带电粒子在圆形磁场中的偏转分析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论2:对准圆心射入,速度越大,偏转角和圆 心角都越小,运动时间越短。
例3 在真空中,半径r=3×10-2 m的圆形区域内 有匀强磁场,方向如图2所示,磁感应强度B=0.2 T, 一个带正电的粒子以初速度v0=1×106 m/s从磁场 边界上直径ab的一端a射入磁场,已知该粒子的比荷 q/m =1×108 C/kg,不计粒子重力. (1)求粒子在磁场中做匀速圆周运动的半径; (2)若要使粒子飞离磁场时有最大偏转角,求入射 时v0与ab的夹角θ及粒子的最大偏转角.
2 m2v0 1 2 r2 S 2( r ) ( 1) 2 2 4 2 2 eB
带电粒子在圆形磁场中运动的四个结论 结论1:对准圆心射入,必定沿着圆心射出 结论2:对准圆心射入,速度越大,偏转角和圆 心角都越小,运动时间越短。 结论3:运动半径相同(v相同)时,弧长越长对 应时间越长。 结论4:磁场圆的半径与轨迹圆的半径相同时,
答案 (1)2.41 m (2)5.74×10-7 s
解析
(1)设粒子在磁场中做圆周运动的最大半径为 R. mv 0 2 则 qv0B=mv0 /R R= Bq =1.0 m 如图甲所示,由几何关系得 R1 2+R2=R2-R R2=(1+ 2) m=2.41 m (2)设粒子此时在磁场中做圆周运动的半径为 r. mv 3mv0 3 则 r= Bq = = m 3Bq 3 3
3
甲
Leabharlann Baidu
如图乙所示, 由几何关系得 θ=arctan
=30° , ∠POP′
=60° 故带电粒子进入磁场绕圆心 O′转过 360° -(180° -60° )=240° 又回到中空部分,粒子的运动轨迹如图所示, 故粒子从 P 点进入磁场到第一次回到 P 点时, 粒子在磁场 2T 2πm 中运动时间为 t1=3× =2T T= Bq 3 6R1 粒子在中空部分运动时间为 t2= v , 粒子运动的总时间为 4πm 6R1 t=t1+t2= + =5.74×10-7 s
例2:在圆形区域的匀强磁场的磁感应强度为B,一 群速率不同的质子自A点沿半径方向射入磁场区域, 如图所示,已知该质子束中在磁场中发生偏转的最 大角度为1060,圆形磁场的区域的半径为R,质子 的质量为m,电量为e,不计重力,则该质子束的速 O4 率范围是多大?
3BeR v 4m
O3 O2 O1
“让圆动起来”
【答案】(1);方向垂直于纸面向外(2)见解析 (3)与x同相交的区域范围是x>0. y
y
【解析】 略 【关键】 图示
v A
P v
R R Q
θ O/ O
R
C
O/ O 图 (a)
x 图 (b)
x y
装带 置点 微 粒 发 射
P
v R
C
r
O/
Q
O 图 (c)
x
例3 可控热核聚变反应堆产生能的方式和 太阳类似,因此,它被俗称为“人造太阳”. 热核反应的发生,需要几千万度以上的高温, 然而反应中的大量带电粒子没有通常意义上 的容器可装.人类正在积极探索各种约束装置, 磁约束托卡马克装置就是其中一种.如图15所示为该装置的简化模 型.有一个圆环形区域,区域内有垂直纸面向里的匀强磁场,已知 其截面内半径为R1=1.0 m,磁感应强度为B=1.0 T,被约束粒子的 比荷为q/m=4.0×107 C/kg ,该带电粒子从中空区域与磁场交界面 的P点以速度v0=4.0×107 m/s沿环的半径方向射入磁场(不计带电 粒子在运动过程中的相互作用,不计带电粒子的重力). (1)为约束该粒子不穿越磁场外边界,求磁场区域的最小外半径R2 (2)若改变该粒子的入射速度v,使v= 3 v0,求该粒子从P点进入磁 3 场开始到第一次回到P点所需要的时间t.
