车架横梁法计算

车架横梁法计算

-------------------------------------------------------------------------------

STRUCTURE NO. 19 *** INITIALIZING DA TA *** DRIVE D

-------------------------------------------------------------------------------

将车架当成刚性横梁计算数据:

total total total total total total total

members joints springs sections materials ld cases ld combinations

364 215 0 4 1 9 10

job description:

frame description:

user name:

metric or imperial (M/I): M

bandwidth optimization (Y/N): Y

ld case 1 = selfweight (Y/N): Y

坐标:

214 .7 0 0 0 1

215 17.395 0 0 0 1

-------------------------------------------------------------------------------

STRUCTURE NO. 19 *** SECTION PROPERTY DA TA *** DRIVE D -------------------------------------------------------------------------------

sec X-sectional mom. inertia shear area section mod plastic moment

no area mm2 1.0E+06 mm4 mm2 1.0E+06 mm3 capacity kN-m

1 2549 3.964 2549 .0793

2 0

2 5098 20.677 5098 .20677 0

3 958 .128 958 .0049 0

4 100000 100000 100000 1000 0

-------------------------------------------------------------------------------

STRUCTURE NO. 19 *** MEMBER CONNECTIVITY DATA *** DRIVE D -------------------------------------------------------------------------------

member lower greater section material lower greater attribute

number joint joint number number end type end type type

361 1 214 4 1 1 1 1

362 45 214 4 1 1 1 1

363 176 215 4 1 1 1 1

364 177 215 4 1 1 1 1

下横梁现浇支架计算资料

4#主墩索塔下横梁现浇支架计算资料 一.基本资料 XX 长江大桥4#主墩索塔下横梁底部距主墩承台顶48.515m ,索塔下横梁底部结构尺寸为25.806m ×7m ×6m ,其内部设置3个5.75m ×2.6m ×3.6m 空箱。在索塔内侧顺索塔高度方向自下而上增加2个高分别为1.001m 和0.986m ,宽各为2.818m 和 2.911m 的砼牛腿。下横梁钢筋砼体积36.960m V =,砼容重取 3/6.2m t =γ,下横梁总重t V G 56.2497=?=γ,现浇砼拟采用2次浇筑完成,第一次浇到下横梁内空箱腹板刃脚处,即标高317.215m 处,故支架验算可考虑下横梁自重的70%验算,即t G P 1750%70==验算。现浇支架拟采用3纵5横 mm 8720?φ的钢管承受,其结构参阅设计图。钢管底支承在用30I32a ×6m 的工 字钢组拼的型钢平台上,钢管竖直高度为41.626m 。钢管纵横向利用2[36a 槽钢利用φ27万能杆件螺栓连接,连接节间距8.3m 。(a ):支架立柱钢管顶上采用3组2I 56a 工字钢作横梁(横梁锚固在索塔上),再在I 56a 工字钢上布置12组2I 36a 工字钢作纵梁,I 36a 工字钢上再布置20cm 枕木作为分配梁将下横梁自重均匀的传递给钢管立柱。(b ):支架立柱钢管顶上采用3组2I 45a 工字钢作纵梁,再在I 45a 工字钢上布置12组2I 25a 工字钢作横梁(横梁锚固在索塔上),2I 25a 工字钢上再布置50×50cm 型钢桁片及20cm 枕木作为分配梁将下横梁自重均匀的传递给钢管立柱。对以上二种方式作验算比较。 二.支架承受荷载 1.索塔下横梁砼自重t p 17501= 2.下横梁底侧模板自重t p 1.182=(按底模面积100kg/m 2计算) 3.底模下枕木自重t p 74.775.0102.02.0806.253=????= 4.上纵梁2I 36b 工字钢自重t m kg p 06.8/4228124=???= 5.横梁工字钢3组2I 56a 自重t p 45.16273.106806.25235=???= 三.支架切面验算(纵梁在横梁之上) 1.纵梁2I 36a 工字钢刚度验算 1)上纵梁采用12组2I 26a 工字钢共同承受荷载: t p p p p S 180043211=+++=,其线荷载

(参考资料)32m预制箱梁计算书

32m 预制箱梁计算书 1. 计算依据与基础资料 1.1. 标准及规范 1.1.1. 标准 ?跨径:桥梁标准跨径30m ; ?设计荷载:公路-I 级(城-A 级验算); ?桥面宽度:(路基宽26m ,城市主干路),半幅桥全宽13m ,0.5m (栏杆)12.25m (机动车道)+0.5/2m (中分带)=13m 。 ?桥梁安全等级为一级,环境类别一类。 1.1.2. 规范 《公路工程技术标准》JTG B01-2013 《公路桥涵设计通用规范》(JTGD60-2015);(简称《通规》) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004(简称《预规》) 《城市桥梁设计规范》(CJJ11-2011); 1.1.3. 参考资料 《公路桥涵设计手册》桥梁上册(人民交通出版社2004.3) 1.2. 主要材料 1)混凝土:预制梁及现浇湿接缝、横梁为C50、现浇调平层为C40; 2)预应力钢绞线:采用钢绞线15.2s φ,1860pk f MPa =,51.9510p E Mpa = × 3)普通钢筋:采用HRB400,400=sk f MPa ,5 2.010S E Mpa =× 1.3. 设计要点 1)预制组合箱梁按部分预应力砼A 类构件设计; 2)根据小箱梁横断面,采用刚性横梁法计算汽车荷载横向分布系数,将小箱梁简化为单片梁进行计算,荷载横向分配系数采用刚性横梁法计算。 3)预应力张拉控制应力值0.75σ=con pk f ,混凝土强度达到90%时才允许张拉预

