确定二次函数的表达式习题
专题训练(二)确定二次函数的表达式五种方法
![专题训练(二)确定二次函数的表达式五种方法](https://img.taocdn.com/s3/m/c7e69db5551810a6f424864d.png)
专题训练(二)确定二次函数的表达式五种方法 ► 方法一 利用一般式求二次函数表达式1.已知抛物线过点A(2,0),B(-1,0),与y轴交于点C,且OC=2.则这条抛物线的表达式为( )A.y=x2-x-2B.y=-x2+x+2C.y=x2-x-2或y=-x2+x+2D.y=-x2-x-2或y=x2+x+22.若二次函数y=x2+bx+c的图象经过点(-4,0),(2,6),则这个二次函数的表达式为______________.3.一个二次函数,当自变量x=-1时,函数值y=2;当x=0时,y=-1;当x=1时,y=-2.那么这个二次函数的表达式为____________.4.如图2-ZT-1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0,0),B(2,0)三点.(1)求抛物线的表达式;(2)若M是该抛物线的对称轴上的一点,求AM+OM的最小值.图2-ZT-1► 方法二 利用顶点式求二次函数表达式5.已知二次函数y =ax 2+bx +c ,当x =1时,有最大值8,其图象的形状、开口方向与抛物线y =-2x 2相同,则这个二次函数的表达式是( )A .y =-2x 2-x +3B .y =-2x 2+4C .y =-2x 2+4x +8D .y =-2x 2+4x +66.已知y 是x 的二次函数,根据表中的自变量x 与函数y 的部分对应值,可判断此函数的表达式为( )x …-1012…y…-154254…A .y =x 2B .y =-x 2C .y =(x -1)2+234D .y =-(x -1)2+2347.[2018·巴中改编]一位篮球运动员在距离篮框中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮框内.已知篮框中心距离地面高度为3.05m .在如图2-ZT -2所示的平面直角坐标系中,此抛物线的表达式是________.8.已知抛物线y 1=ax 2+bx +c 的顶点坐标是(1,4),它与直线y 2=x +1的一个交点的横坐标为2.(1)求抛物线的函数表达式;(2)在如图2-ZT -3所示的平面直角坐标系中画出抛物线y 1=ax 2+bx +c 及直线y 2=x +1,并根据图象,直接写出使得y 1≥y 2成立的x 的取值范围.图2-ZT -3► 方法三 利用交点式求二次函数表达式9.若抛物线的最高点的纵坐标是,且过点(-1,0),(4,0),则该抛物线的表达式为( )254A .y =-x 2+3x +4 B .y =-x 2-3x +4C .y =x 2-3x -4D .y =x 2-3x +410.抛物线y =ax 2+bx +c 与x 轴的两个交点坐标为(-1,0),(3,0),其形状及开口方向与抛物线y =-2x 2相同,则抛物线的函数表达式为( )A .y =-2x 2-x +3B .y =-2x 2+4x +5C .y =-2x 2+4x +8D .y =-2x 2+4x +6► 方法四 利用平移求二次函数表达式11.[2018·广西]将抛物线y =x 2-6x +21向左平移2个单位后,得到新抛物线的表达式12为( )A .y =(x -8)2+5B .y =(x -4)2+51212C .y =(x -8)2+3D .y =(x -4)2+3121212.如果将抛物线y =2x 2+bx +c 先向左平移3个单位,再向下平移2个单位,得到了抛物线y=2x2-4x+3.(1)试确定b,c的值;(2)求出抛物线y=2x2+bx+c的顶点坐标和对称轴.► 方法五 利用对称轴求二次函数表达式13.如图2-ZT-4,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点坐标为(3,0),那么它对应的函数表达式是______________.图2-ZT-414.如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图2-ZT-5,二次函数y1=x2+2x+2与y2=x2-2x+2是“关于y轴对称二次函数”.(1)直接写出两条“关于y轴对称二次函数”图象所具有的特点.(2)二次函数y=2(x+2)2+1的“关于y轴对称二次函数”的表达式为__________;二次函数y=a(x-h)2+k的“关于y轴对称二次函数”的表达式为____________;(3)平面直角坐标系中,记“关于y轴对称二次函数”的图象与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连接点A,B,O,C,得到一个面积为24的菱形,求“关于y轴对称二次函数”的表达式.图2-ZT-5教师详解详析1.[解析]C 由题意可知点C 的坐标是(0,2)或(0,-2).设抛物线的表达式为y =ax 2+bx +c .由抛物线经过点(2,0),(-1,0),(0,2),得解得{4a +2b +c =0,a -b +c =0,c =2,)则抛物线的表达式是y =-x 2+x +2.同理,由抛物线经过点(2,0),(-1,0),(0,-2)求{a =-1,b =1,c =2,)得该抛物线的表达式为y =x 2-x -2.故这条抛物线的表达式为y =-x 2+x +2或y =x 2-x -2.2.[答案]y =x 2+3x -4[解析]将点(-4,0),(2,6)代入y =x 2+bx +c ,得解得{16-4b +c =0,4+2b +c =6,){b =3,c =-4,)∴这个二次函数的表达式为y =x 2+3x -4.3.y =x 2-2x -14.解:(1)把A (-2,-4),O (0,0),B (2,0)代入y =ax 2+bx +c ,得{4a -2b +c =-4,4a +2b +c =0,c =0,)解这个方程组,得{a =-12,b =1,c =0,)所以抛物线的表达式为y =-x 2+x .12(2)由y =-x 2+x =-(x -1)2+,可得抛物线的对称轴为直线x =1,并且对称轴垂直121212平分线段OB ,∴OM =BM ,∴AM +OM =AM +BM .连接AB 交直线x =1于点M ,则此时AM +OM 的值最小.过点A 作AN ⊥x 轴于点N ,在Rt △ABN 中,AB ===4,因此AM +OM 的最小值为4.AN 2+BN 242+42225.D6.[解析]D ∵函数图象过点(0,)和(2,),∴函数图象的对称轴为直线x =1,故该函数5454图象的顶点坐标为(1,2).设函数表达式为y =a (x -1)2+2.把(-1,-1)代入,得4a +2=-1,解得a =-,∴此函数表达式为y =-(x -1)2+2.34347.[答案]y =-x 2+3.515[解析]∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的表达式为y =ax 2+3.5.∵篮框中心(1.5,3.05)在抛物线上,将它的坐标代入表达式,得3.05=a ×1.52+3.5,∴a =-,∴y =-x 2+3.5.15158.解:(1)∵抛物线与直线y 2=x +1的一个交点的横坐标为2,∴交点的纵坐标为2+1=3,即此交点的坐标为(2,3).设抛物线的表达式为y 1=a (x -1)2+4.把(2,3)代入,得3=a (2-1)2+4,解得a =-1,∴抛物线的表达式为y 1=-(x -1)2+4=-x 2+2x +3.(2)令y 1=0,即-x 2+2x +3=0,解得x 1=3,x 2=-1,∴抛物线与x 轴的交点坐标为(3,0)和(-1,0).在平面直角坐标系中画出抛物线与直线,如图所示:根据图象可知,使得y 1≥y 2成立的x 的取值范围为-1≤x ≤2.9.[解析]A 由抛物线的轴对称性可知该抛物线的对称轴为直线x =×(-1+4)=,故1232该抛物线的顶点坐标为(,).设该抛物线的表达式为y =a (x +1)(x -4).将(,)代入,得3225432254=a (+1)(-4),解得a =-1,故该抛物线的表达式为y =-(x +1)(x -4)=-x 2+3x +4.注2543232意:本题也可运用顶点式求抛物线的表达式.10.[解析]D 设抛物线的函数表达式为y =a (x -x 1)(x -x 2).因为抛物线y =ax 2+bx +c 与x 轴的两个交点坐标为(-1,0),(3,0),所以y =a (x -3)(x +1).又因为其形状及开口方向与抛物线y =-2x 2相同,所以y =-2(x -3)(x +1),即y =-2x 2+4x +6.11.[解析]D y =x 2-6x +2112=(x 2-12x )+2112=[(x -6)2-36]+2112=(x -6)2+3,12故y =(x -6)2+3向左平移2个单位后,12得到新抛物线的表达式为y =(x -4)2+3.1212.解:(1)∵y =2x 2-4x +3=2(x 2-2x +1-1)+3=2(x -1)2+1,∴将其向上平移2个单位,再向右平移3个单位可得原抛物线,即y =2(x -4)2+3,∴y =2x 2-16x +35,∴b =-16,c =35.(2)由y =2(x -4)2+3得顶点坐标为(4,3),对称轴为直线x =4.13.[答案]y =-x 2+2x +3[解析]∵抛物线y =-x 2+bx +c 的对称轴为直线x =1,∴=1,解得b =2,b2又∵抛物线与x 轴的一个交点坐标为(3,0),∴0=-9+6+c ,解得c =3,故函数表达式为y =-x 2+2x +3.14.解:(1)(答案不唯一)顶点关于y 轴对称,对称轴关于y 轴对称.(2)y =2(x -2)2+1 y =a (x +h )2+k (3)若点A 在y 轴的正半轴上,如图所示:顺次连接点A ,B ,O ,C ,得到一个面积为24的菱形,由BC =6,得OA =8,则点A 的坐标为(0,8),点B 的坐标为(-3,4).设一个抛物线的表达式为y =a (x +3)2+4.将点A 的坐标代入,得9a +4=8,解得a =.49二次函数y =(x +3)2+4的“关于y 轴对称二次函数”的表达式为y =(x -3)2+4.4949根据对称性,开口向下的抛物线也符合题意,则“关于y 轴对称二次函数”的表达式还可以为y =-(x +3)2-4,y =-(x -3)2-4.4949综上所述,“关于y 轴对称二次函数”的表达式为y =(x +3)2+4,y =(x -3)2+4或4949y =-(x +3)2-4,y =-(x -3)2-4.4949。
用顶点式确定二次函数表达式
![用顶点式确定二次函数表达式](https://img.taocdn.com/s3/m/35d84e1503d8ce2f0066236d.png)
(2,5) (0,1)
知识迁移
抛物线 y 2 x bx c(a≠0),经过向左平移 3个单位,向下平移2个单位,得到新的顶点为 (-2,3);求抛物线原解析式。
2
知识迁移
已知抛物线C1的解析式为 y 2 x 4 x 5
2
抛物线C2与抛物线C1关于x轴对称,则抛物线C2的解 析式为:_________________ _; 若抛物线C3关于抛物线C1 y轴对称,则抛2 9 8
知识迁移
1.已知二次函数的对称轴为直线x=2,函数的最小值 是-3,且过(0,1),求二次函数解析式?
知识迁移
2.已知抛物线对称轴是直线x=2,且经过(3,1) 和(0,-5)两点,求二次函数的关系式。
知识迁移
3.抛物线如图所示,请求出抛物线的解析式。
综合应用
要修建一个圆形喷水池,在池中心竖直安 装一根水管.在水管的顶端安装一个喷水 头,使喷出的抛物线形水柱在与池中心的 水平距离为1m处达到最高,高度为3m,水柱 落地处离池中心3m,水管应多长?
解:由题可得, 点(1,3)是图中这段抛 y B(1,3) 物线的顶点.因此可设这段抛物线 3 对应的函数是 A 2 y=a(x-1)2+3 (0≤x≤3) ∵这段抛物线经过点(3,0) 3 1 2 a= - ∴ 0=a(3-1) +3 解得: 4 因此抛物线的解析式为: 2 1 3 O y=-4(x-1)2+3 (0≤x≤3) 当x=0时,y=2.25 答:水管长应为2.25m.
