =0.4,所以AC=192×0.4=3.8,AB =3AC =11.4 16. 解:∠EOF =∠COE -∠COF =60°,因为OF 平分∠AOE ,所以∠AOE =2∠EOF =120°,所以∠BOE =∠AOB -∠AOE =60°17. 解:设∠ABE =2x ,则∠CBE =5x ,∠ABC =7x.因为BD 平分∠ABC ,所以∠ABD =12∠ABC =72x.所以∠DBE =∠ABD -∠ABE =72x -2x =21°,所以x=14°,所以∠ABC =7x =98°18. 解:(1)当射线OC 在∠AOB 的外部时,∠AOC =∠AOB +∠BOC =50°,因为OD 平分∠AOC ,所以∠AOD =12∠AOC =25° (2)当射线OC 在∠AOB 的内部时,∠AOC =∠AOB -∠BOC =30°,因为OD 平分∠AOC ,所以∠AOD =12∠AOC =15°。

人教版七年级上数学几何初步--线段与角的经典题(含答案)

人教版七年级上数学几何初步--线段与角的经典题(含答案)

几何初步--线段与角的经典题一.解答题(共45小题)1.如图,已知线段AB(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB,②延长线段BA到D,使AD=AC(不写画法,当要保留画图痕迹)(2)请直接回答线段BD与线段AC长度之间的大小关系(3)如果AB=2cm,请求出线段BD和CD的长度.2.已知线段MN=3cm,在线段MN上取一点P,使PM=PN;延长线段MN到点A,使AN=MN;延长线段NM到点B,使BN=3BM.(1)根据题意,画出图形;(2)求线段AB的长;(3)试说明点P是哪些线段的中点.3.如图(1),线段上有3个点时,线段共有3 条;如图(2)线段上有4个点时,线段共有6条;如图(3)线段上有5个点时,线段共有10条.(1)当线段上有6个点时,线段共有条;(2)当线段上有n个点时,线段共有条;(用n的代数式表示)(3)当n=100时,线段共有条.4.已知,如图B,C两点把线段AD分成3:5:4三部分,M为AD的中点,BM=9cm,求CM和AD的长5.如图,已知线段AB=16 cm,点M在AB上,AM:BM=1:3,P、Q分别以AM,AB的中点,求PQ的值.6.在数轴上点A表示的数是8,B是数轴上一点,且AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,设运动时间为t(t>0)秒.(1)①写出数轴上点B表示的数,②写出点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速前进,若点P,Q同时出发,问点P运动多少秒时追上点Q?(3)在(2)的情况下,若M为AP的中点,N为PB的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段MN的长..7.已知线段AB,在AB的延长线上取一点C,使BC=2AB,在BA的延长线上取一点D,使DA=AB,取AB中点E,若DE=7.5cm,求DC的长.8.如图,已知线段AB的长为x,延长线段AB至点C,使BC=AB.(1)用含x的代数式表示线段BC的长和AC的长;(2)取线段AC的中点D,若DB=3,求x的值.9.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.(1)若AB=12cm,则MN的长度是;(2)若AC=3cm,CP=1cm,求线段PN的长度.10.已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,求线段AQ的长.11.如图,延长线段AB到点F,延长线BA到点E,点M、N分别是线段AE、BF 的中点,若AE:AB:BF=1:2:3,且EF=18cm,求线段MN的长.12.如图,线段AC=20cm,BC=3AB,N线段BC的中点,M是线段BN上的一点,且BM:MN=2:3.求线段MN的长度.13.如图,B是线段AD上一动点,沿A→D以2cm/s的速度运动,C是线段BD 的中点,AD=10cm,设点B运动时间为t秒.(1)当t=2时,①AB=cm.②求线段CD的长度.(2)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC 的长;若发生变化,请说明理由.14.如图,已知线段AB和CD的公共部分为BD,且BD=AB=CD,线段AB、CD的中点E、F之间距离是20,求AB、CD的长.15.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=b cm,M、N分别为AC、BC 的中点,你能猜想MN的长度吗?并说明理由;16.如图所示,点A在线段CB上,AC=AB,点D是线段BC的中点.若CD=3,求线段AD的长.17.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.18.如图,点A、M、B、N、C在同一直线上顺次排列,点M是线段AB的中点,点N是线段MC的中点,点N在点B的右边.(1)填空:图中共有线段条;(2)若AB=6,MC=7,求线段BN的长;(3)若AB=a,MC=7,将线段BN的长用含a的代数式表示出来.19.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=2:1,则点C 是线段AB的一个三等分点,显然,一条线段的三等分点有两个.(1)已知:如图2,DE=15cm,点P是DE的三等分点,求DP的长.(2)已知,线段AB=15cm,如图3,点P从点A出发以每秒1cm的速度在射线AB上向点B方向运动;点Q从点B出发,先向点A方向运动,当与点P重合后立马改变方向与点P同向而行且速度始终为每秒2cm,设运动时间为t秒.①若点P点Q同时出发,且当点P与点Q重合时,求t的值.②若点P点Q同时出发,且当点P是线段AQ的三等分点时,求t的值.20.如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.21.已知数轴上有三点A、B、C,其位置如图1所示,数轴上点B表示的数为﹣40,AB=120,AC=2AB(1)图1中点C在数轴上对应的数是(2)如图2,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒,点P在点Q左侧运动时,经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度(3)如图3,若T点是A点右侧一点,点T在数轴上所表示的数为n,TB的中点为M,N为TA的4等分点且靠近于T点,若TM=2AN,求n的值.22.如图,线段AB=12,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM?(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动时,N为BP的中点,下列两个结论:①MN长度不变;②MA+PN的值不变,选择一个正确的结论,并求出其值.23.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.(1)求线段MN的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?25.【新知理解】如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是”或“不是”).(2)若AB=12cm,点C是线段AB的巧点,则AC=cm;【解决问题】(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B 匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由26.如图,C是线段AB上一点,AB=20cm,BC=8cm,点P从A出发,以2cm/s 的速度沿AB向右运动,终点为B;点Q从点B出发,以1cm/s的速度沿BA 向左运动,终点为A.已知P、Q同时出发,当其中一点到达终点时,另一点也随之停止运功.设点P运动时间为xs.(1)AC=cm;(2)当x=s时,P、Q重合;(3)是否存在某一时刻,使得C、P、Q这三个点中,有一个点恰为另外两点所连线段的中点?若存在,求出所有满足条件的x的值;若不存在,请说明理由.27.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,A、B两点之间的距离是90米.甲、乙两机器人分别从A、B两点同时同向出发到终点C,乙机器人始终以50米/分的速度行走,乙行走9分钟到达C点.设两机器人出发时间为t(分钟),当t=3分钟时,甲追上乙.前4分钟甲机器人的速度保持不变,在4≤t≤6分钟时,甲的速度变为另一数值,且甲、乙两机器人之间的距离保持不变.请解答下面问题:(1)B、C两点之间的距离是米.在4≤t≤6分钟时,甲机器人的速度为米/分.(2)求甲机器人前3分钟的速度为多少米/分?(3)求两机器人前6分钟内出发多长时间相距28米?(4)若6分钟后,甲机器人的速度又恢复为原来出发时的速度,直接写出当t >6时,甲、乙两机器人之间的距离S.(用含t的代数式表示)28.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.29.已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,①∠MON与旋转度数n°有怎样的数量关系?说明理由;②当n为多少时,∠MON为直角?(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD 的大小;将图1中的OA绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.24.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?30.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.31.如图①,已知线段AB=20cm,CD=2cm,线段CD在线段AB上运动,E、F 分别是AC、BD的中点.(1)若AC=4cm,则EF=cm.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由.(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.32.点O 是直线AB上一点,∠COD 是直角,OE平分∠BOC.(1)①如图1,若∠DOE=25°,求∠AOC 的度数;②如图2,若∠DOE=α,直接写出∠AOC的度数(用含α的式子表示);(2)将图1中的∠COD 绕点O按顺时针方向旋转至图 2 所示位置.探究∠DOE 与∠AOC 的度数之间的关系,写出你的结论,并说明理由.33.探究题:如图①,已知线段AB=14cm,点C为AB上的一个动点,点D、E 分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=a cm请说明不论a取何值(a不超过14cm),DE的长不变;(4)知识迁移:如图②,已知∠AOB=120°,过角的内部任一点C画射线OC,若OD、OE分别平分∠AOC和∠BOC,试说明∠DOE=60°与射线OC的位置无关.34.如图①,∠AOB=∠COD=90°,OM平分∠AOC,ON平分∠BOD.(1)已知∠BOC=20°,且∠AOD小于平角,求∠MON的度数;(2)若(1)中∠BOC=α,其它条件不变,求∠MON的度数;(3)如图②,若∠BOC=α,且∠AOD大于平角,其它条件不变,求∠MON的度数.35.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.初步尝试:(1)如图1,若∠AOC=30°.求∠DOE的度数;类比探究:(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);解决问题:(3)如图2时,O是直线AB上的一点,∠COD是直角,OE平分∠BOC,探究∠AOC和∠DOE的度数之间的数量关系.直接写出你的结论.36.如图,∠AOB=100°,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC.(1)如果∠AOC=40°,求∠MON的度数;(2)如果∠AOC为任意一个锐角,你能求出∠MON的度数吗?若能,请求出来;若不能,说明为什么?37.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.则∠MON的大小为;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.38.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.(1)求∠COD的度数;(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?39.如图,直角三角板的直角顶点O在直线AB上,OC,OD是三角板的两条直角边,OE平分∠AOD.(1)若∠COE=20°,则∠BOD=;若∠COE=α,则∠BOD=(用含α的代数式表示)(2)当三角板绕O逆时针旋转到图2的位置时,其它条件不变,试猜测∠COE 与∠BOD之间有怎样的数量关系?并说明理由.40.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.41.阅读解答过程,回答问题:如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.解:过O作射线OM,使点M,O,A在同一直线上,因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=180°﹣∠MOD=180°﹣∠BOC=180°﹣30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.42.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O 在∠AOD内旋转时求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM:∠DON=2:3,求t的值.43.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB=;若∠ACB=130°,则∠DCE=;(2)猜想∠ACB与∠DCE大大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB 与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O 重合在一起,则∠AOD与∠BOC的大小有何关系,请说明理由.44.如图,两条直线AB、CD相交于点O,且∠AOC=∠AOD,射线OM(与射线OB重合)绕O点逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕O点顺时针方向旋转,速度为12°/s.两射线OM、ON同时运动,运动时间为t秒.(本题出现的角均指小于平角的角)(1)图中一定有个直角;当t=2时,∠MON的度数为,∠BON 的度数为,∠MOC的度数为.(2)当0<t<12时,若∠AOM=3∠AON﹣60°,试求出t的值;(3)当0<t<6时,探究的值,在t满足怎样的条件是定值,在t满足怎样的条件不是定值.45.已知,如图(1),∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD 的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β(1)如图(2),若α=90°,β=30°,则,∠MON=(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示)(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O 同时逆时针旋转,转速为1°/秒(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.线段与角的经典题一.解答题(共45小题)1.【解答】解:(1)如图所示,BC、AD即为所求;(2)由图可得,BD>AC;(3)∵AB=2cm,∴AC=2AB=4cm,∴AD=4cm,∴BD=4+2=6cm,∴CD=2AD=8cm.2.【解答】解:(1)如图所示:(2)∵MN=3cm,AN=MN,∴AN=1.5cm,∵BN=3BM,∴BM=MN=1.5cm,∴AB=BM+MN+AN=6cm;(3)∵点P在线段MN上,PM=PN,∴点P是线段MN 的中点,∵BM=AN=1.5cm,PM=PN=1.5cm,∴BP=AP=3cm,∴点P是线段AB 的中点.3.【解答】解:(1)当线段上有6个点时,线段共有=15条;(2)当线段(3)当n=100时,线段共有=4950上有n个点时,线段共有条;条;故答案为:15,,4950.4.【解答】解:设AB=3xcm,BC=5xcm,CD=4xcm,∴AD=AB+BC+CD=12xcm,∵M是AD的中点,∴AM=MD=AD=6xcm,∴BM=AM﹣AB=6x﹣3x=3xcm,∵BM=9 cm,∴3x=9,解得,x=3,∴CM=MD﹣CD=6x﹣4x=2x=2×3=6(cm),AD=12x=12×3=36(cm).5.【解答】解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,∵P,Q 分别为AM,AB的中点,∴AP=AM=2cm,AQ=AB=8cm,∴PQ=AQ﹣AP=6cm.6.【解答】解:(1)①8﹣12=﹣4,8=12=20,∴数轴上点B表示的数﹣4或20,②动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,则点P表示的数8﹣6t;(2)分两种情况:当点B在点A的左侧时,点P运动追上点Q,即8﹣6t=﹣4﹣4t,解得t=6;当点B在点A的右侧时,点P运动追上点Q,即8﹣6t=20﹣4t,解得t=﹣6(舍去),∴点P运动6秒追上点Q;(3)∵M为AP的中点,∴M点表示的数为(8+8﹣6t)÷2=8﹣3t,∵N为PB的中点,∴N点表示的数为(﹣4+8﹣6t)÷2=2﹣3t,∴MN=8﹣3t﹣(2﹣3t)=6,∴点P在运动的过程中,MN的长度不会发生变化.7.【解答】解:∵E是AB中点,∴AE=EB,设AE=x,则AB=2x,又∵DA=AB,∴DA=2x,∵BC=2AB,∴BC=4x,∵DE=7.5cm,∴3x=7.5,解得:x=2.5,∴DC=DA+AB+BC=2x+2x+4x=8x=8×2.5=20(cm).8.【解答】解:(1)∵AB=x,BC=AB,∴BC=x,∵AC=AB+BC,∴AC=x+x= x.(2)∵AD=DC=AC,AC=x,∴DC=x,∵DB=3,BC=x,∵DB=DC﹣BC,∴3=x﹣x,∴x=12.9.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=(AC+BC)=AB=6cm.故答案为6cm;(2)∵AC=3cm,CP=1cm,∴AP=AC+CP=4cm,∵P是线段AB的中点,∴AB=2AP=8cm.∴CB=AB ﹣AC=5cm,∵N是线段CB的中点,CN=CB=2.5cm,∴PN=CN﹣CP=1.5cm.10.【解答】解:如图1所示,∵AP=2PB,AB=6,∴PB=AB=×6=2,AP=AB=×6=4;∵点Q为PB的中点,∴PQ=QB=PB=×2=1;∴AQ=AP+PQ=4+1=5.如图2所示,∵AP=2PB,AB=6,∴AB=BP=6,∵点Q为PB的中点,∴BQ=3,∴AQ=AB+BQ=6+3=9.故AQ的长度为5或9.11.【解答】解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=18cm,∴6x=18,解得:x=3,∴MN=4x=12cm.12.【解答】解:∵AC=20cm,BC=3AB,∴BC=×20=15cm,∴AB=5cm,∵N为BC的中点,∴BN=CN=7.5cm,∵BM:MN=2:3,∴MN=×7.5=4.5cm.13.【解答】解:(1)①∵B是线段AD上一动点,沿A→D以2cm/s的速度运动,∴当t=2时,AB=2×2=4cm.故答案为:4;②∵AD=10cm,AB=4cm,∴BD=10﹣4=6cm,∵C是线段BD的中点,∴CD=BD=×6=3cm;(2)不变;∵AB 中点为E,C是线段BD的中点,∴EB=AB,BC=BD,∴EC=EB+BC=(AB+BD)=AD=×10=5cm.14.【解答】解:设BD=x,则AB=3x,CD=4x.