第一章传感器技术基础知识

合集下载

第一章 传感器的基本知识

第一章 传感器的基本知识

第一章传感器的基本知识复习思考题1. 简述传感器的概念、作用及组成。

2. 传感器的分类有哪几种?各有什么优缺点?3. 传感器是如何命名的?其代号包括哪几部分?在各种文件中如何应用?4. 传感器的静态性能指标有哪些?其含义是什么?5. 传感器的动态特性主要从哪两方面来描述?采用什么样的激励信号?其含义是什么?1.1 传感器的作用与地位◆世界是由物质组成的,各种事物都是物质的不同形态。

人们为了从外界获得信息,必须借助于感觉器官。

◆人的“五官”——眼、耳、鼻、舌、皮肤分别具有视、听、嗅、味、触觉等直接感受周围事物变化的功能,人的大脑对“五官”感受到的信息进行加工、处理,从而调节人的行为活动。

◆人们在研究自然现象、规律以及生产活动中,有时需要对某一事物的存在与否作定性了解,有时需要进行大量的实验测量以确定对象的量值的确切数据,所以单靠人的自身感觉器官的功能是远远不够的,需要借助于某种仪器设备来完成,这种仪器设备就是传感器。

传感器是人类“五官”的延伸,是信息采集系统的首要部件。

电量和非电量◆表征物质特性及运动形式的参数很多,根据物质的电特性,可分为电量和非电量两类。

◆电量——一般是指物理学中的电学量,例如电压、电流、电阻、电容及电感等;◆非电量——则是指除电量之外的一些参数,例如压力、流量、尺寸、位移量、重量、力、速度、加速度、转速、温度、浓度及酸碱度等等。

◆人类为了认识物质及事物的本质,需要对物质特性进行测量,其中大多数是对非电量的测量。

传感器的作用◆非电量不能直接使用一般的电工仪表和电子仪器进行测量,因为一般的电工仪表和电子仪器只能测量电量,要求输入的信号为电信号。

◆非电量需要转化成与其有一定关系的电量,再进行测量,实现这种转换技术的器件就是传感器。

◆传感器是获取自然或生产中信息的关键器件,是现代信息系统和各种装备不可缺少的信息采集工具。

采用传感器技术的非电量电测方法,就是目前应用最广泛的测量技术。

传感器的地位◆随着科学技术的发展,传感器技术、通信技术和计算机技术构成了现代信息产业的三大支柱产业,分别充当信息系统的“感官”、“神经”和“大脑”,他们构成了一个完整的自动检测系统。