应力钢束; 4)计算混凝土收缩、徐变引起的预应力损失时张拉锚固龄期为7d; 5)环境平均相对湿度RH=80%; 6)存梁时间不超过90d。 2.标准横断面布置 2.1.标准横断面布置图 2.2.跨中计算截面尺寸

箱梁分析报告

第六章箱梁分析 ?主要优点: 抗扭刚度大、有效抵抗正负弯矩、施工方便、整体受力、适应性强、铺设管道方便。 ?箱梁截面受力特性: 箱梁在偏心荷载作用下的变形与位移,可分成四种基本状态:纵向弯曲、横向弯曲、扭转及扭转变形(即畸变); 箱梁在偏心荷载作用下,因弯扭作用在横截面上将产生纵向正应力和剪应力,因横向弯曲和扭转变形将在箱梁各板中产生横向弯曲应力与剪应力。 ?箱梁对称挠曲时的弯曲应力: 箱梁对称挠曲时,产生弯曲正应力、弯曲剪应力。 ?箱梁的自由扭转应力: 箱梁在无纵向约束,截面可自由凸凹的扭转称为自由扭转,只产生剪应力,不引起纵向正应力; 单室箱梁的自由扭转应力,多室箱梁的自由扭转应力。 ?箱梁的约束扭转应力: 当箱梁端部有强大横隔板,扭转时截面自由凸凹受到约束称为约束扭转,产生约束扭转正应力与约束扭转剪应力; 这里介绍的约束扭转的实用理论建立是一定的假定之上的。 ?箱梁的畸变应力: 当箱梁壁较薄时,横隔板较稀时,截面就不能满足周边不变形的假设,则在反对称荷载作用下,截面不但扭转还要畸变,产生畸变翘曲正应力和剪应力,箱壁上也将引起横向弯曲应力; 用弹性地基比拟梁法解析箱梁畸变应力。 ?箱梁剪力滞效应: 翼缘剪切扭转变形的存在,而使远离梁肋的翼缘不参予承弯工作,这个现象

就是剪力滞效应; 可应用变分法的最小势能原理求解。 第六章 箱梁分析 一、主要优点 箱形截面具有良好的结构性能,因而在现代各种桥梁中得到广泛应用。在中等、大跨预应力混凝土桥梁中,采用的箱梁是指薄壁箱型截面的梁。其主要优点是: ? 截面抗扭刚度大,结构在施工与使用过程中都具有良好的稳定性; ? 顶板和底板都具有较大的混凝土面积,能有效地抵抗正负弯矩,并满足配筋的要求,适应具有正负弯矩的结构,如连续梁、拱桥、刚架桥、斜拉桥等,也更适应于主要承受负弯矩的悬臂梁,T 型刚构等桥型; ? 适应现代化施工方法的要求,如悬臂施工法、顶推法等,这些施工方法要求截面必须具备较厚的底板; ? 承重结构与传力结构相结合,使各部件共同受力,达到经济效果,同时截面效率高,并适合预应力混凝土结构空间布束,更加收到经济效果; ? 对于宽桥,由于抗扭刚度大,跨中无需设置横隔板就能获得满意的荷载横向分布; ? 适合于修建曲线桥,具有较大适应性; ? 能很好适应布置管线等公共设施。 二、箱梁截面受力特性 一)箱梁截面变形的分解 箱梁在偏心荷载作用下的变形与位移,可分成四种基本状态:纵向弯曲、横向弯曲、扭转及扭转变形(即畸变); 因弯扭作用在横截面上将产生纵向正应力和剪应力,因横向弯曲和扭转变形将在箱梁各板中产生横向弯曲应力与剪应力。 1、纵向弯曲:对称荷载作用;产生纵向弯曲正应力 M σ,弯曲剪应力 M τ。 纵向弯曲产生竖向变位 w ,因而在横截面上引起纵向正应力 M σ及剪应力 M τ,见图。图中虚线 所示应力分布乃按初等梁理论计算所得,这对于肋距不大的箱梁无疑是正确的;但对于肋距较大的箱形梁,由于翼板中剪力滞后的影响,其应力分布将是不均匀的,即近肋处翼板中产生应力高峰,而远肋板处则产生应力低谷,如图中实线所示应力图。这种现象称为“剪力滞效应”。对于肋距较大的宽箱梁,这种应力高峰可达到相当大比例,必须引起重视。

车架横梁法计算

------------------------------------------------------------------------------- STRUCTURE NO. 19 *** INITIALIZING DA TA *** DRIVE D ------------------------------------------------------------------------------- 将车架当成刚性横梁计算数据: total total total total total total total members joints springs sections materials ld cases ld combinations 364 215 0 4 1 9 10 job description: frame description: user name: metric or imperial (M/I): M bandwidth optimization (Y/N): Y ld case 1 = selfweight (Y/N): Y 坐标: 214 .7 0 0 0 1 215 17.395 0 0 0 1 ------------------------------------------------------------------------------- STRUCTURE NO. 19 *** SECTION PROPERTY DA TA *** DRIVE D ------------------------------------------------------------------------------- sec X-sectional mom. inertia shear area section mod plastic moment no area mm2 1.0E+06 mm4 mm2 1.0E+06 mm3 capacity kN-m 1 2549 3.964 2549 .0793 2 0 2 5098 20.677 5098 .20677 0 3 958 .128 958 .0049 0 4 100000 100000 100000 1000 0 ------------------------------------------------------------------------------- STRUCTURE NO. 19 *** MEMBER CONNECTIVITY DATA *** DRIVE D ------------------------------------------------------------------------------- member lower greater section material lower greater attribute number joint joint number number end type end type type 361 1 214 4 1 1 1 1 362 45 214 4 1 1 1 1 363 176 215 4 1 1 1 1 364 177 215 4 1 1 1 1