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5x,CF=CD=2x,AC=AB+CD﹣BD=3x+4x﹣x=6x.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5x.∵EF=20,∴2.5x=20,解得:x=8.∴AB=3x=24,CD=4x=32.15.【解答】解:(1)∵点M、N分别是AC、BC的中点,AC=8cm,CB=6cm,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7cm,即线段MN的长是7cm;(2)∵点M、N分别是AC、BC的中点,AC+CB=acm,∴CM=AC,CN= BC,∴MN=CM+CN=AC+BC=(AC+BC)=acm,即线段MN的长是acm;(3)如图:MN=b,理由是:∵点M、N分别是AC、BC的中点,AC﹣CB=bcm,∴CM=AC,CN=BC,∴MN=CM ﹣CN=AC﹣BC=(AC﹣BC)=bcm,即线段MN的长是bcm.16.【解答】解:∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=AB,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,即线段AD的长是1.17.【解答】解:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=m(m ﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行×45×(45﹣1)=990次握手.18.【解答】解:(1)图中共有线段1+2+3+4=10条;故答案为:10;(2)∵AB=6,点M是线段AB的中点,∴BM=AB=3,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣3=4,∴BN=BC﹣NC=4﹣3.5=0.5;(3)∵AB=a,点M是线段AB的中点,∴BM=AB=a,∵MC=7,点N是线段MC的中点,∴NC=MC=3.5,BC=MC﹣BM=7﹣a,∴BN=BC﹣NC=7﹣a﹣3.5=3.5﹣a.19.【解答】解:(1)当DP=2PE时,DP=DE=10cm;当2DP=PE时,DP=DE=5cm.综(2)①根据题意得:(1+2)t=15,解得:t=5.答:上所述:DP的长为5cm或10cm.当t=5秒时,点P与点Q重合.②(I)点P、Q重合前:当2AP=PQ时,有t+2t+2t=15,解得:t=3;当AP=2PQ时,有t+t+2t=15,解得:t=;(II)点P、Q重合后,当AP=2PQ时,有t=2(t﹣5),解得:t=10;当2AP=PQ时,有2t=(t﹣5),解得:t=﹣5(不合题意,舍去).综上所述:当t=3秒、秒或10秒时,点P是线段AQ的三等分点.20.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.21.【解答】解:(1)∵AB=120,点B表示的数为﹣40,∴点A表示的数为80.∵AC=2AB,∴点C表示的数为80﹣120×2=﹣160.(2)设点R的速度为x个单位长度/秒,则点P的速度为3x个单位长度/秒,点Q的速度为(2x﹣5)个单位长度/秒,当点P在点Q左边时,P、R相遇时QP=QR,5(3x+x)=AC=240,解得x=12,2x﹣5=24﹣5=19,∴点Q的速度为19个单位长度/秒,(3)设AT=y,∵TB的中点为M,∴TM=TB=(120+y)=60+y,∵N为TA的4等分点且靠近于T点,∴AN=y,∵TM=2AN,∴60+y=y,解得x=60,∴n=80+60=140.故答案为:﹣160.22.【解答】解:(1)如图1,由题意得:AP=2t,则PB=12﹣2t,∵M为AP的中点,∴AM=t,由PB=2AM得:12﹣2t=2t,t=3,答:出发3秒后,PB=2AM;(2)如图1,当P在线段AB上运动时,BM=12﹣t,2BM﹣BP=2×(12﹣t)﹣(12﹣2t)=24﹣2t﹣12+2t=12,∴当P在线段AB上运动时,2BM﹣BP为定值12;(3)选①;如图2,由题意得:MA=t,PB=2t﹣12,∵N为BP的中点,∴PN=BP=(2t﹣12)=t﹣6,①MN=PA﹣MA﹣PN=2t﹣t﹣(t﹣6)=6,∴当P在AB延长线上运动时,MN长度不变;所以选项①叙述正确;②MA+PN=t+(t﹣6)=2t﹣6,∴当P在AB延长线上运动时,MA+PN的值会改变.所以选项②叙述不正确.23.【解答】解:(1)∵线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC 的中点,∴CM=AC=5厘米,CN=BC=3厘米,∴MN=CM+CN=8厘米;(2)∵点M,N分别是AC,BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN= AC+BC=a;(3)①当0<t≤5时,C是线段PQ的中点,得10﹣2t=6﹣t,解得t=4;②当5<t≤时,P为线段CQ的中点,2t﹣10=16﹣3t,解得t=;③当<t≤6时,Q为线段PC的中点,6﹣t=3t﹣16,解得t=;④当6<t≤8时,C为线段PQ的中点,2t﹣10=t﹣6,解得t=4(舍),综上所述:t=4或或.24.【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30;(2)∵OE 平分∠AOC,∴∠COE=∠AOE=COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120∴x=5或7.5,即∠COD=5°或7.5°∴∠BOD=65°或52.5°.25.【解答】解:(1)∵线段的长是线段中线长度的2倍,∴线段的中点是这条线段的“巧点”.故答案为:是;(2)∵AB=12cm,点C是线段AB的巧点,∴AC=12×=4cm或AC=12×=6cm或AC=12×=8cm;故答案为:4或6或8;(3)t秒后,AP=2t,AQ=12﹣t(0≤t≤6)①由题意可知A不可能为P、Q两点的巧点,此情况排除.②当P为A、Q的巧点时,Ⅰ.AP=AQ,即,解得s;Ⅱ.AP=AQ,即,解得s;Ⅲ.AP=AQ,即,解得t=3s;③当Q为A、P的巧点时,Ⅰ.AQ=AP,即,解得s(舍去);Ⅱ.AQ=AP,即,解得t=6s;Ⅲ.AQ=AP,即,解得s.26.【解答】解:(1)AC=AB﹣BC=20﹣8=12(cm),(2)20÷(2+1)=(s).故当x=s时,P、Q重合;(3)存在,①C是线段PQ的中点,得2x+20﹣x=2×12,解得x=4;②P为线段CQ的中点,得12+20﹣x=2×2x,解得x=;③Q为线段PC的中点,得2x+10=2×(20﹣x),解得x=7;综上所述:x=4或x=或x=7.故答案为:12;.27.【解答】解:(1)∵乙机器人从B点出发,以50米/分的速度行走9分钟到达C点,∴B、C两点之间的距离是50×9=450(米).∵在4≤t≤6分钟时,甲、乙两机器人之间的距离保持不变,∴在4≤t≤6分钟时,甲机器人的速度为50米/分.(2)设甲机器人前3分钟的速度为x米/分,则3x﹣50×3=90,解得x=80.答:甲机器人前3分钟的速度为80米/分.(3)当t=4时,两人相距80﹣50=30米,且4≤t≤6时,两人相距总是30米.分三种情况说明:①甲在AB间时,90﹣80t+50t=28,解得t=>,此情形不存在.②甲乙均在B右侧,且甲在乙后时,90+50t﹣80t=28,解得t=.③甲乙均在B右侧,且乙在甲后时,80t﹣90﹣50t=28,解得t=.答:两机器人前6分钟内出发分钟或分钟相距28米.(4)S=.故答案为:450,50;28.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.29.【解答】解:(1)如图1,∵OM平分∠AOB,∠AOB=130°,∴∠AOM=∠AOB=×130°=65°,∵ON平分∠COD,∠COD=80°,∴∠AON=∠COD=×80°=40°,∴∠MON=∠AOM﹣∠AON=65°﹣40°=25°;(2)①如图2中,∠MON=∠COM﹣∠NOC=65°+n°﹣40°=n°+25°.②当∠MON=90°时,n°+25°=90°,∴n=65°.(3)如图3中,∠MON=∠COM﹣∠CON=65°+m°﹣(80°+m°)=m°+25°.30.【解答】解:(1)①∵OD平分∠AOC,∠AOC=130°,∴∠AOD=∠DOC=∠AOC=×130°=65°,∴∠BOD=180°﹣∠AOD=180°﹣65°=115°;②∵∠DOE=90°,又∵∠DOC=65°,∴∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∵∠BOD=115°,∠DOE=90°,∴∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,∴∠COE=∠BOE,即OE平分∠BOC.(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∵∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°﹣40°=50°.31.【解答】解:(1)∵AB=20cm,CD=2cm,AC=4cm,∴DB=14cm,∵E、F分别是AC、BD的中点,∴CE=AC=2cm,DF=DB=7cm,∴EF=2+2+7=11cm,故答案为:11;(2)EF的长度不变.∵E、F分别是AC、BD的中点,∴EC= AC,DF=DB,∴EF=EC+CD+DF=AC+CD+DB===,∵AB=20cm,CD=2cm,∴EF==11cm;(3).理由:∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COE+∠COD+∠DOF=∠AOC+∠COD+∠BOD=(∠AOC+∠BOD)+∠COD=(∠AOB﹣∠COD)+∠COD=(∠AOB+∠COD).故答案为:.32.【解答】解:(1)①∵∠COD=90°,∠DOE=25°,∴∠COE=∠COD﹣∠DOE=90°﹣25°=65°,又∵OE平分∠BOC,∴∠BOC=2∠COE=130°,∴∠AOC=180°﹣∠BOC=180°﹣130°=50°;②∵∠COD=90°,∠DOE=α,∴∠COE=∠COD﹣∠DOE=90°﹣α,又∵OE平分∠BOC,∴∠BOC=2∠COE=180°﹣2α,∴∠AOC=180°﹣∠BOC=180°﹣(180°﹣2α)=2α;(2)∠DOE=∠AOC,理由如下:如图2,∵∠BOC=180°﹣∠AOC,又∵OE平分∠BOC∴∠COE=∠BOC=(180°﹣∠AOC)=90°﹣∠AOC,又∵∠COD=90°,∴∠DOE=90°﹣∠COE=90°﹣(90°﹣∠AOC)=∠AOC.33.【解答】解:(1)∵AB=14cm,点D、E分别是AC和BC的中点,∴DE=DC+EC= AC+BC=AB=7cm故答案为:7;(2)∵AC=4cm,AB=14cm,∴BC=AB﹣AC=10cm,又∵D为AC中点,E为BC中点,∴CD=2cm,CE=5cm,∴DE=CD+CE=7cm;(3)∵AC=acm,∴BC=AB﹣AC=(14﹣a)cm,又∵D为AC 中点,E为BC中点,∴CD=acm,CE=(14﹣a)cm,∴DE=CD+CE=a+(14﹣a)=7cm,∴无论a取何值(不超过14)DE的长不变;(4)设∠AOC=α,∠BOC=120﹣α,∵OD平分∠AOC,OE平分∠BOC,∴∠COD=,∠COE=(120°﹣α),∴∠DOE=∠COD+∠COE=+(120°﹣α)=60°,∴∠DOE=60°,与OC位置无关.34.【解答】解:(1)∵∠AOB=∠COD=90°,∠BOC=20°,∴∠AOC=∠BOD=90°﹣20°=70°.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=35°,∴∠MON=∠MOC+∠COB+∠BON=35°+20°+35°=90°;(2)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°﹣α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°﹣α,∴∠MON=∠MOC+∠COB+∠BON=45°﹣α+α+45°﹣=90°;(3)∵∠AOB=∠COD=90°,∠BOC=α,∴∠AOC=∠BOD=90°+α.∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠BON=45°+α,∴∠MON=∠MOC﹣∠COB+∠BON=45°+α﹣α+45°+=90°.35.【解答】解:(1)由已知得∠BOC=180°﹣∠AOC=150°,又∠COD是直角,OE 平分∠BOC,∴∠DOE=∠COD﹣∠BOC=90°﹣×150°=15°.(2)由(1)知∠DOE=∠COD﹣∠BOC,∴∠DOE=90°﹣(180°﹣∠AOC)=90°﹣90°+∠AOC=∠AOC=α.(3)∠AOC=2∠DOE.理由如下:∵∠COD是直角,OE 平分∠BOC,∴∠COE=∠BOE,∠COB=2∠COE,∴∠AOC=180°﹣∠COB=180°﹣2∠COE=2(90°﹣∠COE),∵∠DOE=90°﹣∠COE,∴∠AOC=2∠DOE.36.【解答】解:(1)因为OM平分∠BOC,ON平分∠AOC所以∠MOC=∠BOC,∠NOC=∠AOC 所以∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(100°+40°﹣40°)=50°.(2)可以.同理,∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)=(∠BOA+∠AOC﹣∠AOC)=∠BOA=50°.37.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD,所以∠MOB=∠AOB,∠BON=∠BOD,即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=∠AOC,∠BON=∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA 逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.38.【解答】解:(1)因为OB平分∠AOC,∠AOB=20°,所以∠AOC=40°,因为OD平分∠AOE,∠AOE=110°,所以∠AOD=55°,因为∠COD=∠AOD﹣∠AOC,所以∠COD=55°﹣40°=15°;(2)因为90°﹣55°=35°,所以射线OD的方位角是北偏东35°;(3)设经过x秒时,∠AOE=30°,①如图1所示,当OA未追上OE时,依题意,得5x﹣110=3x﹣30,解得,x=40;②如图2所示,当OA超过OE时,依题意,得5x﹣110=3x﹣305x﹣110=3x+30,解得,x=70.39.【解答】解:(1)若∠COE=20°,∵∠COD=90°,∴∠EOD=90°﹣20°=70°,∵OE平分∠AOD,∴∠AOD=2∠EOD=140°,∴∠BOD=180°﹣140°=40°;若∠COE=α,∴∠EOD=90﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=2(90﹣α)=180﹣2α,∴∠BOD=180°﹣(180﹣2α)=2α;故答案为:40°;2α;(2)如图2,∠BOD=2∠COE,理由是:设∠BOD=β,则∠AOD=180°﹣β,∵OE平分∠AOD,∴∠EOD=∠AOD==90°﹣,∵∠COD=90°,∴∠COE=90°﹣(90°﹣)=,即∠BOD=2∠COE.40.【解答】解:(1)如图2,∵OM平分∠BOC,∴∠MOC=∠MOB,又∵∠BOC=110°,∴∠MOB=55°,∵∠MON=90°,∴∠BON=∠MON﹣∠MOB=35°;(2)分两种情况:①如图2,∵∠BOC=110°∴∠AOC=70°,当直线ON恰好平分锐角∠AOC 时,∠AOD=∠COD=35°,∴∠BON=35°,∠BOM=55°,即逆时针旋转的角度为55°,由题意得,5t=55°解得t=11(s);②如图3,当NO平分∠AOC时,∠NOA=35°,∴∠AOM=55°,即逆时针旋转的角度为:180°+55°=235°,由题意得,5t=235°,解得t=47(s),综上所述,t=11s或47s时,直线ON恰好平分锐角∠AOC;(3)∠AOM﹣∠NOC=20°.理由:∵∠MON=90°,∠AOC=70°,故答案为:11或47;∴∠AOM=90°﹣∠AON,∠NOC=70°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(70°﹣∠AON)=20°,∴∠AOM与∠NOC的数量关系为:∠AOM﹣∠NOC=20°.41.【解答】解:(1)∵∠AOB=90°,∠BOC=60°.∴∠AOC=∠AOB﹣∠BOC=30°.∴∠AOD=∠AOC+∠COD=30°+90°=120°.若∠BOC=n°,则∠AOC=∠AOB﹣∠BOC=(90﹣n)°.∴∠AOD=∠AOC+∠COD=(90﹣n)°+90°=(180﹣n)°.(2)∵∠AOB=x°,∠AOD=y°.∴∠BOD=∠AOD﹣∠AOB=(y﹣x)°.∴∠BOC=∠DOC ﹣∠BOD=x°﹣(y﹣x)°=(2x﹣y)°.42.【解答】解:(1)因为∠AOD=160°OM平分∠AOB,ON平分∠BOD所以∠MOB=∠AOB,∠BON=∠BOD即∠MON=∠MOB+∠BON=∠AOB+∠BOD=(∠AOB+∠BOD)=∠AOD=80°;(2)因为OM平分∠AOC,ON平分∠BOD所以∠MOC=∠AOC,∠BON=∠BOD即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵射线OB从OA逆时针以2°每秒的旋转t秒,∠COB=20°,∴∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t.∵射线ON平分∠BOD,∴∠DON=∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.答:t为21秒.43.【解答】解:(1)∵∠BCE=90°,∠DCE=25°,∴∠BCD=∠BCE﹣∠DCE=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠BCD=90°+65°=155°;∵∠ACB=130°,∠ACD=90°,∴∠BCD=∠ACB﹣∠ACD=130°﹣90°=40°,∵∠BCE=90°,∴∠DCE=∠BCE﹣∠BCD=90°﹣40°=50°,故答案为:155°,50°;(2)∠ACB+∠DCE=180°,理由如下:∵∠ACB=∠ACE+∠DCE+∠DCE,∴∠ACB+∠DCE=∠ACE+∠DCE+∠DCE+∠DCE=∠ACD+∠BCE=180°;(3)∠DAB+∠CAE=120°,理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,∴∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°;(4)∠AOD+∠BOC=α+β,理由如下:∵∠AOD=∠AOC+∠COB+∠BOD,∴∠AOD+∠BOC=∠AOC+∠COB+∠BOD+∠BOC=∠AOB+∠COD=α+β.44.【解答】解:(1)如图所示,∵两条直线AB,CD相交于点O,∠AOC=∠AOD,∴∠AOC=∠AOD=90°,∴∠BOC=∠BOD=90°,∴图中一定有4个直角;当t=2时,∠BOM=30°,∠NON=24°,∴∠MON=30°+90°+24°=144°,∠BON=90°+24°=114°,∠MOC=90°﹣30°=60°;故答案为:4;144°,114°,60°;(2)当ON与OA重合时,t=90÷12=7.5(s),当OM与OA重合时,t=180°÷15=12(s),如图所示,当0<t≤7.5时,∠AON=90°﹣12t°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(90°﹣12t°)﹣60°,解得t=;如图所示,当7.5<t<12时,∠AON=12t°﹣90°,∠AOM=180°﹣15t°,由∠AOM=3∠AON﹣60°,可得180°﹣15t°=3(12t°﹣90°)﹣60°,解得t=10;综上所述,当∠AOM=3∠AON﹣60°时,t的值为s或10s;(3)当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,∴15t°+90°+12t°=180°,解得t=,①如图所示,当0<t<时,∠COM=90°﹣15t°,∠BON=90°+12t°,∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,∴==(不是定值),。

