期末复习(实数)

合集下载

期末复习第六章实数资料

期末复习第六章实数资料
一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有根,正数的平方根有个,并且互为数,0的平方根只有一个且为
9.一般来说,被开放数扩大(或缩小) 倍,算术平方根扩大(或缩小) 倍,例如 .
题型规律总结:
1、平方根是其本身的数是;算术平方根是其本身的数是和;立方根是其本身的数是和。
(5)应当要注意的是:带根号的数不一定是无理数,如: 等;无理数也不一定带根号,如:
(6)有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例4.(1)下列各数:①3.141、②0.33333……、③ 、④π、⑤ 、⑥ 、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_______;是无理数的有_______。(填序号)
8. ________
10.使式子 有意义的条件是。
11.当 时, 有意义。
12.若 有意义,则 的取值范围是。
13.已知 ,则 的取值范围是。
14.当 时,

15.如果一个数的平方根为a+1和2a-7,这个数为________
16、— 的绝对值是;
17.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[ ]=1.现对72进行如下操作:
负分数____________________________
无理数____________________________
考点二:平方根、立方根、 的化简
1.判断下列说法是否正确
(1) 的算术平方根是-3;
(2) 的平方根是±15.

《实数》复习课教案

《实数》复习课教案

《实数》期末复习教案二中苏元实验学校 陈颍【教学分析】《实数》一章概念较多,且比较抽象,主要是学生对于无理数的认知还缺乏实际经验的积累,算术平方根和平方根概念混淆。

本节为复习课,学生有一定的知识储备,但是预计因理解不到位容易出错,所以这节课定位在:帮助学生构筑知识体系,通过学生自主学习和合作学习暴露学习中的知识性问题,加强理解,归纳典型问题的方法,领会数学思想在解决问题中的作用。

【复习目标】1. 进一步巩固算术平方根,平方根,立方根和实数的的相关概念及性质2. 熟练用根号表示并求数的平方根,立方根3. 能进行实数的简单四则运算,对实数的大小进行比较4. 掌握估算的方法,加强估算能力的培养5. 领会分类思想、类比迁移、数形结合等数学思想方法的运用【教学重点】平方根、算术平方根、立方根及实数的概念与性质,以及实数的运算,大小比较【教学难点】平方根和实数的概念,对符号的认识【教学准备】学案【教学过程】环节一:引导回顾,构筑知识框架师:在《实数》这一章,我们认识了哪些关于数的新知识?学生回忆,师生共同构筑知识线:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ ⎩⎨⎧无理数有理数实数 (设计意图:本节概念较多,先建立知识框架,后面以题带点覆盖知识点)环节二:强化基础,巩固拓展,完善知识框架题组(一):基本概念过关先让学生独立思考完成,老师巡视发现问题,然后学生小组讨论交流,找出易错点,消化部分呈现问题,接着先请每个小组派代表展示错点,归纳总结易错点,师生一起归纳和完善知识体系。

1. 16的算术平方根是______________.2. 2)9(-的平方根是x , 64的立方根是y ,则y x +=________.3. 式子1-x 在实数范围内有意义,则x 的取值范围是________.4. 下列计算中:①2)7(-=-7;②2)2(2=-;③196=±14;④39-=-3;⑤25425=--;⑥2581-=59-;⑦)21)21(33±=,⑧5)5(2±=,正确的是 .(填序号即可) 5. 已知一个正数的平方根分别是13+a 和11+a ,则a 的值是_______.6. 下列实数:4-,3,113,2π,•7.1,38-,0.3737737773…(相邻两个3之间的7的个数逐次加1),其中属于无理数的是_____________________________________________________.7. 数轴上的点与______一一对应。

八年级期末复习专题二--实数,四边形

八年级期末复习专题二--实数,四边形

专题二 实数一、选择题1、36的算术平方根是( )A .±6B .6C .±6D .62、下列各数中没有平方根的数是( )A .-(-2)3B .3-3 C .a 0D .-(a 2+1)3、7-2的算术平方根是A.71 B.7 C.41 D.44、若x <0,则332x x -等于( )A.xB.2xC.0D.-2x5、若规定误差小于1,那么60的估算值为( )A.3B.7C.8D.7或8 6、立方根等于本身的数是( )A.-1B.0C.±1D.±1或06、下列说法正确的是( )A .无限小数都是无理数B .带根号的数都是无理数C .开方开不尽的数是无理数D .π是无理数,故无理数也可能是有限小数7、已知实数a 、b 、c 在数轴上的位置如图所示,化简|a+b|-|c-b|的结果是( )A .a+cB .-a-2b+cC .a+2b-cD .-a-c8、已知a-b=23-1,ab=3,则(a+1)(b-1)的值为( )A .3-B .33C .22D .22- 二、填空题9.已知0≤x ≤3,化简2x +2)3(-x =__________。

10.若|x -2|+3-y =0,则x·y =______。

11、a 是10的整数部分,b 是5的整数部分,则a 2+b 2=____________。

12、大于-317且小于310的整数有________________。

13、下列各数中:-41,7,3.14159,π,310,-34,0,0.⋅3,38,16,2.121122111222…其中有理数有___________________________;无理数有_________________________________。

