带电粒子在磁场中匀速圆周运动的半径计算 演示文稿
带电粒子在匀强磁场中的匀速圆周运动
洛伦兹力提供向心力,使带电 粒子绕固定点做圆周运动。
运动过程中,带电粒子的速度 方向时刻改变,但速度大小保 持不变。
周期和半径公式
周期公式
$T = frac{2pi m}{qB}$,其中$m$是带电粒子的质量,$q$是带电粒子的电荷 量,$B$是匀强磁场的磁感应强度。
半径公式
$r = frac{mv}{qB}$,其中$v$是带电粒子运动的速度。
偏转方向和速度大小不变
偏转方向
带电粒子在匀强磁场中做匀速圆周运 动时,其偏转方向与磁场方向垂直。
速度大小不变
由于洛伦兹力始终与带电粒子的速度 方向垂直,因此洛伦兹力不做功,带 电粒子的速度大小保持不变。
04 带电粒子在磁场中的运动 规律
周期与速度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运动时,其周期与速度无关,即T=恒定值。
域。
核聚变反应
在高温高压条件下,带电粒子在匀 强磁场中高速旋转,可以引发核聚 变反应,为未来的清洁能源提供可 能。
磁流体发电
利用高温导电流体在匀强磁场中做 高速旋转运动,可以将机械能转化 为电能,具有高效、环保的优点。
对未来研究的展望
1 2 3
探索极端条件下的运动特性
随着实验技术的不断发展,未来可以进一步探索 带电粒子在更高温度、更高磁感应强度等极端条 件下的运动特性。
详细描述
带电粒子在匀强磁场中受到洛伦兹力作用,该力提供向心力使粒子做匀速圆周运 动。根据牛顿第二定律和向心力公式,粒子的周期T与速度v无关,只与磁场强度 B和粒子的质量m有关。
周期与磁场强度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运 动时,其周期与磁场强度成正比。
详细描述
带电粒子在匀强磁场中的运动-PPT精选
光电缆线路及装维人员作业安全操作规范—— 2015年安全生产培训资料
2、圆周运动的半径
v2 qvB m
R
R mv qB
3、圆周运动的周期
T 2 R
v
T 2 m qB
光电缆线路及装维人员作业安全操作规范—— 2015年安全生产培训资料
4、实际应用 a、质谱仪 通过测出粒子圆周运动的半径,计算粒 子的比荷或质量的仪器在。
回旋加速器中磁场的磁感应强度为B,D形盒的直 径为d,用该回旋加速器加速质量为m、电量为q的粒子,
设粒子加速前的初速度为零。求:
(1) 粒子的回转周期是多大?
(2)高频电极的周期 为多大?
(3) 粒子的最大动能
是多大?
(4) 粒子在同一个D 形盒中相邻两条轨道半
径之比
光电缆线路及装维人员作业安全操作规范—— 2015年安全生产培训资料
结论: 1、交变电场的周期等于粒子做匀速圆周运
动的周期。 2、粒子最后出加速器的速度大小由盒的半
径决定。
光电缆线路及装维人员作业安全操作规范—— 2015年安全生产培训资料
ቤተ መጻሕፍቲ ባይዱ
带电粒子在匀强磁场中的运动
光电缆线路及装维人员作业安全操作规范—— 2015年安全生产培训资料
思考与讨论
1、如果带电粒子射入匀强磁场时,初 速度方向与磁场方向垂直,粒子仅在洛
伦兹力的作用下将作什么运动?