初二数学线段和角度练习题

初二数学线段和角度练习题

初二数学线段和角度练习题1. 直线段练习题(1) 请画出一条长度为5cm的直线段。

(2) 请画出一条长度为8cm的直线段,并在直线段上任意选择一点P。

(3) 在直线段AB上,现在已知A点的坐标是(2, 3),B点的坐标是(7, 1),请问直线段AB的长度是多少?2. 角度练习题(1) 请画出一个直角,并标注其内角、外角和相邻补角。

(2) 请画出一个钝角,并标注其内角、外角和对角。

(3) 请画出一个锐角,并标注其内角、外角和对角。

(4) 角ABC是一个直角,角ABD是一个钝角,角BCD是一个锐角。

请问角A和角D的关系是什么?3. 线段和角度的计算练习题(1) 如果直线段AB的长度是3cm,直线段AC的长度是5cm,直线段AD的长度是7cm,请问直线段BC的长度是多少?(2) 在三角形ABC中,已知∠ABC是一个锐角,∠ACB的度数是30°,边AB的长度是4cm,请问边AC的长度是多少?(3) 在直角三角形ABC中,已知∠BAC是一个直角,边AB的长度是5cm,边AC的长度是12cm,请问边BC的长度是多少?4. 实际问题运用练习题(1) 一辆汽车以每小时60km的速度行驶,行驶5个小时后停下来。