带电粒子在圆形磁场中的运动
结论1:对准圆心射入,必定沿着圆心射出
例1 电视机的显像管中,电子束的偏转是用磁偏转技 术实现的。电子束经过电压为U的加速电场后,进入一 圆形匀强磁场区,如图所示。磁场方向垂直于圆面。 磁场区的中心为O,半径为r。当不加磁场时,电子束 将通过O点而打到屏幕的中心M点。为了让电子束射到 屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ, 此时磁场的磁感应强度B应为多少?
y
v0 O
O1 O2 O3 O5 O4
x
解2: 磁场上边界如图线1所示。 设P(x,y)为磁场下边界上的一 点,经过该点的电子初速度与x轴 夹角为 ,则由图可知: x = rsin, y = r-rcos , 得: x2 + (y-r)2 = r2。
y 1
P (x,y)
v0
O
θ r
r
x
O
所以磁场区域的下边界也是半径为r,圆心为(0,r)的 圆弧应是磁场区域的下边界。 两边界之间图形的面积即为所求。图中的阴影区域面 积,即为磁场区域面积:
(1)R=5×10-2 m. (2)37o 74o
结论3:运动速度v相同,方向不同,弧长越长 对应时间越长。(直径对应的弧最长)
例4、在xoy平面内有很多质量为m,电量为e的电子,从坐
标原点O不断以相同速率沿不同方向射入第一象限,如 图所示.现加一垂直于xOy平面向里、磁感强度为B的匀 强磁场,要求这些入射电子穿过磁场都能平行于x轴且 沿x轴正向运动,试问符合该条件的磁场的最小面积为 多大?(不考虑电子间的相互作用)
“磁会聚”与“磁扩散”
磁聚焦概括:
迁移与逆向、对称的物理思想!
一点发散成平行
R
平行会聚于一点
r
R r
区域半径 R 与运动半径 r 相等
例、(2009年浙江卷)如图,在xOy平面内与y轴平行的匀强
电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。 在圆的左边放置一带电微粒发射装置,它沿x轴正方向发 射出一束具有相同质量m、电荷量q(q>0)和初速度v的带 电微粒。发射时,这束带电微粒分布在0<y<2R的区间内。 已知重力加速度大小为g。 (1)从A点射出的带电微粒平行于x轴从C点进入有磁场区 域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感 应强度的大小与方向。 y (2)请指出这束带电微粒与x轴相 带 点 微 交的区域,并说明理由。 粒 R 发 v O/ (3)在这束带电磁微粒初速度变为 射 C 装 2v,那么它们与x轴相交的区域又在 置 O 哪里?并说明理由。 x
例3 在真空中,半径r=3×10-2 m的圆形区域内 有匀强磁场,方向如图2所示,磁感应强度B=0.2 T, 一个带正电的粒子以初速度v0=1×106 m/s从磁场 边界上直径ab的一端a射入磁场,已知该粒子的比荷 q/m =1×108 C/kg,不计粒子重力. (1)求粒子在磁场中做匀速圆周运动的半径; (2)若要使粒子飞离磁场时有最大偏转角,求入射 时v0与ab的夹角θ及粒子的最大偏转角.
2 m2v0 1 2 r2 S 2( r ) ( 1) 2 2 4 2 2 eB
带电粒子在圆形磁场中运动的四个结论 结论1:对准圆心射入,必定沿着圆心射出 结论2:对准圆心射入,速度越大,偏转角和圆 心角都越小,运动时间越短。 结论3:运动半径相同(v相同)时,弧长越长对 应时间越长。 结论4:磁场圆的半径与轨迹圆的半径相同时,
答案 (1)2.41 m (2)5.74×10-7 s
解析
(1)设粒子在磁场中做圆周运动的最大半径为 R. mv 0 2 则 qv0B=mv0 /R R= Bq =1.0 m 如图甲所示,由几何关系得 R1 2+R2=R2-R R2=(1+ 2) m=2.41 m (2)设粒子此时在磁场中做圆周运动的半径为 r. mv 3mv0 3 则 r= Bq = = m 3Bq 3 3
3
甲
Leabharlann Baidu
如图乙所示, 由几何关系得 θ=arctan
=30° , ∠POP′
=60° 故带电粒子进入磁场绕圆心 O′转过 360° -(180° -60° )=240° 又回到中空部分,粒子的运动轨迹如图所示, 故粒子从 P 点进入磁场到第一次回到 P 点时, 粒子在磁场 2T 2πm 中运动时间为 t1=3× =2T T= Bq 3 6R1 粒子在中空部分运动时间为 t2= v , 粒子运动的总时间为 4πm 6R1 t=t1+t2= + =5.74×10-7 s
例2:在圆形区域的匀强磁场的磁感应强度为B,一 群速率不同的质子自A点沿半径方向射入磁场区域, 如图所示,已知该质子束中在磁场中发生偏转的最 大角度为1060,圆形磁场的区域的半径为R,质子 的质量为m,电量为e,不计重力,则该质子束的速 O4 率范围是多大?
