典型例题解析:比例线段.

合集下载

线段的比与比例线段

线段的比与比例线段

线段比与比例线段的联系
定义关联
线段比描述了两条线段长 度的相对大小,而比例线 段则是基于线段比构建的 一种特殊线段关系。
性质相通
在比例线段中,若两条线 段成比例,则它们的比值 是相等的,这与线段比的 性质是一致的。
应用互补
在解决几何问题时,线段 比和比例线段经常相互补 充,共同构建解题思路。
线段比与比例线段的区别
线段的比与比例 线段
目录
• 线段比的基本概念 • 比例线段的基本概念 • 线段比与比例线段的关系 • 线段比与比例线段的应用 • 典型例题解析
01
线段比的基本概念
定义与性质
定义:对于两条线段a和b(b≠0),线段 a与b的比定义为a/b,记作a:b。
线段比具有对称性,即若a:b=c:d,则 b:a=d:c。
利用平行线分线段成比例定理,可以求解未知线段的长度或证明线段的比例关系。
在复杂图形中,可以通过作平行线构造相似三角形,进而利用相似三角形的性质求 解问题。
在其他几何问题中的应用
在几何变换(如平移、旋转、缩放等) 中,线段之间的比例关系保持不变。
在解析几何中,线段的比和比例关系 可以用于求解方程、证明定理等。
定义与性质
定义
两组线段,若它们的 比值相等,则称这两 组线段为比例线段。
反比性质
若a/b = c/d,则b/a = d/c。
更比性质
若a/b = c/d,则 a+b/b = c+d/d。
合比性质
若a/b = c/d,则 (a+b)/b = (c+d)/d。
等比性质
若a/b = c/d = ... = m/n,则 (a+c+...+m)/(b+d+ ...+n) = a/b。

学姐笔记-中考数学几何经典题型比例线段

学姐笔记-中考数学几何经典题型比例线段

比例线段知识考点:本节知识在历年中考的考题中,主要涉及用比例的性质、平行线分线段成比例定理。

由于比例的性质在应用时有其限制条件,一些中考题又以此为背景设计分类求解题。

精典例题:【例1】已知0543≠==zy x ,那么z y x z y x +++-= 。

分析:此类问题有多种解法,一是善于观察所求式子的特点,灵活运用等比性质求解;二是利用方程的观点求解,将已知条件转化为z x 53=,z y 54=,代入所求式子即可得解;三是设“k ”值法求解,这种方法对于解有关连比的问题十分方便有效,要掌握好这一技巧。

答案:31变式1:已知32===f e d c b a ,若032≠-+-f d b ,则3222-+--+-f d b e c a = 。

变式2:已知3:1:2::=z y x ,求yx zy x 232++-的值。

变式3:已知aac b b c b a c c b a k -+=+-=-+=,则k 的值为 。

答案:(1)32;(2)3;(3)1或-2; 【例2】如图,在△ABC 中,点E 、F 分别在AB 、AC 上,且AE =AF ,EF 的延长线交BC 的延长线于点D 。

求证:CD ∶BD =CF ∶BE 。

分析:在题设中,没有平行的条件,要证明线段成比例,可考虑添加平行线,观察图形,对照结论,需要变换比CF ∶BE ,为了变换比CF ∶BE ,可以过点C 作BE 的平行线交ED 于G ,并设法证明CG =CF 即可获证。

本例为了实现将比CF ∶BE 转换成比CD ∶BD 的目的,还有多种不同的添画平行线的方法,它们的共同特征都是构造平行线截得的线段成比例的基本图形,请你们参考图形,自己去构思证明。

例2图1GFEDCBA 例2图2 GF EDC B A例2图3GFEDC B A变式1:已知如图,D 是△ABC 的边BC 的中点,且31=BE AE ,求FCAF的值。

变式2:如图,BD ∶DC =5∶3,E 为AD 的中点,求BE ∶EF 的值。

初三数学之 成比例线段(解析版)

初三数学之 成比例线段(解析版)

3.1.2 成比例线段建议用时:45分钟 总分50分一 选择题(每小题3分,共18分)1.已知线段a =2,b =4,如果线段b 是线段a 和c 的比例中项,那么线段c 的长度是( )A .8B .6C .2√2D .2【答案】A【解析】若b 是a 、c 的比例中项,即b 2=ac .42=2c ,解得c =8,故选:A .2.在比例尺为1:1000000的地图上量得A ,B 两地的距离是20cm ,那么A 、B 两地的实际距离是( )A .2000000cmB .2000mC .200kmD .2000km 【答案】C【解析】根据比例尺=图上距离:实际距离,得A 、B 两地的实际距离为20×1000000=20000000(cm ),25000000cm =200km .故A 、B 两地的实际距离是200km .故选:C .3.下列线段的长度成比例的是( )A .2cm 、3cm 、4cm 、5cmB .1.5cm 、2.5cm 、4cm 、5cmC .1.1cm 、2.2cm 、3.3cm 、4.4cmD .1cm 、2cm 、3cm 、6cm【答案】D【解析】A 、3×4≠2×5,故本选项错误B 、2.5×4≠5×1.5,故选项错误;C 、1.1×4.4≠2.2×3.3,故选项错误;D 、3×2=1×6,故本选项正确.故选:D .4.已知,P 是线段AB 上的点,且AP 2=BP •AB ,那么AP :AB 的值是( )A .√5−12B .3−√52C .√5+12D .3+√52【答案】A【解析】设AB 为1,AP 为x ,则BP 为1﹣x ,∵AP 2=BP •AB ,∴x 2=(1﹣x )×1解得x 1=√5−12,x 2=−1−√52(舍去).∴AP :AB =√5−12.故选:A . 5.如图,C 为线段AB 的黄金分割点(AC <BC ),且BC =4,则AB 的长为( )A.2√5+2B.2√5−2C.√5+3D.√5−3【答案】A【解析】∵C为线段AB的黄金分割点(AC<BC),∴BC=√5−12AB,∴AB=2√5−1×4=2√5+2.故选:A.6.已知P是线段AB的黄金分割点,且AP>BP,那么下列比例式能成立的是()A.ABAP =APBPB.ABAP=BPABC.BPAP=ABBPD.ABAP=√5−12【答案】A【解析】根据黄金分割定义可知:AP是AB和BP的比例中项,即AP2=AB•BP,∴ABAP =APBP.故选:A.二、填空题(每小题3分,共9分)7. 已知四条线段a,2,6,a+1成比例,则a的值为.【答案】3【解析】∵四条线段a,2,6,a+1成比例,∴a2=6a+1,解得:a1=3,a2=﹣4(舍去),所以a=3,故答案为:38.我们把边长是两条对角线长度的比例中项的菱形叫做“钻石菱形”.如果一个“钻石菱形”的面积为6,那么它的边长是2√3.【答案】2√3.【解析】由比例中项的定义可得,“钻石菱形”的边长=√6×2=2√3.故答案为:2√3.9.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加美感,按此比例,如果雕像的身高为3米,设雕像的上部为x米,根据其比例关系可得其方程为_____.【答案】x2﹣9x+9=0【解析】根据题意得x:(3﹣x)=(3﹣x):3整理得x2﹣9x+9=0.三、解答题(7+7+8=23分)10. 如图所示,在线段AB上有C、D两点,已知AB=7,AC=1,且线段CD是线段AC和BD的比例中项,求线段CD的长.解:∵AB =7,AC =1,∴BD =AB ﹣AC ﹣CD =6﹣CD ,∵线段CD 是线段AC 和BD 的比例中项,∴CD 2=AC •BD ,即CD 2=1×(6﹣CD ),解得:CD =2.11.已知P 为线段AB 上一点,且AB 被点P 分为AP :PB =2:3.(1)求AB :BP ;(2)如果AB =100cm ,试求PB 的长.解:(1)设AP =2x ,则PB =2x ,AB =5x ,所以AB PB =5x 3x =53;(2)当AB =100时,100PB =53, 所以PB =60(cm ).12. 如图1,点C 把线段AB 分成两条线段AC 和BC ,如果AC =√5−12AB ,则称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金“右割“点,根据图形不难发现,线段AB 上另有一点D 把线段AB 分成两条线段AD 和BD ,若BD =√5−12AB ,则称点D 是线段AB 的黄金“左割”点.请根据以上材科.回答问题如图2,若AB =8,点C 和点D 分别是线段AB 的黄金“右割”点、黄金“左割”点,则BC = ,DC = .解:(1)∵点C 和点D 分别是线段AB 的黄金“右割”点、黄金“左割”点,∴AC =BD =√5−12AB =√5−12×8=4√5−4,∴BC =8﹣(4√5−4)=12﹣4√5;∴DC =BD ﹣BC =(4√5−4)﹣(12﹣4√5)=8√5−16;故答案为12﹣4√5;8√5−16;。

比例线段

比例线段

比例线段【复习知识点】 1.比例尺:比例尺=实际距离图上距离2.黄金分割:如果点P 为线段AB 的黄金分割点(AP >PB ),那么215-==ABAPAP PB .3.三角形的重心:三角形三条中线相交于一点,这个交点叫做三角形的重心.重心定理:2===GFCG GE BG GD AG4. 基本图形中的比例线段(A 字型、X 型、井字型.)【例题讲解】1、如图,在平行四边形ABCD 中,点F 在AD 边上,BA 的延长线交CF 的延长线于点E ,EC 交BD 于点M ,求证:2CM EM FM =MEF DCB AB EBC2、如图,E 为□ ABCD 的边BC 延长线上一点,AE 与BD 交于点F ,与DC 交于点G . (1)若BC=2CE ,求FB DF的值.(2)若BC=k •CE ,求FGAF 的值.3、如图,直线DE 交AC 、AB 于D 、F ,交CB 的延长线于E ,且BE :BC=2:3,AD=CD ,求:AF :BF 的值。