请问汽车总共行驶了多少千米?(2) 一张长方形的长是10cm,宽是6cm,请问长方形的周长是多少厘米?(3) 在一个直角三角形中,一条直角边的长度是3cm,斜边的长度是5cm,请问另一条直角边的长度是多少厘米?通过以上练习题,我们可以巩固对于初二数学中线段和角度的基础知识。

通过练习画线段、计算线段长度,以及练习画角度、确定角度的类型和计算角度的相关问题,我们可以提高自己的数学能力,加深对于数学概念的理解。

祝你在数学学习中取得优异的成绩!。

七年级数学上册-线段和角精选练习题

七年级数学上册-线段和角精选练习题

七年级数学上册-线段和角精选练习题线段和角精选练习题一.选择题(共22小题)1.如图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱2.如图,线段AD上有两点B、C,则图中共有线段()A.三条B.四条C.五条D.六条3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣26.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为()A.1cm B.1.5cm C.2cm D.4cm9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间11.若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°14.如图,在△ABC中,过点A作BC边上的高,正确的作法是()A.B.C.D.15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°17.一个角是这个角的余角的2倍,则这个角的度数是()A.30°B.45°C.60°D.75°32.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是,∠AOC的余角是;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.33.如图,已知∠AO B=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角是;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE.(1)求∠DOE的度数;(2)请通过计算,找出图中所有与∠AOE互余的角.试题解析一.选择题(共22小题)1.如图是某个几何体的展开图,该几何体是()A.圆柱B.圆锥C.圆台D.四棱柱【分析】侧面为长方形,底边为2个圆形,故原几何体为圆柱.2.如图,线段AD上有两点B、C,则图中共有线段()A.三条B.四条C.五条D.六条【分析】由图知,线段有AB,BC,CD,AC,BD,AD.3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有()A.1个B.2个C.3个D.4个【分析】根据正数、负数、直线、射线的定义和表示方法对各小题分析判断后利用排除法求解.4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线【分析】根据线段的性质,可得答案.5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A.2+(﹣2)B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣2【分析】根据数轴上两点间距离的定义进行解答即可.6.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm【分析】由于点C的位置不确定,故应分点C在AB之间与点C在AB外两种情况进行讨论.8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为()A.1cm B.1.5cm C.2cm D.4cm【分析】由已知条件可知,AB+BC=AC,又因为O是线段AC的中点,则OB=AB﹣AO,故OB可求.9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个【分析】根据题意画出图形,根据中点的特点即可得出结论.10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间 D.BC之间【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.11.若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°【分析】根据图形得出∠1+∠2=90°,然后根据∠1的度数比∠2的度数大50°列出方程求解即可.14.如图,在△ABC中,过点A作BC边上的高,正确的作法是()A.B.C.D.【分析】从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,据此作高.15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为()A.100°B.110°C.130°D.140°【分析】根据图形和题目中的条件,可以求得∠AOB的度数和∠COD的度数,从而可以求得∠AOD的度数.16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为()A.15°B.20°C.25°D.30°【分析】依据∠COB=∠COD+∠AOB﹣∠AOD求解即可.17.一个角是这个角的余角的2倍,则这个角的度数是()A.30°B.45°C.60°D.75°【分析】先表示出这个角的余角为(90°﹣α),再列方程.18.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是()A.∠1+∠α=∠90°B.∠2+∠α=90°C.∠1=∠2 D.∠1+∠2=90°【分析】根据互为余角的两个角的和等于90°和同角的余角相等解答.19.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是()A.165°B.155°C.115°D.105°【分析】根据题意可得:∠1=50°,∠2=25°,再根据角的和差关系可得答案.20.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=()A.40°B.60°C.120°D.135°【分析】设∠AOC=x,则∠BOC=2x,则∠AOD=1.5x,最后,依据∠AOD﹣∠AOC=∠COD列方程求解即可.21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=()A.65°B.70°C.75°D.80°【分析】首先由角平分线定义求得∠COD的度数,然后根据∠COE=∠DOE﹣∠COD即可求得∠COE的度数.22.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE平分∠BOC,则∠DOE()A.一定是钝角 B.一定是锐角 C.一定是直角 D.都有可能【分析】直接利用角平分线的性质得出∠AOD=∠DOC,∠BOE=∠COE,进而得出答案.二.填空题(共3小题)23.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到 6 个三角形.【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n﹣2)个三角形.24.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于135 度.【分析】根据平角和角平分线的定义求得.25.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为140 度.【分析】根据角平分线的定义得到∠AOC=2∠AOD=40°,根据平角的定义计算即可.三.解答题(共12小题)26.如图,四边形ABCD,在四边形内找一点O,使得线段AO、BO、CO、DO的和最小.(画出即可,不写作法)【分析】要确定点O的位置,根据“两点之间,线段最短”只需要连接AC,BD,交点即为所求.27.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.【分析】根据线段的性质:两点之间线段最短,即可得出答案.28.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.【分析】根据比例设AC=xcm,CD=2xcm,DB=3xcm,然后根据AC的长度列方程求出x的值,再根据线段中点的定义表示出CM、DN,然后根据MN=CM+CD+DN求解即可.29.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.【分析】因为点M是AC的中点,则有MC=AM=AC,又因为CN:NB=1:2,则有CN=BC,故MN=MC+NC 可求.30.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.【分析】直接利用周角的定义得出∠AOC=120°,进而利用已知得出答案.31.填空,完成下列说理过程如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.【分析】(1)首先根据角平分线定义可得∠COD=∠AOC,∠COE=∠BOC,然后再根据角的和差关系可得答案;(2)首先计算出∠BOE的度数,再利用180°减去∠BOE的度数可得答案.32.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是∠AOE ,∠AOC的余角是∠BOC ;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.【分析】(1)根据互余和互补解答即可;(2)利用角平分线的定义和平角的定义解答即可.33.如图,已知∠AOB=155°,∠AOC=∠BOD=90°.(1)写出与∠COD互余的角;(2)求∠COD的度数;(3)图中是否有互补的角?若有,请写出来.【分析】根据余角和补角的概念进行计算即可.34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°.(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.【分析】(1)根据角平分线的定义求出∠BOC的度数,根据邻补角的性质求出∠AOC的度数,根据余角的概念计算即可;(2)根据角平分线的定义和邻补角的性质计算即可.35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角是∠BOE、∠COE ;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.【分析】(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出结论;(2)先求出∠COD、∠COE,即可得出∠DOE=90°;(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.【分析】依据同角的余角相等,可得∠COD=∠AOB=56°,再根据OF平分∠DOE,∠DOE=90°,即可得到∠DOF=∠DOF=45°,最后依据∠COF=∠COD+∠DOF进行计算即可.37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE.(1)求∠DOE的度数;(2)请通过计算,找出图中所有与∠AOE互余的角.【分析】(1)根据角平分线的性质可得∠BOD=∠AOD=∠AOB=60°,再计算出∠AOE的度数,然后可得∠DOE的度数;(2)根据余角定义进行分析即可.。

小学数学线段与角度练习题

小学数学线段与角度练习题

小学数学线段与角度练习题【练习题一】线段的长度计算1. A、B两点的坐标分别是(2, 3)和(5, 1),请计算线段AB的长度。

【练习题二】线段的比较2. 下图是一张城市地图,A、B、C、D四个地点分别标在图上。

请根据图上刻度计算线段AB、BC和CD的长度,并回答以下问题:AB C Da) 线段AB的长度与线段BC的长度相比,哪个更长?b) 线段BC的长度与线段CD的长度相比,哪个更短?【练习题三】线段的延长与截取3. 下图中,线段AB的长度是5个单位,仅根据图上信息,回答以下问题:C/ |\/ B| \/ | \/____A|a) 如果将线段AB延长2个单位,得到的点是什么?b) 如果将线段AB截取3个单位并得到的点是C,则点C在原来线段AB的什么位置上?【练习题四】角度的测量4. 利用直尺和量角器测量以下角的度数:a) 直角b) 锐角c) 钝角【练习题五】角的比较5. 下图中,三个角分别为α、β和γ,请回答以下问题:B/ \/ \α γ/ \A_________Ca) 角α的度数与角γ的度数相比,哪个更大?b) 角α的度数与角β的度数相比,哪个更小?【练习题六】角的分类6. 根据以下信息,判断并分类角:a) 度数为90°,是哪种类型的角?b) 度数为180°,是哪种类型的角?c) 度数为30°,是哪种类型的角?d) 度数为0°,是哪种类型的角?【练习题七】角的补角与余角7. 两个角的和为90°时,这两个角互为补角;两个角的和为180°时,这两个角互为补角。

请分别找出以下角的补角和余角:a) 30°角的补角和余角分别是多少?b) 120°角的补角和余角分别是多少?c) 45°角的补角和余角分别是多少?【练习题八】角的相等关系8. 判断以下各组角是否相等:a) 60°角和120°角是否相等?b) 45°角和90°角是否相等?c) 钝角和锐角是否相等?。

线段、角典型例题

线段、角典型例题

线段、角典型例题(总4页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2基本的平面图形典型例题与强化训练典型例题:例1、已知线段AB ,延长线段AB 到C ,使BC=23 AB ,反向延长线段AB至D ,使AD=12AB ,P 为线段CD 的中点,已知BP=15cm ,求线段AB 、CD 的长。

例2、如图,C ,D ,E 将线段AB 分成2:3:4:5四部分,M ,P ,Q ,N 分别是AC ,CD ,DE ,EB 的中点,且MN=21,求线段PQ 的长度.例3、已知线段AB=14cm ,在直线AB 上有一点C ,且BC=4cm ,M 是线段AC 的中点,求线段AM 的长.例4、如图所示,∠AOB=90°, ∠BOC=30°,OE 平分∠AOC ,OD 平分∠BOC,求∠DOE 的度数。

(1)若∠AOB=α,其他条件不变,∠DOE 等于多少?(2)若∠BOC=β,其他条件不变,∠DOE 等于多少(3)若∠AOB=α,∠BOC=β,其他条件不变,∠DOE 等于多少?例5、如图,直线AB 、CD 相交于点O ,且∠BOC=80°,OE 平分∠BOC .OF 为OE 的反向延长线.求∠2和∠3的度数,并说明OF 是否为∠AOD 的平分线.例6、如图,由点O 引出六条射线OA 、OB 、OC 、OD 、OE 、OF ,且∠AOB=90°,OF 平分∠BOC ,OE 平分∠AOD 。

若∠EOF=170°,求∠COD 的度数。

练习:1.下列说法中,错误的是()A .经过一点可以作无数条直线B .经过两点只能作一条直线C .一条直线只能用一个字母表示D .线段CD 和线段DC 是同一条线段 2.下列说法中,正确的是( )A .射线AB 和射线BA 是同一条射线 B .延长射线MN 到CC .延长线段MN 到P 使NP =2MND .连结两点的线段叫做两点间的距离3.平面上的三条直线最多可将平面分成( )部分。

专题 线段和角度计算章末重难点题型(举一反三)(原卷版)

专题 线段和角度计算章末重难点题型(举一反三)(原卷版)