数形结合 双壁辉映
曾鹏志
顶点式确定二次函数
知识回顾
用待定系数法求二次函数的解析式 常见类型
本节重点 运用
1.顶点式:y a( x h) k (a 0)
2022--2023学年北师大版九年级数学下册《2-3确定二次函数的表达式》同步达标测试题(附答案)
![2022--2023学年北师大版九年级数学下册《2-3确定二次函数的表达式》同步达标测试题(附答案)](https://img.taocdn.com/s3/m/9611276cc950ad02de80d4d8d15abe23482f0387.png)
2022--2023学年北师大版九年级数学下册《2.3确定二次函数的表达式》同步达标测试题(附答案)一.选择题(共8小题,满分32分)1.将二次函数y=x2﹣4x+8转化为y=a(x﹣m)2+k的形式,其结果为()A.y=(x﹣2)2+4B.y=(x+4)2+4C.y=(x﹣4)2+8D.y=(x﹣2)2﹣4 2.一抛物线的形状、开口方向与抛物线相同,顶点为(﹣2,1),则此抛物线的解析式为()A.B.C.D.3.已知二次函数的图象经过(0,0),(3,0),(1,﹣4)三点,则该函数的解析式为()A.y=x2﹣3x B.y=2x2﹣3x C.y=2x2﹣6x D.y=x2﹣6x4.已知抛物线y=x2+bx+c的顶点坐标为(1,3),则抛物线对应的函数解析式为()A.y=x2﹣2x+4B.y=x2﹣2x﹣3C.y=﹣x2+2x+1D.y=x2﹣2x+1 5.已知抛物线的顶点坐标是(2,﹣1),且与y轴交于点(0,3),这个抛物线的表达式是()A.y=x²﹣4x+3B.y=x²+4x+3C.y=x²+4x﹣1D.y=x²﹣4x﹣1 6.如图,若抛物线y=ax2﹣2x+a2﹣1经过原点,则抛物线的解析式为()A.y=﹣x2﹣2x B.y=x2﹣2xC.y=﹣x2﹣2x+1D.y=﹣x2﹣2x或y=x2﹣2x7.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=2;当x=5时,y=6,以下判断正确的是()A.若h=2,则a<0B.若h=4,则a>0C.若h=6,则a<0D.若h=8,则a>08.已知某抛物线与二次函数y=5x2的图象的开口大小相同,开口方向相反,且顶点坐标为(﹣1,2021),则该抛物线对应的函数表达式为()A.y=﹣5(x﹣1)2+2021B.y=5(x﹣1)2+2021C.y=﹣5(x+1)2+2021D.y=5(x+1)2+2021二.填空题(共8小题,满分32分)9.小聪在画一个二次函数的图象时,列出了下面几组y与x的对应值:x…012345…y…50﹣3﹣4﹣30…该二次函数的解析式是.10.顶点为(﹣6,0),开口向下,形状与函数y=x2的图象相同的抛物线的表达式是.11.二次函数y=x2+bx+c的图象经过点(1,0)和(3,0),则其函数解析式为.12.已知某二次函数y=x2+bx+c过点A(1,0),B(﹣3,0),则此二次函数的关系式是,若在此抛物线上存在一点P,使△ABP面积为8,则点P的坐标是.13.已知抛物线的顶点在原点,对称轴为y轴,且经过点(﹣1,﹣2),则抛物线的表达式为.14.二次函数与y轴的交点到原点的距离为8,它的顶点坐标为(﹣1,2),那么它的解析式为.15.若抛物线y=ax2+bx+c(a≠0)与抛物线y=2x2﹣4x﹣1的顶点重合,且与y轴的交点的坐标为(0,1),则抛物线y=ax2+bx+c(a≠0)的表达式是.16.已知:二次函数y=ax2+bx+c中的x、y满足下表:x﹣2﹣11347y﹣5040m﹣36(1)m的值为;(2)此函数的解析式为;(3)若0<x<4时,则y的取值范围为.三.解答题(共6小题,满分56分)17.已知抛物线y=x2+bx+c的图象经过A(﹣1,12)、B(0,5).(1)求抛物线解析式;(2)试判断该二次函数的图象是否经过点(2,3).18.已知抛物线y=ax2+bx﹣3(a,b是常数,a≠0)经过A(﹣1,﹣2),B(1,﹣6).(1)求抛物线y=ax2+bx﹣3的函数解析式;(2)抛物线有两点M(2,y1)、N(m,y2),当y1<y2时,求m的取值范围.19.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+4(a≠0)经过点A(﹣2,0)和点B(4,0).(1)求这条抛物线所对应的函数解析式;(2)点P为该抛物线上一点(不与点C重合),直线CP将△ABC的面积分成2:1两部分,求点P的坐标.20.抛物线的顶点坐标为(2,﹣1),抛物线又经过点(1,0).(1)求抛物线的解析式;(2)在图中画出这条抛物线;(3)根据图象回答,当y>3时,自变量x的取值范围.21.如图,抛物线y=ax2+2ax+c经过点A(2,0),B(﹣2,4).(1)求抛物线的解析式;(2)若函数y=ax2+2ax+c在m≤x≤m+2时有最大值为4,求m的值;(3)点M在直线AB上方的抛物线上运动,当△ABM的面积最大时,求点M的坐标.22.如图,已知抛物线过点O(0,0),A(5,﹣5),且它的对称轴为直线x=2.(1)求此抛物线的表达式;(2)若点B是抛物线对称轴上的一点,且点B在第四象限.①当△OAB的面积为10时,求B的坐标;②点P是抛物线上的动点,当P A﹣PB的值最大时,求P的坐标以及P A﹣PB的最大值.参考答案一.选择题(共8小题,满分32分)1.解:y=x2﹣4x+8=x2﹣4x+4+4=(x﹣2)2+4,故选:A.2.解:∵抛物线的形状、开口方向与抛物线相同,∴a=,∵顶点为(﹣2,1),∴抛物线解析式为y=(x+2)2+1.故选:C.3.解:设这个二次函数的解析式是y=ax(x﹣3)(a≠0),把(1,﹣4)代入得﹣4=﹣2a,解得a=2;所以该函数的解析式为:y=2x(x﹣3)=2x2﹣6x.故选:C.4.解:∵抛物线y=x2+bx+c的顶点坐标为(1,3),∴抛物线解析式为y=(x﹣1)2+3,即y=x2﹣2x+4.故选:A.5.解:∵抛物线的顶点坐标为(2,﹣1)∴设抛物线的解析式为y=a(x﹣2)2﹣1(a≠0),把(0,3)代入得:4a﹣1=3,解得,a=1.所以,这条抛物线的解析式为:y=(x﹣2)2﹣1=x2﹣4x+3.故选:A.6.解:把(0,0)代入y=ax2﹣2x+a2﹣1得,0=a2﹣1,∴a=±1,∵抛物线开口向下,∴抛物线的解析式为y=﹣x2﹣2x,故选:A.7.解:当x=1时,y=2;当x=5时,y=6;代入函数式得:,∴a(5﹣h)2﹣a(1﹣h)2=4,整理得:a(6﹣2h)=1,若h=2,则a=,故A错误;若h=4,则a=﹣,故B错误;若h=6,则a=﹣,故C正确;若h=8,则a=﹣,故D错误;故选:C.8.解:∵抛物线的顶点坐标为(﹣1,2021),∴抛物线的解析式为y=a(x+1)2+2021,∵抛物线y=a(x+1)2+2021二次函数y=5x2的图象的开口大小相同,开口方向相反,∴a=﹣5,∴抛物线的解析式为y=﹣5(x+1)2+2021.故选:C.二.填空题(共8小题,满分32分)9.解:由表格数据结合二次函数图象对称性可得图象顶点为(3,﹣4),设二次函数的表达式为y=a(x﹣3)2﹣4(a≠0),将(1,0)代入得4a﹣4=0,解得a=1,∴该二次函数的表达式为y=(x﹣3)2﹣4(或y=x2﹣6x+5).10.解:设所求的抛物线的关系式为y=a(x﹣h)2+k,∵顶点为(﹣6,0),∴h=﹣6,k=0,又∵开口向下,形状与函数y=x2的图象相同,∴a=﹣,∴抛物线的关系式为:y=﹣(x+6)2,11.解:∵二次函数y=x2+bx+c的图象经过点(1,0)和(3,0),∴二次函数为y=(x﹣1)(x﹣3)=x2﹣4x+3,故答案为:y=x2﹣4x+3.12.解:将点A(1,0),B(﹣3,0)代入y=x2+bx+c中,可得,解得,∴y=x2+2x﹣3,设P(m,m2+2m﹣3),∵AB=4,∴S△ABP=×AB×y P=×4×|m2+2m﹣3|=8,∴|m2+2m﹣3|=4,∴m2+2m﹣3=4或m2+2m﹣3=﹣4,解得m=﹣1±2或m=﹣1,∴P(﹣1+2,4)或P(﹣1﹣2,4)或P(﹣1,﹣4),故答案为:y=x2+2x﹣3;(﹣1+2,4)或(﹣1﹣2,4)或(﹣1,﹣4).13.解:根据题意设抛物线解析式为y=ax2,将x=﹣1,y=﹣2代入得:﹣2=a,则抛物线解析式为y=﹣2x2.故答案为:y=﹣2x2.14.解:∵二次函数的图象顶点坐标为(﹣1,2),∴设这个二次函数的解析式y=a(x+1)2+2(a≠0),∵二次函数的图象与y轴的交点到原点的距离是8,∴交点坐标为(0,8)或(0,﹣8),把(0,8)代入y=a(x+1)2+2,得8=a+2,解得a=6,则这个二次函数的解析式y=6(x+1)2+2;把(0,﹣8)代入y=a(x+1)2+2,得﹣8=a+2,解得a=﹣10,则这个二次函数的解析式y=﹣10(x+1)2+2;故答案为:y=6(x+1)2+2或y=﹣10(x+1)2+2.15.解:∵y=2x2﹣4x﹣1=2(x﹣1)2﹣3,∴抛物线y=2x2﹣4x﹣1的顶点坐标为(1,﹣3),∵抛物线y=ax2+bx+c与抛物线y=2x2﹣4x﹣1的顶点重合,∴抛物线y=ax2+bx+c的顶点坐标为(1,﹣3),∴设此抛物线为y=a(x﹣1)2﹣3,∵与y轴的交点的坐标为(0,1),∴1=a﹣3,解得a=4,∴此抛物线为y=4(x﹣1)2﹣3=4x2﹣8x+1,故答案为:y=4x2﹣8x+1.16.解:(1)由图中表格可知,二次函数y=ax2+bx+c的图象关于直线x=1对称,且(4,m)与(﹣2,﹣5)关于直线x=1对称,∴m=﹣5;故答案为:﹣5;(2)由二次函数y=ax2+bx+c的图象过(﹣1,0),(3,0),设函数的解析式为y=a(x+1)(x﹣3),将(1,4)代入得:4=a×2×(﹣2),解得a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,故答案为:y=﹣x2+2x+3;(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=1时,y取最大值4,∵1﹣0<4﹣1,∴x=4时,y取最小值﹣(4﹣1)2+4=﹣5,∴0<x<4时,y的取值范围为是﹣5<y≤4;故答案为:﹣5<y≤4.三.解答题(共6小题,满分56分)17.解:(1)∵抛物线y=x2+bx+c的图象经过A(﹣1,12),B(0,5).∴,解得,∴二次函数解析式为y=x2﹣6x+5;(2)当x=2时,y=x2﹣6x+5=4﹣12+5=﹣3≠3,∴该二次函数的图象不经过点(2,3).18.解:(1)把A(﹣1,﹣2),B(1,﹣6)代入y=ax2+bx﹣3得,解得,∴抛物线的关系式为y=﹣x2﹣2x﹣3;(2)∵y=﹣x2﹣2x﹣3,∴抛物线开口向下,对称轴直线x=﹣=﹣1,∴由图取抛物线上点Q,使Q与N关于对称轴x=﹣1对称,∴点M(2,y1)关于对称轴x=﹣1的对称点为(﹣4,y1),又∵N(m,y2)在抛物线图象上的点,且y1<y2,∴﹣4<m<2.19.解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2),则y=a(x+2)(x﹣4)=ax2﹣2ax﹣8a,即﹣8a=4,解得a=﹣,故抛物线的表达式为y=﹣x2+x+4;(2)由点A、B的坐标知,OB=2OA,故CO将△ABC的面积分成2:1两部分,此时,点P不在抛物线上;如图1,当BH=AB=2时,CH将△ABC的面积分成2:1两部分,即点H的坐标为(2,0),则CH和抛物线的交点即为点P,由点C、H的坐标得,直线CH的表达式为y=﹣2x+4,联立,解得或,故点P的坐标为(6,﹣8).20.解:(1)设抛物线的解析式为y=a(x﹣2)2﹣1,将点(1,0)代入,得a﹣1=0.解得a=1,∴抛物线的解析式为y=(x﹣2)2﹣1,(2)∵y=(x﹣2)2﹣1=x2﹣4x+3,∴抛物线与y轴的交点为(0,3),其关于对称轴的对称点为(4,3),令y=0,则x2﹣4x+3=0,解得x=1或3,∴抛物线与x轴的交点为(1,0),(3,0),画出函数图象如下:(3)由函数图象知,当y>3时,自变量x的取值范围是x<0或x>4.21.解:(1)∵抛物线y=ax2+2ax+c经过点A(2,0),B(﹣2,4),∴,解得,∴抛物线的解析式为y=﹣x2﹣x+4;(2)∵y=﹣x2﹣x+4,∴抛物线开口向下,对称轴x=﹣=﹣1,∵m≤x≤m+2时,y有最大值4,∴当y=4时,有﹣x2﹣x+4=4,∴x=0或x=﹣2,①在x=﹣1左侧,y随x的增大而增大,∴x=m+2=﹣2时,y有最大值4,②在对称轴x=﹣1右侧,y随x最大而减小,∴x=m=0时,y有最大值4;综上所述:m=﹣4或m=0;(3)过点M作MG∥y轴交直线AB于点G,设直线AB的解析式为y=kx+b,∴,解得,∴y=﹣x+2,设M(m,﹣m2﹣m+4),则G(m,﹣m+2),∴MG=﹣m2+2,∴S△ABM=×4×(﹣m2+2)=﹣m2+4,∴当m=0时,△ABM的面积最大,此时M(0,4).22.解:(1)∵抛物线过点O(0,0),A(5,﹣5),且它的对称轴为x=2,∴抛物线与x轴的另一个交点坐标为(4,0),设抛物线解析式为y=ax(x﹣4),把A(5,﹣5)代入,得5a=﹣5,解得:a=﹣1,∴y=﹣x(x﹣4)=﹣x2+4x,故此抛物线的解析式为y=﹣x2+4x;(2)①∵点B是抛物线对称轴上的一点,且点B在第四象限,∴设B(2,m)(m<0),设直线OA的解析式为y=kx,解得:k=﹣1,∴直线OA的解析式为y=﹣x,设直线OA与抛物线对称轴交于点H,则H(2,﹣2),∴BH=﹣2﹣m,∵S△OAB=10,∴×(﹣2﹣m)×5=10,解得:m=﹣6,∴点B的坐标为(2,﹣6);②设直线AB的解析式为y=cx+d,把A(5,﹣5),B(2,﹣6)代入得:,,解得:,∴直线AB的解析式为y=x﹣,如图2,当P A﹣PB的值最大时,A、B、P在同一条直线上,∵P是抛物线上的动点,∴,解得:或,∴P(﹣,﹣).∵AB==,∴P A﹣PB的最大值为.。
初中二次函数解析式的确定,例题和答案
![初中二次函数解析式的确定,例题和答案](https://img.taocdn.com/s3/m/5260341c6bd97f192279e974.png)
第一、求二次函数解析式的问题一.知识要点:1.已知抛物线的顶点(m,n )及抛物线上的另一点(a,b),这时可以设抛物线的解析式为:y=k(x-a)2+b.,式中只有一个待定系数k,把(m,n )代入即可求出k ,从而求出抛物线的解析式。