箱梁横梁计算

请问大家: 1)桥博计算连续梁的横隔梁时建模仅取横隔梁的宽度还是取横隔梁的两侧渐变段的截面作为模型计算截面? 2)对于箱梁的恒载如何处理,是作为均布荷载加载在桥面板上,还是作为集中力加载在腹板上? 3)对于顶板带横向预应力的桥梁,计算出来的结果是不是不考虑翼板根部的拉应力? 4)对于多室截面恒载如何分担? 希望大家发表自己的看法,如果有相关的算例最好上传学习一下! 向别的老工程师请教后他给我这样的解释:不知道大家有什么见解 1、横梁截面宽度取(b+2bh+12h'f),b为横梁厚度,bh为承托长度,h'f为板厚。 2、箱梁恒载主要都由腹板传递,取集中力加在腹板上。 3、个人认为应当考虑,施加横向预应力主要就是解决挑臂根部和腹板间桥面板下缘的拉应力,横向应力对横向钢束位置的调整非常敏感。 4、多室截面恒载可按腹板数量均分。 其实横向构件的计算分实体横梁和箱梁框架,以上的1、2、4点均用于实体横梁计算,第3点用于桥面板计算。 不知道大家有什么见解?

关于横梁计算,由于在立交和高架设计时经常碰到,我谈一点个人看法, 如果没有张拉横梁预应力,各个腹板的受力极不均匀,位移大的腹板,弯距比较小,承受的力也比较小,但是张拉横向预应力以后,各个腹板受力就比较均匀了,一般边腹板的力与中腹板的力之比在1.0~1.2之间。 对于多箱室的,恒载应该考虑两种情况更安全,一个是各个腹板均分恒载,另一个是边腹板是中腹板的1.2倍, 另外一个就是桥面上的活载,大家是按照横梁上均布还是,腹板均分? 我一般是底板范围均分和腹板均分考虑,毕竟活载比重比较小,计算差别不是很大! 我的观点是: 1、活载应根据车辆荷载进行横向加载,考虑最不利组合。 2、计算宽度取实体厚度。楼上的宽度的取法从理论上讲是正确的。但是保守的取法可以留一定的安全储备。 请各位指正。

梁计算公式大全

手工计算钢筋公式大全 第一章梁 第一节框架梁 一、首跨钢筋的计算 1、上部贯通筋 上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值 2、端支座负筋 端支座负筋长度:第一排为Ln/3+端支座锚固值; 第二排为Ln/4+端支座锚固值 3、下部钢筋 下部钢筋长度=净跨长+左右支座锚固值 注意:下部钢筋不论分排与否,计算的结果都是一样的,所以我们在标注梁的下部纵筋时可以不输入分排信息。 以上三类钢筋中均涉及到支座锚固问题,那么,在软件中是如何实现03G101-1中关于支座锚固的判断呢? 现在我们来总结一下以上三类钢筋的支座锚固判断问题: 支座宽≥Lae且≥0.5Hc+5d,为直锚,取Max{Lae,0.5Hc+5d }。 钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc+5d,为弯锚,取Max{Lae,支座宽度-保护层+15d }。 钢筋的中间支座锚固值=Max{Lae,0.5Hc+5d } 4、腰筋 构造钢筋:构造钢筋长度=净跨长+2×15d 抗扭钢筋:算法同贯通钢筋 5、拉筋

拉筋长度=(梁宽-2×保护层)+2×11.9d(抗震弯钩值)+2d 拉筋根数:如果我们没有在平法输入中给定拉筋的布筋间距,那么拉筋的根数=(箍筋根数/2)×(构造筋根数/2);如果给定了拉筋的布筋间距,那么拉筋的根数=布筋长度/布筋间距。 6、箍筋 箍筋长度=(梁宽-2×保护层+梁高-2×保护层)+2×11.9d+8d 箍筋根数=(加密区长度/加密区间距+1)×2+(非加密区长度/非加密区间距-1)+1 注意:因为构件扣减保护层时,都是扣至纵筋的外皮,那么,我们可以发现,拉筋和箍筋在每个保护层处均被多扣掉了直径值;并且我们在预算中计算钢筋长度时,都是按照外皮计算的,所以软件自动会将多扣掉的长度在补充回来,由此,拉筋计算时增加了2d,箍筋计算时增加了8d。(如下图所示) 7、吊筋 吊筋长度=2*锚固+2*斜段长度+次梁宽度+2*50,其中框梁高度>800mm 夹角=60°≤800mm 夹角=45° 二、中间跨钢筋的计算 1、中间支座负筋 中间支座负筋:第一排为Ln/3+中间支座值+Ln/3; 第二排为Ln/4+中间支座值+Ln/4 注意:当中间跨两端的支座负筋延伸长度之和≥该跨的净跨长时,其钢筋长度: 第一排为该跨净跨长+(Ln/3+前中间支座值)+(Ln/3+后中间支座值); 第二排为该跨净跨长+(Ln/4+前中间支座值)+(Ln/4+后中间支座值)。 其他钢筋计算同首跨钢筋计算。 三、尾跨钢筋计算