专题线段和角度计算章末重难点题型汇编【举一反三】【考点1 几何图形】【方法点拨】掌握几何图形相关概念是解决此类问题的关键.【例1】(秋峄城区期末)下面的几何体中,属于棱柱的有()A.1个B.2个C.3个D.4个【变式1-1】(秋涞水县期末)如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是()A.B.C.D.【变式1-2】(章贡区期末)图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②.则下列图形中,是图②的表面展开图的是()A.B.C.D.【变式1-3】(秋广丰区期末)下图右边四个图形中,哪个是左边立体图形的展开图?()A.B.C.D.【考点2 基本概念】【方法点拨】知识点1:线段像长方体的棱、长方形的边,这些图形都是线段.线段有两个端点,两个方向均不延伸,线段的长度是可以测量的.线段有两种表示方法:(1)一条线段可以用它的两个端点的大写字母来表示,如图,以A,B为端点的线段,可记作“线段AB”或“线段BA”;(2)一条线段可以用一个小写字母来表示,如图,线段AB也可记作“线段a”.知识点2:射线将线段向一个方向无限延长就得到了射线.射线有一个端点,射线向一个方向无限延伸,射线是无法测量的.射线的表示法:两个大写字母:一条射线可以用表示它的端点和射线上的另一点的两个大写字母来表示,如图中的射线,点O是端点,点A是射线上异于端点的另一点,那么这条射线可以记作射线OA.注意:①表示射线的两个大写字母,其中一个一定是端点,并且要把它写在前面.②端点相同的射线不一定是同一条射线,端点不同的射线一定不是同一条射线③两条射线为同一射线必须具备的两个条件:①端点相同;②延伸的方向相同.知识点3:直线将线段向两个方向无限延长就形成了直线.直线没有端点,直线向两个方向无限延伸,直线是无法测量的.直线的两种表示方法:(1)一条直线可以用一个小写字母表示,如图中的直线可记作:直线a.(2)一条直线也可以用在这条直线上的表示两个点的大写字母来表示,如图中的直线可记作:直线AB或直线BA.【例2】(秋宜城市期末)下列说法中正确的个数是()①线段AB和射线AB都是直线的一部分;②直线AB和直线BA是同一条直线;③射线AB和射线BA是同一条射线;④把线段向一个方向无限延伸可得到射线,向两个方向无限延伸可得到直线.A.1B.2C.3D.4【变式2-1】(秋岑溪市期末)下列说法正确的个数有()①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A.1个B.2个C.3个D.4个【变式2-2】(秋李沧区期末)下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③连接两点的线段叫做两点间的距离;④射线AB和射线BA是同一条射线;⑤若AC=BC,则点C是线段AB的中点;⑥一条射线把一个角分成两个相等的角,这条射线是这个角的平分线,其中错误的有()A.2个B.3个C.4个D.5个【变式2-3】(春广饶县期末)如图的四个图形和每一个图形相应的一句描述,其中所有图形都是画在同一个平面上.①线段AB与射线MN不相交;②点C在线段AB上;③直线a和直线b不相交;④延长射线AB,则会通过点C.其中正确的语句的个数有()A.0个B.1个C.2个D.3个【考点3 余角与补角定义】【方法点拨】余角和补角:(1)若α+β=90°,则α与β互余.(2)若α+β=180°,则α与β互补.(3)同角(或等角)的余角(或补角)相等.【例3】(春东阿县期末)一个角的余角是它的,则这个角的补角等于°.【变式3-1】(秋宜宾期末)如果一个角的余角与它的补角度数之比为2:5,则这个角等于度.【变式3-2】(秋化德县校级期末)若一个角的3倍比这个角补角的2倍还少5°,则这个角等于.【变式3-3】(秋凉山州期末)一个角的补角加上10°后等于这个角的余角的3倍,则比这个角小15°32′的角的度数是.【考点4 钟面上的角度问题】【例4】(秋宛城区期末)上午9点30分时,时钟的时针和分针所夹的较小的角是度.【变式4-1】(秋莲湖区校级月考)时钟表面11点15分时,时针与分针所夹角的度数是度.【变式4-2】(秋大冶市期末)中午12点30分时,钟面上时针和分针的夹角是度.【变式4-3】(春单县期末)上午八点二十五分,钟表上时针和分针的夹角的度数为.【考点5 尺规作图】【例5】(春沙坪坝区校级期末)已知:∠α,∠β,线段c.求作:△ABC,使∠A=α,∠B=∠β,AB=c(不写作法,保留作图痕迹)【变式5-1】(秋翁牛特旗期末)用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:线段a,b,求作:线段AB,使AB=2b﹣a.【变式5-2】(秋涡阳县期末)作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连结B′C′,这样△A′B′C′就和已知的△ABC 一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)【变式5-3】(秋安庆期末)如图,在同一平面内有四个点A ,B ,C ,D . (1)请按要求作出图形(注:此题作图不需写出画法和结论): ①作射线AC②作直线BD ,交射线AC 于点O ③分别连接AB ,AD .(2)观察所作图形,我们能得到:AO +OC = ;DB ﹣OB = (空格处填写图中线段)【考点6 与中点有关的长度计算】 【方法点拨】线段的中点如图,点C 在线段AB 上且使线段AC ,CB 相等,这样的点C 叫做线段AB 的中点.中点定义的推理步骤: (1)∵AC =CB (已知),∴点C 是线段AB 的中点(中点的定义). (2)∵点C 是线段AB 的中点(已知),∴AC =BC 或AC =12AB 或BC =12AB 或AB =2AC 或AB =2BC (中点的定义).【例6】(秋洛宁县期末)已知:点C 在直线AB 上,AC =8cm ,BC =6cm ,点M 、N 分别是AC 、BC 的中点,求线段MN 的长.【变式6-1】(秋郯城县期末)如图,线段AB,C是线段AB上一点,M是AB的中点,N是AC的中点.(1)若AB=8cm,AC=3.2cm,求线段MN的长;(2)若BC=a,试用含a的式子表示线段MN的长.【变式6-2】(秋永新县期末)如图,点C是线段AB上,AC=10cm,CB=8cm,M,N分别是AC,BC的中点.(1)求线段MN的长.(2)若C为线段AB上任一点,满足AC+CB=acm,其他条件不变,不用计算你猜出MN的长度吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N仍分别为AC,BC的中点,你还能猜出线段MN的长度吗?(4)由此题你发现了怎样的规律?【变式6-3】(秋榆社县期末)已知:点M,N分别是线段AC,BC的中点.(1)如图,点C在线段AB上,且AC=9cm,CB=6cm,求线段MN的长;(2)若点C为线段AB上任一点,且AC=acm,CB=bcm,用含有a,b的代数式表示线段MN的长度.(3)若点C在线段AB的延长线上,且AC=acm,CB=bcm,请你画出图形,并且用含有a,b的代数式表示线段MN的长度.【考点7 与角平分线有关的角度计算】 【方法点拨】角平分线:(1)把一个角平分成二等分的射线,称为角平分线. (2)若OC 平分∠AOB ,则有①∠AOC =∠BOC .②∠AOC =21∠AOB .③∠AOB =2∠AOC =2∠BOC . 【例7】(秋化德县校级期末)如图,已知OM 平分∠AOC ,ON 平分∠BOC ,∠AOB =90°,∠BOC =30°. 求:(1)∠AOC 的度数; (2)∠MON 的度数.【变式7-1】(秋浏阳市校级期末)如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,∠AOC =72°,OF ⊥CD ,垂足为O ,求: (1)求∠BOE 的度数. (2)求∠EOF 的度数.【变式7-2】(秋襄阳期末)如图所示.(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大小.【变式7-3】(秋沙河口区期末)已知∠AOB=α,过O作射线OC,OM平分∠AOC,ON平分∠BOC.(1)如图,若α=120°,当OC在∠AOB内部时,求∠MON的度数;(2)当OC在∠AOB外部时,画出相应图形,求∠MON的度数(用含α的式子表示).【考点8 与旋转有关的角度计算】【例8】(秋启东市校级月考)O为直线AD上一点,以O为顶点作∠COE=90°,射线OF平分∠AOE.(1)如图①,∠AOC与∠DOE的数量关系为,∠COF和∠DOE的数量关系为_;(2)若将∠COE绕点O旋转至图②的位置,OF依然平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由;(3)若将∠COE绕点O旋转至图③的位置,射线OF依然平分∠AOE,请直接写出∠COF和∠DOE之间的数量关系.【变式8-1】(秋武昌区期末)已知∠AOB=100°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(本题中的角均为大于0°且小于等于180°的角).(1)如图1,当OB、OC重合时,求∠EOF的度数;(2)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<90)时,∠AOE﹣∠BOF的值是否为定值?若是定值,求出∠AOE﹣∠BOF的值;若不是,请说明理由.(3)当∠COD从图1所示位置绕点O顺时针旋转n°(0<n<180)时,满足∠AOD+∠EOF=6∠COD,则n=.【变式8-2】(秋南江县期末)如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.求∠BON的度数.(2)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC的数量关系,并说明理由.【变式8-3】(秋安庆期末)将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数.(2)如图(2)若∠AOC=150°,求∠BOD的度数.(3)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.【考点9 与几何有关的规律问题】【例9】(秋禹会区校级月考)阅读表:图例线段总条数N线段AB上的点数n(包括A,B两点)33=2+146=3+2+1510=4+3+2+1615=5+4+3+2+1解答下列问题:(1)根据表中规律猜测线段总数N与线段上的点数n(包括线段两个端点)有什么关系?(2)根据上述关系解决如下实际问题:有一辆客车往返于A,B两地,中途停靠三个站点,如果任意两站间的票价都不同,问:①有种不同的票价?②要准备种车票?(直接写答案)【变式9-1】(秋滦县期中)(1)试验探索:如果过每两点可以画一条直线,那么请下面三组图中分别画线,并回答问题:第(1)组最多可以画条直线;第(2)组最多可以画条直线;第(3)组最多可以画条直线.(2)归纳结论:如果平面上有n(n≥3)个点,且每3个点均不在一条直线上,那么最多可以画出直线条.(作用含n的代数式表示)(3)解决问题:某班50名同学在毕业后的一次聚会中,若每两人握一次手问好,则共握次手;最后,每两个人要互赠礼物留念,则共需件礼物.【变式9-2】(秋江山市期末)为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手.(1)一条直线把平面分成2部分;(2)两条直线最多可把平面分成4部分;(3)三条直线最多可把平面分成7部分…;把上述探究的结果进行整理,列表分析:直线条数把平面分成部分数写成和形式121+1241+1+2371+1+2+34111+1+2+3+4………(1)当直线条数为5时,把平面最多分成部分,写成和的形式;(2)当直线为10条时,把平面最多分成部分;(3)当直线为n条时,把平面最多分成部分.(不必说明理由)【变式9-3】(秋桥东区校级期中)观察下图,回答下列问题:(1)在图①中有几个角?(2)在图②中有几个角?(3)在图③中有几个角?(4)以此类推,如图④所示,若一个角内有n条射线,此时共有多少个角?【考点10 线段上的动点问题】【例10】(秋麒麟区期末)如图,线段AB=12cm,延长AB到点C,使BC=AB,点D是BC中点,点E 是AD中点.(1)根据题意,补全图形;(2)求DE的长;(3)若动点P从点A出发,以1cm/s的速度向点C运动,到达点C停止运动,点Q从点C出发,以2cm/s 的速度向点A运动,到达点A停止运动,若运动时间为ts,当t为何值时,PQ=3cm?【变式10-1】(秋孝南区期末)如图,已知数轴上点A表示的数为a,点B表示的数为b,且满足(a﹣6)2+|b+4|=0.(1)写出a、b及AB的距离:a=b=AB=(2)若动点P从点A出发,以每秒6个单位长度沿数轴向左匀速运动,动点Q从点B出发,以每秒4个单位长度向左匀速运动.①若P、Q同时出发,问点P运动多少秒追上点Q?②若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.【变式10-2】(春金牛区校级月考)如图,线段AB=24,动点P从A出发,以2个单位/秒的速度沿射线AB运动,M为AP的中点.(1)出发多少秒后,PB=2AM(2)当P在线段AB上运动时,试说明2BM﹣BP为定值.(3)当P在AB延长线上运动,N为BP的中点,下列两个结论:①MN长度不变;②MN+PN的值不变.选出一个正确的结论,并求其值.【变式10-3】(秋峄城区期末)如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2.(1)A、B对应的数分别为、;(2)点A、B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A、B相距1个单位长度?(3)点A、B以(2)中的速度同时向右运动,点P从原点O以7个单位/秒的速度向右运动,是否存在常数m,使得4AP+3OB﹣mOP为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.【考点11 多边形的对角线】【例11】(春嘉兴期末)一个多边形从一个顶点出发,最多可以作2条对角线,则这个多边形是()A.四边形B.五边形C.六边形D.七边形【变式11-1】(春忻城县期中)从n边形的一个顶点出发作对角线,这些对角线把这个n边形分成的三角形个数为()A.(n+1)个B.n个C.(n﹣1)个D.(n﹣2)个【变式11-2】(秋历城区期末)我们知道,四边形有2条对角线,五边形有5条对角线,那么十二边形的对角线总条数是()A.9B.54C.60D.108【变式11-3】(秋太原期末)从某多边形的一个顶点引出的所有对角线把这个多边形分成了6个三角形,则此多边形的形状是()A.六边形B.七边形C.八边形D.九边形。

