递推数列习题

合集下载

最新高考数列递推公式题型归纳解析完整答案版

最新高考数列递推公式题型归纳解析完整答案版

最新高考数列递推公式题型归纳解析完整答案版类型1)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

变式1.1:(2004,全国I ,个理22.本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k ,其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.解:Θk k k a a )1(122-+=-,kk k a a 3212+=+∴k k k k k k a a a 3)1(312212+-+=+=-+,即k k k k a a )1(31212-+=--+∴)1(313-+=-a a ,2235)1(3-+=-a a …………k k k k a a )1(31212-+=--+将以上k 个式子相加,得]1)1[(21)13(23])1()1()1[()333(22112--+-=-+⋅⋅⋅+-+-++⋅⋅⋅++=-+k k k k k a a将11=a 代入,得1)1(21321112--+⋅=++kk k a ,1)1(21321)1(122--+⋅=-+=-k k k k k a a 。

经检验11=a 也适合,∴⎪⎪⎩⎪⎪⎨⎧--⋅+⋅--⋅+⋅=-+)(1)1(21321)(1)1(21321222121为偶数为奇数n n a nn n n n类型2n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例3:已知31=a ,n n a n n a 23131+-=+)1(≥n ,求n a 。

解:123132231232)2(31)2(32)1(31)1(3a n n n n a n +-•+⨯-⨯•⋅⋅⋅•+---•+---=3437526331348531n n n n n --=⋅⋅⋅⋅=---L 。

题型最全的递推数列求通项公式的习题

题型最全的递推数列求通项公式的习题

高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。

类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其k=1,2,3,…(I )求a 3, a 5;(II )求{ a n }通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例1:已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

例2:已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。

变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:(2006,重庆,文,14)在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________ 变式:(2006. 福建.理22.本小题满分14分) 已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式;(II )若数列{b n }滿足12111*444(1)(),n n b b b b n a n N ---=+∈证明:数列{b n }是等差数列;(Ⅲ)证明:*122311...().232n n a a a n nn N a a a +-<+++<∈ 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。

题型最全的递推数列求通项公式的习题[1]

题型最全的递推数列求通项公式的习题[1]

高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。

类型1)(1n f a a nn解法:把原递推公式转化为)(1n f a a nn ,利用累加法(逐差相加法)求解。

例1. 已知数列na 满足211a ,nna a nn211,求n a 。

变式:已知数列1}{1a a n 中,且a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2nna n f a )(1解法:把原递推公式转化为)(1n f a a n n ,利用累乘法(逐商相乘法)求解。

例1:已知数列na 满足321a ,n na n na 11,求n a 。

例2:已知31a ,nna nna 23131)1(n,求n a 。

变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32nna na a a a (n ≥2),则{a n }的通项1___na 12n n类型3q paa nn1(其中p ,q 均为常数,)0)1((ppq )。

解法(待定系数法):把原递推公式转化为:)(1t a p ta nn,其中pq t1,再利用换元法转化为等比数列求解。

例:已知数列na 中,11a ,321n na a ,求n a .变式:(2006,重庆,文,14)在数列na 中,若111,23(1)nna a a n,则该数列的通项n a _______________变式:(2006.福建.理22.本小题满分14分)已知数列na 满足*111,21().nna a a n N (I )求数列na 的通项公式;(II )若数列{b n }滿足12111*444(1)(),n nb bb bna nN 证明:数列{b n }是等差数列;(Ⅲ)证明:*122311...().232n na a a n nn N a a a 类型4nnnq paa 1(其中p ,q 均为常数,)0)1)(1((q ppq )。

常见递推数列通项的求解方法练习题

常见递推数列通项的求解方法练习题

常见递推数列通项的求解方法练习题类型一专项练习题:1、已知11a =,1n n a a n -=+(2≥n ),求n a 。

(12n n n a +=)2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。

(31)2n n n a +=3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

21n a n =+4、已知}{n a 中,n n n a a a 2,311+==+,求n a 。

21n n a =+5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式. 13122n n a -⎛⎫=- ⎪⎝⎭6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a ?(312n n a -=)7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式 1123n n a +=- 8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

31n n a n =+-9、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

312n a n =- 10、数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值; c=2(II )求{}n a 的通项公式. 22n a n n =-+11、设平面内有n 条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n 条直线交点的个数,则(4)f = 5 ;当4n >时,()f n = 222n n -+ (用n 表示).类型二专项练习题:1、已知11a =,111n n n a a n --=+(2n ≥),求n a 。