4、如图,点P 是菱形ABCD 对角线AC 上的一点,联接DP 并延长DP 交边AB 于点E ,联接BP 并延长BP 交边AD 于点F ,交CD 的延长线于点G . (1)求证:△APB ≌△APD ;(2)已知DF :F A =1:2,设线段DP 的长为x ,线段PF 的长为y .①求y 与x 的函数关系式;②当x =6时,求线段FG 的长.A BEDCFGa x cb a xc b a x c b a x c b (A ) (B ) (C ) (D ) 【巩固练习】 一、选择题1、下列各组线段中,能成比例线段的一组是( ) A. 2,3,4,6 B.2,3,4,5 C.2,3,5,7 D.3,4,5,62、若bd ac =,则下列比例式中不正确的是( ) (A )c bd a =; (B )d a c b =; (C )d b c a =; (D )dca b =. 3、已知线段a 、b 、c ,作线段x ,使a ∶b =c ∶x ,则正确的作法是( )4、如图,点D 、E 分别是ABC △边AB 、AC 上的点,下列比例式中,能判定//DE BC 的是( ) A.AD AEAB EC=B.AD DEAB BC=C.AD ABAE AC=D.AD AEDB AC=5、如图,在ABC △中,点D 是边BC 上任意一点,点E 、F 分别是ABD △和ACD △的重心。