2. 已知抛物线与x 轴的交点(x 1,0)和(x 2,0)及抛物线上的另一点(a,b),这时可以设抛物线的解析式为:y=k(x-x 1 )(x-x 2 ) 式中只有一个待定系数k,把(a,b )代入即可求出k ,从而求出抛物线的解析式。
3. 已知抛物线上任意三点(x 1,y 1)(x 2,y 2)(x 3,y 3)这时可以设抛物线的解析式为:y=ax 2+bx+c,式中含有三个待定系数a 、b 、c 把(x 1,y 1)(x 2,y 2)(x 3,y 3)代入,得到含a , b, c 的方程组,即可求出k ,从而求出抛物线的解析式。
二. 重点、难点:重点:求二次函数的函数关系式难点:建立适当的直角坐标系,求出函数关系式,解决实际问题。
三. 教学建议:求二次函数的关系式,应恰当地选用二次函数关系式的形式,选择恰当,解题简捷;选择不当,解题繁琐;解题时,应根据题目特点,灵活选用。
典型例题例1.已知某二次函数的图象经过点A (-1,-6),B (2,3),C (0,-5)三点,求其函数关系式。
例2. 已知二次函数y ax bx c =++2的图象的顶点为(1,-92),且经过点(-2,0),求该二次函数的函数关系式。
例3. 已知二次函数图象的对称轴是x =-3,且函数有最大值为2,图象与x 轴的一个交点是(-1,0),求这个二次函数的解析式。
例4. 已知二次函数y ax bx c =++2的图象如图1所示,则这个二次函数的关系式是__________________。
图1例5. 已知:抛物线在x 轴上所截线段为4,顶点坐标为(2,4),求这个函数的关系式例6. 已知二次函数y m x mx m m =-++-()()()123212≠的最大值是零,求此函数的解析式。
二次函数表达式的确定(原创)
![二次函数表达式的确定(原创)](https://img.taocdn.com/s3/m/ff153676ff00bed5b8f31d3f.png)
二次函数表达式的确定待定系数法确定二次函数表达式的步骤:(1)设出适当的二次函数表达式,(2)根据已知信息,构建关于常数的方程(组),(3)解方程(组),(4)把求出的常数的值代入所设的表达式一般式:顶点式:,其中(h,k)为顶点,交点式:,其中x1,x2为抛物线与x轴的两个交点的横坐标;.1.已知抛物线过(1,-1),(2,-4)和(0,4)三点,求二次函数表达式2.已知二次函数y=ax2+bx+c,当x=-2时,y=5,当x=1时,y=-4,当x=3时,y=0,求抛物线的函数表达式3.已知二次函数y=ax2+bx+c的图象经过A(-1,-1),B(0,2),C(1,3).(1)求二次函数的表达式;(2)画出二次函数的图象4.已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的表达式;(2)求抛物线的顶点坐标和对称轴;5.在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的表达式.6.在平面直角坐标系中,二次函数的图象顶点为,且过点,求与的函数关系式为6.已知抛物线的顶点为A(1,4),与y轴交于点B(0,3),与x轴交于C,D两点,点P是x轴上的一个动点.(1)求此抛物线的表达式;(2)当PA+PB的值最小时,求点P的坐标.7.抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3),求此抛物线的表达式8.已知抛物线过三点:(-1,0)、(1,0)、(0,3).(1).求这条抛物线所对应的二次函数的关系式;9.如图,已知抛物线过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(3,0),且3AB=4OC,求抛物线的表达式10.如图,已知二次函数的图象与x轴交于A(-2,0),B(4,0)两点,且函数的最大值为9.11.已知二次函数的图象的顶点为A(2,-2),并且经过B(1,0),C(3,0),求这条抛物线的函数表达式.10.已知二次函数图象上部分点的坐标满足下表:求该二次函数的解析式;用配方法求出该二次函数图象的顶点坐标和对称轴.1. 已知二次函数的图象如图所示求这个二次函数的表达式A. y =x 2-2x +3B. y =x 2-2x -3C. y =x 2+2x -3D. y =x 2+2x +32. 一抛物线和抛物线y =-2x 2的形状、开口方向完全相同,顶点坐标(-1,3),则该抛物线的表达式为( ) A. y =-2(x -1)2+3 B. y =-2(x +1)2+3 C. y =-(2x +1)2+3 D. y =-(2x -1)2+33. 抛物线y =x 2+bx +c 经过A (-1,0),B (3,0)两点,则这条抛物线的解析式为( )A. y =x 2-2x -3B. y =x 2-2x +3C. y =x 2+2x -3D. y =x 2+2x +3 4. 由表格中信息可知,若设y =ax 2+bx +c ,则下列y 与x 之间的函数表达式正确的是( )A. y =x 2-4x +3 5. 如果抛物线经过点A (2,0)和B (-1,0),且与y 轴交于点C ,若OC =2,则这条抛物线的表达式是( ) A. y =x 2-x -2B. y =-x 2-x -2或y =x 2+x +2C. y =-x 2+x +2D. y =x 2-x -2或y =-x 2+x +2 7.已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5),则该函数的表达式为 . 8. 如图,抛物线的表达式为 ,直线BC 的表达式为 ,S △ABC = .9. 如图,已知抛物线y =-x 2+bx +c 的对称轴为直线x =1,且与x 轴的一个交点为(3,0),那么它对应的函数表达式是 .10. 已知二次函数的图象经过原点及点(-12,-14),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的表达式为 .11. 如图,已知二次函数y=ax2+bx+c的图象经过A(-1,-1),B(0,2),C(1,3).(1)求二次函数的解析式;(2)画出二次函数的图象.12. 已知抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,请通过观察图象,指出此y的最小值,并写出t的值;(2)若t=-4,求a,b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.15. 如图,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB.16. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.参考答案1. B2. B3. A4. A5. D6. y =-23(x +2)2+1 7. y =-(x +1)2+48. y =45x 2-165x -4 y =45x -4 12 9. y =-x 2+2x +3 10. y =x 2+x 或y =-13x 2+13x11. 解:(1)∵二次函数y =ax 2+bx +c 的图象经过A (-1,-1),B (0,2),C (1,3).∴2(1)(1)1,2,3,a b c c a b c ìï?+?+=-ïïï=íïï++=ïïî解得⎩⎪⎨⎪⎧a =-1,b =2,c =2,∴y =-x 2+2x +2.(2)画图略.12. 解:(1)y 的最小值为-3,t =-6.(2)分别把(-4,0)和(-3,-3)代入y =ax 2+bx ,得⎩⎪⎨⎪⎧ 0=16a -4b ,-3=9a -3b ,解得⎩⎪⎨⎪⎧a =1,b =4.∴抛物线表达式为y =x 2+4x ,∵a =1>0,∴抛物线开口向上. (3)-1(答案不唯一)13. 解:(1)∵y =x 2+bx +c 过原点,∴c =0.又∵y =x 2+bx 过点A (2,0),∴b =-2,∴y =x 2-2x . (2)y =x 2-2x =(x -1)2-1,∴顶点坐标为(1,-1),对称轴为直线x =1.(3)∵点A 的坐标为(2,0),∴OA =2.∵S △OAB =3,∴12OA ·||y B =3,∴||y B =3.∵抛物线最低点坐标为(1,-1),∴y B =3,∴3=x 2-2x ,即x 2-2x -3=0,(x -3)(x +1)=0,∴x 1=-1,x 2=3.∴点B 坐标(-1,3)或(3,3).14. 解:(1)把A (2,0),B (0,-6)的坐标代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧ -2+2b +c =0,c =-6,解得⎩⎪⎨⎪⎧b =4,c =-6.∴这个二次函数的表达式为y =-12x 2+4x -6.(2)∵该抛物线的对称轴为直线x =-412()2?=4,∴点C 的坐标为(4,0).∴AC =OC -OA =4-2=2.∴S △ABC=12·AC ·OB =12×2×6=6. 15. 解:(1)∵抛物线顶点为A (3,1),设抛物线对应的二次函数的表达式为y =a (x -3)2+1,将原点坐标(0,0)代入表达式,得a =-13.∴抛物线对应的二次函数的表达式为y =-13x 2+233x .(2)将y =0代入y =-13x 2+233x 中,解得x =0(舍去)或x =23,∴B 点坐标为(23,0),设直线OA 对应的一次函数的表达式为y =kx ,将A (3,1)代入表达式y =kx 中,得k =33,∴直线OA 对应的一次函数的表达式为y =33x .∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y =33x +b ,将B (23,0)代入y =33x+b 中,解得b =-2,∴直线BD 对应的一次函数的表达式为y =33x -2.由⎩⎨⎧y =33x -2,y =-13x 2+233x ,得交点D的坐标为(-3,-3),将x =0代入y =33x -2中,得C 点的坐标为(0,-2),由勾股定理,得OD =23,又OA =2=OC ,AB =2=CD ,OB =23=OD .在△OAB 与△OCD 中,⎩⎪⎨⎪⎧OA =OC AB =CDOB =OD,∴△OAB ≌△OCD .(2)如图,过点A 作x 轴的垂线,垂足为D (2,0),连接CD ,CB ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为E ,F ,S △OAD =12OD ·AD =12×2×4=4,S △ACD =12AD ·CE =12×4×(x -2)=2x -4;S △BCD =12BD ·CF =12×4×(-12x 2+3x )=-x 2+6x ,则S =S △OAD +S △ACD +S △BCD =4+2x -4-x 2+6x =-x 2+8x ,∴S 关于x 的函数表达式为S =-x 2+8x (2<x <6),∵S =-x 2+8x =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 有最大值,最大值为16.。
求二次函数的表达式练习题(含答案)
![求二次函数的表达式练习题(含答案)](https://img.taocdn.com/s3/m/d9e27a6d67ec102de3bd8913.png)
二次函数的表达式一、选择题1.函数y =21x 2+2x +1写成y =a (x -h)2+k 的形式是=21(x -1)2+2 =21(x -1)2+21 =21(x -1)2-3 =21(x +2)2-1 2.抛物线y =-2x 2-x +1的顶点在第_____象限A.一B.二C.三D.四 3.不论m 取任何实数,抛物线y =a (x +m )2+m (a ≠0)的顶点都A.在y =x 直线上B.在直线y =-x 上C.在x 轴上D.在y 轴上4.任给一些不同的实数n ,得到不同的抛物线y =2x 2+n ,如当n =0,±2时,关于这些抛物线有以下结论:①开口方向都相同;②对称轴都相同;③形状都相同;④都有最低点,其中判断正确的个数是个 个 个 个 5.二次函数y =x 2+p x +q 中,若p+q=0,则它的图象必经过下列四点中A.(-1,1)B.(1,-1)C.(-1,-1)D.(1,1)图36.下列说法错误的是A.二次函数y =-2x 2中,当x =0时,y 有最大值是0B.二次函数y =4x 2中,当x >0时,y 随x 的增大而增大C.在三条抛物线y =2x 2,y =-,y =-x 2中,y =2x 2的图象开口最大,y =-x 2的图象开口最小D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 7.已知二次函数y =x 2+(2k +1)x +k 2-1的最小值是0,则k 的值是A.43B.-43C.45D.-458.小颖在二次函数y =2x 2+4x +5的图象上,依横坐标找到三点(-1,y 1),(21,y 2), (-321,y 3),则你认为y 1,y 2,y 3的大小关系应为>y 2>y 3 >y 3>y 1 >y 1>y 2 >y 2>y 1 二、填空题9.抛物线y =21(x +3)2的顶点坐标是______.10.将抛物线y =3x 2向上平移3个单位后,所得抛物线的顶点坐标是______.11.函数y =34x -2-3x 2有最_____值为_____.12.已知抛物线y =ax 2+bx +c 的图象顶点为(-2,3),且过(-1,5),则抛物线的表达式为______.13.二次函数y =mx 2+2x +m -4m 2的图象过原点,则此抛物线的顶点坐标是______. 三、解答题14.根据已知条件确定二次函数的表达式(1)图象的顶点为(2,3),且经过点(3,6);(2)图象经过点(1,0),(3,0)和(0,9);(3)图象经过点(1,0),(0,-3),且对称轴是直线x=2。
确定二次函数的表达式(经典)
![确定二次函数的表达式(经典)](https://img.taocdn.com/s3/m/adac34cabb4cf7ec4afed0ab.png)
小结:
已知顶点坐标(h,k)或对称轴方程x=h 时 优先选用顶点式。
例4.已知二次函数图象经过点 (1,4),(-1,0)和 (3,0)三点,求二次函数的表达式。
解:(交点式) ∵二次函数图象经过点 (3,0),(-1,0) ∴设二次函数表达式为 :y=a(x-3)(x+1) ∵ 函数图象过点(1,4) ∴ 4 =a (1-3)(1+1) 得 a= -1 ∴ 函数的表达式为: y= -(x+1)(x-3)
你能否总结出上述解题的一般步骤?