14、已知:10404=102,x =0.102,则x =________。

三、解答题15、通过估算,比较下列数的大小.(1)215-和21(2)5117+与10916、已知某数有两个平方根分别是a +3与2a -15,求这个数。

《第6章实数》知识清单含例题+期末专题复习试卷(含答案).doc

《第6章实数》知识清单含例题+期末专题复习试卷(含答案).doc

2018年七年级数学下册实数知识清单+经典例题+专题复习试卷1、 定义:如果一个正数X 的平方等于a,即工=。

那么,这正数x 叫做a 的算术平方根。

记作氐 读作“根号屮。

a 叫做被开 算术平方根*方数,规定0的算术平方根还是0o2、 性质:双重非员性(a h 0,需X 0 )。

负数没有算术平方根。

'3、J 产=\a\ (a是任意数力(7^)2 =a (B 是非员数)。

1、定义:如果一个数X 的平方等于4即乂2 =4。

那么,这个X叫做a 的平方根。

记作土需,读作“正、员根号屮。

a 叫做被幵 方数。

规定0的算术平方根还是0o2、 性质:(1)正数有两个平方根,它们互为相反数。

(2) 0的平方根是0。

员数没有平方根。

3、 未知数次数是两次的方程,结果一般都有两个值。

72^1.414, 73^1.732,少恐2.236, J7俎26461、走义:如果一个数x 的立方等于匕 即x 3 =a o 那么,这个x 叫做a 的立方根。

记作砺,读作“三次根号护。

a 叫做被开方数。

2、性质:(1)正数的立方根是正数,员数的立方根是员数,0的立方根是0。

(2)1卜a 取任意数(3) (佝=° J分数(有理数和分数是相同的概念)rI 无限循环小数'1、开方开不尽的方根无理数无限不循环小数彳2、圆周率兀以及含有兀、3、具有特定结构的数(0.010010001……)有理数』r 正整数员整数(可以看成分母是1的分数)正实数o员实数有限小数平方根立方根【经典例题1】1、下列说法错误的是()4、若 a 2=4, b 2=9,且 ab<0,B. ±55、 设边长为3的正方形的对角线长为a.下列关于a 的四种说法: ®a 是无理数; ②a 可以用数轴上的一个点來表示;③3<a<4; ④a 是18的算术平方根.其中,所有正确说法的序号是 ( )A.①④B.②③C.①②④D.①③④ 6、 已知实数x 、y 满足心- l+|y+3|=0,则x+y 的值为( ) A. -2B. 2C.4D. -4【经典例题3】7、 一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是( )A. a+1B. a 2+lC.寸/+1Va+1f x 二 2f inx+ny=88、 已知■是二元一次方程组{、的解,则加・n 的算术平方根为( )\ y=l[nx - iny^lA. ±2B. V2C. 2D. 49、 有一个数值转换器,原理如下:A. 5是25的算术平方根 C. (-4)2的平方根是一4 2、下列各式中,正确的是()B. 1是1的一个平方根 D. 0的平方根与算术平方根都是0B.-佇二 _ 3C.寸(±3严二 ±3D.佇二 ±33、716的平方根是(A. ±2【经典例题2】B. 2C. — 2D. 16C. 5A. 2B. 8当输入的x=64时,输出的y 等于()【经典例题4】10、平方等于16的数是________ ;立方等于本身的数是_______________________ •11、一个数的立方根是4,这个数的平方根是______________ ,12、若一2x ra_n y2与3x7^是同类项,则m-3n的立方根是_____________ .【经典例题5】13、求x 的值:25(X+1)2=16;14、求y 的值:(2y-3) 2 - 64=0;15、计算:^4-23-|-2|X(-7+5) 16、计算:舗一血+ 乂-3)' -磁-2【经典例题6】17、已知实数a, b在数轴上的位置如图所示,化简:寸(fl) 4-1)并|a・b|. -------- ------- 1---------------- 1 ----- >・ 1^0 b 118、阅读理解7 >^<75 <79* 即2<V5<3» A1<V5-1<2-・••厉_1的整数部分为1,小数部分为厉_2・解决问题:己知a是JI7-3的整数部分,D是的小数部分,求(-a)"+(b + 4)2的平方根.参考答案1、c;2、B3、A4、B5、C6、A7、B8、C9、D10、±4, 0, ±111、&-812、213、x = -0. 2, x=-l. 8;14、y=5. 5 或y= - 2. 5;15、10 ;16、-2;17、解:由数轴上点的位置关系,得-l<a<0<b<l.原式二a+1+2 - 2b - b+a=2a - 3b+3.18、由题意,得幺=1,i = T17-4 所以(一幺尸 + 0+4)2 = (-1尸 + (何_4+4)2 = 16 即+ @ + 4)2的平方根为±牛2018年 七年级数学下册 实数 期末复习试卷一、选择题:1、下列语句中正确的是(C. 9的算术平方根是±3D. 9的算术平方根是3设边长为3的正方形的对角线长为a.下列关于a 的I 川种说法: ①a 是无理数; ②a 可以用数轴上的一个点來表示; @3<a<4;④a 是18的算术平方根.其中,所有正确说法的序号是() A.①④B.②③C.①②④ D.①③④7、负的算术平方根是( )A. ±6B. 6C. ±A /6D. V68、下列各数中,3. 14159,-饭,0.3131131113- (2016春•潮州期末)下列各式表示正确的是9、己知实数x 、y 满足Jx=l+1 y+31二0,则x+y 的值为()10、若正数a 的算术平方根比它本身大,则( )A.・9的平方根是・3B. 9的平方根是3 2、下列结论正确的是(A- -{(-6)2二-6 B.(~{5)2二9 C. 7(~16) 2=± 16 D.-(2,16 ^25A- 4、 下列关于祈的说法中,错误的是( 灵是8的算术平方根 B. 2<品<3 下列各组数中互为相反数的一组是()C. 78= ±2^2D.灵是无理数A. ■⑵与寻PB.・4与・{(-4)2C.D. P 与法5^如果际〒二2. 872, ^3700 =28.72,则勺0・023厂(A. 0. 2872B. 28. 72C. 2. 872D. 0.02872 6、 B. ±725=5A. - 2B. 2C. 4( )lk •估计— 1在()A. 0〜1之间•B. 1〜2之间C. 2〜3之间D. 3〜4之间12、实数纸b在数轴上对应点的位置如图,则|a-b| -肯的结果是()•••Aa b0A. 2a - bB. b - 2aC. bD. - b二、填空题:13、(-9)2的算术平方根是_.14、如图,在数轴上点A和点B之间的整数是_________ .15^ 己知(x - 1) 2二3,则x= _ .16、如杲丽二1.732, A/30 =5.477,那么0. 0003的平方根是________ .17、若3、b互为相反数,c、d互为负倒数,则石匸尹+畅= _______________ •18、已知a, b为两个连续的整数,且a<V8<b,则a+b二____________ .三、解答题:19、求x 的值:9(3x - 2尸二64. 20、求x 的值:(5- 3x?=—4921、计算:7132-12222、计算:(亦尸+旷爾一加2一炉.23、已知x・1的平方根为±2, 3x+y・1的平方根为±4,求3x+5y的算术平方根.24、已知2a-l的平方根是±3, 3a+b_9的立方根是2, c是妬的整数部分,求a + 2D+f的值•25、阅读下面的文字,解答问题:大家知道迈是无理数,而无理数是无限不循环小数,因此迈的小数部分我们不可能全部写出来,于是小明用屁-1来表示典的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为近的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:・・・2'<7<3,即2<听<3,・••听的整数部分为2,小数部分为听・2.请解答:(1)Vio的整数部分是__________ ,小数部分是 _________ .(2)如果衍的小数部分为a, 荷的整数部分为b,求a+br/^的值;(3)己知:x是3+^5的整数部分,y是其小数部分,请直接写出X- y的值的相反数.26、若实数a, b, c 在数轴上所对应点分别为A, B, C, a 为2的算术平方根,b 二3, C 点是A 点关 于B点的对称点,(1) 求数轴上AB 两点之间的距离; (2) 求c 点对应的数;27、已知字母a 、b 满足亦二+的_21 1 1 1~ab @ + 1)@ + 1)@+2)@ + 2)… @ + 2011)@ + 2001)第X 页共1()页(3) 3的整数部分为x, c 的小数部分为y,求2x^+2》的值(结果保留带根号的形式)的值.1、 D2、 A3、 C4、 C5、 A6、 C7、 D8、 C9、 A 10、 11、 12、 C 13、 9.14、 答案为:2. 15、 答案为:土近+1. 16、 ±0.01732. 17、 -118、 答案为:5.149 19、 开平方得:3 (3x-2)二±8 解得:Xi=—, x 2= - -T .9920、§或兰7 2116 T -10; 23、5 24、a=5, b 二2, c 二7, a + 2&+u 二 16・(2) V4<5<9,・・・2<任<3,即沪旋 ・2, V36<37<49, A6<V37<7,即 b 二6,贝lj a+b ・ 丽二4;(3) 根据题意得:x=5, y=3+{^ - 5二- 2,・;x - y=7 - 其相反数是A /5 - 7.26、(1) 3; (2) 6;72 ⑶尸2—屈.21、参考答案21、22、25、 解: (1) V10的整数部分是3,小数部分是V10- 3;故答案为:3; V10- 3;•解;、「7/o,丑-1~ o且-f 二o'弋鳥解得伫°b十@H"賊斗3化X昭十• • •十莎丽莎和 -丄丄亠」一-2 +A3十3*卩十・・・十二卜亍+土一土+》* +・・•十二 /_ Zo/27。