数列的递推公式知识点、例题、练习

数列的递推公式知识点、例题、练习

4.1.2 数列的递推公式知识点一数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.数列递推公式与通项公式的关系:递推公式表示a n 与它的前一项a n -1(或前n 项)之间的关系,而通项公式表示a n 与n 之间的关系. 要点二 a n 与S n 的关系1.前n 项和S n :把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =12n a a a +++ 2.a n 与S n 的关系:a n =11,1,2n n S n S S n -=⎧⎨-≥⎩【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)根据通项公式可以求出数列的任意一项.( ) (2)有些数列可能不存在最大项.( ) (3)递推公式是表示数列的一种方法.( ) (4)所有的数列都有递推公式.( ) 【答案】(1)√(2)√(3)√(4)×2.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5 D .19 【答案】D【解析】a 3=a 2+a 1=5+2=7,a 4=a 3+a 2=7+5=12,a 5=a 4+a 3=12+7=19,故选D. 3.数列{a n }中,a n =2n 2-3,则125是这个数列的第几项( ) A .4 B .8 C .7 D .12 【答案】B【解析】令2n 2-3=125得n =8或n =-8(舍),故125是第8项.故选B. 4.已知数列{a n }的前n 项和为S n =n 2,则a n =________. 【答案】2n -1【解析】当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=n 2-n 2+2n -1=2n -1.当n =1时,a 1=S 1=1满足上式,所以{a n }的通项公式为a n =2n -1.题型一 数列中项与项数关系的判断(1)写出数列的一个通项公式,并求出它的第20项;(2)判断42和10是不是该数列中的项?若是,指出是数列的第几项,若不是,请说明理由.【解析】(1)由于22=8,所以该数列前4项中,根号下的数依次相差3,所以它的一个通项公式为a n =3n -1;a 20=3×20-1=59.(2)令3n -1=42,两边平方得3n =33,解得n =11,是正整数令3n -1=10,两边平方得n =1013,不是整数.∴42是数列的第11项,10不是数列中的项. 【方法归纳】(1)由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.(2)判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.(3)在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.【跟踪训练1】已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出此数列的第4项和第6项;(2)问-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢? 【解析】(1)a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)由3n 2-28n =-49解得n =7或n =73(舍去),所以-49是该数列的第7项.由3n 2-28n =68解得n =-2或n =343,所以68不是该数列的一项.题型二 已知S n 求a n例2 设S n 为数列{a n }的前n 项和,S n =2n 2-30n .求a n . 【解析】当n ≥2时,a n =S n -S n -1=2n 2-30n -[2(n -1)2-30(n -1)]=4n -32 当n =1时,a 1=S 1=-28,适合上式, 所以a n =4n -32.借助a n =⎩⎪⎨⎪⎧S 1,(n =1)S n -S n -1(n ≥2)【变式探究1】将本例中的“S n =2n 2-30n ”换为“S n =2n 2-30n +1”,求a n . 【解析】当n =1时,a 1=S 1=2×1-30×1+1=-27. 当n ≥2时,a n =S n -S n -1=2n 2-30n +1-[2(n -1)2-30(n -1)+1] =4n -32.验证当n =1时,上式不成立∴a n =⎩⎪⎨⎪⎧-27,n =14n -32,n ≥2.方法归纳已知数列{a n }的前n 项和公式S n ,求通项公式a n 的步骤: (1)当n =1时,a 1=S 1.(2)当n ≥2时,根据S n 写出S n -1,化简a n =S n -S n -1.(3)如果a 1也满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式为a n =S n -S n -1;如果a 1不满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式要分段表示为a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1,n ≥2.【跟踪训练2】已知数列:a 1+3a 2+32a 3+…+3n -1a n =n 3,求a n .【解析】当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13,满足a n =13n ,所以a n =13n .题型三 由数列递推公式求通项公式【例3】已知数列{a n }中,a 1=1,a n +1=a n +n +1,则a n =________.【答案】n (n +1)2【解析】∵a n +1=a n +n +1,a 1=1,∴a n +1-a n =n +1, ∴a n -a n -1=n ,a n -1-a n -2=n -1,…,a 2-a 1=2 以上式子相加得: a n -a 1=2+3+…+n∴a n =1+2+3+…+n =n (n +1)2.变形为:a n +1-a n =n +1,照此递推关系写出前n 项中任意相邻两项的关系,这些式子两边分别相加可求. 【变式探究2】若将“a n +1=a n +n +1”改为“a n +1=nn +1a n”,则a n =________.【答案】1n【解析】∵a n +1=n n +1a n ,a 1=1,∴a n +1a n =nn +1,∴a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 2a 1=12,以上式子两边分别相乘得:a n a 1=n -1n ×n -2n -1×…×12=1n∴a n =1n a 1=1n .【方法归纳】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加法或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.【跟踪训练3】在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 【答案】A【解析】∵在数列{a n }中,a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=2+ln n .故选A.【易错辨析】数列中忽视n 的限制条件致误【例4】设S n 为数列{a n }的前n 项和,log 2(S n +1)=n +1,则a n =________.【答案】⎩⎪⎨⎪⎧3,n =12n ,n ≥2【解析】由log 2(S n +1)=n +1得S n +1=2n +1,∴S n =2n +1-1当n ≥2时a n =S n -S n -1=2n +1-1-2n +1=2n .