1.若无坐标系,首先应建立适当的直角坐标系; 2.设抛物线的表达式; 3.写出相关点的坐标; 4.列方程(或方程组); 5.解方程或方程组,求待定系数; 6.写出函数的表达式;
归纳:
在确定二次函数的表达式时 (1)若已知图像上三个非特殊点,常设一般式 ; (2)若已知二次函数顶点坐标或对称轴,常设顶 点式 较为简便; (3)若已知二次函数与x轴的两个交点,常设交 点式较为简单。
【能力挑战】
已知平面直角坐标系两点A(1,2)B(0,3)点C在X轴
上,其横坐标满足方程
(x 1)2 4 2 2
①求点C的坐标
②若一个二次函数的图像经过A,B,C三点, 求这个二次函数表达式。
1 解:①C(3,0)或C(-1,0)
②设:二次函数解析式为:y ax2 bx c(a 0)
a b c 2
当C(3,0)时 c 3
a 0 解得: b 1
9a 3b c 0
c 3
∵a≠0∴当C(3,0)时二次函数不存在
20181026初四数学《确定二次函数的表达式》习题
![20181026初四数学《确定二次函数的表达式》习题](https://img.taocdn.com/s3/m/27a20e4aa45177232f60a2a9.png)
初四数学《确定二次函数的表达式》习题1.已知二次函数y=ax2+bx的图象过点(6,0),(﹣2,8).(1)求二次函数的关系式;(2)写出它的对称轴和顶点坐标.2.已知一个二次函数的图象经过点A(﹣1,0)、B(3,0)和C(0,﹣3)三点;求此二次函数的解析式.3.已知:如图,抛物线y=ax2+bx+c经过A(1,0)、B(5,0)、C(0,5)三点.(1)求抛物线的函数关系式;(2)求抛物线的顶点坐标、对称轴;(3)若过点C的直线与抛物线相交于点E(4,m),请连接CB,BE并求出△CBE 的面积S的值.4.如图,二次函数图象过A,B,C三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式.5.如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C (0,3)三点.(1)求抛物线的函数关系式;(2)在抛物线上存在一点P,使△ABP的面积为8,请求出点P的坐标.(3)在抛物线的对称轴上是否存在一点Q,使得QC+QA最短?若Q点存在,求出Q点的坐标;若Q点不存在,请说明理由.6.如图,二次函数y=ax2+bx+3的图象经过点A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(3,0)点C在y轴的正半轴上.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.7.已知二次函数y=x2+bx+c过点A(1,0),C(﹣3,0).①求此二次函数的解析式;②在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.8.已知二次函数y=ax2+bx+c过点A(1,0),B(﹣3,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.(写出详细的解题过程)9.如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标.(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.10.如图,抛物线y=ax2+bx(a>0)经过点A(2,0)和点B(﹣1,2).(1)求抛物线的解析式;(2)点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式;(3)在抛物线的对称轴上求一点P,使得PA+PC最小.11.如图,抛物线y=x2+bx+c的顶点为D(﹣1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A,B两点(点A在点B的左侧).(1)求抛物线的解析式;(2)连接AC,CD,AD,试证明△ACD为直角三角形.12.【附加题】已知二次函数y=x2+2(m+1)x﹣m+1.(1)随着m的变化,该二次函数图象的顶点P是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.(2)如果直线y=x+1经过二次函数y=x2+2(m+1)x﹣m+1图象的顶点P,求此时m的值.13.在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.14.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.15.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x 轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD的面积.16.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.17.已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图象如图所示.(1)求抛物线的解析式,写出抛物线的顶点坐标;(2)画出抛物线y=ax2+bx+c当x<0时的图象;(3)利用抛物线y=ax2+bx+c,写出x为何值时,y>0.18.如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2=ax2+bx ﹣3的图象上.(1)求m的值和二次函数的解析式.(2)请直接写出使y1>y2时自变量x的取值范围.19.如图,直线y=2x+2与x轴、y轴分别相交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1.(1)在图中画出△A1OB1;(2)求经过A,A1,B1三点的抛物线的解析式.20.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置=8,并求出此时P点的坐标.时,满足S△PAB20181026初四数学《确定二次函数的表达式》习题参考答案与试题解析一.解答题(共20小题)1.已知二次函数y=ax2+bx的图象过点(6,0),(﹣2,8).(1)求二次函数的关系式;(2)写出它的对称轴和顶点坐标.【解答】解:(1)∵y=ax2+bx的图象过点(6,0),(﹣2,8).∴,解得:,所以二次函数解析式为y=x2﹣3x;(2)∵y=x2﹣3x=(x﹣3)2﹣,∴抛物线的对称轴为直线x=3、顶点坐标为(3,﹣).2.已知一个二次函数的图象经过点A(﹣1,0)、B(3,0)和C(0,﹣3)三点;求此二次函数的解析式.【解答】解:设抛物线解析式为y=a(x+1)(x﹣3),把(0,﹣3)代入得﹣3=a×1×(﹣3),解得a=1,所以抛物线解析式为y=﹣(x+1)(x﹣3),即y=x2﹣2x﹣3.3.已知:如图,抛物线y=ax2+bx+c经过A(1,0)、B(5,0)、C(0,5)三点.(1)求抛物线的函数关系式;(2)求抛物线的顶点坐标、对称轴;(3)若过点C的直线与抛物线相交于点E(4,m),请连接CB,BE并求出△CBE 的面积S的值.【解答】解:(1)∵A(1,0),B(5,0),设抛物线y=ax2+bx+c=a(x﹣1)(x﹣5),把C(0,5)代入得:5=a(0﹣1)(0﹣5),解得:a=1,∴y=(x﹣1)(x﹣5)=x2﹣6x+5,即抛物线的函数关系式是y=x2﹣6x+5.(2)∵y=x2﹣6x+5=(x﹣3)2﹣4,∴抛物线的对称轴为x=3,又∵二次函数y=x2﹣6x+5的二次项系数为1>0,∴抛物线的开口向上,∴当x≥3时y随x的增大而增大;(3)把x=4代入y=x2﹣6x+5得:y=﹣3,∴E(4,﹣3),把C(0,5),E(4,﹣3)代入y=kx+b得:,解得:k=﹣2,b=5,∴y=﹣2x+5,设直线y=﹣2x+5交x轴于D,当y=0时,0=﹣2x+5,∴x=,∴OD=,BD=5﹣=,∴S=S△CBD+S△EBD=××5+××|﹣3|=10.△CBE4.如图,二次函数图象过A,B,C三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式.【解答】解:(1)∵点A的坐标为(﹣1,0),点B的坐标为(4,0),∴AB=1+4=5,∵AB=OC,∴OC=5,∴C点的坐标为(0,5);(2)设过A、B、C点的二次函数的解析式为y=ax2+bx+c,把A、B、C的坐标代入得:,解得:a=﹣,b=,c=5,所以二次函数的解析式为y=﹣x2+x+5.5.如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C (0,3)三点.(1)求抛物线的函数关系式;(2)在抛物线上存在一点P,使△ABP的面积为8,请求出点P的坐标.(3)在抛物线的对称轴上是否存在一点Q,使得QC+QA最短?若Q点存在,求出Q点的坐标;若Q点不存在,请说明理由.【解答】解:(1)∵二次函数y=ax2+bx+c过点A(﹣1,0)、B(3,0)、C (0,3)∴,解得,∴二次函数的解析式为y=﹣x2+2x+3;(2)AB=3﹣(﹣1)=4,设△ABP的高为h,∵△ABP的面积为8,∴解得:h=4,当y=4时,﹣x2+2x+3=4,解得:x=1,∴p1(1,4);当y=﹣4时,﹣x2+2x+3=﹣4,解得:,∴,即P点的坐标为(1,4)或(2+1,﹣4)或(﹣2﹣1,﹣4);(3)y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线的对称轴是直线x=1,作C点关于直线x=1的对称点E(E正好在抛物线上),连接AE,交直线x=1与Q,此时QC+QA最短,∵C点的坐标为(0,3),∴E点的坐标为(2,3),设直线AE的解析式为y=kx+h,把A、E的坐标代入得:,解得:k=1,h=1,即直线AE的解析式为y=x+1,把x=1代入得:y=1+1=2,即点Q的坐标是(1,2).6.如图,二次函数y=ax2+bx+3的图象经过点A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(3,0)点C在y轴的正半轴上.(1)求点C的坐标;(2)求这个二次函数的解析式,并求出该函数的最大值.【解答】解:(1)当x=0时y=3,所以C(0,3);(2)把点(﹣1,0)、(3,0)代入y=ax2+bx+3,得,解得:a=﹣1,b=2,二次函数的解析式为y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴当x=1时,y有最大值4.7.已知二次函数y=x2+bx+c过点A(1,0),C(﹣3,0).①求此二次函数的解析式;②在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.【解答】解:①∵二次函数y=x2+bx+c过点A(1,0),C(﹣3,0),∴,解得,,∴此二次函数的解析式是y=x2+2x﹣3;②当x2+2x﹣3=0时,得x1=﹣3,x2=1,∵点A(1,0),∴点B的坐标为(﹣3,0),∴AB=1﹣(﹣3)=4,∵抛物线上存在一点P使△ABP的面积为10,点P的纵坐标的绝对值为:,∵y=x2+2x﹣3=(x+1)2﹣4,∴该抛向开口向上,有最小值,该函数的最小值是y=﹣4,∴点P的纵坐标是5,当y=5时,5=x2+2x﹣3,解得,x=﹣4或x=2,∴点P的坐标为(﹣4,5)或(2,5).8.已知二次函数y=ax2+bx+c过点A(1,0),B(﹣3,0),C(0,﹣3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.(写出详细的解题过程)【解答】解:(1)设抛物线的解析式为y=a(x﹣1)(x+3),把C(0,﹣3)代入得a×(﹣1)×3=﹣3,解得a=1,所以这个二次函数的解析式为y=(x﹣1)(x+3)=x2+2x﹣3.(2)∵A(1,0),B(﹣3,0),∴AB=4,设P(m,n),∵△ABP的面积为6,∴AB•|n|=6,解得:n=±3,当n=3时,m2+2m﹣3=3,解得:m=﹣1+或﹣1﹣,∴P(﹣1+,3)或P(﹣1﹣,3);当n=﹣3时,m2+2m﹣3=﹣3,解得m=0或m=﹣2,∴P(0,﹣3)或P(﹣2,﹣3);故P(﹣1+,3)或P(﹣1﹣,3)或(0,﹣3)或P(﹣2,﹣3).9.如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标.(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.【解答】解:(1)由题意得,﹣1+5+n=0,解得,n=﹣4,∴抛物线的解析式为y=﹣x2+5x﹣4;(2)y=﹣x2+5x﹣4=﹣(x﹣)2+,抛物线对称轴为:x=,顶点坐标为(,);(3)∵点A的坐标为(1,0),点B的坐标为(0,﹣4),∴OA=1,OB=4,在Rt△OAB中,AB==,①当PB=PA时,PB=,∴OP=PB﹣OB=﹣4,此时点P的坐标为(0,﹣4),②当PA=AB时,OP=OB=4此时点P的坐标为(0,4).10.如图,抛物线y=ax2+bx(a>0)经过点A(2,0)和点B(﹣1,2).(1)求抛物线的解析式;(2)点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式;(3)在抛物线的对称轴上求一点P,使得PA+PC最小.