第二章实数期末复习

第二章实数期末复习

导学2
1.什么是算术方根、 平方根?什么是立方根? 2.平方根和立方根各有 什么性质?
3.平方根与立方根中的四 个公式.
2、下列说法错误的是___. A、0的算术平方根是0 B、-9的算术平方根是-3 C、3的算术平方根是 D、2是4的算术平方根
3、一个数的算术平方 根是它本身,则这个 数是___. A.1和-1 B.0和1 C.0和正负1 D.0
11.若m的立方根等于m, 则m的值是 . 一个自然数的算术 平方根是n,则与它相 邻的下一个自然数的 算术平方根是 。
12.一个正方体的体积扩 大64倍,则该正方体的棱 长扩大的倍数为 ; 一个正方形的面积扩 大16倍,则它的边长扩 大 .
13.一个正数的平方根是 x+3和2x-6,则x= , 这个正数是 。
导学3
根式的乘除法法 则是什么?
20.计算
第二章复习
初二数学组
学习目标
1.了解实数的分类。 2.总结平方根和立方根的公式。 3.能熟练进行实数的运算。
导学1
怎样对实数进行分类?
7 下列实数 , , 81, 0, 9 3 21, 6 2 ,12131415 1. ...... 有理数:无理数:


0
1.关于无理数的说法正确的 是______. A、有理数都是有限小数 B、无限小数都是无理数 C、不是有限小数就不是有理数 D、无理数都是无限小数

北师大版八年级数学上册第二章 实数期末复习练习题(含答案)

北师大版八年级数学上册第二章 实数期末复习练习题(含答案)