当n =1时,a 1=S 1=3.经验证不符合上式.∴a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2.【易错警示】1. 出错原因忽视n =1的情况致错,得到错误答案:a n =2n . 2. 纠错心得已知a n 与S n 的关系求a n 时,常用a n =S n -S n -1(n ≥2)来求a n ,但一定要注意n =1的情况.一、单选题1.设数列{}n a 的前n 项和为n S ,11a =,2(1)nn S a n n =+-,(*n N ∈),若()22112n S S S n n+++--2013=,则n 的值为( ). A .1007 B .1006 C .2012 D .2014【答案】A 【分析】根据数列n a 与n S 的关系证得数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,利用等差数列的前n 项和公式求出题中的式子,化简计算即可. 【解析】2(1)nn S a n n=+-, 12(1)(2)nn n S S S n n n-∴-=+-, 整理可得,1(1)2(1)n n n S nS n n ---=-, 两边同时除以(1)n n -可得12(2)1n n S S n n n --=-,又111S = ∴数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,2321(1)23nS S S S n n∴++++-- 2(1)12(1)2n n n n -=⨯+⨯-- 22(1)n n =--21n =-,由题意可得,212013n -=, 解得1007n =. 故选:A .2.南宋数学家杨辉在《解析九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .171 B .190 C .174 D .193【答案】C 【分析】根据题意可得数列3,4,6,9,13,18,24,⋯,满足:11(2)n n a a n n --=-,13a =,从而利用累加法即可求出n a ,进一步即可得到19a 的值. 【解析】3,4,6,9,13,18,24,后项减前项可得1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()111133,222n n n n n -+⋅--=+=+≥.所以19191831742a ⨯=+=. 故选:C3.在数列{}n a 中,11a =,121nn n a a +-=-,则9a =( )A .512B .511C .502D .503【答案】D 【分析】利用累加法先求出通项即可求得答案. 【解析】因为11a =,121nn n a a +-=-,所以()()()121321n n n a a a a a a a a -=+-+-++-=()()()21211(21)21211222(1)2n n n n n --+-+-++-=++++--=-,所以9929503a =-=.故选:D. 4.数列23,45,69,817,1033,…的一个通项公式为( )A .221n n n a =+ B .2221n n n a +=+ C .1121n n n a ++=-D .12222n n n a ++=+【答案】A 【分析】根据数列中项的规律可总结得到通项公式. 【解析】1221321⨯=+,2422521⨯=+,3623921⨯=+,48241721⨯=+,510253321⨯=+, ∴一个通项公式为:221n nna =+. 故选:A.5.下列命题不正确的是( )A 的一个通项公式是n aB .已知数列{},3n n a a kn =-,且711a =,则1527a =C .已知数列{}n a 的前n 项和为()*,25n n n S S n N =-∈,那么123是这个数列{}n a 的第7项D .已知()*1n n a a n n N +=+∈,则数列{}n a 是递增数列【答案】C 【分析】A:根据被开方数的特征进行判断即可;B:运用代入法进行求解判断即可;C:根据前n项和与第n项之间的关系进行求解判断即可;D:根据递增数列的定义进行判断即可.【解析】对于A31⇒⨯na⇒=A正确;对于B,3na kn=-,且7151122327na k a n a=⇒=⇒=-⇒=,B正确;对于C,()*25nnS n N=-∈,13a=-,当2,n n N*≥∈时,111222n n nn n na S S---=-=-=,12127n-=,无正整数解,所以123不是这个数列{}n a的第7项,C错误;对于D.由()*11,0n n n na a n n N a a n++=+∈-=>,易知D正确,故选:C.6.已知数列{}n a的前n项和2nS n=,则数列11n na a+⎧⎫⎨⎬⎩⎭的前99项和为()A.1168B.1134C.198199D.99199【答案】D【分析】先根据11,2,1n nnS S naS n--≥⎧=⎨=⎩,求出21na n=-,然后利用裂项相消求和法即可求解.【解析】解:因为数列{}n a的前n项和2nS n=,2121nS n n-=-+,两式作差得到21(2)na n n=-≥,又当1n=时,21111a S===,符合上式,所以21na n=-,111111(21)(21)22121n na a n n n n+⎛⎫==-⎪-+-+⎝⎭,所以12233411111n na a a a a a a a+++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D.7.数列{}n a 中的前n 项和22nn S =+,数列{}2log n a 的前n 项和为n T ,则20T =( ).A .190B .192C .180D .182【答案】B 【分析】根据公式1n n n a S S -=-计算通项公式得到14,12,2n n n a n -=⎧=⎨≥⎩,故2,11,2n n b n n =⎧=⎨-≥⎩,求和得到答案.【解析】当1n =时,111224a S ==+=;当2n ≥时,()11112222222n n n n n n n n a S S ----=-=+-+=-=,经检验14a =不满足上式,所以14,12,2n n n a n -=⎧=⎨≥⎩, 2log n n b a =,则2,11,2n n b n n =⎧=⎨-≥⎩,()201911921922T ⨯+=+=. 故选:B.8.已知数列{}n a 满足11a =,()()()11*12n n n n a a a a n N n n ++-=∈++,则10a 的值为( )A .1231B .2231C .1D .2【答案】B 【分析】首先根据已知条件得到1111112n n a a n n +-=-++,再利用累加法求解即可. 【解析】 因为()()()*1112n n n n a a n n n N a a ++++=∈-,所以()()()*11112nn n n a a n N a a n n ++-=∈++, 所以()()111111212n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,当2n ≥时,11221111111n n n n a a a a a a ---⎛⎫⎛⎫⎛⎫-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111123n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪⎪+ ⎪ ⎝⎭⎝⎭-⎝⎭, 1111121n a a n -=-+,解得()11131122122n n n a n n +=-+=≥++ 当1n =时,上式成立,故2231n n a n +=+,故102022230131a +==+. 故选:B二、多选题9.