【解答】解:(1)把A(2,0)和点B(﹣1,2)代入y=ax2+bx得,解得,所以抛物线解析式为y=x2﹣x;(2)抛物线的对称轴为直线x=1,而点C与点B关于抛物线的对称轴对称,所以C点坐标为(3,2),设直线AC的解析式为y=mx+n,把A(2,0),C(3,2)代入得,解得,所以直线AC的解析式为y=2x﹣4;(3)如图,连结OC交直线x=1于点P,因为点A与点O关于直线x=1对称,则PA=PO,所以PA+PC=PO+PC=OC,根据两点之间线段最短得此时PA+PC的值最小,设直线OC的解析式为y=kx,把C(3,2)代入得3k=2,解得k=,所以直线OC的解析式为y=x,当x=1时,y=,所以此时P点坐标为(1,).11.如图,抛物线y=x2+bx+c的顶点为D(﹣1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A,B两点(点A在点B的左侧).(1)求抛物线的解析式;(2)连接AC,CD,AD,试证明△ACD为直角三角形.【解答】(1)解:设抛物线解析式为y=a(x+1)2﹣4,把(0,﹣3)代入得a﹣4=﹣3,解得a=1,所以抛物线解析式为y=(x+1)2﹣4;(2)证明:当y=0时,(x+1)2﹣4=0,解得x1=﹣3,x2=1,则A(﹣3,0),B (1,0),因为AC2=32+32=18,AD2=(﹣1+3)2+(﹣4)2=20,DC2=(﹣1)2+(﹣4+3)2=2,所以AC2+DC2=AD2,所以△ACD为直角三角形.12.【附加题】已知二次函数y=x2+2(m+1)x﹣m+1.(1)随着m的变化,该二次函数图象的顶点P是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.(2)如果直线y=x+1经过二次函数y=x2+2(m+1)x﹣m+1图象的顶点P,求此时m的值.【解答】解:(1)该二次函数图象的顶点P是在某条抛物线上求该抛物线的函数表达式如下:利用配方,得y=(x+m+1)2﹣m2﹣3m,顶点坐标是P(﹣m﹣1,﹣m2﹣3m).方法一:分别取m=0,﹣1,1,得到三个顶点坐标是P1(﹣1,0)、P2(0,2)、P3(﹣2,﹣4),过这三个顶点的二次函数的表达式是y=﹣x2+x+2.将顶点坐标P(﹣m﹣1,﹣m2﹣3m)代入y=﹣x2+x+2的左右两边,左边=﹣m2﹣3m,右边=﹣(﹣m﹣1)2+(﹣m﹣1)+2=﹣m2﹣3m,∴左边=右边.即无论m取何值,顶点P都在抛物线y=﹣x2+x+2上.即所求抛物线的函数表达式是y=﹣x2+x+2.方法二:令﹣m﹣1=x,则m=﹣x﹣1,将其代入﹣m2﹣3m,得﹣(﹣x﹣1)2﹣3(﹣x﹣1)=﹣x2+x+2.即所求抛物线的函数表达式是y=﹣x2+x+2上.(2)如果顶点P(﹣m﹣1,﹣m2﹣3m)在直线y=x+1上,则﹣m2﹣3m=﹣m﹣1+1,即m2=﹣2m,∴m=0或m=﹣2,∴当直线y=x+1经过二次函数y=x2+2(m+1)x﹣m+1图象的顶点P时,m的值是﹣2或0.13.在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.【解答】解:(1)∵二次函数图象的顶点为A(1,﹣4),∴设二次函数解析式为y=a(x﹣1)2﹣4,把点B(3,0)代入二次函数解析式,得:0=4a﹣4,解得a=1,∴二次函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)令y=0,得x2﹣2x﹣3=0,解方程,得x1=3,x2=﹣1.∴二次函数图象与x轴的两个交点坐标分别为(3,0)和(﹣1,0),∴二次函数图象上的点(﹣1,0)向右平移1个单位后经过坐标原点.故平移后所得图象与x轴的另一个交点坐标为(4,0).14.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.【解答】解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t的范围为﹣4≤t≤.15.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x 轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.【解答】解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),=S△ABC+S△BCD=×4×4+×4×2=8+4=12.则S四边形ABDC16.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由题意得,,解得b=4,c=3,∴抛物线的解析式为.y=x2﹣4x+3;(2)∵点A与点C关于x=2对称,∴连接BC与x=2交于点P,则点P即为所求,根据抛物线的对称性可知,点C的坐标为(3,0),y=x2﹣4x+3与y轴的交点为(0,3),∴设直线BC的解析式为:y=kx+b,,解得,k=﹣1,b=3,∴直线BC的解析式为:y=﹣x+3,则直线BC与x=2的交点坐标为:(2,1)∴点P的坐标为:(2,1).17.已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图象如图所示.(1)求抛物线的解析式,写出抛物线的顶点坐标;(2)画出抛物线y=ax2+bx+c当x<0时的图象;(3)利用抛物线y=ax2+bx+c,写出x为何值时,y>0.【解答】解:(1)由图象,可知A(0,2),B(4,0),C(5,﹣3),得方程组.解得a=﹣,b=,c=2.∴抛物线的解析式为y=﹣x2+x+2.顶点坐标为(,).(2)所画图如图.(3)由图象可知,当﹣1<x<4时,y>0.18.如图,A(﹣1,0)、B(2,﹣3)两点在一次函数y1=﹣x+m与二次函数y2=ax2+bx ﹣3的图象上.(1)求m的值和二次函数的解析式.(2)请直接写出使y1>y2时自变量x的取值范围.【解答】解:(1)由于A(﹣1,0)在一次函数y1=﹣x+m的图象上,得:﹣(﹣1)+m=0,即m=﹣1;已知A(﹣1,0)、B(2,﹣3)在二次函数y2=ax2+bx﹣3的图象上,则有:,解得;∴二次函数的解析式为y2=x2﹣2x﹣3;(2)由两个函数的图象知:当y1>y2时,﹣1<x<2.19.如图,直线y=2x+2与x轴、y轴分别相交于A、B两点,将△AOB绕点O顺时针旋转90°得到△A1OB1.(1)在图中画出△A1OB1;(2)求经过A,A1,B1三点的抛物线的解析式.【解答】解:(1)如右图.(2)设该抛物线的解析式为:y=ax2+bx+c.由题意知A、A1、B1三点的坐标分别是(﹣1,0)、(0,1)、(2,0).∴,解这个方程组得.∴抛物线的解析式是:y=﹣x2+x+1.20.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置=8,并求出此时P点的坐标.时,满足S△PAB【解答】解:(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b,﹣1×3=c,∴b=﹣2,c=﹣3,∴二次函数解析式是y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(3)设P的纵坐标为|y P|,∵S=8,△PAB∴AB•|y P|=8,∵AB=3+1=4,∴|y P|=4,∴y P=±4,把y P=4代入解析式得,4=x2﹣2x﹣3,解得,x=1±2,把y P=﹣4代入解析式得,﹣4=x2﹣2x﹣3,解得,x=1,∴点P在该抛物线上滑动到(1+2,4)或(1﹣2,4)或(1,﹣4)时,满足S=8.△PAB。
二次函数典型例题及练习题
![二次函数典型例题及练习题](https://img.taocdn.com/s3/m/6dc92818b90d6c85ed3ac607.png)
二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限考点3.二次函数的平移例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移 2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了 下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号) 5.函数Y=X 2+2X-3(-2≦X ≦2)的最大值和最小值分别是_______. 6.已知二次函数y=-x 2+bx-8的最大值为8,则b 的值为_______. 7、已知函数y=21x 2-x-12,当函数y 随x 的增大而减小时,x 的取值范围是_______ 专题二:二次函数表达式的确定考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )图22- 1- 012 yx13x =ABC D图1菜园墙A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )2 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.练习:已知抛物线y=12x 2+x-52. (1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.考点3.抛物线的交点个数与一元二次方程的根的情况例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k的取值范围是________. 2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .图2图13.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4.不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( ) A.a>0,△>0; B.a>0, △<0; C.a<0, △<0; D.a<0, △<05. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题: (1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 专题四 二次函数的应用例4 某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:x (元) 15 20 30…y (件) 25 20 10…若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?练习:1、如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是【 】A .1<x<5-B .x>5C .x<1-且x>5D .1<x -或x>5x y33 2 2 1 14 1- 1- 2-O 图3x y3-2、教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是 m 。
【精选推荐】二次函数(确定二次函数的表达式)
![【精选推荐】二次函数(确定二次函数的表达式)](https://img.taocdn.com/s3/m/acdd0309ec630b1c59eef8c75fbfc77da269970b.png)
∴二次函数的表达式为y=a(x-1)2+2, 将点(0,1)代入y=a(x-1)2+2, 得a=-1. ∴二次函数的表达式为y=-(x-1)2+2,即y=-x2+2x+1.
解法3:设二次函数的表达式为y=ax2+bx+c,将点(0,1),(1,2)和(2,1)分别代
入y=ax2+bx+c,
得 1 c,
因为只有一个系数a是未知
的,所以只需要知道图象上
一个点的坐标即可.
(2)形如y=a(x-h)2和
y=ax2+k的二次函数,有两个
系数是未知的,所以需要知
解:∵(4,3)是抛物线的顶点坐标,∴设二次
函数表达式为y=a(x-4)2+3,
把点(10,0)代入y=a(x-4)2+3,解得a= 1 , 12
因此铅球行进高度y(m)与水平距离x(m)
2=3x2-6x+1.故选B.
2. 二次函数的图象如图所示,则它的解析式正确的是( D )
A.y=2x2-4x
B.y=-x(x-2)
C.y=-(x-1)2+2
D.y=-2x2+4x
解析:根据图象得:抛物线的顶点坐标为 (1,2),设抛物线的解析式为y=a(x-1)2+2,将 (2,0)代入解析式,得0=a+2,解得a=-2,则抛物 线解析式为y=-2(x-1)2+2=-2x2+4x.故选D.
第二章 二次函数
学习新知
检测反馈
学习新知
生活中有很多类似抛 物线形状的建筑物,如 果你是设计师,你能设 计出这些建筑物吗?
初步探究确定二次函数表达式所需要的条件
30.3由不共线三点的坐标确定二次函数
![30.3由不共线三点的坐标确定二次函数](https://img.taocdn.com/s3/m/8942732ba8956bec0875e320.png)
探究2: 用顶点式求二次函数解析式.
• 变式1:若1题的已知条件改为:已 知二次函数的顶点坐标为(1,4), 图像过点(0,3),求此函数的表 达式。
• 变式2:已知二次函数的对称轴为x=1,函数的 最大值为4,与y轴的交点为(0,3),求此二 次函数的表达式
思考归纳: 如何用待定系数法求二次函数的表达式? 1、已知三点求表达式,设一般式 2、已知二次函数的顶点求表达式,设顶 点式
• 变式5:二次函数的图象与轴交与A、B两点, 与y轴交C点,A点坐标为(-3,0)、B点坐 标为(1,0),且△ABC的面积为6,求该 二次函数的表达式.
师生互动,课堂小结
• 这节课你学到了什么?