+q v
-q v
光电缆线路及装维人员作业安全操作规范—— 2015年安全生产培训资料
光电缆线路及装维人员作业安全操作规范—— 2015年安全生产培训资料
b、回旋加速器
两D形盒中有匀强磁场无电场,盒 间缝隙有交变电场。
带电粒子在磁场中的运动动态圆法课件
探索动态圆法与其他物理方法的结合, 以解决更复杂、更广泛的物理问题。
开发基于动态圆法的计算机模拟软件, 为实验研究和工程应用提供更准确、更
便捷的工具。
THANKS
感谢观看
稳定性
动态圆在磁场中的运动是稳定的 ,只要洛伦兹力与向心力平衡, 带电粒子就会做稳定的圆周运动 。
05
动态圆法在物理实验中的应用
实验原理和步骤
• 实验原理:动态圆法是一种通过观察带电粒子在磁场中的运动 轨迹来研究磁场特性的实验方法。通过改变磁场强度或粒子速 度,可以观察到轨迹圆半径的变化,从而得到磁场与粒子运动 之间的关系。
课程目标和意义
掌握动态圆法的基本原理和计算 方法,能够运用动态圆法解决实
际问题。
理解带电粒子在磁场中运动的物 理机制,提高对电磁学原理的理
解和应用能力。
通过学习动态圆法,培养学生的 逻辑思维和数学分析能力,为进 一步学习物理学和相关领域打下
基础。
02
带电粒子在磁场中的基本性质
电荷在磁场中的受力
在等离子体物理实验中,动态圆法也 被用来研究等离子体的特性和行为。
在粒子加速器、回旋加速器、核聚变 装置等实验设备中,需要利用动态圆 法来研究带电粒子的运动轨迹和行为。
04
带电粒子在磁场中的动态圆运动
动态圆在磁场中的受力分析
洛伦兹力
带电粒子在磁场中受到的力称为洛伦兹力,其方向由左手定则确定,大小为$F = qvBsintheta$,其中$q$是带电粒子的电荷量,$v$是速度,$B$是磁感应 强度,$theta$是速度与磁感应强度的夹角。
实验结果和结论
实验结果
通过动态圆法实验,可以观察到带电粒子在磁场中的运动轨迹呈现圆形,并且随着磁场强度的增加或粒子速度的 减小,轨迹圆的半径逐渐减小。实验结果与理论值基本一致。
带电粒子在磁场中匀速圆周运动的半径计算
实例二:粒子束在磁场中的运动
总结词
考虑一束带电粒子在磁场中的运动,由于粒子间的相互作用力可以忽略不计,因 此每个粒子的运动轨迹仍为匀速圆周运动,但整体呈现出一个束状的运动形态。
详细描述
当一束带电粒子在磁场中运动时,由于粒子间的距离较大,相互作用力可以忽略 不计。因此,每个粒子都做匀速圆周运动,但由于速度和质量的差异,它们的运 动轨迹半径不同。整体上,这些粒子的运动轨迹呈现出一个束状的结构。
实例三:粒子在磁场中的偏转与聚焦
总结词
当带电粒子射入磁场时,由于洛伦兹力的作用,粒子会发生偏转。通过选择合 适的磁感应强度和粒子速度,可以实现粒子的聚焦。
详细描述
当带电粒子射入磁场时,由于洛伦兹力的作用,粒子的运动轨迹会发生偏转。 通过调整磁感应强度和粒子的速度,可以使粒子聚焦在特定的位置。这种技术 广泛应用于粒子加速器磁场中做匀速圆周运动的半径计算公式为 $r = frac{mv}{qB}$,其中 $m$ 是粒 子质量,$v$ 是粒子速度,$q$ 是粒子电荷量,$B$ 是磁感应强度。
公式理解
速度与半径的关系
电荷量与半径的关系
粒子的速度越大,其运动半径也越大。
粒子的电荷量越大,其运动半径越小。
磁感应强度与半径的关系
VS
详细描述
在粒子速度和磁感应强度一定的条件下, 磁场强度越高,粒子的运动半径越小;而 磁场越均匀,粒子的运动轨迹越圆滑,运 动半径也越稳定。这是因为磁场强度和均 匀性决定了洛伦兹力的大小和方向变化, 从而影响粒子的运动轨迹。
THANKS
感谢观看
02
半径计算是研究带电粒子在磁场 中运动规律的重要基础。
重要性及应用领域
重要性
掌握带电粒子在磁场中运动的半 径计算,有助于深入理解电磁场 的基本原理,为相关领域的研究 提供理论支持。
带电粒子在磁场中的运动 ppt课件
(2)电子从C到D经历的时间是多少?