北师大版八年级数学上册第二章实数期末复习练习题(含答案)一.选择题1.在实数,,﹣,0.0,π,,0.301300130001…(3与1之间依次增加一个0)中,无理数的个数为()A.3B.4C.5D.62.4的算术平方根是()A.±2B.2C.±16D.163.的平方根是()A.±5B.5C.±D.4.一个正数的两个平方根分别是2a﹣5和﹣a+1,则这个正数为()A.4B.16C.3D.95.如果a,b,c满足|a﹣2|++(c﹣3)2=0,则a+b﹣c的值为()A.5B.5+C.5+5D.5﹣56.下列说法正确的是()A.是2的平方根B.﹣1的立方根是1C.1的平方根是1D.﹣3没有立方根7.有一个数值转换器,原理如图所示,当输入的数x为﹣512时,输出的数y的值是()A.﹣B.C.﹣2D.28.若的整数部分为x,小数部分为y,则x﹣y的值是()A.1B.C.3﹣3D.39.已知数a,b,c的大小关系如图,下列说法:①ab+ac>0;②﹣a﹣b+c<0;③;④|a ﹣b|+|c+b|﹣|a﹣c|=﹣2b;⑤若x为数轴上任意一点,则|x﹣b|+|x﹣a|的最小值为a﹣b.其中正确结论的个数是()A.1B.2C.3D.410.计算()A.2B.C.D.3二.填空题11.已知某数的一个平方根是,那么它的另一个平方根是.12.已知:≈1.421267…,≈4.494441…,则(精确到0.1)≈.13.已知≈1.2639,≈2.7629,则≈.14.若x2=(﹣5)2,=﹣5,那么x+y的值是.15.①=.②=.③写出﹣和之间的所有整数.16.比较大小:24.17.若|x|=,则实数x=.18.如图,长方形OABC放在数轴上,OA=2,OC=1,以A为圆心,AC长为半径画弧交数轴于P点,则P点表示的数为.19.式子在实数范围内有意义,则x 的取值范围是.20.已知a ≥﹣1,化简=.三.解答题21.无限循环小数如何化为分数呢?请你仔细阅读下列资料:由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几等等的数.转化时需要先去掉无限循环小数的“无限小数部分”.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍…使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了.例题:例如把0.和0.2化为分数请用以上方法解决下列问题(1)把0.化为分数(2)把0.3化为分数.22.定义:等号两边都是整式,只含有⼀个未知数,且未知数的最高次数是2的⼀程,叫做⼀元⼀次⼀程.如x2=9,(x﹣2)2=4,3x2+2x﹣1=0…都是⼀元⼀次⼀程.根据平⼀根的特征,可以将形如x2=a(a≥0)的⼀元⼀次⼀程转化为⼀元⼀次⼀程求解.如:解⼀程x2=9的思路是:由x=±,可得x1=3,x2=﹣3.解决问题:(1)解⼀程(x﹣2)2=4.解:∵x﹣2=±,∴x﹣2=2,或x﹣2=.∴x1=4,x2=.(2)解⼀程:(3x﹣1)2﹣25=0.23.已知2a﹣1的平方根是,3a+b﹣1的算术平方根是6,求a+4b的平方根.24.已知某正数的两个平方根分别是﹣1和a﹣4,b﹣12的立方根为2.(1)求a,b的值.(2)求a+b的平方根.25.求出下列x 的值:(1)4x 2﹣16=0; (2)3(x +1)3=24.26.如果有理数a 、b 、c 在数轴上的位置如图所示,根据图回答下列问题: (1)比较大小:a ﹣1 0;b +1 0;c +1 0;(2)化简﹣|a ﹣1|+|b +1|+|c +1|.27.计算:(1)2﹣2+; (2)×﹣;(3); (4)(π﹣3)0+(﹣)﹣1+|﹣|+.28.计算:(1)(+10)+(﹣11.5)+(﹣10)﹣4.5; (2)(﹣6)2×(﹣)﹣23;(3)(﹣270)×+0.25×21.5+(﹣8)×(﹣0.25); (4)﹣+6÷(﹣)×.29.操作探究:已知在纸面上有一数轴(如图所示)(1)折叠纸面,使表示的点1与﹣1重合,则﹣2表示的点与 表示的点重合; (2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②表示的点与数 表示的点重合;③若数轴上A 、B 两点之间距离为9(A 在B 的左侧),且A 、B 两点经折叠后重合,此时点A 表示的数是 、点B 表示的数是(3)已知在数轴上点A 表示的数是a ,点A 移动4个单位,此时点A 表示的数和a 是互为相反数,求a 的值.30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=;(2)若a+4=(m+n)2,且a、m、n均为正整数,求a的值;(3)化简:.参考答案一.选择题1.【解答】解:=2,,﹣,0.0都是有理数,而π,,0.301300130001…(3与1之间依次增加一个0)都是无限不循环小数,因此是无理数,所以无理数的个数有3个,故选:A.2.【解答】解:∵22=4,∴4的算术平方根是2.故选:B.3.【解答】解:∵=5,∴的平方根是±,故选:C.4.【解答】解:∵正数的两个平方根分别是2a﹣5和﹣a+1,∴(2a﹣5)+(﹣a+1)=0,解得a=4,∴2a﹣5=3,∴这个正数为32=9,故选:D.5.【解答】解:根据题意得:a﹣2=0,b﹣5=0,c﹣3=0,解得a=,b=5,c=,则a+b﹣c=2+5﹣=5﹣.故选:A.6.【解答】解:A、是2的平方根,正确;B、﹣1的立方根是﹣1,故本选项错误;C、1的平方根是±1,故本选项错误;D、﹣3的立方根是﹣,故本选项错误;故选:A.7.【解答】解:由题中所给的程序可知:把﹣512取立方根,结果为﹣8,因为﹣8是有理数,所以再取立方根为﹣2,﹣2是有理数,所以再取立方根为=,因为是无理数,所以输出,故选:A.8.【解答】解:∵1,∴x=1,y=﹣1,∴x﹣y=×1﹣(﹣1)=1,故选:A.9.【解答】解:由题意b<0,c>a>0,|c|>|b|>|a|,则①ab+ac>0,故原结论正确;②﹣a﹣b+c>0,故原结论错误;③++=1﹣1+1=1,故原结论错误;④|a﹣b|+|c+b|﹣|a﹣c|=a﹣b+c+b﹣(﹣a+c)=2a,故原结论错误;⑤当b≤x≤a时,|x﹣b|+|x﹣a|的最小值为a﹣b,故原结论正确.故正确结论有2个.故选:B.10.【解答】解:原式=1+(2×)2016×2=1+2=3.故选:D.二.填空题11.【解答】解:若一个数的一个平方根是,则它的另一个平方根是.故答案为:.12.【解答】解:∵≈4.494,∴≈44.9(精确到0.1),故答案为:44.9.13.【解答】解:∵≈1.2639,∴==×=﹣×≈﹣0.12639.故答案为:﹣0.12639.14.【解答】解:根据题意得:x=﹣5或5,y=﹣5,当x=﹣5时,x+y=﹣5﹣5=﹣10;当x=5时,x+y=5﹣5=0.故答案为:﹣10或0.15.【解答】解:①因为>2,所以|2﹣|=﹣2;故答案为:﹣2;②×===2;故答案为:2;③因为﹣3<﹣、<4,所以﹣和之间的所有整数:﹣2,﹣1,0,1,2,3.故答案为:2,﹣1,0,1,2,3.16.【解答】解:2=,4=,∵28<32,∴<,∴2<4.故答案为:<.17.【解答】解:∵,则实数x=,故答案为:.18.【解答】解;∵四边形OABC是长方形,∴∠AOC=90°,∴AC===,∵以A为圆心,AC长为半径画弧交数轴于P点,∴AP=AC=,∴OP=AP﹣OA=﹣2,∴点P表示的数是2﹣,故答案为:2﹣.19.【解答】解:由题意得:5﹣x≥0,解得:x≤5,故答案为:x≤5.20.【解答】解:∵a≥﹣1,∴a+1≥0,则原式==|a+1|=a+1,故答案为:a+1.三.解答题21.【解答】解(1)∵0.×100=17.∴0.×100﹣0.=17.﹣0.0.×(100﹣1)=17,0.=,(2)∵0.3×10=3.①0.3×1000=313.•②∴由②﹣①得0.3×1000﹣0.3×10=313.﹣3.,0.3(1000﹣10)=310,0.3=.22.【解答】解:(1)∵x﹣2=±,∴x﹣2=2,或x﹣2=﹣2.∴x1=4,x2=0.(2)∵(3x﹣1)2﹣25=0∴(3x﹣1)2=25,∴3x﹣1=±,∴3x﹣1=5,或3x﹣1=﹣5.∴x1=2,x2=﹣.故答案为:﹣2,0.23.【解答】解:根据题意,得2a﹣1=17,3a+b﹣1=62,解得a=9,b=10,所以,a+4b=9+4×10=9+40=49,∵(±7)2=49,∴a+4b的平方根是±7.24.【解答】解:(1)由题意得,a﹣4=1,b﹣12=8,所以a=5,b=20;(2)由(1)得,a+b=25,所以.25.【解答】解:(1)4x2﹣16=0,4x2=16,x2=4,x=±2;(2)3(x+1)3=24,(x+1)3=8,x+1=2,x=1.26.【解答】解:(1)从数轴可知:b<﹣1<c<0<a<1,所以a﹣1<0,b+1<0,c+1>0,故答案为:<,<,>;(2)由(1)可知:a﹣1<0,b+1<0,c+1>0,所以﹣|a﹣1|+|b+1|+|c+1|=a﹣1﹣b﹣1+c+1=a﹣b+c﹣1.27.【解答】解:(1)2﹣2+=2×3﹣2×+=6﹣+=6;(2)×﹣=﹣=6﹣7=﹣1;(3)=3+4﹣4﹣=7﹣4﹣1=6﹣4;(4)(π﹣3)0+(﹣)﹣1+|﹣|+=1﹣3+2﹣2=﹣4+2.28.【解答】解:(1)原式=﹣11.5﹣4.5+(10﹣10)=﹣16+0=16;(2)(﹣6)2×(﹣)﹣23=36×﹣36×﹣8=12﹣18﹣8=﹣14;(3)(﹣270)×+0.25×21.5+(﹣8)×(﹣0.25)=×(﹣270+21.5+8)=×(﹣240)=﹣60;(4)﹣+6÷(﹣)×=﹣6﹣9×(﹣2)=﹣6+18=12.29.【解答】解:(1)折叠纸面,使表示的点1与﹣1重合,折叠点对应的数为=0,设﹣2表示的点所对应点表示的数为x,于是有=0,解得x=2,故答案为2;(2)折叠纸面,使表示的点﹣1与3重合,折叠点对应的数为=1,①设5表示的点所对应点表示的数为y,于是有=1,解得y=﹣3,②设表示的点所对应点表示的数为z,于是有=1,解得z=2﹣,③设点A所表示的数为a,点B表示的数为b,由题意得:=1且b﹣a=9,解得:a=﹣3.5,b=5.5,故答案为:﹣3,2﹣,﹣3.5,5.5;3)①A往左移4个单位:(a﹣4)+a=0.解得:a=2.②A往右移4个单位:(a+4)+a=0,解得:a=﹣2.答:a的值为2或﹣2.30.【解答】解:(1)∵(m+n)2=m2+6n2+2mn,a+b=(m+n)2,∴a=m2+3n2,b=2mn.故答案为m2+3n2,2mn;(2)∵(m+n)2=m2+3n2+2mn,a+4=(m+n)2,∴a=m2+3n2,mn=2,∵m、n均为正整数,∴m=1、n=2或m=2,n=1,∴a=13或7;(3)===2+1,则====﹣1.。