1、(1)已知三点坐标,设二次函数解析 式为y=ax2+bx+c. (2)已知顶点坐标:设二次函数解析式 为y=a(x-h)2+k. (3)已知抛物线与x轴两交点坐标为 (x1,0),(x2,0)可设二次函数解析式为 y=a(x-x1)(x-x2). 2、注意分类思想的运用
• 则二次函数y=ax2+bx+c =a(x-x1)(x-x2) 我们把y=a(x-x1)(x-x2)叫做二次函数的交 点式也可以叫做双根式。
探究3 用交点式求二次函数解析式
• 变式3:若二次函数过点(3,0),(-1,0), (0,3),求函数的表达式。
• 变式4:若二次函数过点(3,0)函数与x轴 的两个交点的距离为4,图像过点(0,3)求 函数的表达式
探究3 用交点式二次函数解析式
• 1、求二次函数y=-x2+2x+3与x轴的交点坐标
(3,0) (-1,0)
• 2、把多项式 -x2+2x+3分解因式
二次函数课时作业(六)A
![二次函数课时作业(六)A](https://img.taocdn.com/s3/m/b6c4b65b87c24028915fc3a6.png)
课时作业(六)A [用待定系数法确定二次函数表达式]一、选择题1.[2020·杭州下城区期末]已知二次函数y=ax2+4x+c(a≠0),当x=-2时,函数值是-1;当x=1时,函数值是5,则此二次函数的表达式为()A.y=2x2+4x-1B.y=x2+4x-2C.y=-2x2+4x+1D.y=2x2+4x+12.已知抛物线过点A(2,0),B(-1,0),与y轴交于点C,且OC=2,则这条抛物线的表达式为()A.y=x2-x-2B.y=-x2+x+2C.y=x2-x-2或y=-x2+x+2D.y=-x2-x-2或y=x2+x+23.已知抛物线y=x2+bx+c的顶点坐标为(1,-3),则抛物线对应的函数表达式为()A.y=x2-2x+2B.y=x2-2x-2C.y=-x2-2x+1D.y=x2-2x+14.已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线的函数表达式的为()A.E,FB.E,GC.E,HD.F,G5.某同学在用描点法画二次函数y=ax2+bx+c(a≠0)的图像时,列出了下面的表格:x…-2-1012…y…-11-21-2-5…由于粗心,他算错了其中的一个y值,则这个错误的数值是()A.-11B.-2C.1D.-5二、填空题6.若一个二次函数的图像经过(-3,0),(2,0)和(1,-4)三点,则这个二次函数的表达式是.7.若二次函数y=a(x+h)2+k(a≠0)的图像经过原点,最小值为-8,且形状与抛物线y=-2x2-2x+3相同,则此函数的表达式为.8.[2020·杭州西湖区月考]已知抛物线y=x2+(m-2)x-2m,当m=时,顶点在坐标轴上.图K-6-19.如图K-6-1,抛物线y=ax2+bx+4(a≠0)经过点A(-3,0),与y轴交于点C,点B在抛物线上,CB∥x 轴,且AB平分∠CAO,则此抛物线的函数表达式是.10.[2020·盐城期中]在平面直角坐标系中,有一组有规律的点A1(0,1),A2(1,0),A3(2,1),A4(3,0),A5(4,1),A6(5,0)…(注:当n为奇数时,A n(n-1,1),当n为偶数时,A n(n-1,0)).抛物线C1经过点A1,A2,A3三点……抛物线C n经过A n,A n+1,A n+2三点,请写出抛物线C2n的表达式:.三、解答题11.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图像经过点A(-3,-2),B(-1,-2)和C(0,1),求这个二次函数的表达式和其图像的顶点P的坐标.12.已知二次函数的图像经过原点,对称轴是直线x=-2,最高点的纵坐标为4,求该二次函数的表达式.13.[2020·江西]已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…-2-1012…y…m0-3n-3…(1)根据以上信息,可知抛物线开口向,对称轴为;(2)求抛物线的表达式及m,n的值.14.[2020·张家界]如图K-6-2,抛物线y=ax2-6x+c交x轴于A,B两点,交y轴于点C.直线y=-x+5经过点B,C.(1)求抛物线的表达式;(2)抛物线的对称轴l与直线BC相交于点P,连接AC,AP,判定△APC的形状,并说明理由.图K-6-215.已知二次函数y=ax2+bx+c(a≠0)的图像经过点A(-1,0),B(5,0),与y轴的正半轴交于点C,若将△ABC沿直线BC翻折,点A恰好落在该二次函数图像的对称轴上.(1)求此二次函数的表达式,并写出其图像顶点M的坐标;(2)若E是该二次函数图像的对称轴上一点,且使△BME≌△ABC,求点E的坐标.如图K-6-3,已知抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标;(2)已知P是抛物线的对称轴l上的一个动点,当P A+PC的值最小时,求点P的坐标.图K-6-3教师详解详析[课堂达标]1.[解析] A由题意得解得所以此二次函数的表达式为y=2x2+4x-1.故选A.2.C3.[解析] B A项,y=x2-2x+2=(x-1)2+1,顶点坐标为(1,1),不合题意;B项,y=x2-2x-2=(x-1)2-3,顶点坐标为(1,-3),符合题意;C项,y=-x2-2x+1=-(x+1)2+2,顶点坐标为(-1,2),不合题意;D 项,y=x2-2x+1=(x-1)2,顶点坐标为(1,0),不合题意.故选B.4.[解析] C∵F(2,2),G(4,2),∴F和G为抛物线上的对称点,∴抛物线的对称轴为直线x=3,∴H(3,1)为抛物线的顶点,设抛物线的函数表达式为y=a(x-3)2+1,把E(0,10)代入得9a+1=10,解得a=1,∴抛物线的函数表达式为y=(x-3)2+1.故选C.5.[解析] D由函数图像关于对称轴对称,得点(-1,-2),(0,1),(1,-2)在函数图像上.把(-1,-2),(0,1),(1,-2)分别代入函数表达式,得解得∴函数表达式为y=-3x2+1.当x=2时,y=-11.故选D.6.[答案] y=x2+x-6[解析] 因为二次函数的图像经过点(-3,0),(2,0),所以设二次函数的表达式为y=a(x+3)·(x-2)(a≠0).将点(1,-4)的坐标代入,得-4=(1+3)×(1-2)a,解得a=1,所以二次函数的表达式为y=(x+3)(x-2)=x2+x-6.故答案为y=x2+x-6.7.[答案] y=2x2+8x或y=2x2-8x[解析] ∵二次函数y=a(x+h)2+k的图像经过原点,把(0,0)代入,得ah2+k=0.∵最小值为-8,∴函数图像的开口向上,a>0,顶点的纵坐标k=-8.又∵形状与抛物线y=-2x2-2x+3相同,∴二次项系数a=2.把a=2,k=-8代入ah2+k=0中,得h=±2,∴函数表达式是y=2(x-2)2-8或y=2(x+2)2-8,即y=2x2+8x 或y=2x2-8x.8.[答案] ±2[解析] 若抛物线y=x2+(m-2)x-2m的顶点在x轴上,则=0,即=0,解得m=-2.若抛物线y=x2+(m-2)x-2m的顶点在y轴上,则-=0,即-=0,解得m=2.综上,当m=±2时,抛物线y=x2+(m-2)x-2m的顶点在坐标轴上.故答案为±2.9.[答案] y=-x2+x+4[解析] ∵抛物线y=ax2+bx+4(a≠0)与y轴交于点C,∴C(0,4),∴OC=4.∵A(-3,0),∴OA=3,∴AC=5.∵AB平分∠CAO,∴∠BAC=∠BAO.∵BC∥x轴,∴∠CBA=∠BAO,∴∠BAC=∠CBA,∴CB=CA=5,∴B(5,4).把A(-3,0),B(5,4)代入y=ax2+bx+4(a≠0),得解得∴抛物线的函数表达式为y=-x2+x+4,故答案为y=-x2+x+4.10.[答案] y2n=-(x-2n)2+1[解析] 由A1(0,1),A2(1,0),A3(2,1),A4(3,0),A5(4,1),A6(5,0)…可知:抛物线C1的对称轴为直线x=1,抛物线C2的对称轴为直线x=2,抛物线C3的对称轴为直线x=3,抛物线C4的对称轴为直线x=4……根据顶点式求出抛物线C1的表达式为y1=(x-1)2,抛物线C2的表达式为y2=-(x-2)2+1,抛物线C3的表达式为y3=(x-3)2,抛物线C4的表达式为y4=-(x-4)2+1……∴抛物线C2n的表达式为y2n=-(x-2n)2+1.故答案为y2n=-(x-2n)2+1.11.解:∵二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图像经过点A(-3,-2),B(-1,-2)和C(0,1),∴将A(-3,-2),B(-1,-2)和C(0,1)的坐标代入y=ax2+bx+c,得解得故二次函数的表达式为y=x2+4x+1.∵y=x2+4x+1=(x+2)2-3,∴其图像的顶点P的坐标为(-2,-3).12.[解析] 根据二次函数图像的对称轴是直线x=-2,最高点的纵坐标为4,可知抛物线的顶点坐标为(-2,4),用顶点式设二次函数的表达式为y=a(x+2)2+4,再把原点坐标代入,求出a的值即可.解:∵二次函数图像的对称轴是直线x=-2,最高点的纵坐标为4,∴抛物线的顶点坐标为(-2,4).设二次函数的表达式为y=a(x+2)2+4(a≠0).∵二次函数的图像经过原点,∴把(0,0)代入,得0=(0+2)2a+4,解得a=-1,∴二次函数的表达式为y=-(x+2)2+4,即y=-x2-4x.[点评] 本题考查的是用待定系数法求二次函数的表达式,根据题意得出抛物线的顶点坐标,合理设出与其对应的函数表达式是解答此题的关键.13.解:(1)上直线x=1(2)把(-1,0),(0,-3),(2,-3)代入y=ax2+bx+c,得解得∴抛物线的表达式为y=x2-2x-3.当x=-2时,m=(-2)2-2×(-2)-3=4+4-3=5;当x=1时,n=1-2-3=-4.14.解:(1)∵直线y=-x+5经过点B,C,∴当x=0时,可得y=5,即点C的坐标为(0,5);当y=0时,可得x=5,即点B的坐标为(5,0).将C(0,5),B(5,0)代入y=ax2-6x+c,得解得∴抛物线的表达式为y=x2-6x+5.(2)△APC为直角三角形.理由如下:∵抛物线交x轴于A,B两点,直线l为抛物线的对称轴,∴P A=PB,∴∠ABP=∠BAP.∵点C的坐标为(0,5),点B的坐标为(5,0),∴OB=OC=5.又∵∠BOC=90°,∴∠ABP=45°,∴∠BAP=45°,∴∠APB=180°-45°-45°=90°,∴∠APC=180°-90°=90°,∴△APC为直角三角形.15.解:(1)设点A落在点D处.∵二次函数y=ax2+bx+c(a≠0)的图像经过点A(-1,0),B(5,0),∴二次函数图像的对称轴为直线x=2.设二次函数的表达式为y=a(x+1)(x-5).由题意画出函数图像的草图,如图所示.由题意得BD=AB=6,∴点A关于BC的对称点D到x轴的距离是=3,∴D(2,3).设点C的坐标是(0,c),由AC=DC,得1+c2=4+(3-c)2,解得c=,∴C0,,将其代入函数表达式,得a=-,∴函数的表达式是y=-(x+1)(x-5),即y=-x2+x+.当x=2时,y=-×22+×2+=3,∴点M的坐标为(2,3).(2)由△BME≌△ABC,得ME=BC.∵B(5,0),C0,,∴BC=.易得点E在点M的下方,∴E2,-.[素养提升]解:(1)把点B的坐标代入y=-x2+mx+3,得0=-32+3m+3,解得m=2,∴y=-x2+2x+3=-(x-1)2+4,∴抛物线的顶点坐标为(1,4).(2)如图,连接BC交抛物线的对称轴l于点P,连接P A,则此时P A+PC的值最小.设直线BC的函数表达式为y=kx+b(k≠0).由抛物线的函数表达式知点C的坐标为(0,3).∵点C(0,3),B(3,0)在直线BC上,∴解得∴直线BC的函数表达式为y=-x+3.当x=1时,y=-1+3=2,∴当P A+PC的值最小时,点P的坐标为(1,2).。
确定二次函数表达式(已知三个条件)
![确定二次函数表达式(已知三个条件)](https://img.taocdn.com/s3/m/9633def9f121dd36a32d8258.png)
上时,ON=t,MN= 3t,所以S= 3 t2(0≤t≤2);当点M在AB上时,MN的
2
值不变为 2 3,所以S= 3t(2≤t≤4),故选C.
你学到哪些二次函数表达式的求法? (1)已知图象上三点的坐标或给定x与y的三对对应值, 通常选择一般式. (2)已知图象的顶点坐标,对称轴和最值,通常选择顶点式. (3)已知图象与x轴的交点坐标,通常选择交点式.
【跟踪训练】
(西安·中考)如图,在平面直角坐标系中,抛物线经过
A(-1,0),B(3,0),C(0,-1)三点.
求该抛物线的表达式.
y
【解析】设该抛物线的表达式为y=ax2+bx+c,
根据题意,得
a b c 0, 9a 3b c 0, c 1.
a
1 3
【例题】
【例1】已知一个二次函数的图象过(-1,10),(1, 4),(2,7)三点,求这个函数的表达式.
解析:设所求的二次函数为y=ax2+bx+c,
a-b+c=10,
a=2,
由条件得: a+b+c=4, 解方程组得: b=-3,
4a+2b+c=7,
c=5.