(电子质量me=
9.1×10-31kg,电量e ppt课件
=
1.6×10-19C)
13
◆带电粒子在单直边界磁场中的运动
①如果垂直磁场边界进入,粒子作半圆运动后 垂直原边界飞出;
O
O1
B
S
ppt课件
14
②如果与磁场边界成夹角θ进入,仍以与磁场 边界夹角θ飞出(有两种轨迹,图中若两轨迹 共弦,则θ1=θ2)。
运动从另一侧面边界飞出。
量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
ppt课件
24
【习题】
1、如图所示.长为L的水平极板间,有垂直纸面向内的
匀强磁场,磁感强度为B,板间距离也为L,板不带电,
现有质量为m,电量为q的带正电粒子(不计重力),从左
边极板间中点处垂直磁感线以速度v水平射入磁场,欲
界垂直的直线上
度方向垂直的直线上
①速度较小时,作半圆运动后 从原边界飞出;②速度增加为 某临界值时,粒子作部分圆周 运动其轨迹与另一边界相切; ③速度较大时粒子作部分圆周 运动后从另一边界飞出
①速度较小时,作圆周运动通过射入点; ②速度增加为某临界值时,粒子作圆周 运动其轨迹与另一边界相切;③速度较 大时粒子作部分圆周运动后从另一边界 飞出
圆心
在过
入射
vB
点跟
d
c
速度 方向
o
圆心在磁场原边界上
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。
垂直
θv
B
的直
线上
①a 速度较小时粒子作部分b 圆周
带电粒子在匀强磁场中的圆周运动
带电粒子在匀强磁场中的运动一、带电粒子在匀强磁场中的匀速圆周运动1.洛伦兹力的作用效果洛伦兹力只改变带电粒子速度的方向,不改变带电粒子速度的大小,或者说洛伦兹力不对带电粒子做功,不改变粒子的能量。
2.带电粒子的运动规律沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。
洛伦兹力总与速度方向垂直,正好起到了向心力的作用。
公式:q v B =m v 2rr =m vqBT =2πm qB3.圆心、半径、运动时间的分析思路(1)圆心的确定:带电粒子垂直进入磁场后,一定做圆周运动,其速度方向一定沿圆周的切线方向,因此圆心的位置必是两速度方向垂线的交点,如图(a)所示,或某一速度方向的垂线与圆周上两点连线中垂线的交点,如图(b)所示.(2)运动半径大小的确定:一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解出半径的大小.(3)运动时间的确定:首先利用周期公式T =2πm qB ,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角α,其运动时间t =α2πT .(4)圆心角的确定:①带电粒子射出磁场的速度方向与射入磁场的速度方向间的夹角φ叫偏向角.偏向角等于圆心角即φ=α,如图所示.②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2θ.[特别提醒]带电粒子(不计重力)以一定的速度v 进入磁感应强度为B 的匀强磁场时的运动轨迹:(1)当v ∥B 时,带电粒子将做匀速直线运动.(2)当v ⊥B 时,带电粒子将做匀速圆周运动.(3)当带电粒子斜射入磁场时,带电粒子将沿螺旋线运动.4、带电粒子在三类有界磁场中的运动轨迹特点(1)直线边界:进出磁场具有对称性。
(2)平行边界:存在临界条件。
(3)圆形边界:沿径向射入必沿径向射出。
【例题1】如图所示,一束电荷量为e 的电子以垂直于磁场方向(磁感应强度为B )并垂直于磁场边界的速度v 射入宽度为d 的磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°.求电子的质量和穿越磁场的时间.答案:23dBe 3v 23πd 9v解析:过M 、N 作入射方向和出射方向的垂线,两垂线交于O 点,O 点即电子在磁场中做匀速圆周运动的圆心,过N 作OM 的垂线,垂足为P ,如图所示.由直角三角形OPN 知,电子的轨迹半径r =d sin 60°=233d ①由圆周运动知e v B =m v 2r②解①②得m =23dBe 3v.