实数期末常考题型总结

实数期末常考题型总结

实数期末常考题型总结一、实数的性质1. 实数的分类:有理数和无理数的概念,以及它们在数轴上的位置。

2. 实数集的完备性:介绍实数集的上确界、下确界、最大值、最小值等概念,并在数轴上进行图示。

3. 实数的比较和大小:掌握实数的大小比较,通过数轴的位置进行判断。

二、实数的运算1. 实数的加、减、乘、除运算:熟练掌握实数四则运算的规则,注意有理数和无理数运算的特点。

2. 实数的幂运算:知道实数的幂运算的定义、性质和计算法则。

3. 符号函数:了解符号函数的性质和运算规律,进行计算和简化表达式。

三、实数的表示1. 实数的小数表示和数轴表示:熟悉实数的小数表示法,掌握无限不循环小数和无限循环小数的表示方法。

2. 实数的近似表示和有效数字:了解实数的近似表示法和有效数字的概念,计算近似值和有效数字的位数。

四、实数的性质证明1. 实数的有序性证明:通过实数的定义和性质,证明实数的大小关系。

2. 实数的不等式证明:根据实数的性质,推导和证明实数的不等式关系。

3. 实数的有理数性质证明:利用有理数性质和实数的定义,证明某个数是有理数。

4. 实数的无理数性质证明:利用无理数性质和实数的定义,证明某个数是无理数。

五、实数的绝对值和距离1. 实数的绝对值:根据绝对值的定义和性质,计算实数的绝对值。

2. 实数的距离:了解实数之间的距离概念,计算实数之间的距离。

六、实数的逼近和误差估计1. 实数的逼近和截断误差:了解逼近的概念和方法,估计实数的截断误差。

2. 误差的运算和估计:掌握误差运算和误差估计的方法,确定结果的精确性。

七、实数的方程和不等式1. 实数方程:解实系数的一元一次方程和二次方程。

2. 实数不等式:解实系数的一元一次不等式和二次不等式,并求解其解集。

八、实数数列和级数1. 实数数列的定义、性质和分类:熟悉数列的概念和定义,了解等差数列、等比数列等常见数列的性质。

2. 实数数列的极限和收敛:了解数列极限的概念和性质,计算数列的极限值。

人教版数学七年级下学期期末总复习第6章《实数》易错题汇编(附解析)

人教版数学七年级下学期期末总复习第6章《实数》易错题汇编(附解析)

第6章《实数》易错题汇编一.选择题(共10小题)1.的平方根是()A.±3B.3C.±9D.92.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c4.的算术平方根是()A.2B.±2C.D.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b7.若a,且a、b是两个连续整数,则a+b的值是()A.1B.2C.3D.48.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.10.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根二.填空题(共4小题)11.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为.12.一个正数的平方根分别是x+1和x﹣5,则x=.13.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).14.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为(用“<”号连接).三.解答题(共2小题)15.化简求值:(),其中a=2+.16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.试题解析1.的平方根是()A.±3B.3C.±9D.9解:∵,9的平方根是±3,故选:A.2.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个解:据无理数定义得有,π和是无理数.故选:B.3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c 解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.4.的算术平方根是()A.2B.±2C.D.解:=2,2的算术平方根是.故选:C.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解:∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∵=0.6,=0.65,∴0.6<<0.65.所以介于0.6与0.7之间.故选:C.6.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选:A.7.若a,且a、b是两个连续整数,则a+b的值是()A.1B.2C.3D.4解:∵的整数部分是2,∴0<﹣2<1,∵a、b是两个连续整数,∴a=0,b=1,∴a+b=1,故选:A.8.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选:A.9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.解:由图表得,64的算术平方根是8,8的算术平方根是;故选:D.10.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根解:∵方程(x﹣5)2=19的两根为a和b,∴a﹣5和b﹣5是19的两个平方根,且互为相反数,∵a>b,∴a﹣5是19的算术平方根,故选:C.11.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为4.解:∵3<<4,∴3+1<+1<4+1,∴4<+1<5,∴[+1]=4,故答案为:4.12.一个正数的平方根分别是x+1和x﹣5,则x=2.解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.13.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.14.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b <﹣a<a<﹣b(用“<”号连接).解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b15.化简求值:(),其中a=2+.解:原式=[+]•+=•+==,当a=2+时,原式=+1.16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.。