线段和角经典习题

线段和角经典习题

四条直线相交,最多有6个交点.三条直线相交,最多有3个交点.两条直线相交,最多有1个交点.练习一、直线、射线、线段1.(1)直线L上任取两个点最多有几条线段?(2)任取3个点最多有几条线段?(3)任取n个点,最多有几条线段呢?变式:线段上有n个点,可以得到多少条线段?2、平面上有一个点,过这一点可以画条直线.若平面上有两个点,则过这两点可以画的直线的条数是;若平面上有三个点,过每两点画直线,则可以画的直线的条数是;若平面上有四个点,过每两点画直线,则可以画的直线的条数是.若平面上有n个点,过每两点画直线,则可以画的直线的条数是.3、(1)平面上有1条直线把平面分成几部分?(2)平面上有2条直线把平面分成几部分?(3)平面上有3条直线最多能把平面分成几部分?(4)n条直线呢?3、观察图中的图形,并阅读图形下面的相关文字:像这样,10条直线相交,最多交点的个数是( ) A.40个 B.45个 C.50个 D.55个4、与线段中点有关的问题线段的中点定义:文字语言:若一个点把线段分成相等的两部分,那么这个点叫做线段的中点MBA图形语言:几何语言: ∵ M 是线段AB 的中点∴ 12AM BM AB ==,22AM BM AB ==典型例题:1.由下列条件一定能得到“P 是线段AB 的中点”的是( )(A )AP=21AB (B )AB =2PB (C )AP =PB (D )AP =PB=21AB2.若点B 在直线AC 上,下列表达式:①AC AB 21=;②AB=BC ;③AC=2AB ;④AB+BC=AC .其中能表示B 是线段AC 的中点的有( ) A .1个 B .2个 C .3个 D .4个3.已知线段MN ,P 是MN 的中点,Q 是PN 的中点,R 是MQ 的中点,那么MR = ______ MN .4.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN=a ,BC=b ,则线段AD 的长是( )A 2(a-b )B 2a-bC a+bD a-b5、 点A 、B 是平面上两点,AB=10cm ,点P 为平面上一点,若PA+PB=20cm ,则P 点( )A. 只能在直线AB 外B. 只能在直线AB 上C. 不能在直线AB 上D. 不能在线段AB 上5.把一段弯曲的公路改为直路,可以缩短路程,其理由是( )ADBMCNA .两点可以确定一条直线B .线段有两个端点C .两点之间,线段最短D .线段可以比较大小6、如图,在平面内有A 、B 、C 三点C(1)画直线AC 、线段BC 、射线BA ; A (2)取线段BC 的中点D ,连接AD ;(3)延长线段CB 到E ,使EB=CB ,并连接AE 。

小学数学线段与角度练习题

小学数学线段与角度练习题

小学数学线段与角度练习题小学数学练习题:线段与角度一、判断题1. 直线段和线段是一样的东西。

()2. 线段一定是直线。

()3. 线段可以无限延伸。

()4. 两个相交的线段一定有公共部分。

()5. 两个相邻的线段之间有且只有一个公共的端点。

()6. 直线和线段都可以表示为一个大写字母。

()7. 直角是指两条线段相交,形成一个角度为90度的角。

()8. 锐角和钝角都是直角的特例。

()二、选择题1. 在下列选项中,不属于线段的是:()a) AD b) BC c) AB d) AC2. 在下列选项中,是直线段的是:()a) AB b) AC c) CD d) BC3. 下列哪个选项中的点在线段中:()a) C b) D c) A d) B4. 下列哪个选项中的点不在线段中:()a) A b) B c) C d) D5. 图中哪两个角是邻角:()(图略)a) ∠ABC 和∠BCDb) ∠ABC 和∠ADEc) ∠BCD 和∠ADEd) ∠ABC 和∠ADE6. ∠ABC 和∠CBD 的度数之和为:()a) 90度 b) 180度 c) 270度 d) 360度7. ∠ABC 和∠ABD 的度数之和为:()a) 90度 b) 180度 c) 270度 d) 360度8. ∠ABC 和∠ACD 的度数之和为:()a) 90度 b) 180度 c) 270度 d) 360度三、解答题1. 请画出下面图中的线段:(图略)2. 下列哪个选项中的两个角是邻角?请说明理由:(图略)4. 下列选项中,哪个角大?请说明理由:(图略)答案:一、判断题1. 错误2. 错误3. 正确4. 正确5. 正确6. 正确7. 正确8. 错误二、选择题1. d) AC2. b) AC3. a) C4. d) D5. a) ∠ABC 和∠BCD6. a) 90度7. b) 180度8. c) 270度三、解答题1. 略2. ∠ABC 和∠BCD 是邻角,因为它们有共同的边段BC,并且相交于点B。

线段和角精选练习题

线段和角精选练习题

线段和角精选练习题线段和角是几何学中的基本概念,对于理解和解决几何问题起着重要的作用。

在本文中,我们将提供一些关于线段和角的精选练习题,帮助读者巩固相关知识并提升解题能力。

1. 线段问题a) 已知线段AB的长度为5cm,线段BC的长度为7cm,求线段AC的长度。

b) 若线段DE的长度为8cm,线段EF的长度为12cm,求线段DF 的长度。

c) 线段GH的长度为10cm,线段HI的长度为6cm,线段GI的长度为多少cm?2. 角度问题a) 已知∠ABC = 30°,∠BCD = 60°,求∠BAD的度数。

b) 若∠EFG = 90°,∠FGH = 45°,求∠EFH的度数。

c) 已知∠IJK = 120°,∠KLM = 30°,求∠ILM的度数。

3. 线段和角度综合问题a) 在△ABC中,AB = 6cm,BC = 8cm,∠ABC = 90°,求AC的长度。

b) 在△DEF中,DE = 5cm,∠DEF = 60°,求EF的长度。

c) 已知∠GHI = 45°,∠HIJ = 60°,GH = 4cm,求GJ的长度。

4. 角度问题的解析a) 若三角形的内角和为180°,求该三角形每个角的度数。

b) 若四边形的内角和为360°,求该四边形每个角的度数。

5. 线段比例问题a) 在△ABC中,AD是BC的1/2,且BD = 6cm,求AC的长度。

b) 在平行四边形DEFG中,EG是DF的2倍,且DF = 10cm,求EG的长度。

c) 在△HIJ中,HL是IJ的1/3,且IL = 12cm,求HJ的长度。

通过以上的练习题,我们可以巩固线段和角的相关知识,培养解题能力。

当然,在解答这些题目时,我们要积极思考,分析问题,合理运用所学知识,以得到准确和有效的解答。

最后,希望读者能够通过这些练习题更好地理解线段和角的概念,并能够在实际应用中灵活运用。

线段角度计算专题

线段角度计算专题

线段计算专题1.如图,线段AB=8cm,点C在BA的延长线上,AC=2cm,M是BC中点,则AM的长是cm.2.如图,已知线段AB=16cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=3cm,则线段MP=cm.3.已知线段AB=8cm,在直线AB上有一点C,且BC=2cm,点M为线段AC的中点,则线段AM的长是cm.4.如图,C、D是线段AB上两点,已知::1:2:3AC CD DB=,M、N分别为AC、DB的中点,且AB cm=,12(1)求线段CD的长;(2)求线段MN的长.,在线段AD上.5.如图,已知点B C(1)尺规作图:在线段AD的延长线上确定一点E,使得DE AB=;(保留作图痕迹,不写作法)(2)在(1)的条件下,若点C是线段BD的中点,且12AD=,5BC=,求AE的长.6.如图,已知点C在线段AB上,点M,N分别在线段AC与线段BC上,且1AM=MC,BN=2NC.2(1)若AC=9,BC=6,求线段MN的长;(2)若MC:NC=5:2,MN=7,求线段AB的长7..如图①,已知线段MN=24cm,线段AB在线段MN上运动(点A不超过点M,点B不超过点N),点C和点D分别是AM,BN的中点.(1)若AM=8cm,AB=2cm,求CD的长度;(2)若AB=2acm,线段AB运动时,试判断线段CD的长度是否发生变化?如果不变,请求出CD的长度,如果变化请说明理由.8..如图,AB=20cm,点P从点A出发,沿AB以2cm/s的速度匀速向终点B运动;同时点Q从点B出发,沿BA以4cm/s的速度匀速向终点A运动,设运动时间为ts.(1)填空:PA=cm;BQ=cm;(用含t的代数式表示)(2)当P、Q两点相遇时,求t的值;(3)探究:当PQ两点相距5cm时,求t的值.9..如图,在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a、c满足()2++-=.a c260(1)=a______,b=______,c=______;(2)若将数轴折叠,使得点A与点C重合,则数轴上折痕所表示的数为______,点B与数______表示的点重合,原点与数______表示的点重合;(3)动点P、Q同时从原点出发,点P向负半轴运动,点Q向正半轴运动,点Q的速度是点P速度的3倍,2秒钟后,点P到达点A.①点P的速度是每秒______个单位长度,点Q的速度是每秒______个单位长度;②经过几秒钟,点P与点Q相距12个单位长度.10..如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为3,BC=2,AB=6.(1)则点A对应的数是、点B对应的数是;(2)动点P、Q分别同时从A、C出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M 在线段AP上,且AM=MP,N在线段CQ上,且C=C,设运动时间为t(t>0).①求点M、N对应的数(用含t的式子表示);②猜想MQ的长度是否与t无关为定值,若为定值请求出该定值,若不为定值请说明理由;③探究t为何值时,OM=2BN.角度计算专题1.如图,把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处,若∠1=70°,求∠2的度数是()A .70°B .65°C .60°D .55°2.已知∠1=38°36',∠2=38.36°,∠3=38.6°,则下列说法正确的是()A .∠1=∠2B .∠1=∠3C .∠2=∠3D .∠1,∠2,∠3互不相等3.如图,O 为直线AB 上一点,∠DOE =90°,OD 是∠AOC 的角平分线,若∠AOC =70°.(1)求∠BOD 的度数.(2)试判断OE 是否平分∠BOC ,并说明理由.4.已知:如图,AOB ∠被分成::2:3:4AOC COD DOB ∠∠∠=,OM 平分AOC ∠,ON 平分DOB ∠,且90MON ∠=︒,求AOB ∠的度数.5.已知∠AOB =120°,∠COD =60°.(1)如图1,当∠COD 在∠AOB 的内部时,若∠AOD =98°,求∠BOC 的度数;(2)如图2,当射线OC 在∠AOB 的内部,OD 在∠AOB 的外部时,试探索∠AOD 与∠BOC 的数量关系:(3)如图3,当∠COD 在∠AOB 的外部时,分别在∠AOC 内部和∠BOD 内部画射线OE ,OF ,使∠EOC=∠AOC ,∠DOF =∠BOD ,求∠EOF 的度数.6.已知∠AOD=40°,射线OC从OD出发,绕点O以20°/秒的速度逆时针旋转,旋转时间为t秒.射线OE、OF分别平分∠AOC、∠AOD.(1)如图①:如果t=4秒,求∠EOA的度数;(2)如图①:若射线OC旋转时间为t(t≤7)秒,求∠EOF的度数(用含t的代数式表示);(3)若射线OC从OD出发时,射线OB也同时从OA出发,绕点O以60°/秒的速度逆时针旋转,射线OC、OB在旋转过程中(t≤3),∠COE=∠BOE.请你借助图②与备用图进行分析后,(Ⅰ)求此时t的值;(Ⅱ)求的值.7.已知:O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,当∠AOC=40°时,求∠DOE的度数;(2)如图2,OF平分∠BOD,求∠EOF的度数;(3)如图3,∠AOC=36°,此时∠COD绕点O以每秒6°沿逆时针方向旋转t秒(0≤t<60),请直接写出∠AOC和∠DOE之间的数量关系8.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一块直角三角板DOE直角顶点放在点O处.(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=____________°;(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠BOD、∠COE的度数;(3)如图3,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.线段角度综合应用证明题推导体验:1.已知:如图,AB =18cm ,点M 是线段AB 的中点,点C 把线段MB 分成MC :CB =2:1的两部分,求线段AC 的长.请补充完成下列解答:解:∵M 是线段AB 的中点,AB =18cm ,∴AM =MB =AB =cm .∵MC :CB =2:1,∴MC =MB =cm .∴AC =AM +=+=cm .2..如图,已知∠AOB =90°,∠AOC =60°,OD 平分∠BOC ,OE 平分∠AOC .求∠DOE 的度数.解:∵∠AOB =90°,∠AOC =60°,∴∠BOC =∠AOB +∠AOC =°.∵OD 平分∠BOC ,∴∠DOC =∠=°.∵OE 平分∠AOC ,∴∠EOC =∠=°.∴∠DOE =∠﹣∠=°.2..如图,平面上有四个点A ,B ,C ,D .根据下列语句,完成尺规作图:(1)画直线AC ;(2)画射线BD 交直线AC 于点O ;(3)连接BC ,并延长至点E ,使CE =2BC .3.如图①,已知线段MN =24cm ,线段AB 在线段MN 上运动(点A 不超过点M ,点B 不超过点N ),点C 和点D 分别是AM ,BN 的中点.(1)若AM =8cm ,AB =2cm ,求CD 的长度;(2)若AB =2acm ,线段AB 运动时,试判断线段CD 的长度是否发生变化?如果不变,请求出CD 的长度,如果变化,请说明理由.(3)知识迁移:我们发现角的很多规律和线段一样,如图②,已知∠AOB 在∠MON 内部转动,射线OC 和射线OD 分别平分∠AOM 和∠BON .当∠AOB 转动时,∠COD 是否发生变化?∠AOB ,∠COD 和∠MON 三个角有怎样的数量关系,请说明理由.4.定义:若A,B,C为数轴上三点,若点C到点A的距离是点C到点B的距离2倍,我们就称点C是[],A B 的美好点.例如;如图1,点A表示的数为1-,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是[],A B的美好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是[],A B的美好点,但点D是[],B A的美好点.如图2,M,N为数轴上两点,点M所表示的数为7-,点N所表示的数为2.(1)点E,F,G表示的数分别是3-,6.5,11,其中是[],M N美好点的是________;写出[],N M美好点H 所表示的数是___________.(2)现有一只电子蚂蚁P从点N开始出发,以2个单位每秒的速度向左运动.当t为何值时,点P恰好为M 和N的美好点?5.如图,动点A,B同时从表示数1的位置出发沿数轴做匀速运动,已知动点A,B运动速度之比是3∶1(速度单位:1个单位长度/秒)。