解比例典型例题及答案

解比例典型例题及答案

解比例答案典题探究例1.按下面的条件列出比例并解比例.(1)5和8的比等于20和X的比.(2)4和12的比等于8和X的比.(3)等号左端的比是4.5:X,等号右端的比是0.3:4.(4)比的两个外项分别是X和1.5,两个内项分别是2.8和3.考点:解比例.专题:比和比例.分析:(1)根据题意先列出比例式5:8=20:x,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除5,即可得解;(2)根据题意先列出比例式4:12=8:x,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除4,即可得解;(3)根据题意先列出比例式4.5:x=0.3:4,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除0.3,即可得解;(4)根据题意先列出比例式x:2.8=3:1.5,再根据两内项之积等于两外项之积把比例式转化为乘积式,然后再根据等式的性质方程两边同除1.5,即可得解;解答:解:(1)5:8=20:x;5x=20×85x÷5=160÷5x=32;(2)4:12=8:x4x=12×84x÷4=96÷4x=24;(3)4.5:x=0.3:40.3x=4×4.50.3x÷0.3=18÷0.3x=60;(4)x:2.8=3:1.51.5x=3×2.81.5x÷1.5=8.4÷1.5x=5.6.点评:此题考查解比例的方法:根据两内项之积等于两外项之积,把比例式转化为乘积式是解题的关键.例2.求未知数x的值.(1)7:x=0.8:2.4;(2)=;(3)x:=18:.考点:解比例.专题:比和比例.分析:(1)根据比例的基本性质可得:0.8x=7×2.4,再利用等式的性质,两边同时除以0.8求解;(2)根据比例的基本性质可得:15x=20×0.8,再利用等式的性质,两边同时除以15求解;(3)根据比例的基本性质可得:x=×18,再利用等式的性质,两边同时除以求解.解答:解:(1)7:x=0.8:2.40.8x=7×2.40.8x÷0.8=16.8÷0.8x=21;(2)=15x=20×0.815x÷15=16÷15x=;(3)x:=18:x=×18x=x=.点评:此题考查了比例的基本性质和等式的性质的计算应用.例3.若自然数A、B满足﹣=,且A:B=4:5.那么A=8,B=10.考点:解比例.专题:简易方程.分析:把﹣=的左边通分成,由A:B=4:5,根据比例的性质,可得5A=4B,推出A=B,把A=B代人=中,即可求得B的数值,进而求得A的数值.解答:解:因为A:B=4:5,所以5A=4B,A=B;﹣=,=,把A=B代人=中,得:=,=,×=,=,B=10;把B=10代入A=B中,A=B=×10=8;故答案为:8,10.点评:用含B的式子表示出A是解答此题的关键,进而代入方程即可得解.例4.只列算式(或方程),不计算.(1)比例的两个内项分别是5和2,两个外项分别是x和3.5.(2考点:解比例;分数除法应用题.专题:压轴题.分析:(1)根据比例的基本性质“两外项之积等于两内项之积”,据此列出方程即可;(2)根据图意,可知把这根绳子的总长看做单位“1”,用去了,还剩下300米;要求单位“1”的量,要先求出还剩下的300米对应的分率是多少列式为:1﹣,进而用具体的数量除以具体的数量对应的分率即可解答.解答:解:(1)x:2=5:3.5;(2)300÷(1﹣).点评:此题考查根据题意或图意,列比例式或算式,解决关键是要分析好题意或图意,灵活的解答即可.演练方阵A档(巩固专练)一.选择题(共7小题)1.在2、3、这三个数中插入第四个数X,使得这四个数能组成比例,那么X最小是()A.B.C.D.考点:解比例;比例的意义和基本性质.专题:比和比例.分析:根据比例的性质:两内项之积等于两外项之积.要使插入的第四个数X最小,即要使两内项之积或两外项之积最小,积最小为:2×,据此解答即可.解答:解:由分析可得:2×=3X,所以X=.故选:C.点评:解答本题的关键是,分析出要使插入的第四个数X最小,即要使两内项之积或两外项之积最小.2.(•静宁县)在比例中,两个外项互为倒数,两个内项()A.成正比例B.成反比例C.不成比例考点:解比例;正比例和反比例的意义.分析:根据倒数的定义结合比例的基本性质,即可得出两个内项的关系.解答:解:因为在比例中,两个外项互为倒数,所以两个内项的积=1,所以两个内项成反比例.故选:B.点评:本题考查了正比例和反比例的意义,得到两个内项的积=1是解题的关键.3.(•厦门)如果a÷=b×(a、b都不等于零),那么()A.a>b B.a=b C.a<b考点:解比例;比与分数、除法的关系.专题:压轴题.分析:可令a÷=b×的值为1,求得a,b,再比较a,b的关系.解答:解:令a÷=b×=1,则a=,b=,则a<b.故选C.点评:考查了比例中的大小比较问题,常用举特例的方法解决这类问题.4.2:x=:,x=()A.40B.4C.0.4D.1考点:解比例.分析:根据两内项之积等于两外项之积把比例式转化为乘积式,然后再解关于x的一元一次方程即可.解答:解:x=2×,x=,解得x=1.故选D.点评:本题主要考查了解比例,根据两内项之积等于两外项之积把比例式转化为乘积式是解题的关键,是基础题,难度不大.5.在=中,a的值是()A.2B.4C.6D.8考点:解比例.分析:利用比例的基本性质“两内项之积等于两外项之积”由此可求得a,进而选择正确答案.解答:解:根据比例的基本性质可解得:a=4,故选:B.点评:紧扣比例的基本性质即可解决此类问题.6.当:4=x:5时,x的值是()A.B.C.D.考点:解比例.分析:根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,再进行选择.解答:解::4=x:5,4x=×5,4x=3,x=.故选:B.点评:此题考查比例性质的运用即解比例.7.已知,则x=()A.40B.4C.0.4D.1考点:解比例.分析:解比例的方法:根据比例的性质先把比例式转化成两外项积等于两内项积的形式,就是已学过的简易方程,再解简易方程即可.解答:解:,x=2×,x=,x=,x=1.故选:D.点评:此题考查根据比例的性质解比例:把比例式先转化成两外项积等于两内项积的形式,再解方程即可.二.填空题(共10小题)8.(1)如果:5=16%:7,那么=;(2)若(0.5+÷)=,则=.考点:解比例;整数、分数、小数、百分数四则混合运算.专题:运算顺序及法则;简易方程.分析:(1)把五角星未知数看作x,根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以7求解,(2)把正方形看作未知数x,依据等式的性质,方程两边同时除以,再同时减0.5,然后同时乘x,最后同时除以求解.解答:解:(1)把原题中五角星未知数看作x,原题化为:x:5=16%:7,7x=5×16%,7x=0.8,7x÷7=0.8÷7,x=,即=,故应填:;(2)把原题中的正方形看作未知数x,原题化为:(0.5+÷x)=,(0.5+÷x)=,0.5+÷x﹣0.5=﹣0.5,x×x=x,x,x=,即=,故应填:.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解方程时注意对齐等号.9.在X:1=3:4中,X=.考点:解比例.分析:本题按照比例的基本性质两内项之积等于两外项之积来求解.解答:解:X:1=3:4解:4X=×34X=X=;故答案为:.点评:解比例使用比例的基本性质来求解.10.0.8:4=8:x中,x=0.4,×.(判断对错)考点:解比例.专题:比和比例.分析:0.8:4=8:x,根据比例的基本性质得:0.8x=4×8,两边同时除以0.8解出x即可.解答:解:0.8:4=8:x0.8x=4×80.8x=32x=32÷0.8x=40x=40而不是0.4,故这句话是错误的.故答案为:×.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解答时注意对齐等号.11.9:6=15:10.考点:解比例.专题:比和比例.分析:根据比的基本性质“两内项之积等于两外项之积”,先求出两內项之积,进而用积除以已知的外项,即可得出未知的外项.解答:解:6×15÷9=90÷9=10;故答案为:10.点评:解决此题也可以根据比的意义,先求出前一个比的比值,进而用后一个比的内项除以比值求解.12.6:1.5=8:2.填上合适的数.4:3=36:2724:80=1.8:6考点:解比例.专题:比和比例.分析:每一道题都设要求的数为x,进而写出比例:(1)根据比例的基本性质,先把比例式转化成等式4x=3×36,再根据等式的性质,在方程两边同时除以4得解;(2)根据比例的基本性质,先把比例式转化成等式1.8x=24×6,再根据等式的性质,在方程两边同时除以1.8得解;(3)根据比例的基本性质,先把比例式转化成等式1.5x=6×2,再根据等式的性质,在方程两边同时除以1.5得解.解答:解:每一道题都设要求的数为x:(1)4:3=36:x,4x=3×36,4x÷4=108÷4,x=27;(2)24:x=1.8:6,1.8x=24×6,1.8x÷1.8=144÷1.8,x=80;(3)6:1.5=x:2,1.5x=6×2,1.5x÷1.5=12÷1.5,x=8.故答案为:27,80,8.点评:本题主要考查了解比例,根据比例的性质先把比例式转化为乘积式是解题的关键;注意等号要对齐.13.解比例::=X:24X:=:0.6.考点:解比例.分析:根据两内项之积等于两外项之积把比例式转化为乘积式,然后再解关于x的一元一次方程即可.解答:解:(1)x=24×,x=9,解得x=10;(2)0.6x=×,0.6x=,解得x=;(3)4x=5.2×6.5,4x=33.8,解得x=8.45;(4)0.6x=1.2×4,0.6x=4.8,解得x=8.点评:本题主要考查解比例,根据两内项之积等于两外项之积把比例式转化为乘积式是解题的关键,是基础题,难度不大.14.(•金寨县模拟)甲数比乙数少,甲数和乙数的比是2:9.考点:解比例.分析:甲数=(1﹣)×乙数,依此可求甲数与乙数的比.解答:解:甲数和乙数的比=(1﹣):1=2:9.故答案为:2:9.点评:考查了求比的问题,解题的关键是将乙数看作单位1,依此得到甲数.15.如果x:=0.15:2.5,那么x=0.048.考点:解比例.专题:比和比例.分析:根据比例的基本性质变为:2.5x=×0.15,然后化简,再在方程的两边同时除以2.5求解.解答:解:x:=0.15:2.52.5x=×0.152.5x=0.122.5x÷2.5=0.12÷2.5x=0.048故答案为:0.048.点评:本题考查了利用比例的基本性质解比例.16.能与:组成比例的比是B、CA.2:3B.9:6C.:D.:.考点:解比例.分析:先化简:,再分别计算各选项,与:进行比较,比值相等的即为所求.解答:解::=3:2.A、因为2:3≠3:2,所以不能组成比例,故选项错误;B、因为9:6=3:2,所以能组成比例,故选项正确;C、因为:=3:2,所以能组成比例,故选项正确;D、因为:=2:3≠3:2,所以不能组成比例,故选项错误.故选:B和C.点评:本题考查了比例线段的定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a:b=c:d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.17.在横线里填上适当的数.5:4=30:241.5:0.18=150:188:15=24:4536:12=9:30.9:0.5=9:5.考点:解比例.专题:比和比例.分析:设未知数为x,列出比例,根据比例的基本性质,两外项之积等于两内项之积,求出未知数即可.解答:解:(1)5:4=x:244x=5×244x÷4=5×24÷4x=30;(2)1.5:0.18=x:180.18x=1.5×180.18x÷0.18=1.5×18÷0.18x=150;(3)8:15=24:x8x=15×248x÷8=15×24÷8x=45;(4)36:12=9:x36x=12×936x÷36=12×9÷36x=3;(5)x:0.5=9:55x=0.5×95x÷5=0.5×9÷5x=0.9.故答案为:30,150,45,3,0.9.点评:此题主要是考查解比例,解比例与解方程类似,要注意书写格式.解比例的依据是比例的基本性质及等式的性质.三.解答题(共11小题)18.计算:4:5=(χ+5):10.考点:解比例.专题:简易方程.分析:根据两内项之积等于两外项之积,把比例式转化成方程,再根据等式的性质求解即可.解答:解:4:5=(x+5):104×10=5×(x+5)40=5x+255x=40﹣25x=15÷5x=3.点评:掌握比例的基本性质是解题的关键.19.解比例.(1)6:15=x:20(2):x=3:8(3):=:x(4)=(5)x:15=1:2.4(6)8:x=3:1.考点:解比例.专题:比和比例.分析:根据两内项之积等于两外项之积,把比例式转化成方程,再根据等式的性质求解即可.解答:解:(1)6:15=x:2015x=6×2015x÷15=120÷15x=8(2):x=3:83x=3x÷3=6÷3x=2(3)x=(4)0.75x=0.5×60.75x÷0.75=3÷0.75x=4(5)x:15=1:2.42.4x=1×152.4x÷2.4=15÷2.4x=6.25(6)8:x=3=8×x=3点评:掌握比例的基本性质是解题的关键.20.求未知数x的值.:0.05=1:x x﹣1=x+x+x+x+x.考点:解比例;方程的解和解方程.专题:用字母表示数.分析:(1)根据比例的基本性质转化为x=×,再根据等式的基本性质,方程的两边同除以即可;(2)先计算x+x+x+x+x=x,再根据等式的基本性质,方程的两边同x,再加上1即可.解答:解::0.05=1:x,x=×,x÷=×÷,x=;(2)x﹣1=x+x+x+x+x,x﹣1=x,x﹣1﹣x=x﹣x,x﹣1=0,x﹣1+1=0+1,x=1,x=32.点评:本题主要考查学生依据等式的性质,以及比例基本性质解方程的能力,解答时注意对齐等号.21.解方程.X:1.2=3:4=30%X﹣X=.考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)根据比例的基本性质:两内项之积等于两外项之积可得4x=1.2×3,再利用等式的性质两边同时除以4即可解答;(2)可以写成x:4=3:10,根据比例的基本性质:两内项之积等于两外项之积可,10x=4×3,再利用等式的性质两边同时除以10即可解答;(3)先把左边计算出来得:x=,再利用等式的性质,两边同时乘,即可解答.解答:解:(1)x:1.2=3:4,4x=1.2×3,4x÷4=3.6÷4,x=0.9,(2)=30%,x:4=3:10,10x=4×3,10x÷10=12÷10,x=1.2,(3)x﹣x=,x=,x×=×,x=2.点评:此题考查了利用比例的基本性质解比例和利用等式的性质解方程的方法.22.一个数和的比等于8和1.6的比,求这个数.考点:解比例.分析:根据题意可以设这个数为x,组成比例,解比例即可.解答:解:设这个数为x.x:=8:1.61.6x=×8x=×8÷1.6x=4答:这个数是4.点评:此题主要考查解比例的方法.23.(•河池)求未知数x的值.(1):x=:8(2)1.7x﹣0.4x=3.9.考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)根据比例基本性质,两内项之积等于两外项之积化简方程,再依据等式的性质,方程两边同时除以求解,(2先化简方程,再依据等式的性质,方程两边同时除以1.3求解.解答:解:(1):x=:8,x=×8,x=,x=4;(2)1.7x﹣0.4x=3.9,1.3x=3.9,1.3x÷1.3=3.9÷1.3,x=3.