电子在无界磁场中运动周期为T =2πeB ·23dBe 3v =43πd 3v.电子在磁场中的轨迹对应的圆心角为θ=60°,故电子在磁场中的运动时间为t =16T =16×43πd 3v =23πd 9v.带电粒子在磁场中的圆周运动问题处理方法(1)定圆心:圆心一定在与速度方向垂直的直线上,也在弦的中垂线上,也是圆的两个半径的交点.(2)求半径的两种方法:一是利用几何关系求半径,二是利用r =m v Bq 求半径.(3)求时间:可以利用T =2πr v 和t =Δl v 求时间,也可以利用t =θ2πT 求时间.【例题2】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A 点沿直径AOB 方向射入磁场,经过t 时间从C 点射出磁场,OC 与OB 成60°角。
带电粒子在磁场中的运动半径
带电粒子在磁场中的运动半径
当带电粒子进入一个磁场时,它会受到洛伦兹力的作用,这个力会使粒子在磁场中做圆周运动。
这种运动的半径可以用以下公式来描述:
r = mv / (|q|B)。
其中,r是运动半径,m是粒子的质量,v是粒子的速度,q是粒子的电荷量,B是磁场的磁感应强度。
这个公式揭示了带电粒子在磁场中运动半径与粒子的质量、速度、电荷量以及磁场的强度之间的关系。
从这个公式可以看出,当粒子的速度增大或者磁场的强度增大时,运动半径也会增大;而当粒子的质量增大时,运动半径则会减小。
带电粒子在磁场中的运动半径不仅仅是一个理论概念,它还有着许多实际的应用。
例如,在粒子加速器中,科学家们需要精确地控制带电粒子的运动轨迹,从而需要准确地计算出粒子在磁场中的运动半径。
另外,在核磁共振成像技术中,也需要利用带电粒子在磁场中的运动规律来获取图像信息。
总之,带电粒子在磁场中的运动半径是一个重要的物理概念,它不仅有着深刻的理论意义,而且在许多实际应用中都发挥着重要作用。
对这一概念的深入理解和研究,将有助于推动物理学和相关领域的发展。
36带电粒子在匀强磁场中的运动共33张PPT
KETANG HEZUO TANJIU
当堂检测
2.回旋加速器两端所加的交流电压的周期由什么决定?
答案:为了保证每次带电粒子经过狭缝时均被加速,使之能量不断
提高。交流电压的周期必须等于带电粒子在回旋加速器中做匀速圆周
2m
。因此,交流电压的周期由带电粒子的质量
qB
运动的周期即 T=
m、带
电荷量 q 和加速器中的磁场的磁感应强度 B 来决定。
方向进入电场中加速。
第18页/共33页
问题导学
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
(2)电场的作用
回旋加速器两个半圆形金属盒之间的缝隙区域存在周期性变化的
并且垂直于两金属盒正对截面的匀强电场,带电粒子经过该区域时被
加速。
(3)交变电压的周期
线的夹角(弦切角 θ)的 2 倍。如图所示,即 φ=α=2θ。
②相对的弦切角 θ 相等,与相邻的弦切角 θ'互补,即 θ+θ'=180°。
第7页/共33页
问题导学
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂检测
(3)粒子在磁场中运动时间的确定
目标导航
课前预习导学
课堂合作探究
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
预习导引
1.带电粒子在匀强磁场中的运动
(1)只考虑磁场作用力时,平行射入匀强磁场中的带电粒子,做匀速
直线运动。
(2)垂直射入匀强磁场中的带电粒子,在洛伦兹力的作用下做匀速
第1讲:粒子在磁场中做圆周运动的半径公式与周期公式(最新版)
v θ
B B B
问:速度方向与磁场方向不垂直,怎么办?
v2 v v1 所以粒子一边前进,一边转动, 即螺旋式运动。
答:分解,分解速度v。 分析:因为v1与磁场平行,所以粒子沿磁场方向做匀速直 线运动; 因为v2与磁场垂直,所以粒子在垂直于磁场方向做匀速圆 周运动。
如图:磁场向里,正粒子以速度v垂直进入磁场。 求:粒子做圆周运动的半径?