《实数》期末复习题

《实数》期末复习题


1条
C

2


C
下 列说法 中正 确 的是 (

4
是8的算术平 方根

V 丁是 5 的 算 术 平 方 根
砖 壬(



。 、可 ) 的平 方 根 /

y
是64 的立 方 根
D


则 x +y 的 值 为 (
3
B

7
C

3 或7
1或7
0












8
A

估计 、% 的 大 小 在 ( /

组 是 (
)
C

2




2


一 .
2
t=
~
j


1 0
D

i 2 t
-
-
~

2
4

如 图 l

以 数 轴 的单 位 长 度 为 边 长 作


个 正 方 形 以数 轴 的原 点 为 圆心 角线 长为半径 画 圆弧
示 的数是 (
A 5

. .
正 方 形 的 对


交数轴
于 点A

则点
A

l ■
2












人教版2021-2022学年度第二学期七年级数学第6章实数 期末复习测试卷附答案教师版

人教版2021-2022学年度第二学期七年级数学第6章实数 期末复习测试卷附答案教师版

人教版2021-2022学年度第二学期七年级数学第6章实数期末复习测试卷附答案教师版一、单选题(共10题;共30分)1.(3分)(−3)2的平方根为()A.±3B.3C.±3D.3【答案】C2.(3分)以下代数式的值可以为负数的是()A.|3-x|B.x2+x C.D.x2-2x+1【答案】B3.(3分)下列算式与所计算出的结果相同的是()A B C D【答案】A4.(3分)下列等式正确的是().A=13B=113C.3−9=−3D=±34【答案】A5.(3分)下列说法错误的是()A.27的立方根是3B.−12是14的平方根C.平方根等于它本身的数只有0D.2的算术平方根是a【答案】D6.(3分)下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)38的平方根是±2;(4= 2+12=212.共有()个是错误的.A.1B.2C.3D.4【答案】C7.(3分)下列各数是无理数的是()A.-2.5B.227C.D.4【答案】C8.(3分)实数2,0,-2,2中,最大的数是()A.2B.0C.-2D.2【答案】A9.(3分)设a,b,c为互不相等的实数,且23+13=,则下列结论正确的是()A.>>B.>>C.−=2(−p D.−=3(−p 【答案】D10.(3分)实数a,b在数轴上对应的点的位置如图所示,下列结论中正确的是()A.+>0B.B>0C.−>0D.|U>|U【答案】D二、填空题(共5题;共15分)11.(3分)若2≈1.414,则200≈.【答案】14.1412.(3分)一个正数的两个平方根分别是2+5和−1,则这个正数是.【答案】49913.(3分)若30.3=0.6694,33=1.442,则3300=.【答案】6.69414.(3分)若3=-7,则a=【答案】34315.(3分)计算:18−6cos45°+(12)−2=.【答案】4三、解答题(共8题;共55分)16.(7分)如图,一根细线上端固定,下端系一个小球,让这个小球来回自由摆动,来回摆动一次所用的时间(单位:)与细线的长度(单位:)之间满足关系=,当细线的长度为0.4时,小球来回摆动一次所用的时间是多少?(结果保留小数点后一位)【答案】解:把l=0.4m代入关系式=得,∴===2×15=0.4=1.3(秒).17.(6分)小明想用一块面积为400平方厘米的正方形纸片,沿着边的方向,裁出一块面积为360平方厘米的长方形纸片,使它的长宽之比为4:3,他不知道能否裁得出来,聪明的你帮他想想,他能裁得出来吗?(通过计算说明)【答案】解:设设所裁长方形的长、宽分别为4x厘米,3x厘米,由题意得,4×3=360,即2=30,∵>0∴=30∴长方形的长为430,∵正方形纸片的面积为400平方厘米,∴正方形的边长为400=20厘米,∵30>5,∴430>20,∴不能裁出符合要求的长方形.18.(7分)已知一个正数的平方根是3+1与3−,求和的值.【答案】解:∵一个正数a的两个平方根分别为3x+1和3﹣x,∴3x+1+3﹣x=0,解得x=﹣2,∴3﹣x=3﹣(﹣2)=5,∴a=52=25.∴x和a的值分别是﹣2,25.19.(7分)实数a,b互为相反数,c,d互为倒数,x的绝对值为3,求代数式2+++4−327n 的值.【答案】由题意知a+b=0,cd=1,x=±3,则原式=(±3)2+0+4−=3+2−3=2.20.(7分)已知一个正数的平方根是2−3和5−,求7−−1的立方根.【答案】解:∵正数b的平方根是2−3和5−∴(2−3)+(5−p=0∴=−2∴=(2−3)2=(−7)2=49∴7−−1=7×(−2)−49−1=−64而−64的立方根为−4故7−−1的立方根为−421.(7分)已知某正数的两个平方根分别是2m-3和5-m,n-1的算术平方根为2,求3m+n-7的立方根。