3BeR v 4m
O3 O2 O1
“让圆动起来”
【答案】(1);方向垂直于纸面向外(2)见解析 (3)与x同相交的区域范围是x>0. y
y
【解析】 略 【关键】 图示
v A
P v
R R Q
θ O/ O
R
C
O/ O 图 (a)
x 图 (b)
x y
装带 置点 微 粒 发 射
P
v R
C
r
O/
Q
O 图 (c)
x
例3 可控热核聚变反应堆产生能的方式和 太阳类似,因此,它被俗称为“人造太阳”. 热核反应的发生,需要几千万度以上的高温, 然而反应中的大量带电粒子没有通常意义上 的容器可装.人类正在积极探索各种约束装置, 磁约束托卡马克装置就是其中一种.如图15所示为该装置的简化模 型.有一个圆环形区域,区域内有垂直纸面向里的匀强磁场,已知 其截面内半径为R1=1.0 m,磁感应强度为B=1.0 T,被约束粒子的 比荷为q/m=4.0×107 C/kg ,该带电粒子从中空区域与磁场交界面 的P点以速度v0=4.0×107 m/s沿环的半径方向射入磁场(不计带电 粒子在运动过程中的相互作用,不计带电粒子的重力). (1)为约束该粒子不穿越磁场外边界,求磁场区域的最小外半径R2 (2)若改变该粒子的入射速度v,使v= 3 v0,求该粒子从P点进入磁 3 场开始到第一次回到P点所需要的时间t.
带电粒子在圆形磁场中的运动
结论1:对准圆心射入,必定沿着圆心射出
例1 电视机的显像管中,电子束的偏转是用磁偏转技 术实现的。电子束经过电压为U的加速电场后,进入一 圆形匀强磁场区,如图所示。磁场方向垂直于圆面。 磁场区的中心为O,半径为r。当不加磁场时,电子束 将通过O点而打到屏幕的中心M点。为了让电子束射到 屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ, 此时磁场的磁感应强度B应为多少?
y
v0 O
O1 O2 O3 O5 O4
x
解2: 磁场上边界如图线1所示。 设P(x,y)为磁场下边界上的一 点,经过该点的电子初速度与x轴 夹角为 ,则由图可知: x = rsin, y = r-rcos , 得: x2 + (y-r)2 = r2。
y 1
P (x,y)
v0
O
θ r
r
x
O
所以磁场区域的下边界也是半径为r,圆心为(0,r)的 圆弧应是磁场区域的下边界。 两边界之间图形的面积即为所求。图中的阴影区域面 积,即为磁场区域面积:
(1)R=5×10-2 m. (2)37o 74o
结论3:运动速度v相同,方向不同,弧长越长 对应时间越长。(直径对应的弧最长)
例4、在xoy平面内有很多质量为m,电量为e的电子,从坐
标原点O不断以相同速率沿不同方向射入第一象限,如 图所示.现加一垂直于xOy平面向里、磁感强度为B的匀 强磁场,要求这些入射电子穿过磁场都能平行于x轴且 沿x轴正向运动,试问符合该条件的磁场的最小面积为 多大?(不考虑电子间的相互作用)
“磁会聚”与“磁扩散”
磁聚焦概括:
迁移与逆向、对称的物理思想!
一点发散成平行
R
平行会聚于一点
r
R r
区域半径 R 与运动半径 r 相等
例、(2009年浙江卷)如图,在xOy平面内与y轴平行的匀强
电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。 在圆的左边放置一带电微粒发射装置,它沿x轴正方向发 射出一束具有相同质量m、电荷量q(q>0)和初速度v的带 电微粒。发射时,这束带电微粒分布在0<y<2R的区间内。 已知重力加速度大小为g。 (1)从A点射出的带电微粒平行于x轴从C点进入有磁场区 域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感 应强度的大小与方向。 y (2)请指出这束带电微粒与x轴相 带 点 微 交的区域,并说明理由。 粒 R 发 v O/ (3)在这束带电磁微粒初速度变为 射 C 装 2v,那么它们与x轴相交的区域又在 置 O 哪里?并说明理由。 x