×××××× ×××××× ×××××× + v ×××××× ×××××× ××××××
问:半径公式是什么? mv 答: r qB mv r ① ①式代入②式 qB
2r T ② v
mv 2π 2πm qB T v qB
2πm 所以T qB
这就是粒子做圆周运动的周期公式
这个公式很重要,一定要记住哟
如图:粒子垂直进入匀强磁场,以10m/s的速度做匀速圆 周运动。 问:当速度变大时,粒子做什么运动?
×××××× ×××××× ×××××× ×××××× ×××××× ×××××× 速度变大,粒子做大圆周运动
答:做大圆周运动。 因为速度变大,要离心,所以半径变大。 mv r v r 速度变大,半径变大 qB
v F洛 + F洛 F洛 v 瞧!洛伦兹力时刻与速度垂直
+
F洛
•
+
v
+
v
问:粒子在磁场中做圆周运动有什么特点?
v
F洛 F洛 F洛 v
F洛
·
v
v
答:三大特点 特点一:洛伦兹力一定指向圆心; 特点二:圆心一定在半径上; 特点二:速度v与半径r垂直。
带电粒子在匀强磁场中的圆周运动
带电粒子在匀强磁场中的圆周运动由于带电粒子在匀强磁场中的受力情况特殊,其运动轨迹呈现为圆周运动。
本文将详细介绍带电粒子在匀强磁场中的圆周运动原理及相关公式。
根据洛伦兹力的作用,当带电粒子运动时,受到匀强磁场的力会使其偏离直线路径,而呈现出圆周运动。
该力的方向垂直于带电粒子的速度方向与磁场方向,符合右手螺旋定则。
由于受力方向始终向心,因此粒子在磁场中做圆周运动。
带电粒子在匀强磁场中的圆周运动可以通过以下公式进行描述:1.某物质在匀强磁场中的圆周运动半径:$$r=\frac{mv}{|qB|}$$其中,$r$为圆周运动半径,$m$为粒子质量,$v$为粒子速度,$q$为粒子电荷量,$B$为磁感应强度。
2.圆周运动的周期:$$T=\frac{2\pi m}{|q|B}$$其中,$T$为圆周运动的周期,$m$为粒子质量,$q$为粒子电荷量,$B$为磁感应强度。
3.圆周运动的频率:$$f=\frac{1}{T}=\frac{|q|B}{2\pi m}$$其中,$f$为圆周运动的频率,$T$为圆周运动的周期,$q$为粒子电荷量,$B$为磁感应强度,$m$为粒子质量。
从以上公式可以看出,带电粒子的质量、速度、电荷量以及磁感应强度都会对其圆周运动的半径、周期和频率产生影响。
在匀强磁场中,不同的带电粒子具有不同的圆周运动轨迹。
根据质量和电荷量的不同,带电粒子的圆周运动半径、周期和频率都会有所差异。
因此,通过对带电粒子在匀强磁场中的圆周运动进行观测和测量,可以对粒子的性质进行研究和分析。
带电粒子在匀强磁场中的圆周运动在物理学和实际应用中具有重要的意义。
它可以被应用于粒子物理实验、质谱仪、核磁共振等领域。
了解带电粒子在匀强磁场中的圆周运动的原理及相关公式,有助于理解和应用这些技术和方法。
总结了带电粒子在匀强磁场中的圆周运动原理及相关公式,希望对读者对该主题有一个清晰的了解。
带电粒子在圆形有界磁场中的运动PPT课件
数学知识准备
1.已知两相交圆的有关边角关系
2.逆向思维的应用
一.沿半径方向飞入匀强磁场
沿半径方向飞入磁场,必沿半径方向飞出磁场
例1.(2002年全国) 、电视机的显像管中,电子束的偏 转是用磁偏转技术实现的。电子束经过电压为U的加速 电场后,进入一圆形匀强磁场区,如图所示。磁场方向 垂直于圆面。磁场区的中心为O,半径为r。当不加磁场 时,电子束将通过O点而打到屏幕的中心M点。为了让 电子束射到屏幕边缘P,需要加磁场,使电子束偏转一 已知角度θ ,此时的磁场的磁感应强度B应为多少?