连续分叉曲线箱梁桥的计算分析与设计

文章编号:0451-0712(2003)08-0095-05 中图分类号:U4481213 文献标识码: 连续分叉曲线箱梁桥的计算分析与设计探讨刘 钊1,王 斌2,孟少平1,纪 诚2,张宇峰1 (1.东南大学 南京市 210096;2.南京市市政设计研究院 南京市 210008) 摘 要:南京新庄立交桥是一座以多层、多跨以及分叉连续为特色的预应力混凝土曲线梁结构。在讨论曲线箱梁基本受力特征的基础上,研究了分叉连续曲线箱梁桥的分析方法,并对预应力混凝土曲线箱梁桥设计中的若干问题进行了探讨。 关键词:预应力混凝土曲线梁;分析;设计 1 工程概况 南京市新庄立交桥位于五路交叉口上,为4层部分互通式定向立交。为展示现代化城市立体交通的设计理念,保证交通顺畅,本工程在立交的平面布置上尽量采用曲线展线布置,在结构设计上,采用独立圆柱墩、多跨预应力连续曲线梁,在主线和匝道的分叉处,采用匝道主线连续的分叉式多跨预应力混凝土连续曲线箱梁,分叉处仅设置独柱墩。 新庄立交桥上部结构由二、三、四层主线和匝道桥组成,除E匝道外,上部结构均采用预应力混凝土等截面连续箱梁。 全桥共19联,每联3~5跨不等,跨径31~42m,梁高均为1.8m,箱梁最小跨高比达到12313。箱梁为50号混凝土,预应力束采用

【桥头堡论坛】横梁计算原则

桥梁计算原则 计算要求 所有计算均需提供计算过程电子文件,计算输入数据整理文件及计算结果(计算书的整理)。 纵向包括:荷载计算、单元节点编号、坐标、荷载(桥面上荷载,横隔板荷载,横隔板作用单元或节点号等,计算结果中包括主要应力,内力与反力等)。 1、纵向计算: 1)、钢束锚固时弹性回缩变形建议取12mm 2)、张拉控制应力σcon=0.72fpk 3)、徐变收缩总天数建议按10年即3650天考虑 4)、支座沉降各墩均按15mm考虑 5)、车道数及相应折减系数按《公路工程技术标准》P24~25页要求考虑,不均匀(偏载)系数可取1.15~1.20 2、横梁计算(加载方式一)(城建院习惯) 1)、横梁结构离散单元数量应尽量偏小,建议加密 2)、横梁单元桥面要求采用墩顶横梁高宽所组成的矩形截面进行计算,不考虑两侧顶底板有效宽度范围的作用 3)、横梁计算时荷载简化要求以下: 由于横梁受力比较复杂,对荷载简化带来一些问题,为此,要求荷载简化时需要将各种不利情况全部包括 4)、横梁荷载分为:恒荷载和活荷载考虑,恒荷载支反力取用最大值和最小值 a.恒荷载支反力最大值和最小值按下列原则考虑 取用计算结果中支反力汇总表中正常使用组合Ⅲ的最大、最小竖向力。 恒载支反力最大值按正常使用组合Ⅱ中最大支反力减去活载最大支反力(汽车荷 载)后,乘以1.05的放大系数处理。 恒载支反力最小值正常使用组合Ⅲ中竖向最小值取用。 b.活载按横桥向加载考虑,将一个车道的活载最大支反力(汽车活载maxQ除以纵向 计算横向分布系数)作为横向分布调整系数,放大1.05倍进行横向加载。加载范围 按《通用规范》要求处理,即距防撞护栏内侧500mm范围内为车辆横向加载范围。 c.作用在横梁上的恒荷载按腹板集中力和底板宽度内均布荷载考虑。为此,分为四种 工况:腹板集中力最大值、最小值、底板范围最大值、最小值。 d.横梁加载工况(施工阶段恒载加载工况): ①腹板集中力最大值: P腹板集中力最大值=(VⅢmax—V活max)×1.05/n ②腹板集中力最小值: P腹板集中力最小值=VⅢmin/n ③底板宽度范围均布最大值: q腹板均布力最大值=(VⅢmax—V活max)×1.05/B ④底板宽度范围均布最小值: q腹板均布力最小值= VⅢmin /B 其中: VⅢmax:正常使用组合Ⅲ竖向最大支反力 V活max:使用工况中车辆荷载(MmaxQ)竖向最大反力值