线段与角的认识与计算测验题及答案

线段与角的认识与计算测验题及答案

线段与角的认识与计算测验题及答案一、选择题1. 下列哪个选项是线段的定义?A. 由两个端点和它们之间的线段所组成B. 由一个端点和它两边延伸无限的直线所组成C. 由一个端点和它对立面无限延伸的线段所组成2. 在下列选项中,哪个是正确的角定义?A. 两条射线中间的一部分B. 两个线段之间的夹角C. 两个垂直线之间的角3. 下面哪个选项展示了两个相互垂直的直线之间的角?A. 直角B. 钝角C. 顶角4. 如果两个线段相等,它们的长度分别是3厘米和5厘米,那么这两个线段分别是多少厘米?A. 3厘米和5厘米B. 5厘米和3厘米C. 8厘米和8厘米5. 下面哪个选项是正确的角度度量单位?A. 米B. 毫米C. 度二、填空题1. 线段AB的长度是7.5厘米,线段AC的长度是3.2厘米,那么线段AB比线段AC长________厘米。

2. 若线段AB和线段CD的长度相等,线段AB的长度是8.9厘米,那么线段CD的长度为________厘米。

3. 一个角的度数是120°,那么它是一个________角。

4. 两条直线相交时,互相垂直的角称为________角。

5. 两条直线平行时,对应的内角和外角之和为________。

三、简答题1. 什么是共线点?请举例说明。

2. 什么是顶角?它们有什么特点?3. 请解释什么是直角和钝角,并给出相应的例子。

答案:一、选择题1. A2. A3. A4. B5. C二、填空题1. 4.32. 8.93. 锐角4. 直角5. 180°三、简答题1. 共线点是指在一条直线上的点。

例如,A、B和C是共线点,它们都在直线上。

2. 顶角是指两条相邻线段之间的角。

它们的特点是共享同一边,并且位于这两条线段的夹角内部。

3. 直角是一个90°的角,例如一个正方形的内角。

钝角是一个大于90°但小于180°的角,例如一个圆的内角。

50道几何求角度、证明线段相等、证明角相等的习题(推荐文档)

50道几何求角度、证明线段相等、证明角相等的习题(推荐文档)

50道几何求角度、证明线段相等、证明角相等的习题1 如图,AB⊥BC于B,EF⊥AC于G,DF⊥AC于D,BC=DF。

求证:AC=EF。

2 已知AC平分角BAD,CE垂直AB于E,CF垂直AD于F,且BC=CD,求证:△BCE全等△DCF。

3.如图所示,过三角形ABC的顶点A分别作两底角角B和角C的平分线的垂线,AD垂直于BD于D,AE垂直于CE于E,求证:ED||BC.4.已知,如图,PB、PC分别是△ABC的外角平分线,且相交于点P。

求证:点P在∠A的平分线上。

5.在三角形ABC中,角ABC为60度,AD、CE分别平分角BAC 角ACB,试猜想,AC、AE、CD有怎么样的数量关系6.如果α和β是同旁内角,且α=55°,则β等于()(A)55°(B)125°(C)55°或125°(D)无法确定7.如图19-2-(2)AB‖CD若∠2是∠1的2倍,则∠2等于()(A)60°(B)90°(C)120°(D)1508.如图19-2-(3)∠1+∠2=180°,∠3=110°,则∠4度数()(A)等于∠1 (B)110°(C)70°(D)不能确定9.如图19-2-(3)∠1+∠2=180°,∠3=110°,则∠1的度数是()(A)70°(B)110°(C)180°-∠2 (D)以上都不对10.如图19-2(5),已知∠1=∠2,若要使∠3=∠4,则需()(A)∠1=∠2 (B)∠2=∠3(C)∠1=∠4 (D)AB‖CD11.如图19-2-(6),AB‖CD,∠1=∠B,∠2=∠D,则∠BED为()(A)锐角(B)直角(C)钝角(D)无法确定12.若两个角的一边在同一条直线上,另一边相互平行,那么这两个角的关系是()(A)相等(B)互补(C)相等且互补(D)相等或互补13.如图19-2-(8)AB‖CD,∠α=()(A)50°(B)80°(C)85°14.两个角的和与这两角的差互补,则这两个角()A.一个是锐角,一个是钝角B.都是钝角C.都是直角D.必有一个直角15.下列说法正确的是()A.一条直线的垂线有且只有一条B.过射线端点与射线垂直的直线只有一条C.如果两个角互为补角,那么这两个角一定是邻补角D.过直线外和直线上的两个已知点,做已知直线的垂线16.在同一平面内,两条不重合直线的位置关系可能有()A.平行或相交B.垂直或平行C.垂直或相交D.平行、垂直或相交17.不相邻的两个直角,如果它们有一条公共边,那么另一边互相()A.平行B.垂直C.在同一条直线上D.或平行、或垂直、或在同一条直线上18.如图所示,一只老鼠沿着长方形逃跑,一只花猫同时从A点朝另一个方向沿着长方形去捕捉,结果在距B点30cm的C点处捉住了老鼠。