因此,所求二次函数的表达式是
y=2x2-3x+5.
3 确定二次函数的表达式
1.会用待定系数法确定二次函数的表达式. 2.会求简单的实际问题中的二次函数表达式.
二次函数表达式有哪几种表达方式? 一般式:y=ax2+bx+c 顶点式:y=a(x-h)2+k 交点式:y=a(x-x1)(x-x2)
人教版初中数学九年级二次函数(经典例题含答案)
![人教版初中数学九年级二次函数(经典例题含答案)](https://img.taocdn.com/s3/m/cafc22506d85ec3a87c24028915f804d2a16877a.png)
二次函数经典例题答案班级小组姓名成绩(满分120)一、二次函数(一)二次函数的定义(共4小题,每题3分,共计12分)例 1.下列函数:①225y xz =++;②258y x x =-+-;③2y ax bx c =++;④()()2324312y x x x =+--;⑤2y mx x =+;⑥21y bx =+(b 为常数,0b ≠);⑦220y x kx =++,其中y 是x 的二次函数的有②⑥.例1.变式1.函数24233y x x =--中,a =3-,b =34,c =2-.例1.变式2.若()232my m x -=-是二次函数,且2m >,则m 等于(B)A.C. D.5例1.变式3.已知函数()22346mm y m m x -+=+-是二次函数,求m 的值.2122342:1,2602,31m m m m m m m m m -+===+-≠∴≠≠-∴ 解:由题意得:解得的值为(二)列二次函数的表达式(共4小题,每题3分,共计12分)例2.一台机器原价60万元,每次降价的百分率均为x ,那么连续两次降价后的价格y (万元)为(C )A.()601y x =-B.()601y x =+ C.()2601y x =- D.()2601y x =+例2.变式1.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:22t s =.例2.变式2.矩形的长为x cm,宽比长少2cm,请你写出矩形的面积y (2cm )与x (cm)之间的关系式xx y 22-=.时间t (秒)1234…距离s (米)281832…例2.变式3.某商场将进价为每套40元的某种服装按每套50元出售时,每天可以售出300套.据市场调查发现,这种服装销售单价每提高1元,销量就减少5套.如果商场将销售单价定为x 元,请你写出每天销售利润y (元)与销售单价x (元)之间的函数表达式.[]2200075055)50(300)40(2-+-=⨯---=x x y x x y 即解:由题意得:二、二次函数的图象和性质(一)形如2y ax =和2y ax c =+的二次函数的图象和性质(共4小题,每题3分,共计12分)例3.对于二次函数2y x =-的图象,在y 轴的右边,y 随x 的增大而减小.例3.变式1.二次函数2y ax =的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)22y x =如图(D );(2)212y x =如图(C );(3)2y x =-如图(A);(4)213y x =-如图(B);(5)219y x =如图(F);(6)219y x =-如图(E).例3.变式2.与抛物线222y x =-+开口方向相同,只是位置不同的是(D)A.22y x =B.2211y x =- C.221y x =+ D.221y x =--例3.变式3.坐标平面上有一函数22448y x =-的图象,其顶点坐标为(C )A.()0,2- B.()1,24- C.()0,48- D.()2,48(二)二次函数()2y a x h =-与()2y a x h k =-+的图像和性质(共4小题,每题3分,共计12分)例4.将抛物线2y x =-向左平移2个单位长度后,得到的抛物线的表达式是(A )A.()22y x =-+ B.22y x =-+ C.()22y x =-- D.22y x =--例4.变式1.二次函数()221y x =-,当x 1<时,y 随着x 的增大而减小,当x 1>时,y 随着x 的增大而增大.例4.变式2.已知二次函数()2231y x =-+.有下列说法:①其图象的开口向下;②其图象的对称轴为直线3x =-;③其图象顶点坐标为(3,-1);④当3x <时,y 随着x 的增大而减小.则其中说法正确的有(A )A.1个B.2个C.3个D.4个例4.变式3.将抛物线21y x =+先向左平移2个单位长度,再向下平移3个单位长度,那么所得抛物线的表达式是(B )A.()222y x =++ B.()222y x =+- C.()222y x =-+ D.()222y x =--(三)二次函数()20y ax bx c a =++≠的图象和性质(共4小题,每题3分,共计12分)例5.二次函数225y x x =+-有(D)A.最大值为-5B.最小值-5C.最大值-6D.最小值-6例5.变式1.如图是二次函数224y x x =-++的图象,使1y ≤成立的x 的取值范围是(D )A.13x -≤≤B.1x ≤-C.1x ≥ D.13x x ≤-≥或例5.变式2.抛物线2y x bx c =++向右平移2个单位长度再向下平移3个单位长度,所得图象的表达式为223y x x =--,求b ,c 的值.,2234)21(:32324)1(3222222==∴+=+-+-=--=--=--=c b x x x y x x y x x x y 得个单位个单位,再向上平移向左平移将抛物线解:例5.变式3.如图,已知二次函数()20y ax bx c a =++≠的图象如图所示,下列4个结论:①0abc <;②b a c <+;③420a b c ++>;④240b ac ->,其中正确结论的有(B)A.①②③B.①②④C.①③④D.②③④三、确定二次函数的表达式(共4小题,每题3分,共计12分)例6.已知二次函数的图象的顶点坐标是(-2,-3),且经过点(0,5),求这个函数表达式.5823)2(22:53)20()5,0(3)2()3,2(),0()(22222++=-+=∴==-+∴-+=∴--≠++=x x x y a a x a y a k h x a y 解得此二次函数图象经过点又坐标为此二次函数图象的顶点达式为解:设此二次函数的表 例6.变式1.已知抛物线与y 轴交点的纵坐标为52-,且还经过(1,-6)和(-1,0)两点,求抛物线的表达式.22(0)5(0,),(1,6),(1,0)251226305215322y ax bx c a c a a b c b a b c c y x x =++≠---⎧⎧=-=-⎪⎪⎪⎪++=-=-⎨⎨⎪⎪-+=⎪⎪=-⎩⎩∴=---解:设抛物线表达式为将代入得:解得:抛物线表达式为:例6.变式2.已知,一抛物线与x 轴的交点是A(-2,0),B(1,0),且经过点C(2,8).(1)求该抛物线的函数表达式;4224228240024)8,2(),0,1(),0,2()0(22-+=∴⎪⎩⎪⎨⎧-===⎪⎩⎪⎨⎧=++=++=+--≠++=x x y c b a c b a c b a c b a C a c bx ax y 抛物线表达式为:解得:代入得:将解:设抛物线表达式为(2)求该抛物线的顶点坐标.)29,21(2921(242222---+=-+=顶点坐标为:x x x y 例6.变式3.已知抛物线()20y ax bx c a =++≠经过A(-1,0),B(3,0),C (0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数表达式;321)3,0()1)(3(2++-=∴-=+-=x x y a C x x a y 抛物线表达式为:代入,解得:将点线表达式为:解:由题意得:设抛物(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.:,(2,3,,(1,0),(2,30123111,2(1,2)l C C C AC l P PAC AC y kx m A C k m k k m m AC y x x y P ''∴'∆''=+--+==⎧⎧⎨⎨+==⎩⎩'∴=+==解过直线作点的对称点)连接交直线于点此时的周长最小设直线表达式为将)代入得:解得:直线表达式为:令则点的坐标为:四、二次函数的应用(一)利用二次函数解决“面积最大问题”(共4小题,每题3分,共计12分)例7.小敏用一根长为8cm 的细铁丝围成一个矩形,则矩形的最大面积是(A)A.24cm B.28cm C.216cm D.232cm 例7.变式1.在Rt ABC ∆中,∠A=90°,AB=4,AC=3,D 在BC 上运动(不与B,C 重合),过点D 分别向AB,AC 作垂线,垂足分别为E,F,则矩形AEDF 的面积最大值为3.例7.变式2.如图,正方形ABCD 的边长为2cm,E,F,G,H 分别从A,B,C,D 向B,C,D,A 同时以0.5cm/s的速度移动,设运动时间为t(s).(1)求证:△HAE≌△EBF;)90,,:SAS EBF HAE B A EB HA BF AE (由题意得:解∆≅∆∴=∠=∠==(2)设四边形EFGH 的面积为S(2cm ),求S 与t 的函数关系式,并写出自变量t 的取值范围;)40(4221)5.02()5.0(901,5.02,5.0222222222≤≤+-=-+=+==∴∴=∠+∠∆≅∆+=∆-===t t t t t AE AH HE S HEFG AHE DHG EBF HAE AE AH HE AEH Rt t AH t AE DH 是正方形四边形可得)又由(中则解:由题意得 (3)t 为何值时,S 最小?最小是多少?222)2(21422122最小,最小为时,当S t t t t S =∴+-=+-=例7.变式3.在青岛市开展的创建活动中,某小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长度为40m 的栅栏围成(如图所示).若设花园BC 边的长为x m ,花园的面积为y 2m .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;)(解:由题意得:15020212402≤<+-=-⋅=x x x x x y (2)满足条件的花园面积能达到2002m 吗?若能,求出此时的x 的值;若不能,请说明理由;.20015020,2002m x x x y 到此时花园的面积不能达的取值范围是而,时当∴≤<==(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?.5.18715150,20202122m y x x y x x x x y 有最大值,最大值为时,当的增大而增大随范围内,在对称轴为直线线图象是开口向下的抛物=∴≤<=+-=(二)二次函数的综合运用(共4小题,每题3分,共计12分)例8.一件工艺品进价为100元,标价135元出售,每天可售出100件.根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为(A)A.5元B.10元C.0元D.3600元例8.变式1.小明在某次投篮中,球的运动路线是抛物线213.55y x =-+的一部分(如图),若命中篮圈中心,则他与篮底的距离l 是(B )A.3.5mB.4mC.4.5mD.4.6m例8.变式2.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是多少元?元租金高,每张床收费则为使租出的床位少且时,时,为整数,则又因为有最大值时,当则有元元,每天收入为个解:设每张床位提高1602031001120031120025.22100001000200)10100)(20100(202=⨯+======-=++-=-+=y x y x x y abx x x x x y y x 例8.变式3.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)3200242525048)(20002400(2++-=+--=x x x x y 由题意得:(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?元即每台冰箱应降价降价越多越好要使百姓得到实惠,则解得:得:代入将200200200,1004800320024252,30002425248002122=∴===++-++-==x x x x x x x y y (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?元。
北师大数学九年级下册第二章-确定二次函数的表达式(含解析)
![北师大数学九年级下册第二章-确定二次函数的表达式(含解析)](https://img.taocdn.com/s3/m/61d510327275a417866fb84ae45c3b3566ecdd52.png)
第02讲_确定二次函数的表达式知识图谱二次函数解析式的求法知识精讲 一般式 ()20y ax bx c a =++≠已知任意3点坐标,可用一般式求解二次函数解析式待定系数法已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,求a b c、、的值解:把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,顶点式 ()2y a x h k =-+()0a ≠已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式顶点式求解析式 一抛物线和y =﹣2x 2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),求其解析式解:∵两条抛物线形状与开口方向相同,∴a =﹣2,又∵顶点坐标是(﹣2,1),∴y =﹣2(x +2)2+1易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+三.二次函数的两根式两根式 1.已知抛物线与x 轴的两个交点坐标,可用两根式求解析式; 2. 已知抛物线经过两点,且这两点的纵坐标相等时,可在两根式的基础上求解析式两根式求解析式 已知抛物线y =ax 2+bx +c 过点A (-1,1),B (3,1),3(2,)2C - 求解析式解:设抛物线的解析式为y =a (x +1)(x -3)+1把3(2,)2c -代入解析式,求出a 即可 易错点:(1)任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示(2)二次函数解析式的这三种形式可以互化三点剖析一.考点:二次函数解析式的求法.二.重难点:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.三.易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+.待定系数法例题1、 已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,那么a b c 、、的值分别是( )A.164a b c =-=-=,,B.164a b c ==-=-,,C.164a b c =-=-=-,,D.164a b c ==-=,,【答案】 D【解析】 把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,故答案为D 选项.例题2、 已知二次函数的图象经过(0,0)(-1,-1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.【答案】 (1)y =4x 2+5x(2)(58-,2516-). 【解析】 (1)设所求二次函数的解析式为y =ax 2+bx +c (a≠0),根据题意,得019c a b c a b c =⎧⎪-+=-⎨⎪++=⎩,解得450a b c =⎧⎪=⎨⎪=⎩,∴所求二次函数的解析式为y =4x 2+5x .(2)由22525454()816y x x x x =+=+-, ∴顶点坐标为(58-,2516-). 例题3、 已知抛物线2y x bx c =-++经过点A (3,0),B (-1,0).(1)求抛物线的解析式;(2)求抛物线的对称轴.【答案】 (1)y=-x 2+2x+3(2)x=1【解析】 暂无解析随练1、 已知二次函数的图像经过点()1,5--,()0,4-和()1,1,则这个二次函数的解析式为( ) A.2634y x x =-++ B.2234y x x =-+- C.224y x x =+- D.2234y x x =+-【答案】 D【解析】 由待定系数法可求得2234y x x =+-.随练2、 已知一个二次函数过()0,0,()1,11-,()1,9三点,求二次函数的解析式.【答案】 210y x x =-【解析】 设二次函数的解析式为2y ax bx c =++(0a ≠),因为抛物线经过点()0,0,()1,11-,()1,9,所以0119c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得1010a b c =⎧⎪=-⎨⎪=⎩,所以二次函数解析式为210y x x =-.顶点式例题1、 函数21212y x x =++写成y =a (x -h )2+k 的形式是( ) A.21(1)22y x =-+ B.211(1)22y x =-+ C.21(1)32y x =-- D.21(2)12y x =+- 【答案】 D【解析】 22211121(44)21(2)1222y x x x x x =++=++-+=+-. 例题2、 二次函数的顶点为(﹣2,1),且过点(2,7),则二次函数的解析式为_____________.【答案】 y=23(x 2)18++ 【解析】 设抛物线解析式为y=a (x+2)2+1,把(2,7)代入得a•(2+2)2+1=7,解得a=38, 所以抛物线解析式为y=38(x+2)2+1。
初中数学九年级下册确定二次函数的表达式
![初中数学九年级下册确定二次函数的表达式](https://img.taocdn.com/s3/m/6a9f673ef12d2af90242e697.png)
二次函数
2.3 确定二次函数的表达式
导入新课
复习引入
2个
1.一次函数y=kx+b(k≠0)有几个待定系数?通常需要
已知几个点的坐标求出它的表达式?