点评:本题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解答时注意对齐等号.24.(•东莞市模拟)求x的值.6x﹣0.5×5=9.5:x=:0.75考点:解比例;方程的解和解方程.专题:简易方程.分析:①根据比例的性质变成x=×,再根据等式的性质,方程的两边同时除以即可;②6x﹣0.5×5=9.5,先计算0.5×5=2.5,再根据等式的性质,方程的两边同时加上2.5,再除以6即可;解答:解:①:x=:0.75,x=×,x=,x÷=÷,x=;②6x﹣0.5×5=9.5,6x﹣2.5=9.5,6x﹣2.5+2.5=9.5+2.5,6x=12,6x÷6=12÷6,x=2.点评:此题考查根据等式的性质和比例的性质解比例和解方程的能力,注意等号对齐.25.解比例:8:20=7.6:x.考点:解比例.专题:比和比例.分析:根据比例的基本性质,先把比例式转化成等式8x=20×7.6,再根据等式的性质,在方程两边同时除以2.5得解.解答:解:8:20=7.6:x8x=20×7.68x=1528x÷8=152÷8x=19.点评:本题主要考查了解比例,根据比例的性质先把比例式转化为乘积式是解题的关键;注意等号要对齐.26.解方程.(1)4.2:x=25(2)3.6x:=3.5(3)x:=(4)x:0.25=4.考点:解比例.专题:比和比例.分析:(1)根据比例的基本性质,两内项之积等于两外项之积,方程可化为25x=4.2,再依据等式的性质,两边同除以25即可求解;(2)根据比例的基本性质,两内项之积等于两外项之积,方程可化为3.6x= 3.5,再依据等式的性质,两边同除以3.6即可求解;(3)根据比例的基本性质,两内项之积等于两外项之积,方程可化为x=×,化简计算即可;(4)根据比例的基本性质,两内项之积等于两外项之积,方程可化为x=0.25×4,化简计算即可;解答:解:(1)4.2:x=2525x=4.225x÷25=4.2÷25x=0.168(2)3.6x:=3.53.6x= 3.53.6x÷3.6=1.75÷3.6x=0.486(3)x:=x=×x=(4)x:0.25=4x=0.25×4x=1点评:本题主要考查运用等式的性质以及比例的基本性质解方程的能力,注意等号对齐.27.解方程或解比例:8x÷(1.8÷3)=1.5.:=:(4﹣x)考点:解比例;方程的解和解方程.专题:简易方程.分析:(1)先化简方程的左边,变成8x÷0.6=1.5,然后方程的两边同时乘上0.6,再同时除以8即可;(2)根据比例的基本性质,把方程变成×(4﹣x)=×,然后方程的两边同时除以,再同加上x,最后同时减去即可.解答:解:(1)8x÷(1.8÷3)=1.58x÷0.6=1.58x÷0.6×0.6=1.5×0.68x=0.98x÷8=0.9÷8x=0.1125;(2):=:(4﹣x)×(4﹣x)=××(4﹣x)÷=÷4﹣x=4﹣x+x=+xx+﹣=4﹣x=3.点评:本题考查了根据比例的基本性质以及等式的性质解方程的方法,计算时要细心,注意把等号对齐.28.求未知数x(1)6.5:x=314:4(2)8(x﹣2)=2(x+7)考点:解比例;方程的解和解方程.专题:简易方程;比和比例.分析:(1)先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以314即可;(2)先化简方程,再根据等式的性质,在方程两边同时减2x,加16,再同时除以6求解.解答:解:(1)6.5:x=314:4314x=6.5×4314x÷314=26÷314x=;(2)8(x﹣2)=2(x+7)8x﹣16=2x+148x﹣16+16﹣2x=2x+14﹣2x+166x=306x÷6=30÷6x=5.点评:此题考查了根据等式的性质解方程,即等式两边同时加、减、乘同一个数或除以同一个不为0的数,等式的左右两边仍相等;注意等号上下要对齐.B档(提升精练)一.选择题(共14小题)1.当x=()时,的比值恰好是最小的质数.A.B.C.考点:解比例.专题:比和比例.分析:最小的质数是2,所以可得的一个等式:=2,根据比与除法的关系即比的前项相当于除法的被除数,比的后项相当于除法的除数,比值相当于除法的商,然后再进行计算得到答案.解答:解;=2x=÷2,x=,答:当x=时,的比值恰好是最小的质数.故选:C.点评:解答此题的关键是确定比与除法之间的关系,然后再进行计算即可.2.解比例是根据()A.比的基本性质B.比例的基本性质C.比例的意义.考点:解比例.专题:比和比例.分析:解比例是求比例的解的过程,即先把比例改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,所以根据的是比例的基本性质.据此即可判断.解答:解:解比例是先把比例改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项,所以解比例是根据比例的基本性质.故选:B.点评:本题考查了解比例的依据,明确解比例的定义是关键.3.如果3:5=x:2,那么x应该是()A.B.C.D.考点:解比例.专题:比和比例.分析:根据比例的性质,可得5x=3×2,再利用等式的性质两边同时除以5,即可得出x=,据此即可选择.解答:解:3:5=x:2,5x=3×2,5x÷5=6÷5,x=.故选:A.点评:熟练运用比例的基本性质,掌握比例式和等式的转化.4.解比例:=2:1,x=()A.6B.1.5C.0.7D.9考点:解比例.专题:比和比例.分析:根据比例的基本性质:两内项之积等于两外项之积,得出关于x的方程,再利用等式的性质解方程即可解答问题.解答:解:=2:1x:3=2:1x=6.故选:A.点评:此题考查了比例的基本性质和等式的性质的应用.5.解比例的根据是()A.比的基本性质B.比例的基本性质C.分数的基本性质考点:解比例.分析:首先要知道什么是解比例,然后分析每个选项,看哪一个最适合用来作为解比例的根据.解答:解:因为求比例的解的过程,叫做解比例.所以选项A:比的基本性质“比的前项和后项同时乘或除以相同的数(0除外),比值不变.”不能作为解比例的根据.选项B:比例的基本性质“两外项之积等于两内项之积”可以作为解比例的根据.选项C:分数的基本性质“分子和分母同时扩大或缩小相同的倍数,分数值不变.”也不能作为解比例的根据.故选B.点评:做这道题的关键是分清比、分数和比例的基本性质.6.(X﹣0.1):0.4=0.6:1.2 则X=()A.X=0.3B.X=0.9C.X=0.8考点:解比例.专题:比和比例.分析:根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质求解.解答:解:(X﹣0.1):0.4=0.6:1.2,(X﹣0.1)×1.2=0.6×0.4,(X﹣0.1)×1.2÷1.2=0.24÷1.2,X﹣0.1=0.2,X﹣0.1+0.1=0.2+0.1,X=0.3.故选:A.点评:本题主要考查学生依据等式的性质以及比例的基本性质解方程的能力,解方程时注意对齐等号.7.x=是比例()的解.A.2.6:x=1:8B.3:6=x:8C.:x=考点:解比例.专题:比和比例.分析:根据比例的基本性质,把x=代入各选项即可判断.解答:解:A、把x=代入2.6:x=2.6:=52:25,52:25≠1:8,所以把x=不是2.6:x=1:8的解;B、把x=代入x:8=:8=5:32,3:6≠5:32,所以把x=不是3:6=x:8的解;C、把x=代入:x=:=2:1,:=2:1,所以把x=是:x=:的解.故选:C.点评:本题主要考查学生依据等式的性质以及比例基本性质解方程的能力.8.(•荔波县模拟)如果比例的两个外项互为倒数,那么比例的两个内项()A.成反比例B.成正比例C.不成比例考点:解比例.专题:压轴题.分析:根据互为倒数的定义和比例的两内项之积等于两外项之积,可得比例的两个内项之积等于1,再根据成反比例的定义即可求解.解答:解:因为比例的两个外项互为倒数,那么比例的两个内项之积=1(为恒指),则比例的两个内项成反比例.故选:A.点评:本题考查了倒数的定义和成反比例的条件,两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定.这两种量叫做成反比例的量.它们的关系叫做反比例关系.9.已知:x=0.2:0.3,则x的值为()A.B.C.3考点:解比例.专题:比和比例.分析:先根据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以0.2求解.解答:解::x=0.2:0.3,0.2x=0.3×,0.2x=0.15,0.2x÷0.2=0.15÷0.2,x=,故选:A.点评:解答本题的关键是依据比例基本性质求解.解答时注意对齐等号.10.用4,0.8,5和x组成比例,并解比例,x有()种不同的解.A.1B.2C.3D.4考点:解比例.专题:比和比例.分析:根据比例的基本性质,4,0.8,5和x,组成比例的情况有12种,两内项之积等于两外项之积,这四个数可写成三个等式.据此解答.解答:解:根据分析知,4,0.8,5和x组成比例的情况有12种:(1)5:0.8=x:4,0.8:5=4:x,0.8:5=4:x,4:0.8=x:5,它们变形后都能写成0.8x=5×4,解相同.同理也有四个比例式变形后写成5x=4×0.8,和4x=5×0.8.故选:C.点评:本题考查了学生根据比例的基本性质解答问题的能力.11.解比例30:x=2:0.1,x=()A.6B.1.5C.0.7D.9考点:解比例.专题:比和比例.分析:先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以2求解.解答:解:30:x=2:0.1,2x=30×0.1,2x÷2=3÷2,x=1.5,故应选:B.点评:本题主要考查学生依据等式的性质以及比例基本性质解方程的能力,解方程时注意对齐等号.12.x=1.25是哪个比例的解?()A.2.6:x=6:3B.3:6=x:8C.:x=:考点:解比例.专题:简易方程.分析:把三个选项中的比例式,依据等式的性质,以及比例的基本性质,求出方程的解,再与x=1.25比较即可解答.解答:解:在选项A中:2.6:x=6:36x=2.6×36x÷6=7.8÷6x=1.3;在选项B中:3:6=x:86x=3×86x÷6=24÷6x=4;在选项C中::x=:x=x=x=1.25故选:C.点评:依据等式的性质,以及比例的基本性质,求出选项中各方程的解,是解答本题的关键.13.若已知2:3=(5﹣x):x,那么x等于()A.2B.3C.4D.6考点:解比例.专题:比和比例.分析:先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时加3x,最后同时除以5求解.解答:解:2:3=(5﹣x):x,15﹣3x=2x,15﹣3x+3x=2x+3x,15÷5=5x÷5,x=3.故选:B.点评:本题考查知识点:依据等式的性质,以及比例基本性质解方程.14.如果和相等,则m等于()A.B.C.D.考点:解比例.专题:比和比例.分析:依据题意可列比例式:=,先根据比例基本性质:两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以18即可求解.解答:解:=,18m=11×12,18m÷18=132÷18,m=,m=7.故答案为:A.点评:等式的性质,以及比例基本性质是解方程的依据,解方程时注意对齐等号.二.填空题(共14小题)15.(•新干县)若a与b互为倒数,且=,那么x=.√.(判断对错)考点:解比例.专题:比和比例.分析:若a与b互为倒数,且=,根据比例的基本性质可得:5x=ab=1,那么x=.解答:解:=,根据比例的基本性质可得:5x=ab=1,那么x=;故答案为:√.点评:此题考查了比例的基本性质的运用.16.(•东莞模拟)如果ҳ:=:,那么ҳ=.考点:解比例.分析:根据比例的性质,把比例先改写成两个内项的积等于两个外项的积的形式,再进一步求出比例中的未知项.解答:解:ҳ:=:,X=×,X=,X=.故答案为:.点评:此题考查比例性质的运用即解比例.17.(•铁山港区模拟)下面表格中,如果x与y成正比例,“?”是32:如果x和y成反比例,“?”是8X16?y4896考点:解比例.专题:比和比例.分析:(1)如果x与y成正比例,由正比例的意义可得16:48=?:96,把?看作未知数,根据比例的基本性质进行解比例即可;(2)如果x和y成反比例,由反比例的意义可得96?=16×48,把?看作未知数,根据等式的性质进行解方程即可.解答:解:根据题意可得:(1)16:48=?:96,48?=16×96,48?=1536,48?÷48=1536÷48,?=32;所以,如果x与y成正比例,“?”是32;(2)96?=16×48,96?=768,96?÷96=768÷96,?=8;所以,如果x和y成反比例,“?”是8.故答案为:32,8.点评:本题主要考查正反比例的意义,然后根据题意列出比例或方程再进一步解答即可.18.(•沿河县模拟)根据比例关系填表:x43918152y601024考点:解比例.专题:比和比例.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:因为24×15=360(一定)所以xy成反比例关系.360÷4=90,360÷3=120,360÷60=6,360÷9=40,360÷10=36,360÷18=20,360÷2=180.x43693618152y901206040102024180点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.19.(•靖江市)如果x与y成正比例,那么表中的△是 4.5;如果x与y成反比例,那么△是2.x3△y120180考点:解比例.专题:比和比例.分析:(1)如果表中x和y成正比例,说明x和y对应的比值一定,根据两个比的比值相等列比例,并解比例即可;(2)如果表中x和y成反比例,说明x和y对应的乘积一定,根据两个比的乘积相等列方程,并解方程即可.解答:解:(1)3:120=x:180,120x=3×180,120x÷120=540÷120,x=4.5;(2)180x=3×120,180x=360,180x÷180=360÷180,x=2;故答案为:4.5,2.点评:此题考查根据正、反比例的意义,解答时要根据已知两种相关联的量,看比值一定还是积一定.20.(•广州模拟)0.4:x=1:10.考点:解比例.分析:根据比例的基本性质,把原式转化为x=0.4×10,再根据等式的性质,在方程两边同时乘上求解,解答:解:0.4:x=1:10,x=0.4×10,x×=4×,x=.点评:本题主要考查了学生根据比例的基本性质和等式的性质解方程的能力.21.(•广州模拟)6:2.8=2.4:x.考点:解比例.分析:根据比例的基本性质,把原式转化为6x=2.8×2.4,再根据等式的性质,在方程两边同时除以6求解.解答:解:6:2.8=2.4:x,6x=2.8×2.4,6x÷6=6.72÷6,x=1.12.点评:本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.22.(•江宁区模拟)如果A与B成正比例,那么“?”是 3.2;如果A与B成反比例,那么“?”是5.A4?B200160考点:解比例.分析:这一题可由正比例的意义和反比例的意义解答即可.解答:解:(1)A与B成正比例,△,x=3.2;(2)A与B成反比例,160x=4×200,x=5;故答案为:3.2,5.点评:此题考查了对正比例与反比例意义的理解以及应用的能力,要灵活掌握正反比例的公式.23.(•广州模拟):=4:x.考点:解比例.分析:根据比例的基本性质,把原式转化为,再根据等式的性质,在方程两边同时乘上求解.解答:解::=4:x,,,x=.点评:本题考查了学生根据比例的基本性质和等式的性质解方程的能力,注意等号对齐.。