梁弯矩配筋的简化计算方法B

梁弯矩配筋的简化计算方法 民用建筑所 王晓星 1. 前言 随着计算机的发展,大型结构的计算越来越程序化,简便化,但机算结果的正确性和适用性的判定仍然需要手算来完成,。我们一些结构设计师尤其是新参加工作的设计师在结构计算中也过分依赖于计算机,手算能力比较薄弱,特别是在现场服务中对结构问题的处理时,往往时间紧,又要保证结构的安全和经济,加强自己的手算能力和经验的积累对每个结构设计师都是必不可缺的。本文提出了混凝土结构设计中最常用的梁弯矩配筋的简化计算方法,愿与大家共同商讨。 2. 简化计算方法 梁弯矩配筋可先计算出矩形梁的截面系数A ,按此系数查得配筋系数的第一行,第二行对应的就是配筋系数值,HRB335配筋系数表见附表1,HRB400配筋系数表见附表2。配筋系数表有如下的特点:截面系数浮动范围非常大,而配筋系数却很小,多数只是0.001位的变化,而且各混凝土强度等级的截面系数范围均同。所以如果我们能记忆几个固定的数值,采用内插法进行计算,就可以脱离配筋系数表,快速而又准确地得出配筋结果。 截面系数) () (3 20m h B m kN M A ??= 配筋量配筋系数??= ) () (0m h m kN M As

式中:M 为梁的弯矩设计值)(m kN ? B 为梁的宽度)(m 0h 为梁的有效高度)(m As 为配筋面积)(2cm 公式中括号内为单位不参预计算,对于T 形梁和板只需取前几个系数即可。配筋系数表第二行的第一个数为最小配筋率,最后一行为受压区高度为0.550h 。当精度要求不高时,对于T 形梁和板采用Ⅰ级筋时可直接取配筋系数为0.050;Ⅱ级筋可取配筋系数为0.035。精确计算的公式在此不再细述,可参见混凝土结构教科书或钢筋混凝土结构计算手册。 3. 计算示例 1:某梁所承受弯矩设计值为145m kN ?,取梁高为500,梁宽为250, 混凝土强度等级C30;HRB335钢筋;试计算配筋. C30混凝土;HRB335 简化计算: 274146 .025.0145 2 =?= A 取配筋系数为0.0375 22118282.110375.046 .0145 mm cm As ==?= 精确计算:

3×20普通钢筋箱梁计算书讲解

目录 1、工程概况 (2) 2、主要技术标准 (2) 3、采用规范 (2) 4、主要材料 (2) 5、计算参数 (2) 6、结构计算模型 (3) 7、持久状况承载能力极限状态计算 (4) 8、持久状况正常使用极限状态计算 (6) 9、横梁的计算 (8) 10、构件构造要求 (10) 11、结论 (10)

1、工程概况 本桥是黑龙江省伊绥高速公路南互通E匝道桥第四联钢筋混凝土箱梁桥。采用3-20米等高度现浇钢筋混凝土箱梁桥。 2、主要技术标准 设计荷载:公路—I级 桥面宽度:B=10.5m 2个车道 设计安全等级二级 3、采用规范 《公路桥涵设计通用规范》(JTG D60-2004) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)《公路工程技术标准》(JTG B01-2003) 4、主要材料 主梁材料:C40混凝土 普通钢筋: HRB335钢筋,抗拉强度设计值为280MPa; 5、计算参数 (1)、采用空间有限元杆系将主梁离散为35个节点, 34个单元。荷载组合及验算内容一律按《公路桥涵设计通用规范》(JTG D60-2004)与《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)相关条文执行。 (2)、活载布置采用外侧偏载最不利方式布载。 (3)、荷载取值: ●恒载:一期恒载混凝土容重为26kN/m3;二期恒载为10cm沥青 铺装,容重为26kN/m3,防撞栏杆为9.6kN/m; ●活载:荷载标准为公路I级,并考虑汽车荷载引起的冲击力,

冲击系数的取值参照《公路桥涵设计通用规范》(JTG D60-2004)计算,由程序计算出此结构的自振频率为9.8Hz, 得到冲击系数 =0.36; ●汽车引起的离心力:取值参照《公路桥涵设计通用规范》(JTG D60-2004); ●汽车引起的制动力:取值参照《公路桥涵设计通用规范》(JTG D60-2004),如果有离心力参与荷载组合是制动力取值按照0.7 倍考虑; ●基础变位:基础作用按照支座不均匀沉降考虑,支座的沉降量 为0.5cm; ●温度梯度:依据《公路桥涵设计通用规范》(JTG D60-2004) 4.3.10 第3 条,对结构的梯度温度引起的效应进行考虑,取 值参照表4.3.10-3竖向日照正温差计算温度基数表混凝土铺 装的结构类型取值。混凝土上部结构竖向日照反温差为正温差 乘以-0.5。铺装为10cm沥青,T1取14 ℃,T2取 5.5℃; ●均匀温度:依据《公路桥涵设计通用规范》(JTG D60-2004), 取升温为30℃,降温38℃。 6、结构计算模型 采用空间杆系将上部主梁离散成51个节点,50个单元。结构离散图如下所示:

利用桥梁博士进行横梁计算的教程_计算

利用桥梁博士进行横梁计算的教程(续一) 本文介绍桥梁博士进行箱梁横梁计算。红色字体内容为本文的操作步骤,黑体字为相应的一些说明和解释。 基本情况在前文中有所介绍,这里主要介绍加载及边界条件的设定。 一、输入施工信息 共建立了三个施工阶段,阶段1安装所有单元;阶段2张拉所有钢束(钢束1、2),并灌浆;阶段3施加永久荷载。三个施工阶段的设置分别如图1.1-1.3所示。 图1.1 试工阶段1 在阶段3中所施加的永久荷载,是在求得8号墩上所承担的恒载(F0)的基础上,除以墩上箱梁的腹板数(n),而后在与腹板对应的位置处加以F0/n的集中力。如果要做的细,还可以按各腹板所承担的承载面积进行分配。 关于边界条件,可以在有支座的位置处设计边界条件,注意一般设一个横向约束即可,其它均可只设为竖向约束。图1.4给出了相应的约束和加载情况。