2个 2.求一次函数表达式的方法是什么?它的一般步骤 是什么? (1)设:(表达式)
待定系数法
(2)代:(坐标代入)
(3)解:方程(组)
(4)还原:(写表达式)
1=a(0-8)2+9.
1 2 y ( x 8) 9. ∴所求的二次函数的表达式是 8
三 交点法求二次函数的表达式
选取(-3,0),(-1,0),(0,-3),试求出这个二次函 数的表达式.
解: ∵(-3,0)(-1,0)是抛物线y=ax2+bx+c与x轴的交点.
所以可设这个二次函数的表达式是y=a(x-x1)(x-x2).(其中x1、x2 为交点的横坐标.因此得 y=a(x+3)(x+1). 再把点(0,-3)代入上式得 a(0+3)(0+1)=-3, 解得a=-1, ∴所求的二次函数的表达式是 y=-(x+3)(x+1),即y=-x2-4x-3. y 2 1 O -4 -3 -2 -1-1 -2 -3 -4 -5
∴这个二次函数的表达式为y=2x2+3x-4.
4.已知抛物线与x轴相交于点A(-1,0),B(1,0),且 过点M(0,1),求此函数的表达式. 解:因为点A(-1,0),B(1,0)是图象与x轴的交点,
所以设二次函数的表达式为y=a(x+1)(x-1).
又因为抛物线过点M(0,1),
所以1=a(0+1)(0-1),解得a=-1,
讲授新课
一 特殊条件的二次函数的表达式
40题搞定二次函数的基本性质试题附答案
![40题搞定二次函数的基本性质试题附答案](https://img.taocdn.com/s3/m/11038d20ba68a98271fe910ef12d2af90342a87b.png)
40题搞定二次函数易错点二次函数基本性质(试题版)日期:________时间:________姓名:________成绩:________一、课前预习(共3小题)1.下列各式中,y 是x 的二次函数的是()A.y=3x -1B.21x y =C.y=3x 2+xD.y=ax 2+b x +c2.将抛物线22--=x y 向右平移3个单位,再向上平移4个单位后所得到的抛物线为.3.二次函数()4252---=x y 的图象是一条,开口向,对称轴是,顶点坐标是;当x时,y 有最值为;当x时,y 随x 的增大而,当x时,y 随x 的增大而。
二、知识要点(共3小题)4.二次函数的定义、图象和性质(1)定义:形如的函数叫做二次函数,例如(2)二次函数定义中要求a ≠0,那么b 和c 是否可以为零呢?若b =0,则y =。
若c =0,则y =。
若b =c =0,则y =。
以上三种形式都是二次函数的特殊形式,c bx ax y ++=2(a ≠0)是二次函数的。
(3)图象:二次函数y =ax 2+bx +c (a ≠0)的图象是,其顶点坐标是对称轴是直线。
(4)性质:当a >0时,开口向,在对称轴的左侧,y 随x 的增大而;在对称轴的右侧,y 随x 的增大而;当abx 2-=时,y 最小值=当a <0时,开口向,在对称轴的左侧,y 随x 的增大而;在对称轴的右侧,y 随x 的增大而;当abx 2-=时,y 量大值=。
5.抛物线y =ax 2+bx +c 中a ,b ,c 符号的确定(1)a 的符号由抛物线开口方向决定:当抛物线开口向上时;当抛物线开口向下时.(2)c 的符号由抛物线与y 轴交点的纵坐标决定:当抛物线交y 轴于正半轴时;当抛物线交y 轴于负半轴时.(3)b 的符号由对称轴来决定:当对称轴在y 轴左侧时,b 的符号与a 的符号;当对称轴在y 轴右侧时,b 的符号与a 的符号,简称“”。
6.二次函数图像的平移(左加右减)c bx ax y ++=2向左平移m 个单位⇔平移后表达式为向右平移m 个单位⇔平移后表达式为向上平移n 个单位⇔平移后表达式为向下平移n 个单位⇔平移后表达式为三、单选题(共12小题)7.关于抛物线y =x 2-6x +9,下列说法错误的是()A.开口向上B.顶点在x 轴上C.对称轴是x =3D.当x >3时,y 随x 增大而减小8.在同一平面直角坐标系中,反比例函数()0≠=b xb y 与二次函数()02≠+=a bx ax y 的大致图像是()A. B.C. D.9.函数y=ax 2+c 和y=xa (a ≠0,c ≠0)在同一坐标系里的图象大致是()A..B.C.D.10.抛物线()5232+-=x y 的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)11.抛物线22x y =的对称轴是()A.直线21=x B.直线21-=x C.直线0=x D.直线0=y 12.已知二次函数的图像如下图,则下列哪个选项表示的点有可能在反比例函数ay x=的图象上()A 、(-1,2)B 、(1,-2)C 、(2,3)D 、(2,-3)13.如果抛物线y =(a ﹣2)x 2开口向下,那么a 的取值范围是()A .a >2B .a <2C .a >﹣2D .a <﹣214.在下列对抛物线y =﹣(x ﹣1)2的描述中,正确的是()A.开口向上B.顶点在x轴上C.对称轴是直线x=﹣1D.与y轴的交点是(0,1)15.抛物线y=a(x﹣k)2+k的顶点总在()A.第一象限B.第二象限C.直线y=x上D.直线y=﹣x上16.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.顶点坐标是(1,﹣2)C.对称轴是直线x=﹣1D.函数有最小值为217.将抛物线y=2(x+1)2先向右平移3个单位,再向下平移2个单位后.所得抛物线的表达式是()A.y=2(x﹣2)2﹣2B.y=2(x﹣2)2+2C.y=2(x+4)2﹣2D.y=2(x+4)2+218.将抛物线y=x2﹣3向右平移2个单位后得到的新抛物线表达式是()A.y=x2﹣1B.y=x2﹣5C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3四、填空题(共21小题)19.当m=时,y=(m-2)22-m x是二次函数。
确定二次函数的表达式——建立二元一次方程组求解
![确定二次函数的表达式——建立二元一次方程组求解](https://img.taocdn.com/s3/m/00d6caa7647d27284b7351ee.png)
1、我们在确定一次函数y=kx+b(k,b为常数,k≠0 )的
关系式时,通常需要 2 个独立的条件.确定反比例函数 y k (k≠ 0)关系式时,通常需要 1 个条件.
x 2、如果确定二次函数y=ax2+bx+c(a,b,c为常数,a≠0)
的关系式时,通常又需要__3__个条件。
3、二次函数的表达形式有哪几种?
已知抛物线与x轴的两交点坐标,选择交点式
用待定系数法确定二次函数的解析式时,应该根据条件 的特点,恰当地选用一种函数表达式。
1、若二次函数图像的顶点为(-2,1),且过点 (-1,0),求二次函数表达式; 2、已知抛物线y=ax2+bx+c的对称轴是x=-2,且 过点(1,4),(5,0),求抛物线的解析式;
细细品味这几个题,我们在确定二 次函数的表达式时应如何选择合理的表 达形式?
二次函数常用的三种解析式
一般式 y=ax2+bx+c (a≠0)
已知三个点坐标,选择一般式
顶点式 y=a(x-h)2+k (a≠0)
一、设 二、代 三、解 四、还原
已知顶点坐标或对称轴或最值,选择顶点式
交点式 y=a(x-x1)(x-x2) (a≠0)
解:∵ 图象的顶点坐标是(-1,-6) ∴可设二次函数的解析式为: y=a(x+1)2-6 ∵ 函数图象过点(2,3) ∴ a(2 +1)2 -6= 3 ∴ a= 1 ∴ 二次函数的解析式为: y= (x+1)2 -6
已知抛物线y=ax2+bx+c的顶点坐标为(2,1),且 这条抛物线与x轴的一个交点坐标是(3,0)。 求这条抛物线的表达式。
赵州桥主桥拱的跨度AB约为36m,拱高OC约为6m.你能 求出抛物线的表达式吗?
基础题:确定二次函数的表达式
![基础题:确定二次函数的表达式](https://img.taocdn.com/s3/m/2852bd0bfad6195f312ba6b9.png)
确定二次函数的表达式1.抛物线y =ax 2+bx +c 与x 轴的交点为(-1,0)、(3,0),其形状与抛物线y =-2x 2相同,则抛物线的解析式为 ( )A .y =-2x 2-x +3B .y =-2x 2+4x +5C .y =-2x 2+4x +8D .y =-2x 2+4x +62.抛物线的形状、开口方向与y =12x 2-4x +3相同,顶点为(-2,1),则该抛物线的解析式为 ( )A .y =12(x -2)2+1B .y =12(x -2)2-1C .y =12(x +2)2+1D .y =12(x +2)2-13.如图,已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一个交点为C ,则AC 长为______.4.已知二次函数图象的顶点坐标为(1,-1),且过原点(0,0),求该函数解析式.5.二次函数y =x 2+bx +c 的图象经过点(4,3),(3,0).(1)求解析式;(2)求出该二次函数图象的顶点坐标和对称轴;确定二次函数的表达式1.抛物线y =ax 2+bx +c 与x 轴的交点为(-1,0)、(3,0),其形状与抛物线y =-2x 2相同,则抛物线的解析式为 ( )A .y =-2x 2-x +3B .y =-2x 2+4x +5C .y =-2x 2+4x +8D .y =-2x 2+4x +62.抛物线的形状、开口方向与y =12x 2-4x +3相同,顶点为(-2,1),则该抛物线的解析式为 ( )A .y =12(x -2)2+1B .y =12(x -2)2-1C .y =12(x +2)2+1D .y =12(x +2)2-13.如图,已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一个交点为C ,则AC 长为______.4.已知二次函数图象的顶点坐标为(1,-1),且过原点(0,0),求该函数解析式.5.二次函数y =x 2+bx +c 的图象经过点(4,3),(3,0).(1)求解析式;(2)求出该二次函数图象的顶点坐标和对称轴;参考答案1.D 2.C 3.34.函数解析式为y=(x-1)2-1.5.(1)b=-4,c=3;(2)二次函数图象的顶点坐标为(2,-1),对称轴为直线x=2;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确定二次函数的表达式
一.选择题:
1.已知抛物线的顶点为(1,2),且通过(1,10),则这条抛物线的表达式为( )
A .y=3-2
B .y=3+2
C .y=3-2
D .y=-3-2
2.已知:抛物线y x x c =-+26的最小值为1,那么c 的值是( )
A .10
B .9
C .8
D .7
二.填空题:
3.已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是
4.已知二次函数y x bx c =++2的图象过点A (1,0),B (0,4),则其顶点坐标
是________________.
5.已知二次函数,当x =0时,y =-3;当x =1时,它有最大值-1,则其函数关
系式为________________.
三.解答题:
6.已知抛物线c bx ax y ++=2的顶点坐标为(2,1),且这条抛物线与x 轴的一个
交点坐标是(3,0),
(1)求这条抛物线的表达式。
(2)求这条抛物线与x 轴的另一个交点的坐标.。