《与线段、角有关的能力提升题》

《与线段、角有关的能力提升题》

《与线段有关的能力提升题》1.已知线段AB=20,M是线段AB的中点,P是线段AB上任意一点,N是线段PB的中点.(1)当P是线段AM的中点时,求线段NB的长;(2)当线段MP=1时,求线段NB的长;(3)若点P在线段BA的延长线上,猜想线段PA与线段MN的数量关系,并画图加以证明.2.如图,点C是线段AB上一点,AB=4AC,点D是线段BC上一点,且2CD=3AC.(1)若AB=8cm,求线段AD的长;(2)若AB=acm,请问点D是否是线段BC的中点吗,若是,请证明;若不是,请说明理由.3.已知:如图,点C、D在线段AB上,点D是AB中点,AC=13AB,AB=12.(1)求线段CD的长;(2)E是线段BD上一点,且DE=CD,请在图中画出点E,并证明C是AE的中点.4.如图点C在线段AB上,线段AC=8cm,BC=4cm,点M、N分别是AC、BC的中点,求:(1)线段MN的长度.(2)根据(1)的计算过程和结果,设AC+BC=a,其它条件不变,你能猜测出MN的长度吗?请证明你的猜测.5.如图所示,点M、N分别是线段AC、BD的中点.求证MN=12(AB-CD).6.如图所示,点C为线段AB上一点,点M、N分别是AC、BC的中点.求证:MN=12AB7.如图,点C,B为线段AD上两点,AC=BD,点B为线段CD的三等分点(靠近点C),点M,N分别为AB,CD的中点.(1)求证:3CM=DN;(2)若MN=20,求DM的长.8.如图,线段AB=24,动点P从A出发,以每秒2个单位的速度沿射线AB运动,M为AP的中点.(1)出发3秒后,AM=,PB=.(不必说明理由)(2)出发几秒后,AP=3BP?(3)当P在AB延长线上运动时,N为BP的中点,MN的长度是否为定值,若是,请给出证明;若不是,请说明理由.9.如图已知线段AB、CD,(1)线段AB在线段CD上(点C、A在点B的左侧,点D在点C的右侧)①若线段AB=6,CD=14,M、N分别为AC、BD的中点,求MN的长.+CD②M、N分别为AC、BD的中点,求证:MN=(2)线段CD在线段AB的延长线上,M、N分别为AC、BD的中点,②中的结论是否成立?请画出图形,直接写出结论【类型二含比例计算】1.如图,C,D是线段AB上的两点,且满足AC:CD:DB=3:2:1,M,N分别为AC和CB的中点.1若AB=24,求DN的长度;2证明:5MN=6(CD+DN).2.如图,AB=12cm,点C在线段AB上,点D,E分别在线段AC、BC上.(1)若C是AB中点,CE=13CB,求CE;(2)若C是AB上任意一点,且CD=13AC,CE=13CB,求DE.3.如图所示,C是线段AB上一点,M是线段AC的中点,N是线段BC的中点,AC:CB= 3:2,NB=2.5cm,求线段MN的长.4.如图,已知点C在线段AB上,AC=2BC,且AB=2BD,若AB=15厘米,求CD的长.5.如图B、C两点把线段AD分成2∶3∶4的三部分,M是AD的中点,CD=8,求MC的长.6.如图,线段AB=16cm,C为AB上一点,且AC:CB=3:5,M,N分别为AC,AB的中点,求MN的长.7.如图,A,B是线段MN上的两点,且MA∶AB∶BN=2∶3∶4,MN=36cm,求线段AB和BN的长度.8.如图,已知点C为AB上一点,AC=15cm,CB=13AC,D、E分别为AC、AB的中点,求DE的长.9.如图,线段AB=16,点C是线段AB的中点,点D是线段BC的中点.(1)求线段AD的长;(2)在线段AC上有一点E,CE=13BC,求AE的长.10.如图,C、D、E三点在线段AB上,AD=14DC,点E是线段CB的中点,CE=16AB=2.5.(1)求线段AB的长;(2)求线段DE的长.11.如图,点C,D将线段AB分成3:4:5的三部分,E,F,G分别是AC,CD,DB的中点,且EG=16cm,求BF的长.【类型三动点问题】1.如图,已知线段AB=12cm,点C为线段AB上的一个动点,点D,E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)若把“点C在线段AB上”改为“点C在直线AB上”,当AC=4cm时,求DE的长.(请画出图形,说明理由)2.如图,P是线段AB上一点,AB=18cm,C,D两动点分别从点P,B同时出发沿射线BA向左运动,到达点A处即停止运动.(1)若点C,D的速度分别是1cm/s,2cm/s.①当动点C,D运动了2s,且点D仍在线段PB上时,AC+PD=_________cm;②若点C到达AP中点时,点D也刚好到达BP的中点,则AP:PB=_________;(2)若动点C,D的速度分别是1cm/s,3cm/s,点C,D在运动时,总有PD=3AC,求AP的长3.如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动的时间为ts(t不超过10)(1)当t=2时,AB=________cm.(2)当t=8时,求线段CD的长.(3)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.4.如图,P是线段AB上一点,AB=18cm,C,D两动点分别从点P,B同时出发沿射线BA向左运动,到达点A处即停止运动.(1)若点C,D的速度分别是1cm/s,2cm/s.①若2cm<AP<14cm,当动点C,D运动了2s时,求AC+PD的值;②若点C到达AP中点时,点D也刚好到达BP的中点,求AP:PB;(3)若动点C,D的速度分别是1cm/s,3cm/s,点C,D在运动时,总有PD=3AC,求AP的长度.5.如图,点C在线段AB上,AC=3,BC=11,动点P从点A出发,沿线段AB以每秒3个单位长度的速度向终点B匀速运动;同时,动点Q从点B出发,沿线段BA以每秒2个单位长度的速度向终点A匀速运动.当点P到达终点时,点Q也随之停止运动.设点P的运动时间为t秒.(1)线段AB的长为______.(2)当点P与点Q相遇时,求t的值.(3)当点P与点Q之间的距离为9个单位长度时,求t的值.(4)当PC+QB=2.5时,直接写出t的值.6.探究题:如图①,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,则DE=____________cm;(2)若AC=4cm,求DE的长;(3)试利用“字母代替数”的方法,设AC=“a”cm,请说明不论a取何值(a不超过12cm),DE 的长不变.7.如图,点C是线段AB的中点.点D在线段CB上,且DB=2.5cm,AD=8.5cm.(1)线段CD的长度为______.(2)若点E在射线CA上,且AE=3cm,请求出线段CE的长度.(3)动点M从点A出发以每秒2个单位长度的速度向点B方向运动,同时,点N从点B出发以每秒1个单位长度的速度向点A方向运动,假设t秒时点M与点N相遇,则t=______;假设第m秒时,点M与点N之间的距离为2cm,则m=______.9.应用题:如图,已知线段AB=12cm,点C为线段AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4,求DE的长;(2)若C为AB的中点,则AD与AB的数量关系是______;(3)试着说明,不论点C在线段AB上如何运动,只要不与点A和B重合,那么DE的长不变.10.线段AB=16,C,D是线段AB上的两个动点(点C在点D的左侧),且CD=2,E为BC的中点,(1)如图1,当AC=4时,求DE的长.(2)如图2,F为AD的中点①点C,D在线段AB上移动的过程中,线段EF的长度是否会发生变化,若会,请说明理由,若不会,请求出EF的长.②当CF=0.8时,请直接写出线段DE的长.11.如图1,已知线段AB=24,点C为线段AB上的一点,点D、E分别是AC和BC的中点.(1)若AC=8,则DE的长为;(2)若BC=a,求DE的长;(3)动点P,Q分别从A,B两点同时出发,相向而行,点P以每秒3个单位长度沿线段AB 向右匀速运动,Q点以P点速度的两倍,沿线段AB向左匀速运动,设运动时间为t秒,问当t为多少秒时P,Q之间的距离为6?《与角有关的能力提升题》1.已知∠AOB=80°,OC是过点O的一条射线,OD,OE分别平分∠AOC,∠BOC.(1)如图①,如果射线OC在AOB的内部,且AOC=30°,求∠DOE的度数;(2)如图②,如果射线OC在∠AOB的内部绕点O旋转,∠DOE的度数是多少?为什么?2.已知:如图,OC在∠AOB的内部,OM平分∠AOB∠AOB<180°,ON平分∠BOC.(1)当∠AOC=90°,∠BOC=60°时,∠MON=___________°;(2)当∠AOC=80°,∠BOC=60°时,∠MON=___________°;(3)当∠AOC=80°,∠BOC=50°时,∠MON=___________°;(4)猜想:不论∠AOC和∠BOC的度数是多少,∠MON的度数总等于________的度数的一半.3.(1)如图1所示,已知∠AOB=120°,OC平分∠AOB,OD、OE分别平分∠AOC、∠COB,求∠DOE的度数;(2)如图2,在(1)中把“OC平分∠AOB”改为“OC是∠AOB内任意一条射线”,其他任何条件都不变,试求∠DOE的度数;(3)如图3,在(1)中把“OC平分∠AOB”改为“OC是∠AOB外的一条射线且点C与点B在直线AO的同侧”,其他任何条件都不变,请你直接写出∠DOE的度数4.如图,已知点O为直线AB上一点,∠COD=90°,OE是∠AOD的平分线.(1)如图1,若∠COE=55°,求∠BOD的度数;(2)如图2,OF是∠BOC的平分线,求∠EOF的度数;(3)在(2)的条件下,OP是∠BOD的一条三等分线,若∠AOC+∠DOF=∠EOF,求∠FOP的度数.【类型二定值问题】1.如图,已知在同一平面内OA⊥OB,OC是OA绕点O顺时针方向旋转α(α<90°)度得到,OD平分∠BOC,OE平分∠AOC.(1)若α=60即∠AOC=60°时,求∠BOC,∠DOE.(2)在α的变化过程中,∠DOE的度数是一个定值吗?若是定值,请求出这个值;若不是定值,请说明理由.2.问题情境:如图,直线AB,CD相交于点O.ON把∠AOD分成两个角,且∠AON:∠NOD=2:3.问题提出:(1)若∠BOC=75°,求∠AON的度数.(2)如果∠BOC=75°,OM平分∠BON,那么OB是∠COM的平分线吗?试说明理由.问题解决:(3)若OM⊥ON,则35∠AOC−∠DOM是否为定值?若是,请求出定值:若不是,求说明理由.3.如图,∠AOB=100°,∠COD=40°,射线OE平分∠AOC,射线OF平分∠BOD(本题中的角均为大于0°且小于180°的角).(1)如图,当OB,OC重合时,求∠EOF的度数;(2)当∠COD从图中所示位置绕点O顺时针旋转n度0<n<40时,∠AOE−∠BOF的值是否为定值?若是定值,求出∠AOE−∠BOF的值,若不是,请说明理由.(3)当∠COD从图中所示位置绕点O顺时针旋转n度0<n<220时,∠AOE与∠BOF具有怎样的数量关系?4.如图,将两块直角三角板的45°角和一个90°角的顶点B叠放在一起,将三角板BDE绕点B旋转,旋转过程中,三角板BDE的直角边BE始终在∠ABC的内部,在旋转过程中(1)若∠ABD=126°时,∠CBE=______°;(2)善于思考的小明发现,在旋转过程中,①∠CBD−∠ABE和②∠ABD+∠CBE的度数均各为一个定值,请你写出这两个定值,定值:①______;②______.(4)作∠ABE和∠CBD的平分线BM,BN,在旋转过程中∠MBN的值是否发生变化?若不变,请求出这个定值;若变化,请求出变化的范围.5.已知,如图1,将一块直角三角板的直角顶点O放置于直线MN上,直角边OA与直线MN 重合,其中∠AOB=90°,然后将三角板AOB绕点O顺时针旋转,设∠AOM=α,从点O引射线OC和OD,OC平分∠BON,∠BOD=13∠MOB.(1)如图2,填空:当α=30°时,∠CON=______°.(2)如图2,当0°<α<90°时,求∠COD的度数(用含α的代数式表示);(3)如图3,当90°<α<180°时,请判断∠COD−16∠BON的值是否为定值,若为定值,求出该定值,若不是定值,请说明理由.6.已知O为直线AB上的一点,射线OA表示正北方向,∠COE=90°,射线OF平分∠AOE.(1)如图1,若∠AOE=68°,则∠FOC的度数是___________;(2)若将∠COE绕点O旋转至图2的位置,试判断∠FOC和∠BOE之间的数量关系并证明你的证明;(3)若将∠COE绕点O旋转至图3的位置,直接写出2∠COF+∠BOE的度数是___________.7.在∠AOB内部作射线OC,OD,OA在OB的右侧,且∠AOB=2∠COD.(1)如图,若∠AOB=140°,OE平分∠AOD,OF平分∠BOC,则∠EOF=_________°(2)如图,OE平分∠BOD,探究∠AOD与∠COE之间的数量关系,并证明;(3)设∠COD=m°,OC在OD的左侧,过点O作射线OE,使OC为∠BOE的平分线,再作∠COD的平分线OF,若∠COE=2∠EOF,画出相应的图形并求出∠BOE的度数(用含m的式子表示)8.已知O为直线AB上的一点,射线OA表示正北方向,∠COE=90°,射线OF平分∠AOE.(1)如图1,若∠BOE=110°,求∠COF的度数.(2)若将∠COE绕点O旋转至图2的位置,试判断∠COF和∠BOE之间的数量关系,并证明你的结果.(3)若将∠COE绕点O旋转至图3的位置,求满足:3∠COF﹣2∠BOE=36°时,∠EOF的度数.9.已知O为直线AB上的一点,∠COE=90°,射线OF平分∠AOE.(1)在图1中,当∠COF=36°时,则∠BOE=,当∠COF=m°时,则∠BOE=;以此判断∠COF和∠BOE之间的数量关系是;(2)若将∠COE绕点O旋转至图2的位置,试问(1)中∠COF和∠BOE之间的数量关系是否发生变化?若不发生变化,请你加以证明;若发生变化,请你说明理由;(3)若将∠COE绕点O旋转至图3的位置,继续探究∠COF和∠BOE之间的数量关系,并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段角度经典题目
1 如图点C在线段AB上,AM=8cm,NB=6cm,点M N分别为AC BC的中点
(1)求线段MN的长
(2)若C为线段AB上任一点,满足AC+BC=a cm,其他条件不变,你能猜想MN的长度吗?理由
(3)若C为线段AB上任一点,满足AC+BC=a cm,其他条件不变,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由
2 已知,OM ON分别是∠AOC, ∠BOC的角平分线
(1)如图1,若∠AOB=120º,∠BOC=30º,则∠MON=
(2)如图1,若∠AOB=120º,∠BOC=βº,能否求出∠MON的度数?若能,求出其值,若不能,试说明理由;
(3)如图2,若∠AOB=αº,∠BOC=βº,是否依然能求出∠MON的度数,若能,求∠MON的度数(用含α或β的式子表示),并从你的求解过程中总结出发现的规律。

相关文档
最新文档