数列{a n }的前n 项和为S n ,()*111,2N n n a a S n +==∈,则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .21,123,2n n n a n -=⎧=⎨⋅≥⎩【答案】ABD 【分析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a ,进而求得n S 以及判断出{}n S 是等比数列.【解析】依题意()*111,2N n n a a S n +==∈,当1n =时,2122a a ==, 当2n ≥时,12n n a S -=,11222n n n n n a a S S a +--=-=,所以13n n a a +=,所以()2223232n n n a a n --=⋅=⋅≥,所以21,123,2n n n a n -=⎧=⎨⋅≥⎩. 当2n ≥时,1132n n n a S -+==;当1n =时,111S a ==符合上式,所以13n n S -=.13n nS S +=,所以数列{}n S 是首项为1,公比为3的等比数列. 所以ABD 选项正确,C 选项错误.故选:ABD10.已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足1n n b a =,若n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,则k 的值不可能是( ) A .4 B .6 C .8 D .10【答案】AD 【分析】利用n a 与n S 的关系,求得n a ,进而求得n b ,然后根据n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,得到n 与k 的关系,进而求得答案.【解析】当1n =时,11212a S ===,当2n ≥时,()()2211122n n n n n n n a S S n --+++=-=-=,故n a n =(N n *∈),11n n b a n ==(N n *∈).因为n b ,2n b +,n k b +(N k *∈,2k >)成等差数列,所以22n n n k b b b ++=+,即2112n n n k=+++,所以48422n k n n ==+--,(2k >,N k *∈),从而2n -的取值为1,2,4,8,则对应的k 的值为12,8,6,5,所以k 的值不可能是4,10, 故选:AD .第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题11.数列{}n a 的前n 项的和231n S n n =++,n a =________.【分析】利用2n 时,1n n n a S S -=-求n a ,同时注意11a S =. 【解析】解析:由题可知,当2n 时,1n n n a S S -=-22313(1)(1)1n n n n ⎡⎤=++--+-+⎣⎦62n =-,当1n =时,113115a S ==++=,故答案为:5,162,2n n n =⎧⎨-⎩.12.设数列{a n }的前n 项和为S n =2n -3,则a n =________.【答案】【解析】解析 当n ≥2时,a n =S n -S n -1=(2n -3)-[2(n -1)-3]=2,又a 1=S 1=2×1-3=-1,故a n =13.已知数列{}n a 的前n 项和为n S ,若n n a b S +=,2414a a =,则数列{}n a 的通项公式为___________. 【答案】212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭【分析】 由n n a b S +=可得数列{}n a 是公比为12的等比数列,然后根据2414a a =求出21a =即可. 【解析】因为n n a b S +=,所以当1n =时,1112b a S a +==,即12b a = 当2n ≥时,11n n b a S --+=,然后可得10n n n a a a --+=,即()1122n n a a n -=≥ 所以数列{}n a 是公比为12的等比数列 所以21124b a a ==,4111816a a b ==, 因为22411644a ab ==,所以4b =±, 当4b =时, 21a =,2221122n n n a a --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当4b =-时, 21a =-,2221122n n n a a --⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭故答案为:212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭四、解答题 14.已知数列{}n a 的前n 项和()2*2n S n kn k N =-+∈,且n S 的最大值为4.(1)求常数k 及n a ;(2)设()17n n b n a =-,求数列{}n b 的前n 项和n T . 【答案】(1)2k =,25n a n =-+ (2)2(1)n n T n =+ 【分析】(1)由于()222*2()n S n kn n k k k N =-+=--+∈,则可得24k =,从而可求出2k =,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a , (2)由(1)可得11121n b n n ⎛⎫=- ⎪+⎝⎭,然后利用裂项相消求和法求解即可 (1)因为()222*2()n S n kn n k k k N =-+=--+∈,所以当n k =时,n S 取得最大值2k , 所以24k =,因为*k N ∈,所以2k =,所以24n S n n =-+,当1n =时,11143a S ==-+=,当2n ≥时,2214[(1)4(1)]25n n n a S S n n n n n -=-=-+---+-=-+,13a =满足上式,所以25n a n =-+(2)由(1)可得()()11111177252(1)21n n b n a n n n n n n ⎛⎫====- ⎪-+-++⎝⎭, 所以1111111112222321n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 111212(1)n n n ⎛⎫=-= ⎪++⎝⎭ 15.已知数列{}n a 满足()23*1232222n n a a a a n n N ++++=∈,求数列{}n a 的通项公式.【答案】12n na =【分析】 先根据前n 项和与通项的关系得12n n a =,再检验1n =时也满足条件即可求得答案. 【解析】因为23*1232222()n n a a a a n n N ++++=∈①, 所以()2311231222212n n a a a x a n n --++++=-≥②, ①-②得21(2)n n a n =≥,即 12n n a =, 当1n =时,112a =,满足12n n a =, 所以12n na = 16.已知数列{}n a 的前n 项和112n n S ⎛⎫=+ ⎪⎝⎭,求数列{}n a 的通项公式. 【答案】312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩ 【分析】根据n S 与n a 的关系式,求解数列的通项公式即可.需要注意验证首项.【解析】()111111222n n n n S S n --⎛⎫⎛⎫=+∴=+≥ ⎪ ⎪⎝⎭⎝⎭①②-①②得()122n n a n ⎛⎫=-≥ ⎪⎝⎭ 根据题意,1111311222a S ⎛⎫==+=≠- ⎪⎝⎭ 所以数列的通项公式为312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩。