专题01 比例线段及黄金分割点压轴题型全攻略(原卷版)

专题01 比例线段及黄金分割点压轴题型全攻略(原卷版)

专题01 比例线段及黄金分割点压轴题型全攻略【考点导航】目录【典型例题】 (1)【考点一 比例线段的识别】 (1)【考点二 比例线段的计算】 (2)【考点三 黄金分割点的定义】 (2)【考点四 黄金分割点的应用】 (3)【考点五 黄金分割点的拓展提高】 (3)【过关检测】 (4)【典型例题】【考点一 比例线段的识别】【例题1】若a :b=2:3,则下列各式中正确的式子是( )A .2a=3bB .3a=2bC .D .【变式1】已知=,那么下列等式中,不一定正确的是( ).A .2a=5b B. a b 52= C. a+b=7 D.a b b 72+= 【变式2】由5a=6b (a≠0),可得比例式( )A .B .C .D .【考点二 比例线段的计算】【例题2】 设,求的值.432z y x ==2222232z xy x z yz x --+-【变式1】若=,则=().A. B. C. D. 无法确定【变式2】已知,(1)求的值;(2)如果,求x的值.【变式3【考点三黄金分割点的定义】【例题3】已知点P是线段AB的一个黄金分割点(AP>PB),则PB:AB的值为().A. B. C. D.【变式1】已知线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,求AC长为__________cm;【变式2】已知线段AB=1,C是线段AB的黄金分割点,则AC的长度为()A. B.C. 或D.以上都不对【考点四黄金分割点的应用】【例题4】美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为().A.4cmB.6cmC.8cmD.10cm【变式1】如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为__________cm(结果精确到0.1cm).【变式2△BDC 、△DEC 都是黄金三角形,已知AB=4,则DE=__________.【考点五 黄金分割点的拓展提高】【例题5】是黄金矩形(即=≈0.618),如果在其内作正方形CDEF ,得到一个小矩形ABFE ,试问矩形ABFE 是否也是黄金矩形?【变式1】如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x 与y 的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x 为( ).A. 144°B. 135°C. 136°D. 108°【变式2道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF 和一个矩形EFDC ,那么EFDC 这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.BC AB 215-【变式3】以长为2的线段AB 为边作正方形ABCD ,取AB 的中点P ,连接PD ,在BA 的延长线上取点F ,使PF =PD ,以AF 为边作正方形AMEF ,点M 在AD 上,如图所示,(1)求AM ,DM 的长,(2)试说明AM 2=AD·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【过关检测】一.选择题1.在比例尺为1︰1 000 000的地图上,相距3cm 的两地,它们的实际距离为( ).A .3 kmB .30 kmC .300 kmD .3 000 km2.已知线段满足把它改写成比例式,其中错误的是( ).A. B. C.D. 3. (2014•牡丹江)若x :y=1:3,2y=3z ,则的值是(). 4.如图,已知点P 是线段AB 的黄金分割点,且PA >PB ,若S 1表示以PA 为边的正方形的面积,S 2表示a 、b 、c 、d =ab cd ::b c d a =::a b c d =::c b a d =::a c d b =长为AB 、宽为PB 的矩形的面积,那么S 1( )S 2.A.>B.=C.<D.无法确定6. 宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD 、BC 的中点E 、F ,连接EF :以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH 二. 填空题8.线段AB 长10cm ,点P 在线段AB 上,且满足=,那么AP的长为 cm . ,(填写一个即可).10.已知若若5x -4y=0,则x:y=________. -3=,=____;4x y x y y则三.综合题13.如果,一次函数经过点(-1,2),求此一次函数解析式.14.如图,在△ABC 中,点D 在边AB 上,且DB=DC=AC ,已知∠ACE=108°,BC=2.(1)求∠B 的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边 长①写出图中所有的黄金三角形,选一个说明理由;②求AD 的长;③在直线AB 或BC 上是否存在点P (点A 、B 除外),使△PDC 是黄金三角形?若存在,在备用图中画出点P ,简要说明画出点P 的方法(不要求证明);若不存在,说明理由.a b c d k b c d a c d a b d a b c====++++++++y kx m =+15. 如图,用长为40cm的细铁丝围成一个矩形ABCD(AB>AD).(1)若这个矩形的面积等于99cm2,求AB的长度;(2)这个矩形的面积可能等于101cm2吗?若能,求出AB的长度,若不能,说明理由;(3)若这个矩形为黄金矩形(AD与AB之比等于黄金比),求该矩形的面积.(结果保留根号)。

比例线段解题方法解题技巧经典例题与练习题

比例线段解题方法解题技巧经典例题与练习题

比 例 线 段◆比例线段1.相似形:在数学上,具有相同形状的图形称为相似形2.比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段3. 比例的项:已知四条线段a 、b 、c 、d ,如果a ∶b =c ∶d ,那么a 、b 、c 、d 叫做组成比例的项,线段a 、d 叫做比例的外项,线段b 、c 叫做比例的内项,线段d 叫做a 、b 、c 的第四比例项;比例中项:如果比例内项是两条相同的线段a ∶b =b ∶c ,即,那么线段b 叫做线段a 和c 的比例中项。

4. 比例的性质(1)基本性质:bc ad dc b a =⇔=, a ∶b =b ∶c ⇔b 2=ac 例1:6∶x = (5 +x )∶2 中的x = ;2∶3 = ( 5x -)∶x 中的x = 例2:若,则=________(2)合、分比性质:dd c b b a d c b a d d c b b a d c b a -=-⇒=+=+⇒=或 注意:此性质是分子加(减)分母比分母,不变的是分母.想想是否可以拓展呢?即分母加(减)分子,不变的是分子例1:若43=-b b a ,则ba =_________ 例2:如果,则=________(3)等比性质:若)0(≠+⋅⋅⋅+++=⋅⋅⋅===n f d b n m f e d c b a 则ba n f db m ec a =+⋅⋅⋅++++⋅⋅⋅+++. 例1:若9810z y x ==, 则 ______=+++z y z y x 例2:已知:,则=________;如果,那么=________例3:若a b+c =b c+a =c a+b=k ,求k 的值.(4)比例中项:若c a b c a b cb b a ,,2是则即⋅==的比例中项. 例1:已知:线段,若线段b 是线段a,c 的比例中项,则c =________例2: 2:)3(-a = )3(-a :8,则a =【练一练】1、 若a ∶3 =b ∶4 =c ∶5 , 且6=-+c b a , ___________,____,===c b a ;2、 已知x ∶y ∶z = 3∶4∶5 , 且12=++z y x , 那么_________,____,===z y x ;3、已知dc b a ==f e =2 (b +d +f ≠0),求:(1)f d be c a ++++;(2)f d b e c a +-+-; (3)f d b ec a 3232+-+-;(4)f b ea 55--.4、 已知x ∶4 =y ∶5 = z ∶6 , 则 ①x ∶y ∶z = , ② )(y x +∶____)(=+z y ;5、 若322=-y y x , 则_____=yx ; 6、若345x y z ==,则x y z z ++= .若x:y:z=2:3:4,则=+-+y x z y x 232 .7、如果 ,则 ,。

比例性质及比例线段

比例性质及比例线段

比例性质及比例线段(初二4.16)一、知识点与方法概述:1、比例的性质:基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d.合比性质:等比性质:如果,那么.2、(成)比例线段:比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比. 那么,这四条线段叫做成比例线段,简称比例线段.设a、b、c、d为线段,如果a:b=c:d,b、c叫比例内项,a、d叫比例外项,d叫做a、b、c的第四比例项;如果a:b=b:c,或b2=ac,那么b叫a、c的比例中项.3、黄金分割:如图,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割, 点C叫做线段AB的黄金分割点.注意:1、AC 0.618AB;2、0.618叫做黄金比;3、一条线段有两个黄金分割点.4、平行线分线段成比例定理:三条平行线截两条直线,所得的线段对应成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 推论的扩展:平行于三角形一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.(三角形一边平行线的性质)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(三角形一边平行线的判定定理)5、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.根据被截的两条直线的位置关系,可以分五种图形情况(如图1-图5):推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.已知:在梯形ACFD 中,CF AD //,AB=BC求证:DE=EF推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.已知:在△ACF 中,CF BE //,AB=BC 求证:AE=EF6、三角形的中位线定理:三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线。