如图所示,匀强磁场分布在半径为R的圆内, 磁感应强度为B,CD是圆的直径,质量为m, 电量为q的带电粒子,由静止开始经加速电场 加速后,沿着与直径CD平行且相距0.6R的直 线从A点进入磁场,若带电粒子在磁场中运动 时间是πm/2qB。求加速电场的加速电压
A 0.6R D
C
【解题回顾】数学方法与物理知识相结合是解决 物理问题的一种有效途径.本题还可以用下述方 法求出下边界.设P(x,y)为磁场下边界上的一点, 经过该点的电子初速度与x轴夹角为,则由图3-8 可知:x=rsin, y=r-rcos 得: x2+(y-r)2=r2 所以磁场区域的下边界也是半径为r,圆心为 (0,r)的圆弧
巩固练习. 如图所示,带负电的粒子垂直磁场 方向进入圆形匀强磁场区域,出磁场时速度方 向偏离原方向60°已知带电粒子质量m=3×10 -20kg,电荷量为q=10-13c,速度v =105m/s磁场 0 区域的半径为R=0.3m,不计重力,求磁场的磁 感强度。
巩固练习.在半径为r的圆筒内有匀强磁场,质量 为m、带电量为q的带电粒子在小孔S处以速度 v0向着圆心射入,问施加的磁感强度为多大, 此粒子才能在最短的时间内从原孔射出?(高 相碰时电量和动能均无损失)
带电粒子在磁场中的圆周运动-课件
.a L s b
解:粒子带正电,故在磁场中沿逆 时针方向做匀速圆周运动,用R表 示轨道半径,有
L
a
r mv16cm
P1
qB
因朝不同方向发射的α粒子的圆轨
迹都过S,由此可知,某一圆轨迹在
图中ab上侧与ab相切,则此切点P1
s
N
就是该粒子能打中的上侧最远点.
再考虑ab的下侧.任何α粒子在运动中
离S的距离不可能超过2R,以2R为半径、
②定半径
主要由三角形几何关系求出 (一般是三角形的边角关系、或者勾股定理确定)。
h
r-h
r
1. 若已知d与θ,则由边角关系知 2. 若已知d与h(θ未知),则由勾股定理知
②定半径
练习: 圆形磁场区域半径为R,质量为m带电量为+q的粒子,以速度 沿半 径方向从A点射入磁场并从B点射出磁场,粒子的速度偏转角为 。 求:(1)粒子旋转半径; (2)磁感应强度B的大小。
qB
角为θ 时,其运动时间由下式表示:
t360 T或 t2 T
5.如图所示,在y>0的区域内存在匀强磁场,磁场垂直于 图中的xOy平面,方向指向纸外.原点O处有一离子源,沿 各个方向射出质量与速率乘积mv相等的同价正离子.对于 在xOy平面内的离子,它们在磁场中做圆弧运动的圆心所在 的轨迹,可用下图给出的四个半圆中的一个来表示,其中 正确的是[
解:(1)由几何关系知
R
r
③求时间
先确定偏向角.带电粒子射出磁场的速度方向对射入磁场
的速度的夹角θ,即为偏向角,它等于入射点与出射点两条半径 间的夹角(圆心角或回旋角)。由几何知识可知,它等于弦切 角的2倍,即θ=2α=ωt,如图所示。
然后确定带电粒子通过磁场的时间。粒子在磁场中运
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粒子在磁场中做匀速圆周运动的三个基本公式: ①洛仑兹力提供向心力 ②轨迹半径 ③周期
T
mv r qB 2m
qB
mv 2 qvB r
(T与R,v 无关)
其他表达式:
1 qB 频率: f T 2 m
2 1 (qBR) 动能: E k mv 2 2 2m
二、带电粒子做匀速圆周运动的分析方法 1、圆心的确定
2、 半径的确定和计算 利用平面几何关系 ,求出该圆的可能半径 ( 或圆心角 ) . 并注意以下几个重要的几何特点: a. 粒子速度的偏向角(φ)等于转过的圆心 角 (α),φ=α; 并等于AB弦与切线的夹角(弦切 角θ)的2倍(如图), 即.φ=α=2θ=ωt b. 相对的弦切角(θ)相等, 与相邻的弦切角(θ′)互补, 即:θ+θ′ =180° O′ v A θ