数列递推求通项专题训练(中档+拔高)

数列递推求通项专题训练(中档+拔高)
(1)求a1的值;
(2)求数列{an}的通项公式
6.已知数列 满足 , , ,且 是比数列。
1)求出通项公式 ;2)求证: …
1.已知在数列 中, , , .
(1)求 的通项公式;()设数列 的前 项和为 ,证明: .
2..数列 首项 ,前 项和 与 之间满足
1)求数列 的通项公式2)设存在正数 ,使 对于一切 都成立,求 的最大值。
3.设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求数列{an}的通项公式.
4.设数列{an}的前n项和为Sn.已知a1=a(a≠3),an+1=Sn+3n,n∈N*,设bn=Sn-3n.
(1)求数列{bn}的通项公式;
(2)若an+1≥an,n∈N*,求a的取值范围.
5.已知数列{an}的各项均为正数,记数列{an}的前n项和为Sn,数列{a }的前n项和为Tn,且3Tn=S +2Sn,n∈N*.

常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题k=1,则an+1=an+f(n)为一阶线性递推数列,可用递推公式或特征方程求解。

例如已知a1=1,an+1=an+1/n,则有:an+1-an=1/nan-an-1=1/(n-1)an-a1=1+1/2+。

+1/n-1an=1+1/2+。

+1/n当k≠1时,设an+1+m=k(an+m),则有:an+1=kan+km-m比较系数得km-m=b,解得m=b/(k-1)an+m=b/(k-1)k^(n-1)+(a1-b/(k-1))k^n-1即为通项公式。

例2]an+1=kan+f(n)型。

当k=1时,an+1-an=f(n),若f(n)可求和,则可用累加消项的方法求得通项公式。

例如已知a1=1,an+1-an=1/(n(n+1)),则有:an+1-an=1/n-1/(n+1)an-an-1=1/1-1/2-1/2+1/3+。

+1/(n-1)-1/n-1/(n+1)an-a1=1-1/(n+1)an=2-1/n当k≠1且f(n)=an+b时,可设an+1+A(n+1)+B=k(an+An+B),解得A=a/(k-1),B=(2k-1)/(k-1)b-a,即可得通项公式。

例3]an+1=f(n)an型。

若f(n)=q(n+1)/n,则有:Cn=qCn-1Cn=q^nC0an=Cn/n!=q^nC0/n!即为通项公式。

1.已知数列 $\{a_n\}$ 中,$a_1=1$,$a_{n+1}=a_n+2a_{n-1}$,求 $a_n$。

解:根据递推式,可以列出 $a_2=3$,$a_3=7$,$a_4=15$,$a_5=31$,$a_6=63$,$a_7=127$,$\cdots$,可以猜测 $a_n=2^n-1$。

可以用数学归纳法证明:当 $n=1$ 时,$a_1=1=2^1-1$,假设 $a_k=2^k-1$,则 $a_{k+1}=a_k+2a_{k-1}=2^k-1+2\cdot 2^{k-1}-2=2^{k+1}-1$,所以 $a_n=2^n-1$。

数学数列递推练习题

数学数列递推练习题

数学数列递推练习题1. 请计算以下数列的通项公式,并计算出以下各数列的第10项。

(每小题10分)(1)1,4,7,10,...(2)3,-1,-5,-9,...(3)-2,4,-8,16,...(4)5,9,13,17,...2. 下列数列递推关系是由数列的前两项到第三项的关系确定的,请给出适用于各数列的递推公式。

(每小题10分)(1)数列前三项依次为2,3,5(2)数列前三项依次为1,4,9(3)数列前三项依次为1,-3,12(4)数列前三项依次为1,0,-13. 请计算以下数列的前n项和。

(每小题10分)(1)1,2,4,8,...(2)3,7,15,31,...(3)2,5,10,17,...(4)1,3,6,10,...4. 若数列的前两项为a1和a2,且满足通项公式an = (n-1)an-1 - (n-2)an-2 (n≥3)。

现给定a1=1,a2=3,请计算以下问题。

(每小题10分)(1)计算数列的第10项的值。

(2)计算数列的前10项和。

解题步骤与答案:1.(1)题目:1,4,7,10,...解答:首先观察到该数列的公差是3,即递增3的等差数列。

设该等差数列的第一项为a,公差为d,则通项公式为an = a + (n-1)d。

代入a=1,d=3得到通项公式an = 1 + (n-1)3 = 3n - 2。

计算第10项:a10 = 3*10 - 2 = 28(2)题目:3,-1,-5,-9,...解答:首先观察到该数列的公差是-4,即递减4的等差数列。

设该等差数列的第一项为a,公差为d,则通项公式为an = a + (n-1)d。

代入a=3,d=-4得到通项公式an = 3 - 4(n-1) = -4n + 7。

计算第10项:a10 = -4*10 + 7 = -33(3)题目:-2,4,-8,16,...解答:首先观察到该数列的相邻项之比是-2,即等比数列。

设该等比数列的第一项为a,公比为r,则通项公式为an = ar^(n-1)。

高中数学《数列的递推公式》习题(含解析)

高中数学《数列的递推公式》习题(含解析)