初三数学比例线段试题

初三数学比例线段试题

初三数学比例线段试题1.如图,点F是平行四边形ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.【答案】C【解析】由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴,故A正确;∴,∴,故B正确;∴,故C错误;∴,∴,故D正确.故选C.2.如图,已知AB∥CD∥EF,那么下列结论正确的是()A.B.C.D.【答案】A【解析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.解:∵AB∥CD∥EF,∴.故选A.3.在平行四边形ABCD中,AC=4,BD=6,P是BD上的.任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F.如图,设BP=x,EF=y,则能反映y与x之间关系的图象为()A.B.C.D.【答案】A【解析】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P 在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴即,∴;当P在OD上时,有,∴y=.故选A.4.如图,AD是△ABC的高,EF⊥BC,F为垂足,E是AB边的中点,DC=BF,若BC=10,那么DC的长是()A.B.C.2D.【答案】C【解析】根据平行线等分线段定理,得BF=DF,根据已知可求得BF,从而也就得到了CD的长.解:∵AD是△ABC的高,EF⊥BC,F为垂足,E是AB边的中点∴BF=DF∵DC=BF,BC=10∴BF=10∴BF=4∴DC=2.故选C.5.如图,若DC∥FE∥AB,则有()A.B.C.D.【答案】D【解析】根据平行线分线段成比例定理,根据题意直接列出比例等式,对比选项即可得出答案.解:∵DC∥FE∥AB,∴OD:OE=OC:OF(A错误);OF:OE=OC:OD(B错误);OA:OC=OB:OD(C错误);CD:EF=OD:OE(D正确).故选D.6.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是()A.4.5B.8C.10.5D.14【答案】B【解析】利用相似三角形的判定与性质得出=,求出EC即可.解:∵DE∥BC,∴△ADE∽△ABC,∴=,∴==,解得:EC=8.故选:B.7.如图,AC、BC相交于点O,下列条件中能判定CD∥AB的是()A. B. C. D.【答案】D【解析】根据平行线分线段成比例定理对各选项分析判断后利用排除法求解.解:A、AO与DO,BO与CO不是对应线段,不能判定CD∥AB,故本选项错误;B、AO与CD,AB与CD不是对应线段,不能判定CD∥AB,故本选项错误;C、应为=,能判定CD∥AB,故本选项错误;D、=能判定CD∥AB,故本选项正确.故选D.8.如图,在▱ABCD中,EF∥AB,DE:DA=2:5,若CD=8,则EF的长为()A.B.C.6D.4【答案】B【解析】由四边形ABCD是平行四边形,即可得AB=CD=8,又由EF∥AB,DE:DA=2:5,根据平行线分线段成比例定理,即可求得EF的长.解:∵四边形ABCD是平行四边形,∴AB=CD=8,∵EF∥AB,DE:DA=2:5,∴,即:,∴EF=.故选B.9.如图所示,在边长为2的正三角形ABC中,E、F、G分别为AB、AC、BC的中点,点P为线段EF上一个动点,连接BP、GP,则△BPG的周长的最小值是.【答案】3【解析】连接AG交EF于M,根据等边三角形的性质证明A、G关于EF对称,得到P,△PBG 周长最小,求出AB+BG即可得到答案.解:要使△PBG的周长最小,而BG=1一定,只要使BP+PG最短即可,连接AG交EF于M,∵等边△ABC,E、F、G分别为AB、AC、BC的中点,∴AG⊥BC,EF∥BC,∴AG⊥EF,AM=MG,∴A、G关于EF对称,即当P和E重合时,此时BP+PG最小,即△PBG的周长最小,AP=PG,BP=BE,最小值是:PB+PG+BG=AE+BE+BG=AB+BG=2+1=3.故答案为:3.10.如图,AC∥EF∥DB,若AC=8,BD=12,则EF=.【答案】【解析】根据平行线AC∥EF分线段成比例得到=.同理,=,则由比例的性质得到=,根据等量代换推知=,所以把相关数据代入即可求得EF的值.解:如图,∵AC∥EF,∴=.又∵EF∥DB,∴=,则由比例的性质知=,即=,∴=,∵AC=8,BD=12,∴=∴EF=.故答案是:.。

生活中线段比例的例子-概念解析以及定义

生活中线段比例的例子-概念解析以及定义

生活中线段比例的例子-概述说明以及解释1.引言1.1 概述概述线段比例是数学中一个重要的概念,它不仅在数学问题中有着重要的应用,同时也贯穿于我们日常生活的方方面面。

无论是建筑、艺术、经济还是生活中的各种情境,线段比例都在起着重要的作用。

本文将从生活中的各种例子入手,介绍线段比例在我们生活中的应用,并探讨线段比例对我们的启示以及与数学的关系。

通过对生活中线段比例的例子的深入分析和思考,我们可以更好地理解数学知识在实际生活中的应用和意义。

1.2文章结构文章结构部分将包括引言、正文和结论三个部分。

引言部分将概述文章要探讨的主题,简要介绍线段比例的概念和重要性,引出文章的主题。

正文部分将分为三个小节。

第一小节将解释线段比例的概念,包括如何计算线段比例以及线段比例的意义和应用。

第二小节将展示生活中线段比例的例子,例如建筑中的比例尺、食物的分配比例等。

第三小节将探讨线段比例在生活中的重要性,如何通过线段比例来实现平衡和优化资源的分配。

结论部分将总结生活中线段比例的应用,提出线段比例的启示,并探讨生活中的线段比例与数学的关系,呼吁人们重视并学习线段比例的应用和意义。

1.3 目的:本文旨在探讨生活中线段比例的例子,并分析线段比例在日常生活中的重要性和应用。

通过具体的例子,展示线段比例在不同情境下的实际运用,并总结其对我们生活的启示。

同时,本文还将探讨生活中的线段比例与数学的关系,帮助读者更好地理解数学知识在日常生活中的实际应用。

通过阐述线段比例在生活中的意义和作用,引导读者更加深入地思考线段比例在我们生活中的重要性。

2.正文2.1 线段比例的概念线段比例是指两条或多条线段之间的比较关系。

在数学中,线段比例是指两条线段在长度上的比例关系。

如果两条线段AB和CD之间存在比例关系,可以表示为AB:CD。

在这个比例中,AB和CD分别代表两条线段的长度。

线段比例可以是等比例、不等比例或相似比例。

等比例线段是指两条线段在长度上成比例,即它们的长度之比始终保持不变。

比例线段及黄金分割点压轴题型全攻略(解析版)

比例线段及黄金分割点压轴题型全攻略(解析版)

比例线段及黄金分割点压轴题型全攻略【考点导航】1.目录【典型例题】1【考点一比例线段的识别】【考点二比例线段的计算】【考点三黄金分割点的定义】【考点四黄金分割点的应用】【考点五黄金分割点的拓展提高】【过关检测】4【典型例题】【考点一比例线段的识别】1【若a:b=2:3,则下列各式中正确的式子是( )A.2a=3bB.3a=2bC.ba =23D.a-bb=13【分析】根据比例的性质,对选项一一分析,选择正确答案.【答案】B.【详解】A、2a=3b⇒a:b=3:2,故选项错误;B、3a=2b⇒a:b=2:3,故选项正确;C、ba =23⇒b:a=2:3,故选项错误;D、a-bb =13⇒a:b=3:2,故选项错误.故选B.【点睛】考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积.1.已知ab=52,那么下列等式中,不一定正确的是( ).A.2a=5bB.a5=b2C.a+b=7D.a+bb=72【答案】C.2.由5a=6b(a≠0),可得比例式()A.b6 =5aB.b5 =6aC.ab =56D.a-bb=15【答案】D .【解析】A 、b 6 =5a⇒ab =30,故选项错误;B 、b 5 =6a ⇒ab =30,故选项错误;C 、a b =56⇒6a =5b ,故选项错误;D 、a -b b=15⇒5(a -b )=b ,即5a =6b ,故选项正确.故选D .【考点二比例线段的计算】1设x 2=y 3=z4,求2x 2-3yz +z 2x 2-2xy -z 2的值.【分析】由已知条件利用解方程的思想不能求出x ,y ,z 的值,因此用设参数法代入化简.【详解】设x 2=y 3=z4=k则x =2k ,y =3k ,z =4k 原式=2×2k 2-3×3k ×4k +4k 22k 2-2×2k ×3k -4k2=-12k 2-24k 2=12【点睛】解此类题学生容易误认为设k 后,未知数越多更不易解出,实际上分子、分母能产生公因式约去.1.若x -y 13=y 7,则x +yy=( ).A.137B .207C . 277D . 无法确定【答案】C .2.已知x 2=y 3=z4,(1)求x -2y z 的值;(2)如果x +3=y -z ,求x 的值.(1)令x 2=y 3=z4=k ,则x =2k ,y =3k ,z =4k ,再代入代数式进行计算即可;(2)把x =2k ,y =3k ,z =4k 代入x +3=y -z ,求出k 的值即可.【解析】解:(1)∵x 2=y 3=z4,∴令x 2=y 3=z4=k ,则x =2k ,y =3k ,z =4k ,∴x -2y z =2k -6k 4k =-4k 4k=-1;(2)∵x =2k ,y =3k ,z =4k ,x +3=y -z ,∴x +3=(y -z )2,即2k +3=(3k -4k )2,解得k =-1或k =3(舍去),∴x =-2.【点睛】本题考查的是比例的性质,根据题意得出x =2k ,y =3k ,z =4k 是解答此题的关键.举一反三:3.已知:a b +c =b a +c =ca +b=k .求k 值.【答案】可分a+b+c=0和a+b+c≠0两种情况代入求值和利用等比性质求解.【答案与解析】①当a+b+c=0时,b+c=-a,c+a=-b,a+b=-c,∴k为其中任何一个比值,即k=a-a=-1;②a+b+c≠0时,k=a+b+cb+c+c+a+a+b =a+b+c2(a+b+c)=12.∴k=-1或12.【点睛】考查比例性质的应用;分两种情况探讨此题是解决本题的易错点.【考点三黄金分割点的定义】1已知点P是线段AB的一个黄金分割点(AP>PB),则PB:AB的值为( ).A.5-12B.3-52C.1+52D.3-54【答案】B.【详解】根据题意得AP=5-12AB,所以PB=AB-AP=3-52AB,所以PB:AB=3-5 2.1.已知线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,求AC长为cm;【答案】根据黄金分割点的定义,知AC是较短线段,由黄金分割的公式:较短的线段=原线段的3-5 2倍,可得AC=10×3-52,计算即可;【解析】∵线段AB=10cm,C是AB的一个黄金分割点,且AC<BC,∴AC=10×3-52=15-55(cm);【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的3-52倍,较长的线段=原线段的5-12倍.2.已知线段AB=1,C是线段AB的黄金分割点,则AC的长度为()A.5-12B. 3-52C.5-12或3-52D. 以上都不对【答案】C.【解析】∵线段AB=1,C是线段AB的黄金分割点,当AC>BC,∴AC=5-12AB=5-12;当AC<BC,∴BC=5-12AB=5-12,∴AC=AB-BC=1-5-12=3-52.【考点四黄金分割点的应用】2美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ).A.4cmB.6cmC.8cmD.10cm【答案】C.【详解】根据已知条件得下半身长是165×0.60=99cm,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:99+y165+y=0.618,解得:y≈8cm.故选C.1.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割.已知AB=10cm,则AC的长约为cm(结果精确到0.1cm).【答案】6.2或3.8【解析】由题意知AC:AB=BC:AC,∴AC:AB≈0.618,∴AC=0.618×10cm≈6.2(结果精确到0.1cm)或AC=10-6.2=3.8.故答案为:6.2或3.8.2.如图,△ABC顶角是36°的等腰三角形(底与腰的比为5-12的三角形是黄金三角形),若△ABC、△BDC、△DEC都是黄金三角形,已知AB=4,则DE=.【答案】6-25.【解析】根据题意可知,BC=5-12AB,∵△ABC顶角是36°的等腰三角形,∴AB=AC,∠ABC=∠C=72°,又∵△BDC也是黄金三角形,∴∠CBD=36°,BC=BD,∴∠ABD=∠ABC-∠CBD=36°=∠A,∴BD=AD,同理可证DE=DC,∴DE=DC=AC-AD=AB-BC=AB-5-12AB=6-25.故答案为:6-25.【考点五黄金分割点的拓展提高】3是黄金矩形(即ABBC=5-12≈0.618),如果在其内作正方形CDEF,得到一个小矩形ABFE,试问矩形ABFE是否也是黄金矩形?【分析】(1)矩形的宽与长之比值为5-12,则这种矩形叫做黄金矩形.(2)要说明ABFE是不是黄金矩形只要证明AEAB =5-12即可.【答案与详解】矩形ABFE是黄金矩形.理由如下:因为AEAB=AD-EDAB=ADAB-EDAB=25-1-1=25+15-15+1-1=5+12-1=5-12所以矩形ABFE也是黄金矩形.【点睛】判断四边形是否是黄金矩形,要根据实际条件灵活选择判断方法.1.如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x为( ).A.144°B. 135°C. 136°D. 108°【答案】B.【解析】由扇子的圆心角为x°,余下扇形的圆心角为y°,黄金比为0.6,根据题意得:x:y=0.6=3:5,又∵x+y=360,则x=360×38=135【总结升华】此题考查了黄金分割,以及比例的性质,解题的关键是根据题意列出x与y的关系式.2.图1是一张宽与长之比为5-12:1的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.矩形EFDC是黄金矩形,【解析】证明:∵四边形ABEF是正方形,∴AB=DC=AF,又∵ABAD=5-12,∴AF AD =5-12,即点F是线段AD的黄金分割点.∴FD AF =AFAD=5-12,∴FD DC =5-12,3.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如图所示,(1)求AM,DM的长,(2)试说明AM2=AD·DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?【答案】(1)∵正方形ABCD的边长是2,P是AB中点,∴AD=AB=2,AP=1,∠BAD=90°,∴PD=AP2+AD2=5。