八年级数学期末复习试题

八年级数学期末复习试题

八年级数学期末复习试题实数(吕昌华)一.选择题(每小题3分,共24分)( )A .3B .3-C .3±D 2. 在-1.414,2,π, 3.41 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( ).A.5B.2C.3D.43. 已知下列结论:①在数轴上只能表示无理数2;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是( ).A.①②B.②③C.③④D.②③④ 4. 下列计算正确的是( )A 、20=102B 、632=⋅ C 、224=- D 3=-5. 下列说法中,不正确的是( ).A 3是2)3(-的算术平方根B ±3是2)3(-的平方根 C -3是2)3(-的算术平方根 D.-3是3)3(-的立方根 6. 若a 、b 为实数,且满足│a -2│+2b -=0,则b -a 的值为A .2B .0C .-2D .以上都不对7. 若a a =-2)3(-3,则a 的取值范围是( ).A. a >3B. a ≥3C. a <3D. a ≤3 8. 若代数式21--x x 有意义,则x 的取值范围是 A .21≠>x x 且 B .1≥x C .2≠x D .21≠≥x x 且 9.下列语句中正确的是( ) A.的平方根是3-B.9的平方根是3C.9的算术平方根是3±D.9的算术平方根是3 10.下列结论正确的是( )A.6)6(2-=--B.9)3(2=-C.16)16(2±=-D.251625162=⎪⎪⎭⎫ ⎝⎛--11.2)9(-的平方根是x , 64的立方根是y ,则y x +的值为( ) A.3 B.7 C.3或7 D.1或7 12.(2013+1的值在( )A.2到3之间B.3到4之间C.4到5之间D.5到6之间 13.下列关于数的说法正确的是( ) A. 有理数都是有限小数 B. 无限小数都是无理数 C. 无理数都是无限小数 D. 有限小数是无理数14.与数轴上的点具有一一对应关系的数是( )A.实数B.有理数C.无理数D.整数 15.已知在坐标平面内有一点,若,则点的位置在( )A.原点B.轴上C.轴上D.坐标轴上 16.下列各式成立的是( ) A. B. C.D.17.在实数,,,,中,无理数有( )A.1个B.2个C.3个D.4个 18.下列各式中正确的是( ) A. B.CD.二.填空(每题3分,共24分) 19.若x 的立方根是-41,则x =___________. 20.已知x <1,则12x -x 2+化简的结果是 . 21.1-2的相反数是_________,绝对值是__________.22.一个实数的平方根大于2小于3,那么它的整数位上可能取到的数值为__________.23.已知1)12(2-++b a =0,则-20042b a +=_______.24.若若|2|0x y -=,则xy 的值为_______.25.如果2180a -=,那么a 的算术平方根是 . 26.若a<440-=m <b ,则a 、b 的值分别为 . 三.解答题(每题6分,共12分)27.28.如图2,在图中填上恰当的数,使每一行、每一列、每一条对角线上的3个数的和都是0.四.解答题(每题8分,共40分)29.实数a 、b 在数轴上的位置如图所示,请化简:22b a a --.30.设的整数部分和小数部分分别是x 、y ,试求x 、y 的值与x-1的算术平方根.31.y=833+-+-x x ,求3x +2y 的算术平方根.32.(1)\16461)21(3=-+x (2) 126942-=x33.若a 、b 、c 是△ABC 的三边,化简:。

八年级上册期末章节复习第二章实数

八年级上册期末章节复习第二章实数

第二章实数 1.平方根2.算术平方根3.立方根例题1、 (1)平方根等于本身的数是________,算术平方根等于它本身的数是________. (2)一个数的平方根是22a b +和4613a b -+,则这个数是________. 例题2、判断下列各题,并说明理由 (19±. ( ) (2)算术平方根一定是正数. ( ) (3( ) (4)2a -没有算术平方根.( ) (53=±. ( ) (6)若236x =,则6x ==±. ( ) (7)6-是2(6)-的平方根. ( ) (8)2(6)-的平方根是6-. ( ) (9)2a 的算术平方根是a .( ) (105,则5a =-.( )(11)若两个数平方后相等,则这两个数也一定相等. ( ) (12)如果两个非负数相等,那么这两个数各自的算术平方根也一定相等. ( ) 例题3、(1|227|0xy x y -+-=,求①22x y +;②22444x y x y --.(2)(七初半期)已知:2y =-,则34x y +=_______.(3)已知x 、y为实数,y =________.(4)(育才期末)若x 、y为实数,且满足||4y x =-________.(5)(嘉祥2014-2015半期)已知x ,y 为实数,(0 y -=,那么20112011x y -=________. 例题4、(1)若3x =-,则|1=________;计算|3π|-_______.(2)实数a ,b ,c 在数轴上的位置如图所示:||||a b b c ++________.(322000=,y =,求y x -的平方根.例题5、(1)求下列各数的立方根:①1-; ②8; ③338-; ⑤2(5)-(22±,27x y ++的立方根为4,求x y +的值.(3a =,2(0)y b y =<8(4)b a >18=,求xy 的值.实数的概念、估算和分类 模块一:实数的估算和高斯记号1.估算法:(1)若120a a a ≤<<;(2)若12a a a <<<根据这两个重要的关系,我们通常可以找距离a 最近的两个平方数和立方数,916a <<,则34<<;827a <<,则23<.1.414 1.7322.236.2.高斯记号:任何实数都可以由整数部分和小数部分组成,整数部分指的是不超过这个实数的最大整数,小数部分是这个实数减去它的整数部分.的整数部分为223的整数部分为1,那么小4;4-,那么小数部分为4例题1、(1)若4m -,则估计m 的范围为( ).A .12m <<B .23m <<C .34m <<D .45m << (2)比较下列各数大小:0.5;②3-____-例题2、(1)对于一个无理数m ,我们把不超过m 的最大整数叫做m 的整数部分,把m 减去整数部分的差叫做m 的小数部分.设1x =,a 是x 的小数部分,b 是x -的小数部分.求323a b ab ++的值.(2)(成外半期)若99的小数部分分别为a 与b ,则a b +=_______.(3)设[]x 表示不大于x 的最大整数,则[100]++++=________. 模块三:实数的概念和分类1.无理数: 叫无理数. 2.实数: 和 统称实数.3.实数与数轴的关系:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.即实数和数轴上的点是 .4.请你对实数进行分类:例题1、(1)227,,3.14,π,0π,0.61414,0.1001000100001……这9个实数中,无理数的个数是( ).A .1B .2C .3D .4 (2)下面有四个命题:①有理数与无理数之和是无理数;②有理数与无理数之积是无理数; ③无理数与无理数之和是无理数;④无理数与无理数之积是无理数. 请你判断哪些是正确的,哪些是不正确的,并说明理由.例题2、计算:(1(2)2(3)202π)-+ (4)21)-例题3、已知x ,y 是有理数,且11 2.25034x y ⎛⎛++--= ⎝⎭⎝⎭,求x ,y 的值.。

《实数》期末总复习

《实数》期末总复习

小于 大于 1、实数比较大小:正数_______零,负数______零,正数______一切负数; 、实数比较大小: 大于 右边的总比左边的大 数轴上的两个点所表示的数,________________; 反而小 两个负数,绝对值大的_______。 2、实数大小比较的几种常用方法 、 (1)数轴比较:
35- 5
a2-b2 =52-( 35 - 5)2
=25 - (35-2×5 × =25 – 60+10
35
+ 25) )
35
7、(2011广东茂名)对于实数 、( 对于实数 ①若 ②若 ③若
给出以下三个判断: a 、 b ,给出以下三个判断:
a =b
,则
a= b
a < b ,则 a < b 2 2 a = −b,则 (−a) = b
实数大小的比较
(2)求差比较:设a、b是实数,
a − b > 0 ⇔ a > b, a − b = 0 ⇔ a = b, a −b < 0 ⇔ a < b
(3)求商比较法:设a、b是两正实数,
a a a > 1 ⇔ a > b; = 1 ⇔ a = b; < 1 ⇔ a < b; b b b a > b ⇔ a <b (4)绝对值比较法:设a、b是两负实数,则
………………. (1)任何实数都有唯一的立方根 ……………… ( ) ……………….( (2)只有正实数才有算术平方根 ……………… ) (3)任何数的平方根有两个,它们互为相反数 ( )任何数的平方根有两个,
) ) )
的一个平方根是b,那么a的另一个平方根是 的另一个平方根是-b. (4)若正数 的一个平方根是 ,那么 的另一个平方根是 ( ) )若正数a的一个平方根是 ………………………………..( (5)正数的两个平方根的和为 ……………………………… )正数的两个平方根的和为0……………………………… ……………………………( (6)没有平方根的数也没有立方根…………………………… )没有平方根的数也没有立方根…………………………… ) )