第8课时数列的递推公式知识点一利用数列的递推公式求数列的项1.已知数列{a n}满足a n=4a n-1+3,且a1=0,则此数列第5项是() A.15B.255C.16D.63答案B解析a2=3,a3=15,a4=63,a5=255.2.已知a1=1,a n+1=a n3a n+1,则数列{a n}的第4项是()A.116B.117C.110D.125答案C解析a2=a13a1+1=13+1=14,a3=a23a2+1=1434+1=17,a4=a33a3+1=1737+1=110.3.已知数列{a n}满足a1=1,a n+1=2a n-1(n∈N*),则a1000=()A.1B.1999C.1000D.-1答案A解析a1=1,a2=2×1-1=1,a3=2×1-1=1,a4=2×1-1=1,…,可知a n=1(n∈N*).4.已知数列{a n}对任意的p,q∈N*满足a p+q=a p+a q,且a2=-6,那么a10等于()A.-165B.-33C.-30D.-21答案C解析由已知得a2=a1+a1=2a1=-6,∴a1=-3.∴a10=2a5=2(a2+a3)=2a2+2(a1+a2)=4a2+2a1=4×(-6)+2×(-3)=-30.5.已知数列{a n},a n=a n+m(a<0,n∈N*),满足a1=2,a2=4,则a3=________.答案2解析=a +m ,=a 2+m ,=-1,=3,∴a n =(-1)n +3,∴a 3=(-1)3+3=2.6.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2011=________;a 2018=________.答案01解析∵a 2011=a 503×4-1=0,∴a 2018=a 2×1009=a 1009=a 4×253-3=1.7.数列{a n }满足递推公式a 1=5,a n =nn +1a n -1(n ≥2,n ∈N *),则数列{a n }的前四项依次为________,它的通项公式为________.答案5,103,52,2a n =10n +1解析由a n a n -1=nn +1(n ≥2,n ∈N *),得a 2a 1=23,a 3a 2=34,…,a n a n -1=n n +1(n ≥2,n ∈N *),将以上各式两两相乘得a n a 1=23·34·…·n n +1=2n +1,所以a n =10n +1(n ≥2,n ∈N *),又a 1=5符合上式,所以其通项为a n =10n +1.所以a 1=5,a 2=103,a 3=52,a 4=2.8.已知数列{a n }满足a 1=1,a n -a n -1=1n (n -1)(n ≥2),求数列{a n }的通项公式.解累加法:a n -a n -1=1n (n -1)=1n -1-1n,a 2-a 1=1-12,a 3-a 2=12-13,a 4-a 3=13-14,…,a n -a n -1=1n -1-1n,累加可得a n-a1=1-1 n.又a1=1,所以a n=2-1 n.9.在数列{a n}中,若a1=2,且对所有n∈N*满足a n=a n+1+2,则a2016=________.易错分析本题求通项公式时采用累加法易漏掉a1错解a n=-2n+2致a2016=-4030.答案-4028解析由题意知a n+1-a n=-2,所以a n=(a n-a n-1)+(a n-1-a n-2)+(a n-2-a n-3)+…+(a2-a1)+a1=-2(n-1)+2=-2n+4,所以a2016=-2×2016+4=-4028.10.已知数列{a n}满足a1a2a3…a n=n2(n∈N*),求a n.易错分析本题易忽略式子a1a2a3…a n-1=(n-1)2仅适用于n∈N*且n≥2时的情况,因此两式相除得到a n=n2(n-1)2也仅适用于n≥2时的情况,从而错误断定a n=n2(n-1)2是数列的通项.解当n=1时,a1=1.由条件知a1a2a3…a n=n2(n∈N*),当n≥2时a1a2a3…a n-1=(n-1)2,两式相除得a n=n2(n-1)2(n≥2,n∈N*),故a n,n≥2,n∈N*.一、选择题1.已知a n=3n-2,则数列{a n}的图象是() A.一条直线B.一条抛物线C.一个圆D.一群孤立的点答案D解析∵a n=3n-2,n∈N*,∴数列{a n}的图象是一群孤立的点.2.在数列{a n}中,a1=13,a n=(-1)n·2a n-1(n≥2),则a5等于()A.-163B.163C.-83D.83答案B解析∵a1=13,a n=(-1)n·2a n-1,∴a2=(-1)2×2×13=23,a3=(-1)3×2×23=-4 3,a4=(-1)4×2×-43=-8 3,a5=(-1)5×2×-83=16 3.3.函数f(x)满足f(1)=1,f(n+1)=f(n)+3(n∈N*),则f(n)是()A.递增数列B.递减数列C.常数列D.不能确定答案A解析∵f(n+1)-f(n)=3(n∈N*),∴f(2)>f(1),f(3)>f(2),f(4)>f(3),…,f(n+1)>f(n),….∴f(n)是递增数列.4.数列{a n}的构成法则如下:a1=1,如果a n-2为自然数且之前未出现过,则用递推公式a n+1=a n-2,否则用递推公式a n+1=3a n,则a6=() A.-7B.3C.15D.81答案C解析由a1=1,a1-2=-1∉N,得a2=3a1=3.又a2-2=1=a1,故a3=3a2=9.又a3-2=7∈N,故a4=a3-2=7.又a4-2=5∈N,则a5=a4-2=5.又a5-2=3=a2,所以a6=3a5=15.故选C.5.设数列{a n }满足a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是()A .415B .425C .435D .445答案D解析由题知:a n +1=2na n -(n -1)a n -1n +1,a 3=2×2×3-13=113,a 4=2×3×113-2×34=4,a 5=2×4×4-3×1135=215,a 6=2×5×215-4×46=266,故a n =5n -4n .所以a 20=5×20-420=245=445.故选D .二、填空题6.在数列{a n }中,a n =2n +1,对于数列{b n },b 1=a 1,当n ≥2时,b n =ab n-1,则b 4=________,b 5=________.答案3163解析由a n =2n +1,知b 2=ab 1=a 3=7,b 3=ab 2=a 7=15,b 4=ab 3=a 15=31,b 5=ab 4=a 31=63.7.已知F (x )=1是R 上的奇函数.a n =f (0)+f (1)(n ∈N *).则数列{a n }的通项公式为________.答案a n =n +1解析因为F (x )+F (-x )=0,所以x 2,即若a +b =1,则f (a )+f (b )=2.于是由a n =f (0)+…+f (1)(n ∈N *),得2a n =[f (0)+f (1)]…[f (1)+f (0)]=2n +2,所以a n =n +1.8.函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2019=________.x 12345f (x )51342答案5解析由题意可得x 1,x 2,x 3,x 4,x 5,…的值分别为2,1,5,2,1,…故数列{x n }为周期为3的周期数列.∴x 2019=x 3×673=x 3=5.三、解答题9.数列{a n }中a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2.(1)求a 3,a 5;(2)探究256225是否为此数列中的项;若是,是第多少项?(3)试比较a n 与a n +1(n ≥2)的大小.解(1)∵对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,∴a 1·a 2=22,a 1·a 2·a 3=32,a 1·a 2·a 3·a 4=42,a 1·a 2·a 3·a 4·a 5=52.∴a 3=94,a 5=2516.(2)∵a 1·a 2·a 3·…·a n =n 2,∴n ≥3时,a 1·a 2·a 3·…·a n -1=(n -1)2,∴n ≥3时,∴a n ,且a 1=1,a 2=4,而256225=,∴256225是数列中的项,是第16项.(3)∵a na n+1=>1,∴a n>a n+1(n≥2).10.已知数列{a n}满足a1=1,a n+1=2a na n+2n∈N*),试探究数列{a n}的通项公式.解解法一:将n=1,2,3,4依次代入递推公式得a2=23,a3=24,a4=25,又a1=2 2,∴可猜想a n=2n+1.应有a n+1=2n+2,将其代入递推关系式验证成立,∴a n=2n+1.解法二:∵a n+1=2a na n+2,∴a n+1a n=2a n-2a n+1.两边同除以2a n+1a n,得1a n+1-1a n=12.∴1a2-1a1=12,1a3-1a2=12,…,1a n-1a n-1=12.把以上各式累加得1a n-1a1=n-12.又a1=1,∴a n=2n+1.故数列{a n}的通项公式为a n=2n+1(n∈N*).。