六年级数学下册典型例题系列之第四单元比例尺部分(解析版)人教版

六年级数学下册典型例题系列之第四单元比例尺部分(解析版)人教版

2021-2022学年六年级数学下册典型例题系列之第四单元比例尺部分(解析版)编者的话:《2021-2022学年六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

本专题是第四单元比例尺部分。

本部分内容主要考察比例尺的认识及应用,考点和题型相对简单,建议作为本章重点内容进行讲解,一共划分为十一个考点,欢迎使用。

【考点一】比例尺的意义。

【方法点拨】1.比例尺的意义:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺,一般用文字描述为图上1厘米表示实际距离多么厘米。

【典型例题】一幅地图的比例尺是1∶10000,图上1cm 的距离,表示实际( )m 。

解析:100【对应练习】比例尺1∶6000000表示图上1cm 的线段相当于实际距离( )km ;比例尺10∶1表示图上1cm 长的线段相当于实际( )mm 。

解析:60;1【考点二】比例尺的改写。

【方法点拨】1.比例尺主要有两种分类,即线段比例尺和数值比例尺。

2.比例尺三种形式的写法:①比的形式:比例尺是图上距离与实际距离的最简整数比,可以写成带比号的形式;②分数形式:也可以写成分数形式,即比例尺1∶2500也可以写成25001; ③线段形式: 注意:实际上,通常图上距离的单位是厘米,实际距离的单位是千米,因此计算时一定要进行单位换算。

【典型例题】地图上的线段比例尺是千米,把这个线段比例尺改成数值比例尺( )。

解析:1∶3000000这是一个( )比例尺,用数值比例尺表示是( )。

解析:线段;1∶4000000【对应练习2】是( )比例尺,把它改成数值比例尺是( )。

解析: 线段;1∶3000000【对应练习3】把改写成数值比例尺是( )。

比例线段的计算

比例线段的计算

比例线段的计算在几何学中,比例线段是指被一条直线分割成两个部分,且这两个部分之间的比例关系恒定。

对于给定的线段和比例关系,我们可以通过一些简单的计算方法来确定未知部分的长度。

一、比例线段的定义比例线段是指一条直线上的两个部分,其长度之比与给定的比例关系相等。

比例线段通常用"a:b"或"a/b"表示,其中"a"和"b"分别代表两个部分的长度。

二、比例线段的计算方法1. 若已知比例和一部分的长度,求另一部分的长度假设比例线段为AB,已知AB的长度为m,已知比例为a:b。

我们可以通过以下公式计算出另一部分BC的长度:BC = (m * b) / a2. 若已知比例和另一部分的长度,求另一部分的长度假设比例线段为AB,已知BC的长度为n,已知比例为a:b。

我们可以通过以下公式计算出另一部分AB的长度:AB = (n * a) / b三、例题演练1. 问题描述:线段AB被点C分割成2:5的比例,且已知AB的长度为10cm,求线段BC的长度。

解题过程:根据已知信息,可知AB的长度为10cm,比例为2:5。

代入计算公式得到:BC = (10 * 5) / 2= 25因此,线段BC的长度为25cm。

2. 问题描述:线段AB被点C分割成3:7的比例,且已知BC的长度为21cm,求线段AB的长度。

解题过程:根据已知信息,可知BC的长度为21cm,比例为3:7。

代入计算公式得到:AB = (21 * 3) / 7= 9因此,线段AB的长度为9cm。

四、注意事项在计算比例线段时,需要确保已知的长度和比例关系是准确无误的。

如果其中任何一个数值错误,将会导致计算结果的错误。

因此,在进行计算前,请务必仔细核对给定的信息。

另外,在实际问题中,比例线段的计算常常涉及到其他几何概念和计算方法,如相似三角形、三角函数等。

为了更准确地计算比例线段,可以结合这些概念和方法进行综合运用。

四条线段成比例问题1

四条线段成比例问题1
C.a=8,b=5,c=4,d=3
D.a=9,b= ,c=3,d=
“已知线段a=2,b=4,c=6,则d=?时,它们是成比例线段。”此问题很显然是第一种类型。按顺序性只能确定一种答案。
(3)已知1, ,2,x成比例线段,则x值为( )
(4)已知:a=3,b=4,c=5,请再添加一条线段,使这四条线段成比例线段.
2.没指出具体哪四条线段成比例(未确定顺序),一般考虑多种情况。
如:(1)已知三条线段的长分别是4cm,5cm和10cm,则再加一条( 或8或2cm)的线段,才能使这四条线段成比例.
(2)已知三条线段的长度为1,2, ,请你再添一条线段,使它们能构成一个比例式. , , .
3.判断已知四条线段是否成比例或是否成比例线段,方法是:一般把四个数大小排列,判断前后两组比是否相等;或看两个极值的积是否等于另两个数的积来判断。
如:(1)已知四条线段a、b、c、d的长度,试判断它们是否成比例?
关于四条线段成比例问题
关于四条线段成比例,个人认为有以下几种情况,供大家参考。
1.具体指出哪四条线段成比例,根据比例线段的顺序性,一般只有一种情况:
如:(1)已知四条线段a、b、c、d成比例,且a=2,b=3,c=4.则d= 66.
(2)线段a、b,c,d是成比例线段,若a=10、c=8、d=12,则b= 1515.
(1)a=1ห้องสมุดไป่ตู้cmb=8cmc=5cmd=10cm
(2)a=8cmb=5cmc=6cmd=10cm.
解:(1)∵8×10=80,16×5=80,∴能够成比例;
(2)∵8×6=48,10×5=50,∴不能够成比例.
再如:(2)下列四条线段为成比例线段的是(B)
A.a=10,b=5,c=4,d=7