图1.2 试工阶段1 图1.3 试工阶段1

二、输入使用信息: 收缩徐变天数取为:3650。一般认为混凝土的收缩徐变可以持续数年。最在升温温差取为25度,降温温差也取25度。非线性温度按D60-2004中4.3.10定义,一个为正温差,一个为负温差。 活荷载描述:按公路一级车道荷载加载。因为本例中桥宽有40多m,故偏保守的取为10个车道。先按一个车道纵向影响线加载求得墩顶位置处承担的活荷载值,此例约为626KN,填入图2.1中鼠标处示处。 图2.1 活荷载输入 如图2.1所示,勾选横向加载——点横向加载有效区域按钮,将弹出如图2.2所示窗口。活载类别选择汽车,横向有效区域起点取为1m,终点为45.1m。 有必要说明下的是,采用桥博进行横向加载计算时并不用输入活载的横向分布调整系数,车道折减系数等,而是通过定义车道、横向有效分布区域等由桥博自行进行加载。

宽箱梁的数值计算分析

宽箱梁的数值计算分析 摘要:本文以某多箱室连续梁桥为例,讨论了宽箱梁的计算方法,并通有限元计算软件对比分析不同计算方法对宽箱梁计算结果的影响。以该桥的分析计算分析结果为例,从而为宽箱梁的计算提供可靠的计算依据。 关键词: 宽箱梁;单梁法;刚性横梁法;梁格法;数值分析 abstract: taking a more box chamber continuous girder bridge as an example, discusses the calculation method of wide box girder, and through a comparative analysis of the finite element calculation software of different calculation methods for wide box girder of the calculated results influence. with the analysis of the calculation results of the bridge as an example, the calculation of wide box girder so as to provide reliable calculation basis. keywords: wide box girder, single-beam method; rigid beam method; grillage method; numerical analysis 中图分类号:g613.4文献标识码:a文章编号: 1.前言 近年来,为适应交通功能现代化的需求,我国高速、高等级公路与城市立交工程建设迅猛发展;并随着桥梁建设材料性能与施工工艺水平的不断进步,为了缓解城市交通的压力,桥梁道路不断地拓宽。这就使得桥梁建设不得不跟着道路不断拓宽。对于城市道路,

横梁计算书..

该横梁高1.6m ,梁宽为12.5米,悬臂长2米。 二、设计规范 《公路工程技术标准》(JTG B01-2003) 《公路桥涵设计通用规范》 (JTG D60-2004) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62-2004) 《公路桥涵地基与基础设计规范》(JTG D63-2007) 《公路桥梁抗震设计细则》 (JTG/T B02-01-2008) 三、采用的计算方法和计算软件 (1)使用程序 : MIDAS/Civil, Civil2013 (2)截面设计内力 :3维 (3)构件类型 :部分预应力A 类构件 (4)公路桥涵的设计安全等级 : 一级 (5)构件制作方法 :现浇 四、设计荷载 (1)标准:公路一级 (2)上部结构重量以集中力和均布荷载的形式通过三个腹板传递到中横梁 防撞护栏重:26KN/m 桥面铺装:30.4KN/m 五、主要材料指标 主梁采用C50混凝土,预应力钢束采用低松弛2.15=d mm 钢绞线。混凝土、钢绞线等材料的弹性模量、设计抗压(拉)强度参数等基本参数均按现行规范取值。 1、混凝土 C50混凝土弹性模量MPa E c 41045.3?= 预应力混凝土容重为3/26m kN 钢筋混凝土容重为3/25m kN

2、低松弛钢绞线 直径mm d 2.15= 弹性模量MPa E p 51095.1?= 抗拉强度标准值:MPa f pk 1860= 张拉控制应力:MPa f pk 135873.0= 管道摩阻擦系数:25.0=μ 管道偏差系数:0015.0=k 锚具变形:mm l 6=? 六、模型简介 1、主梁单元截面 图一 主梁横断面图示 2、 单元数量 : 梁单元24个 图二 单元离散图 3、节点数量 : 27 个 4、钢束数量 : 8 个 5、边界条件数量 : 2 个 6、施工阶段 : 3 个

梁弯矩配筋的简化计算方法

梁弯矩配筋的简化计算方法 梁弯矩配筋的简化计算方法 王晓星 1.前言 随着计算机的发展,大型结构的计算越来越程序化,简便化,但机算结果的正确性和适用性的判定仍然需要手算来完成,。我们一些结构设计师尤其是新参加工作的设计师在结构计算中也过分依赖于计算机,手算能力比较薄弱,特别是在现场服务中对结构问题的处理时,往往时间紧,又要保证结构的安全和经济,加强自己的手算能力和经验的积累对每个结构设计师都是必不可缺的。本文提出了混凝土结构设计中最常用的梁弯矩配筋的简化计算方法,愿与大家共同商讨。 2.简化计算方法 梁弯矩配筋可先计算出矩形梁的截面系数A,按此系数查得配筋系数的第一行,第二行对应的就是配筋系数值,HRB335配筋系数表见附表1,HRB400配筋系数表见附表2。配筋系数表有如下的特点:截面系数浮动范围非常大,而配筋系数却很小,多数只是0.001位的变化,而且各混凝土强度等级的截面系数范围均同。所以如果我们能记忆几个固定的数值,采用内插法进行计算,就可以脱离配筋系数表,快速而又准确地得出配筋结果。 截面系数