数列递推求极限经典题

数列递推求极限经典题

数列递推求极限经典题数列递推求极限是数列极限的一种常见问题。

数列递推是指通过给定的递推关系式,利用前一项来计算后一项的方法。

在求解数列递推极限时,我们通常需要找到数列的递推关系式,并通过递推关系式来计算数列的极限。

下面我将从多个角度来回答这个问题,以帮助你更好地理解数列递推求极限的经典题。

首先,我们可以介绍一些常见的数列递推关系式,例如斐波那契数列、等差数列和等比数列等。

对于斐波那契数列,递推关系式为Fn = Fn-1 + Fn-2,其中F0 = 0,F1 = 1。

对于等差数列,递推关系式为an = an-1 + d,其中a1为首项,d为公差。

对于等比数列,递推关系式为an = an-1 r,其中a1为首项,r为公比。

其次,我们可以讨论数列递推求极限的方法。

一种常见的方法是通过递推关系式将数列的后一项表示为前一项的函数形式,然后利用极限的性质求解极限。

例如,对于斐波那契数列,可以通过递推关系式将Fn表示为Fn-1和Fn-2的函数形式,然后利用极限的性质求解Fn的极限。

另一种常见的方法是利用数列的性质,如有界性、单调性等,结合数列极限的性质来求解极限。

此外,我们还可以讨论数列递推求极限的一些特殊情况。

例如,当递推关系式中的项数趋向于无穷大时,我们可以通过求解递推关系式的不动点来求解极限。

另外,当递推关系式中的项数趋向于无穷大时,我们可以利用数列极限的性质来判断数列的极限是否存在。

最后,我们可以举一些具体的例子来说明数列递推求极限的过程。

例如,对于斐波那契数列的递推关系式Fn = Fn-1 + Fn-2,我们可以通过将Fn表示为Fn-1和Fn-2的函数形式,然后利用极限的性质求解Fn的极限。

具体的求解过程可以通过递推关系式逐步展开,然后利用极限的性质求解。

综上所述,数列递推求极限是数列极限的一种常见问题。

在求解过程中,我们需要找到数列的递推关系式,并通过递推关系式来计算数列的极限。

我们可以通过递推关系式将数列的后一项表示为前一项的函数形式,然后利用极限的性质求解极限。

数列递推通项式的大题题型(答案版)

数列递推通项式的大题题型(答案版)

数列通项公式的十种求法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。

解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。

评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。

二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。

评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+ ,即得数列{}n a 的通项公式。

题型最全的递推数列求通项公式的习题

题型最全的递推数列求通项公式的习题

2(川)证明:n-12 3€鱼+亞+ a 2a 3+玉 (n 迂 N *).a n 十2类型 4an + = pan +q n(其中P ,q 均为常数,(P q( P —1)(q-1) H0))。

(或 a n41 = pa n + rq n,其中 p , q, r 均为常数)。

解法:一般地,要先在原递推公式两边同除以q n十,得:斗q nq a n nq+丄引入辅助数列 他}(其中b n=牛),得:b n 4t =卫bn +丄再待定 q q q q 系数法解决。

例:已知数列£n >中,a j =5,a n+ =61+ / 1\n十 匚a n 中(匚)3 2变式:(2006,全国I,理22,本小题满分12分)求a n 。

设数列{a ,的前n 项的和S n =4a n —1咒2肚3 3 3n = 1,2,3,磐2n(I )求首项a 1与通项a n ; (n )设「=一 , n =1,2,3,鑒,证明:Snz高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中, 数列通项公式的求解问题往往是解决数列难题的瓶颈。

我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。

类型 1an4=an+f( n) a n ^ -a^ = f (n ),利用累加法(逐差相加法)求解。

变式:已知数列{a n }中6=1,且 a 2k =a 2k -1+( — 1)K,a 2k+1 = a 2k +3k,其中 k=1,2,3,类型 2an+ = f(n)anr 1变式:(2004,全国 I,理 15.)已知数列{a n },满足 a 1=1, a . = + 2&2 + 3&3+ …+ (n — 1)a n 」(n >2),则{a n }的通项 a n= J类型 3 a n + = pa n +q (其中 p , q 均为常数,(pq(p — 1)H 0))。

必修五数列递推公式经典题型汇总(全)