比例线段与黄金分割典型例题讲解与练习

比例线段与黄金分割典型例题讲解与练习

⽐例线段与黄⾦分割典型例题讲解与练习个性化辅导讲义(2012 ~ 2013 学年第 1 学期)任教科⽬:数学授课题⽬:相似图形1年级:⼋年级任课教师:教导主任签名:__________⽇期:2013、4、28⼀.知识的回顾⽐例定义:表⽰两个⽐相等的式⼦叫⽐例.1、如果a与b的⽐值和c与d的⽐值相等,那么a c=b d或a∶b=c∶d,这时组成⽐例的四个数a,b,c,d叫做⽐例的项,两端的两项叫做外项,中间的两项叫做内项.即a、d为外项,c、b为内项. 2、如果选⽤同⼀个长度单位量得两条线段AB、CD的长度分别是m、n,那么就说这两条线段的⽐AB∶CD=m∶n,或写成AB m=CD n,其中,线段AB、CD分别叫做这两个线段⽐的前项和后项.3、如果把mn表⽰成⽐值k,则AB=CDk或AB=k?CD.4、四条线段a,b,c,d中,如果a与b的⽐等于c与d的⽐,即a c=b d,那么这四条线段a,b,c,d叫做成⽐例线段,简称⽐例线段.5、黄⾦分割的定义:在线段AB上,点C把线段AB分成两条线段AC和BC,如果AC BC那么称线段AB被点C黄⾦分割(golden section),点C叫做线段AB的黄⾦分割点,AC与AB的⽐叫做黄⾦⽐.其中AC∶AB≈0.618.6、引理:平⾏于三⾓形的⼀边,并且和其他两边相交的直线,所截得的三⾓形的三边与原三⾓形三边对应成⽐例.相似三⾓形:三⾓对应相等,三边对应成⽐例的两个三⾓形叫做相似三⾓形.相似多边形:各⾓对应相等、各边对应成⽐例的两个多边形叫做相似多边形。

相似⽐:相似多边形对应边的⽐叫做相似⽐.⼆、⽐例的基本性质:1、若ad=bc(a,b,c,d都不等于0),那么a c=b d。

如果a c=b d(b,d都不为0),那么ad=bc.2、合⽐性质:如果a c=b d,那么a b c b=b d±±。

3、等⽐性质:如果a c m==b d n(b+d++n≠0),那么a+b+=b+d+bm an4、更⽐性质:若a c=b d,那么a b=c d。

湘教版九年级上册数学比例线段专题

湘教版九年级上册数学比例线段专题

比例线段专题1.线段的比定义:在同一长度单位下,两条线段的长度的比叫做这两条线段的比。

说明:(1)统一单位:如果用同一长度单位量得线段a 、b 的长度分别是m 、n ,那么n m b a ::=或nmb a =。

(2)前项后项:在b a :或ba 中,a 叫比的前项,b 叫比的后项。

(3)应用:(比例尺)若实际距离是250m ,图上距离是5cm ,求比例尺. 解析: 比例尺=实际距离图上距离,50001250005=∴, ∴比例尺为1:5000.注意:(1)若k b a =:,说明a 是b 的k 倍;(2)两条线段的比与所采用的长度单位无关,但求比时两条线段的长单位必须一致。

(单位要统一);(3)两条线段的比值是一个没有单位的正数; (4)线段的比是有顺序性,即a b b a ::≠。

2.比例线段定义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。

图解:注意:(1)顺序性:如dcba=叫做线段a、b、c、d成比例,而不能说成是b、a、c、d成比例。

如dcba=中,线段d叫做a、b、c的第四比例项,而不能说成“线段d 叫做b、a、c的第四比例项”。

3.比例性质(1)基本性质:adbdbbabcaddcba=⇔==⇔=2::::(简称:外项积等于内项积)深层推导:①dcba=⇒②dbca=(交换bc);③acbd=(交换ad);④cdab=(上下对称);⑤badc=(左右对称);⑥cadb=(左右对称);⑦bdac=(左右对称);⑧abcd=(左右对称)。

(2)更比性质:①dcba=⇒②dbca=(交换bc);③acbd=(交换ad)。

(3)合比性质:dcba=⇔ddcbba+=+(4)分比性质:dcba=⇔ddcbba-=-(5)合分比性质:dcdcbaba-+=-+或dadcbaba+-=+-深层解析: 方法一:解析: d c b a =∴11+=+d cb a ∴dd c b b a +=+……① 同理,ddc b b a -=-……② 由①÷②得,d c dc b a b a -+=-+ 由②÷①得,da dc b a b a +-=+- 方法二: dcb a =∴可令k dcb a ==,则bk a =,dkc =∴11-+=-+=-+k k b bk b bk b a b a 同理,11-+=-+k k d c d c 故,d c dc b a b a -+=-+ 同理,da dc b a b a +-=+- (6)等比性质:d c b a =⇔)0(≠+++==d b db ca d cb a深层解析: 方法一:d cb a = dbc a =∴(更比性质)d d b c c a +=+∴(合比性质)dc d b c a =++∴(更比性质) 故,)0(≠+++==d b db c a d c b a方法二:dc b a = ∴可令kd cb a ==,则bk a =,dkc =∴k d b dk bk d b c a =++=++ 故,)0(≠+++==d b db c a d c b a深层推导:)0(≠+++===n d b n m d c b a ⇔b an d b m c a =++++++解析: )0(≠+++===n d b n md c b a∴可令k nmd c b a ==== ,则bk a =,dk c =,…,nk m =∴k n d b nk dk bk n d b m c a =+++++=++++++ 故,ba n db mc a =++++++4.经典习题考点1:比例基本性质1. 若4x=5y,则x ∶y = .( 45) 2. 已知3∶x =8∶y ,求yx = (83)3. 等腰直角三角形中,一直角边与斜边的比是 .(2:1)4. 正方形对角线的长与它的边长的比是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型例题解析:比例线段
例题1. 已知四条线段a 、b 、c 、d 的长度,试判断它们是否是成比例线段?
(1)cm 10,cm 5,cm 8,cm 16====d c b a ;
(2)cm 10,m 6.0,cm 5.0,cm 8====d d c b a .
例题2. 如图,)
()()(2,3,1,2,2,0C B A --.
(1)求出AB 、BC 、AC 的长.
(2)把上述三个点的横坐标、纵坐标都乘以2,得到C B A '''、、的坐标,求出C A C B B A '''''',,的长.
(3)这些线段成比例吗?
例题3.已知
811=+x y x ,求y x
例题4.已知
432z y x ==,求y x z y x -+-33的值
例题5.若
3753=+b b a ,则b
a 的值是__________
例题6.设
k y x z x z y z y x =+=+=+,求k 的值
例题7.如果
0432≠==c b a ,求:b
c a c b a 24235-++-的值 例题8.线段x ,y 满足1:4:)4(22=+xy y x ,求y x :的值
例题9.如图,已知,在ABC ∆中,D 、E 分别是AB 、AC 上的点,并且 23
===AE AC DE BC
AD AB
,ABC ∆的周长为12cm ,求:ADE ∆的周长
参考答案
例题1 分析 观察四条线段是否成比例时,首先要把四条线段的单位都化成一致的单位,再把它们按从小到大的顺序排列,由比例线段的基本性质知bc ab =,即如果第一、四两个数的积等于第二四两个数的积,则四条线段成比例,否则不成比例.
解答 (1)cm 16,cm 10,cm 8,cm 5====a d b c ,
ac bd c a d b ==⨯=⨯,80,80 , ∴d
c a b =, ∴四条线段成比例.
(2)10cm 8cm,6cm,0.6dm cm,5.0=====d a c b ,
ca bd ca bd ≠==,48,5,
∴这四条线段不成比例.
例题2 分析 利用勾股定理可以求出这些线段的长.
解答 (1)133222=+=AB ,543,26152222=+==+=AC BC .
(2))4,6(),2,4(),4,0(C B A '-'-',
132134526422=⨯==+=''B A ,
26226410421022=⨯==+=''C B ,
108622=+=''C A .
(3)21,21,2113213=''=''==''C A AC C B BC B A AB
, ∴C A AC C B BC B A AB '
'=''='', 这些线段成比例.
例题3.解答:由比例的基本性质得x y x 11)(8=+
∴y x 83=
∴3
8=y x 说明 本题考查比例的基本性质,易错点是由y x 83=化成比例式时错成8
3=y x ,解题关键是运用比例的基本性质,本题还可以运用合比性质求解。

例题4.解答:设k z y x ===4
32,则k x 2=,k y 3=,k z 4= 3
11323433233=-⨯⨯+-=-+-k k k k k y x z y x 说明 本题考查比例的性质,解题关键是设k z y x ===432,将x 、y 、z 统一成k 。

例题5.解法1:
3753=+b b a ,157553=+b b a ,151575553-=-+b b b a , ∴15
853-=b a ∴9
8-=b a 解法2:设k b
a =,则bk a = 由3
753=+b b a , 得3
753=+b b bk ∴3
753=+k ∴9
8-=k 解法3
3
753=+b b a , b b a 7)53(3=+
∴b a 89-= ∴9
8-=b a 说明 本题考查比例的性质,解题关键是灵活运用比例的性质
例题6.错解:2
1)(2)()()(=++++=+++++++=z y x z y x y x x z z y z y x k 正解:当0≠++z y x 时,21)(2=++++=
z y x z y x k 当0=++z y x 时,
x z y -=+ ∴1-=-=+=
x x z y x k ∴2
1=k 或-1 说明 错解中忽视了0=++z y x 的情形 例题7.分析 可设04
32≠===k c b a ,则a 、b 、c 均可用k 来表示,把它代入欲求值的代数式中,就可以求出它的值
解答 设k c b a ===4
32, 则k a 2=,k b 3=,k c 4=,
b c a c b a 24235-++-236932424423325==⨯-+⨯⨯+⨯-⨯=k k k k k k k k 说明 设比例式的比值为k 的(比例系数),这是解比例式常用的有效方法,要注意掌握。

例题8.分析 要直接求出y x :比较困难,我们不妨先利用比例的基本性质,求得x 与y 的关系式,再求x 与y 的比值
解答 1:4:)4(22=+xy y x ,
∴xy y x 4422=+
∴0)2(2=-y x
y x 2= ∴2=y
x
例题9.分析 A D E ∆的周长DE AE AD ++=,则由给出的比例式,DE AE AD ++可以用AC BC AB ++表示
解答 2
3===AE AC DE BC AD AB , 2
3=++++AE DE AD AC BC AB )(32AC BC AB AE DE AD ++=++cm 81232=⨯= 即ADE ∆的周长等于8cm。

相关文档
最新文档