O M P -q
可以通过入射点作入射方向的垂线 ,连接入射点和出射点,做其中垂 线,这两条垂线的交点就是圆弧轨 道的圆心。
c.已知入射点和入射方向,出射方向, P -q 但不知出射点位置时
v
v
练习3、在直径为d的圆形区域内存在均匀磁场, 磁场方向垂直于圆面指向纸外.一电荷量为q,质 量为m的粒子,从磁场区域的一条直径AC上的A点 射入磁场,其速度大小为v0,方向与AC成α.若此 粒子恰好能打在磁场区域圆周上D点,AD与AC的 夹角为β,如图所示.找出轨迹圆心的位置。
动时, 洛伦兹力 充当向心力:
mv qvB r
2
轨道半径
mv qvB r
2
mv r qB
在匀强磁场中做匀速圆周运动的带电粒子,它的轨道 半径跟粒子的运动速率成正比.运动的速率越大, 轨道的半径也越大. 2 m 2 r 2 m 周期 T T qB v qB 可见粒子在磁场中做匀速圆周运动的周期跟轨道 半径和运动速率无关。 总结上面两个表达式,发现带电粒子圆周运动的 半径和周期都与粒子的比荷q/m成 反比 。
如何确定圆心是解决问题的前提,也是解题的关键. 首先,应有一个最基本的思路:即圆心一定在与速度
方向垂直的直线上.
a.已知入射方向和出射方向时 (如图所示 ,图中P为入射点,M为出射点).
O
v
M
可通过入射点和出射点分别作垂直 于入射方向和出射方向的直线,两 条直线的交点就是圆弧轨道的圆心
P -q
v
b. 已知入射方向和出射点的位置时(如图 示,P为入射点,M为出射点).
30°
P
O
例2、 如图所示,半径为r的圆形区域内存在着垂直纸 面向里的匀强磁场,磁感应强度为B。现有一带电离 子(不计重力)从A以速度v沿圆形区域的直径射入磁 场,已知离子从C点射出磁场的方向与AO方向间的夹 角为60º 。求: (1)该离子带何种电荷; (2)求该离子的电荷量与质量之比q/m
能力考查要求:
对物理过程和运动规律的综合分析能力、空间想象 能力、运用数学工具解决物理问题的能力的考查都 有较高的要求。
复习目标:
能够熟练地确定粒子运动轨迹的圆心
能够熟练确定及计算轨迹的半径
一、带电粒子在匀强磁场中的运动 当带电粒子速度方向平行于磁场方向时,带电粒子不 受洛伦兹力,做 匀速直线运动 。 当带电粒子速度方向与磁场垂直时,带电粒子在垂直 于磁感应线的平面内做 匀速圆周运动 . 带电粒子在匀强磁场中仅受洛仑兹力而做匀速圆周运
(偏向角)
θ B
O
v
第9 页
4、圆周运动中的对称性 当带电粒子从直线边界进入磁场并从 同一边界射出磁场时,始末速度与边 界的夹角 相等 。
θ M N
B
当带电粒子在圆形磁场区域中运 动时,若粒子沿径向射入,则必 定沿 径向 射出。
B v
Hale Waihona Puke rv例1.如图所示,一带电量为q=+2×10-9C,在直线上一 点O处沿与直线成 30º 角的方向垂直进入磁感应强度为 B 的匀强磁场中,经历 t=1.5×10-6s 后到达直线上另一 点P,求: (1)粒子做圆周运动的周期T (2)磁感应强度B的大小 (3)若OP的距离为0.1m,则粒子的 运动速度v为多大?
专题
磁场
(三)带电粒子在匀强磁场中
匀速圆周运动的半径计算
长岛中学高三级部 张玫玫
高考命题:
近几年的高考理综试卷中电场、磁场复合的问题每年 都以大型综合计算题的形式出现,考题的特点是综合 性强,多把本章知识与电场的性质、运动学规律、牛 顿运动规律、圆周运动知识、功能关系等有机结合在 一起,难度为中等以上。