必修五数列递推公式经典题型汇总(全)

数列递推公式经典题型汇总(全)1. (2011年高考四川)数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈ .若则32b =-,1012b =,则8a =( ) A )0 (B )3 (C )8 (D )11 答案:B 解析:由已知知128,28,n n n b n a a n +=--=-由叠加法21328781()()()642024603a a a a a a a a -+-++-=-+-+-++++=⇒==2.(2011年高考全国卷设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k = A )8 (B )7 (C )6 (D )5【答案】D 【解析】22111(21)(11)k k k k S S a a a k d a k d +++-=+=++-+++-12(21)a k d =++21(21)244245k k k =⨯++⨯=+=⇒=故选D 。

3.(2009广东卷理)已知等比数列{}n a 满足0,1,2,n a n >= ,且25252(3)n n a an -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=A. (21)n n -B. 2(1)n +C. 2nD. 2(1)n -【解析】由25252(3)nn a a n -⋅=≥得nn a 222=,0>n a ,则nn a 2=, +⋅⋅⋅++3212log log a a2122)12(31log n n a n =-+⋅⋅⋅++=-,选C.4.1,13111=+⋅=--a a a a n n n 则其通项为解:取倒数:11113131---+=+⋅=n n n n a a a a ⎭⎬⎫⎩⎨⎧∴n a 1是等差数列,3)1(111⋅-+=n a a n 3)1(1⋅-+=n 231-=⇒n a n5 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

递推数列试题及答案

递推数列试题及答案

递推数列试题及答案1. 已知递推数列 \(a_n\) 满足 \(a_1 = 2\),\(a_{n+1} = 2a_n + 1\),求 \(a_5\) 的值。

答案:首先,我们根据给定的递推公式计算数列的前几项。

\(a_1 = 2\)\(a_2 = 2a_1 + 1 = 2 \times 2 + 1 = 5\)\(a_3 = 2a_2 + 1 = 2 \times 5 + 1 = 11\)\(a_4 = 2a_3 + 1 = 2 \times 11 + 1 = 23\)\(a_5 = 2a_4 + 1 = 2 \times 23 + 1 = 47\)所以,\(a_5\) 的值为 47。

2. 给定递推数列 \(b_n\) 满足 \(b_1 = 3\),\(b_{n+1} = 3b_n - 2\),求 \(b_4\) 的值。

答案:同样地,我们使用递推公式计算数列的前几项。

\(b_1 = 3\)\(b_2 = 3b_1 - 2 = 3 \times 3 - 2 = 7\)\(b_3 = 3b_2 - 2 = 3 \times 7 - 2 = 19\)\(b_4 = 3b_3 - 2 = 3 \times 19 - 2 = 55\)因此,\(b_4\) 的值为 55。

3. 考虑递推数列 \(c_n\) 满足 \(c_1 = 1\),\(c_{n+1} = c_n + n\),求 \(c_4\) 的值。

答案:我们根据递推公式计算数列的前几项。

\(c_1 = 1\)\(c_2 = c_1 + 1 = 1 + 1 = 2\)\(c_3 = c_2 + 2 = 2 + 2 = 4\)\(c_4 = c_3 + 3 = 4 + 3 = 7\)所以,\(c_4\) 的值为 7。

4. 递推数列 \(d_n\) 满足 \(d_1 = 5\),\(d_{n+1} =\frac{d_n}{2} + 1\),求 \(d_3\) 的值。

题型最全的递推数列求通项公式的习题

题型最全的递推数列求通项公式的习题

高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

我现在总结出几种求解数列通项公式的方法,希望能对大家有帮助。

类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例1. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,…….(I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例1:已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

例2:已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。

变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩ 12n n =≥类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:(2006,重庆,文,14)在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________ 变式:(2006. 福建.理22.本小题满分14分) 已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式; (II )若数列{b n }滿足12111*444(1)(),n n b b b b n a n N ---=+∈证明:数列{b n }是等差数列;(Ⅲ)证明:*122311...().232n n a a a n nn N a a a +-<+++<∈ 类型4 nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。

数列的递推公式练习题

数列的递推公式练习题

(2)127是这个数列的第几项? (2)第7项.
15.数列{an}中,若a1+2a2+3a3+……+nan =n(n+1)(n+2),求通项公式an.
an=3(n+1)
2.已知数列{an}中,a1=5,an+1=2an+3,则a3
等于( C )
(A)13 (C)29 (B)16 (D)27
a 2 1 n 3.在数列{an}中,a1=1, (n∈N+), a n 1 2 an
则a5等于( B )
2 (A) 5
2 (C) 3
1 (B) 3 ( D) 1 2
9.若a1=1,an+1=an+n(n∈N+),则数列{an}的 前4项为 1, 2, 4, 7 。
10.已知数列{an}的前n项和为Sn,Sn=2n2+2n, 则通项公式an等于 4n 。
11.已知数列{an}的前n项和为Sn,Sn=3n-2,
则通项公式an等于
n 1 1, 。 n 1 2 3 , n ≥ 2
12.已知数列{an}满足an+1=pan+q,且a1=2, a2=3,a4=9,则实数p= -3或2 ;q= 9或-1 .
13.数列:3,8,13,18,……,相邻三项
间的递推公式是 an+2=2an+1-an

14.已知数列{an}的各项满足an+2=3an+1-2an, 且a1=1,a2=3, (1)求a5; (1)a5=31;
6. 已知数列{an}的通项公式为an=lg1536-(n -1)lg2,则使得an<0成立的最小正整数n的值 为( B ) (B)12 (D)15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档