配筋量 式中:为梁的弯矩设计值 为梁的宽度 为梁的有效高度 为配筋面积 公式中括号内为单位不参预计算,对于T形梁和板只需取前几个系数即可。配筋系数表第二行的第一个数为最小配筋率,最后一行为受压区高度为0.55。当精度要求不高时,对于T形梁和板采用Ⅰ级筋时可直接取配筋系数为0.050;Ⅱ级筋可取配筋系数为0.035。精确计算的公式在此不再细述,可参见混凝土结构教科书或钢筋混凝土结构计算手册。3.计算示例 1:某梁所承受弯矩设计值为145,取梁高为500,梁宽为250, 混凝土强度等级C30;HRB335钢筋;试计算配筋. C30混凝土;HRB335 截面系数A 650

25m小箱梁计算书正文资料

预应力混凝土公路桥梁通用设计图成套技术 通用图设计计算书 (装配式预应力混凝土箱形连续梁主梁计算) 跨径:25m 路基宽度:26m 设计计算人:日期: 复核核对人:日期: 单位审核人:日期: 项目负责人:日期:

编制单位:中交第一公路勘察设计研究院编制时间:二○○七年一月

目录 1 计算依据与基础资料 ................... 错误!未定义书签。 标准及规范..................................................错误!未定义书签。 标准....................................................错误!未定义书签。 规范....................................................错误!未定义书签。 参考资料................................................错误!未定义书签。 主要材料....................................................错误!未定义书签。 设计要点....................................................错误!未定义书签。 2 横断面布置 ........................... 错误!未定义书签。 横断面布置图................................................错误!未定义书签。 跨中计算截面尺寸............................................错误!未定义书签。 3 汽车荷载横向分布系数、冲击系数计算.... 错误!未定义书签。 汽车荷载横向分布系数计算....................................错误!未定义书签。 刚性横梁法..............................................错误!未定义书签。 刚接梁法................................................错误!未定义书签。 铰接梁法................................................错误!未定义书签。 荷载横向分布系数汇总....................................错误!未定义书签。 剪力横向分布系数............................................错误!未定义书签。 汽车荷载冲击系数μ值计算....................................错误!未定义书签。 汽车荷载纵向整体冲击系数μ...............................错误!未定义书签。 汽车荷载的局部加载的冲击系数............................错误!未定义书签。 4 主梁纵桥向结构计算 ................... 错误!未定义书签。 箱梁施工流程................................................错误!未定义书签。 有关计算参数的选取.........................................错误!未定义书签。 计算程序 ...................................................错误!未定义书签。 持久状况承载能力极限状态计算 ..............................错误!未定义书签。 正截面抗弯承载能力计算..................................错误!未定义书签。 斜截面抗剪承载能力验算..................................错误!未定义书签。 持久状况正常使用极限状态计算...............................错误!未定义书签。 抗裂验算................................................错误!未定义书签。 挠度验算................................................错误!未定义书签。 持久状况和短暂状况构件应力计算 ............................错误!未定义书签。 使用阶段正截面法向应力计算..............................错误!未定义书签。

箱梁计算书(MIDAS分析)

连续箱梁挂蓝计算书(midas)(2009-07-04 11:47:42) 一、工程简介 主桥上部结构为32+68+32m三跨预应力混凝土连续箱梁,梁体自重γ取26kN/m3,跨端支座处、边垮直线段和跨中处梁高为2.8m,中支点处梁高为3.4m,梁高按圆曲线变化,圆曲线半径R=367.80m,顶板厚34cm,腹板厚分别为40cm和70cm,底板厚度由跨中的30cm按圆曲线变化至中点梁根部的60cm,中点处加厚到110cm。节段主要参数如下表所示: 由于0#块长度不够,1#选用整体挂篮施工(见设计图),荷载采用最重悬浇箱梁段A1段:90.0吨。 二、挂篮主要技术标准及参考资料 1、参考《公路桥涵施工技术规范》规定,各设计参数取值如下: (1)挂篮质量控制在浇筑梁段砼质量的0.3~0.5倍之间。 (2)允许最大变形(包括吊带变形的总和):20mm (3)施工及行走时抗倾覆安全系数:2.5 (4)自锚固系统的安全系数:2 2、参考资料 (1)、通桥2008-2261A-V; (2)、《路桥施工计算手册》-人们交通出版社; (3)、《简明施工计算手册》-中国建筑工业出版社; (4)、《悬臂浇注预应力混凝土梁桥》-人们交通出版社; (5)、本挂篮采用的设计规范有:

1)《铁路桥梁钢结构设计规范》(TB10002.2-2005); 2)《铁路桥涵钢筋混凝土和预应力混凝土设计规范》(TB10002.3-2005);3).《钢结构设计规范》(GB50017-2003); 4).《铁路桥涵设计基本规范》(TB10002.1-2005)。 3、主要材料的力学指标 (1)、Q235(A3钢),屈服应力,,弹性模量; (2)、20CrMnTi,屈服应力,弹性模量。 三、结构分析及计算参数 1、结构受力分析 根据悬灌梁段的实际情况,挂篮分以下三种工况进行受力检算: (1)、工况一:1#梁段施工时连体挂篮的强度检算; (2)、工况二:2#梁段施工时挂篮的强度检算 (2)、工况三:挂篮挠度验算; (3)、工况四:挂篮走行时抗倾覆计算。 2、作用于挂篮的主要荷载 参考《路桥施工计算手册》箱梁荷载取值如下: 荷载集中 (KN) 梁单元 (KN) 楼板 (KN) 压力 (KN) 自重 (KN) 合计 (KN) 底模混凝土0.00E+00 -5.34E+01 0.00E+00 0.00E+00 0.00E+00 -5.34E+01 内模混凝土0.00E+00 -3.51E+01 0.00E+00 0.00E+00 0.00E+00 -3.51E+01 外模混凝土0.00E+00 -1.81E+01 0.00E+00 0.00E+00 0.00E+00 -1.81E+01 输出荷载统计 集中 (KN) 梁单元 (KN) 楼板 (KN) 压力 (KN) 自重 (KN) 合计 (KN) 0.00E+00 -1.07E+02 0.00E+00 0.00E+00 0.00E+00 -1.07E+02

箱梁分析

第六章箱梁分析 授课主要内容: 主要优点: 抗扭刚度大、有效抵抗正负弯矩、施工方便、整体受力、适应性强、铺设管道方便。 箱梁截面受力特性: 箱梁在偏心荷载作用下的变形与位移,可分成四种基本状态:纵向弯曲、横向弯曲、扭转及扭转变形(即畸变); 箱梁在偏心荷载作用下,因弯扭作用在横截面上将产生纵向正应力和剪应力,因横向弯曲和扭转变形将在箱梁各板中产生横向弯曲应力与剪应力。 箱梁对称挠曲时的弯曲应力: 箱梁对称挠曲时,产生弯曲正应力、弯曲剪应力。 箱梁的自由扭转应力: 箱梁在无纵向约束,截面可自由凸凹的扭转称为自由扭转,只产生剪应力,不引起纵向正应力; 单室箱梁的自由扭转应力,多室箱梁的自由扭转应力。 箱梁的约束扭转应力: 当箱梁端部有强大横隔板,扭转时截面自由凸凹受到约束称为约束扭转,产生约束扭转正应力与约束扭转剪应力; 这里介绍的约束扭转的实用理论建立是一定的假定之上的。 箱梁的畸变应力: 当箱梁壁较薄时,横隔板较稀时,截面就不能满足周边不变形的假设,则在反对称荷载作用下,截面不但扭转还要畸变,产生畸变翘曲正应力和剪应力,箱壁上也将引起横向弯曲应力; 用弹性地基比拟梁法解析箱梁畸变应力。 箱梁剪力滞效应: 翼缘剪切扭转变形的存在,而使远离梁肋的翼缘不参予承弯工作,这个现象就是剪力滞效应; 可应用变分法的最小势能原理求解。

第六章 箱梁分析 一、主要优点 箱形截面具有良好的结构性能,因而在现代各种桥梁中得到广泛应用。在中等、大跨预应力混凝土桥梁中,采用的箱梁是指薄壁箱型截面的梁。其主要优点是: 截面抗扭刚度大,结构在施工与使用过程中都具有良好的稳定性; 顶板和底板都具有较大的混凝土面积,能有效地抵抗正负弯矩,并满足配筋的要求, 适应具有正负弯矩的结构,如连续梁、拱桥、刚架桥、斜拉桥等,也更适应于主要承受负弯矩的悬臂梁,T 型刚构等桥型; 适应现代化施工方法的要求,如悬臂施工法、顶推法等,这些施工方法要求截面必须 具备较厚的底板; 承重结构与传力结构相结合,使各部件共同受力,达到经济效果,同时截面效率高, 并适合预应力混凝土结构空间布束,更加收到经济效果; 对于宽桥,由于抗扭刚度大,跨中无需设置横隔板就能获得满意的荷载横向分布; 适合于修建曲线桥,具有较大适应性; 能很好适应布置管线等公共设施。 二、箱梁截面受力特性 一)箱梁截面变形的分解 箱梁在偏心荷载作用下的变形与位移,可分成四种基本状态:纵向弯曲、横向弯曲、扭转及扭转变形(即畸变); 因弯扭作用在横截面上将产生纵向正应力和剪应力,因横向弯曲和扭转变形将在箱梁各板中产生横向弯曲应力与剪应力。 1、纵向弯曲:对称荷载作用;产生纵向弯曲正应力 M σ,弯曲剪应力 M τ。 纵向弯曲产生竖向变位 w ,因而在横截面上引起纵向正应力 M σ及剪应力 M τ,见图。图中虚线 所示应力分布乃按初等梁理论计算所得,这对于肋距不大的箱梁无疑是正确的;但对于肋距较大的箱形梁,由于翼板中剪力滞后的影响,其应力分布将是不均匀的,即近肋处翼板中产生应力高峰,而远肋板处则产生应力低谷,如图中实线所示应力图。这种现象称为“剪力滞效应”。对于肋距较大的宽箱梁,这种应力高峰可达到相当大比例,必须引起重视。 2、横向弯曲:局部荷载作用;产生横向正应力 c σ。

相关文档
最新文档