期末复习实数专题

期末复习实数专题

实数易错题、常考题汇总 1.25的平方根是__________;81的平方根是______;364的平方根是_______; 64的立方根是________;9的算术平方根是______;62的立方根是______ 2.22不是…………………………………………………………( ) A .实数 B .小数 C .无理数 D .分数3.下列说法中正确的是……………………………………………( )A .带根号的数是无理数B .无限小数是无理数C .无理数都可以用数轴上的点来表示D .无理数包括正无理数、零、负无理数4.在数轴上,原点和原点左边的所有点表示的数是………………..( )A .零和负有理数B .负实数C .负有理数D .零和负实数5.下列式子正确的是…………………………………………………( )A .B .C .D .6.下列各式正确的是…………………………………………………..( )A .B .C .D . 7.已知为实数,那么下列结论中正确的是………………( ) A .若 ,则 B . ,则C .若 ,则D .若 ,则8.若11a a -=-,则a 的取值范围为………………………….( )A .1a ≥B .1a ≤C .1a >D .1a <9.若a 与它的绝对值之和为0,则 的值是…( )A .-1B .C .D . 110.a 、b 是两个实数,在数轴上的位置如图所示,下面结论正确的是…( )A .B .C .D . a 、b 互为相反数11.如图,数轴上表示1、2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 所表示的数是( )2 3020题图O O B A C1?0A 、2-1B 、1-2C 、2-2D 、2-212.(2010年南京)如图,下列各数中,数轴上点A 表示的可能是( )CA .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 13.已知实数 a 、b 在数轴上的位置如图所示: 试化简:(a -b)2-|a +b |14. 某位老师在讲“实数”时,画了一个图(如图1),即“以数轴的单位线段为边做一个正方形,然后以O 为圆心,正方形的对角线长为半径画弧交x 轴上于一点A”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数总复习
【知识要点】
1.实数分类:
2.相反数:b a ,互为相反数 0=+b a
4.倒数:b a ,互为倒数
0;1=ab 没有倒数.
5.平方根,立方根:==x ,a x a x 记作的平方根叫做数则数若,2
±a . 若a x ,a x a x 3
3,==记作的立方根叫做数则数
6.数轴的概念与画法.实数与数轴上的点一一对应;利用数形结合的思想及数轴比较实
数大小的方法. 【课前热身】
1、36的平方根是 ;16的算术平方根是 ;
2、8的立方根是 ;327-= ;
3、37-的相反数是 ;绝对值等于3的数是
4
、的倒数的平方是 ,2的立方根的倒数的立方是 。

5
、2的绝对值是
,11的绝对值是 。

6、9的平方根的绝对值的相反数是 。

7
+的相反数是
,-的相反数的绝对值是 。

8
+的相反数之和的倒数的平方为 。

【典型例题】
例1、把下列各数分别填入相应的集合里:
2
,3.0,10,1010010001.0,125,722,0,122
3π---∙-
有理数集合:{ }; 无理数集合:{ }; 负实数集合:{ }; 例2、计算和化简
实数
有理数
无理数 整数(包括正整数,零,负整数) 分数(包括正分数,负整数) 正无理数
负无理数
)0(>a
3
.绝对值: =a
a 0 a -
)0(=a )0(<a

2
②2
③(2 ④25⎛⎫ ⎪ ⎪⎝⎭ ⑤2
-(1)20 (2)24 (3)45 (4)75 (5)98 (6)128
例3、比较数的大小 (1)2332与
(2)11253与
(3)1325--与
(4)6756--与
例4.化简:
(1)2
33221-+-+-
(2
例5.已知b a ,是实数,且有0)2(132=+++-b a ,求b a ,的值.
例6. 若|2x+1|与x y 48
1
+互为相反数,则-xy 的平方根的值是多少?
例7.已知321x -与323-y 互为相反数,求y
x
21+的值。

例8.已知21a -的平方根是3±,4是31a b +-的算术平方根,求2a b +的值.
例9.已知322+-+-=
x x y ,求x y 的平方根.
例10.如果A 的平方根是2x -1与3x -4,求A 的值?
例11.已知b a ,为有理数,且3)323(2
b a +=-,求b a +的平方根
例12. 已知实数x 、y 、z 在数轴上的对应点如图 试化简:x z x y y z x z x z
---++++-。

【课堂练习】
1.现有四个无理数8765,,,,其中在12+与13+之间的有 . 2.无限小数包括无限循环小数和 ,其中 是有理数, 是无理数. 3.如果102
=x ,则x 是一个 数,x 的整数部分是 . 4.64的平方根是 ,立方根是 . 5.51-的相反数是 ,绝对值是 . 6.若==
x x 则6 .
7.当_______x 时,32-x 有意义;当_______x 时,
x
-11有意义;
8.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 9.当10≤≤x 时,化简__________12
=-+x x ; 10.b a ,的位置如图所示,则下列各式中有意义的是( ). A 、b a + B 、b a -
C 、ab
D 、a b -
11.全体小数所在的集合是( ).
A 、分数集合
B 、有理数集合
C 、无理数集合
D 、实数集合
y x
z
a
b o
12.等式1112-=+⋅-x x x 成立的条件是( ).
A 、1≥x
B 、1-≥x
C 、11≤≤-x
D 、11≥-≤或x
13.计算:
(1)21--- (2)8
1
214150232-+
-
(3)
(4)
(5) (6)
14.已知a , b , 求2(a b 的值.
15、若(2x +3)2和y +2互为相反数,求 x -y 的值。

16.设a 、b 是有理数,且满足(2
1a +=-,求b
a 的值
17.(1)实数a 、b 、c 在数轴上的位置如下图,化简a b b c c a -+-+-
a o。

相关文档
最新文档