传感器及检测技术教案全

传感器及检测技术教案全

传感器及检测技术教案第一章:传感器概述1.1 教学目标让学生了解传感器的基本概念和作用。

让学生了解传感器的分类和特点。

让学生了解传感器在现代科技领域的应用。

1.2 教学内容传感器的定义和作用传感器的分类和特点传感器在现代科技领域的应用1.3 教学方法采用讲授法,讲解传感器的定义、作用和分类。

采用案例分析法,分析传感器在现代科技领域的应用。

采用小组讨论法,让学生讨论传感器的特点和优缺点。

1.4 教学评估课堂问答,检查学生对传感器的基本概念和作用的理解。

小组讨论,评估学生对传感器特点和优缺点的理解。

第二章:温度传感器2.1 教学目标让学生了解温度传感器的原理和结构。

让学生了解常见温度传感器的特点和应用。

让学生了解温度传感器的选择和安装。

2.2 教学内容温度传感器的原理和结构常见温度传感器的特点和应用温度传感器的选择和安装2.3 教学方法采用讲授法,讲解温度传感器的原理和结构。

采用案例分析法,分析常见温度传感器的特点和应用。

采用实验演示法,展示温度传感器的安装和应用。

2.4 教学评估课堂问答,检查学生对温度传感器原理和结构的理解。

实验操作,评估学生对温度传感器的安装和应用的掌握。

第三章:压力传感器3.1 教学目标让学生了解压力传感器的原理和结构。

让学生了解常见压力传感器的特点和应用。

让学生了解压力传感器的选择和安装。

3.2 教学内容压力传感器的原理和结构常见压力传感器的特点和应用压力传感器的选择和安装3.3 教学方法采用讲授法,讲解压力传感器的原理和结构。

采用案例分析法,分析常见压力传感器的特点和应用。

采用实验演示法,展示压力传感器的安装和应用。

3.4 教学评估课堂问答,检查学生对压力传感器原理和结构的理解。

实验操作,评估学生对压力传感器的安装和应用的掌握。

第四章:湿度传感器4.1 教学目标让学生了解湿度传感器的原理和结构。

让学生了解常见湿度传感器的特点和应用。

让学生了解湿度传感器的选择和安装。

4.2 教学内容湿度传感器的原理和结构常见湿度传感器的特点和应用湿度传感器的选择和安装4.3 教学方法采用讲授法,讲解湿度传感器的原理和结构。

传感器与检测技术1-传感器与检测技术的基础知识

传感器与检测技术1-传感器与检测技术的基础知识
静态特性表示测量仪表在被测物理量处于稳定状态时的输 入—输出关系。
y a0 a1x a2 x2 a3x3 an xn
1.3 传感器的基本特性
1.3.1 传感器的静态特性
2.静态特性的校准(标定)条件—静态标准条件
检测系统(传感器)的静态特性是在静态标准条件下进行校准 (标定)的。
检测技术研究的主要内容包括测量原理、测量方法、测量 系统和数据处理四个方面。
检测是利用各种物理、化学及生物效应,选择合适的方法 与装置,将生产、科研、生活等各方面的有关信息通过检查与 测量的方法赋予定性或定量结果的过程。
1.1 检测技术概述
1.1.2 检测方法
1.直接测量、间接测量和联立测量 (1)直接测量 (2)间接测量 (3)联立测量 2.偏差式测量、零位式测量和微差式测量 (1)偏差式测量 (2)零位式测量 (3)微差式测量
测量范围是指检测系统所能测量到的最小被测输入量(下限)
至最大被测输入量(上限)之间的范围,即( xmin , xmax )。
②量程 量程是指检测系统测量上限和测量下限的代数差,即
L xmax xmin
1.3 传感器的基本特性
1.3.1 传感器的静态特性
3.传感器的静态性能指标
(2)灵敏度
灵敏度是指检测系统(传感器)在静态测量时,输出量的增量
15.1数字式检测仪表的设计
1.1.3 检测系统的组成
1.2 传感器基础知识
1.2.1 传感器的定义及组成
传感器的国家标准定义为能感受(或响应)规定的被测量,并按 照一定规律将其转换成可用信号输出的器件或装置。这里的可用 信号是指便于处理、传输的信号,目前电信号是最易于处理和传 输的。
传感器的通常定义为“能把外界非电信息转换成电信号输出 的器件或装置”或“能把非电量转换成电量的器件或装置”。

传感器与检测技术基础

传感器与检测技术基础
1.1 传感器简述
转换元件 它是将敏感元件输出的非电信号直接转换为电信号,或直接将被测非电信号转换为电信号(如应变式压力传感器的电阻应变片,它作为转换元件将弹性敏感元件的输出转换为电阻)。 转换电路 它能把转换元件输出的电信号转换为便于显示、处理和传输的有用信号。
传感器的分类 传感器技术是一门知识密集型技术。
1.2 测量误差与准确度
3)恰为第n位单位数字的0.5,则第n位为偶数或零时就舍去,为奇数时则进1。 (2)参加中间运算的有效数字的处理 1)加法运算:运算结果的有效数字位数应与参与运算的各数中小数点后面的有效位数相同。 2)乘除运算:运算结果的有效数字位数,应与参与运算的各数中有效位数最小的相同。 3)乘方及开方运算:运算结果的有效数字位数比原数据多保留一位。 4)对数运算:取对数前后有效数字位数应相同。 2.测量数据的处理 常用的数据处理方法有列表法、图示法、最小二乘法线性拟合。
列表法 列表法是把被测量的数据列成表格,可以简明地表示有关物理量之间的对应关系,便于随时检查测量结果是否合理,及时发现和分析问题。
01
图示法 图示法是用图形或曲线表示物理量之间的关系,它能更直观地表示物理量之间的变化规律,如递增或递减。
02
最小二乘法线性拟合 图示法虽然能很直观方便地将测量中的各种物理量之间的关系、变化规律用图像表示出来,但是,在图像的绘制上往往会引起一些附加的误差。
1.1 传感器简述
1.1 传感器简述
1)超调量σ:传感器输出超出稳定值而出现的最大偏差,常用相对于最终稳定值的百分比来表示。 2)延滞时间td:阶跃响应达到稳态值的50%所需要的时间。 3)上升时间tr:传感器的输出由稳态值的10%变化到稳态值的90%所需的时间。 4)峰值时间tp:传感器从阶跃输入开始到输出值达到第一个峰值所需的时间。 5)响应时间ts:传感器从阶跃输入开始到输出值进入稳态值所规定的范围内所需的时间。 (2)频率响应法 频率响应法是从传感器的频率特性出发研究传感器的动态特性。

传感器技术手册

传感器技术手册

传感器技术手册随着科技的不断发展,传感器技术在各个领域中扮演着越来越重要的角色。

传感器是一种能够感知并转换物理量、化学量或生物量的设备,它们广泛应用于自动化工业控制、环境监测、医疗诊断、智能交通等众多领域。

本手册将为读者提供关于传感器技术的全面介绍和详细内容。

第一章:传感器基础知识1.1 传感器的定义与分类1.2 传感器的工作原理1.3 传感器的特性参数1.4 传感器的选择与应用第二章:传感器应用领域2.1 工业自动化领域的传感器应用- 温度传感器的应用- 压力传感器的应用- 液位传感器的应用2.2 环境监测领域的传感器应用- 气体传感器的应用- 光学传感器的应用- 水质传感器的应用2.3 医疗诊断领域的传感器应用 - 心电传感器的应用- 血糖传感器的应用- 呼吸传感器的应用2.4 智能交通领域的传感器应用 - 路面传感器的应用- 车速传感器的应用- 道路监控传感器的应用第三章:传感器技术的发展趋势 3.1 微型化与集成化3.2 智能化与自适应性3.3 高灵敏度与高精度3.4 高可靠性与长寿命第四章:传感器技术的挑战与应对 4.1 跨学科融合4.2 信号处理与数据分析4.3 能源供给与节能技术4.4 新材料与新工艺第五章:传感器技术的前景展望5.1 人工智能与传感器技术的结合5.2 物联网与传感器技术的发展5.3 生物传感器与医疗应用的突破5.4 可穿戴设备与传感器技术的融合通过阅读本手册,读者将能够深入了解传感器技术的基础知识、应用领域、发展趋势以及面临的挑战和应对措施。

传感器技术的持续创新与发展将为各个行业带来巨大的改变和机遇,期待读者通过本手册对传感器技术有更为全面的认识和理解,为相关领域的研究和应用提供参考和指导。

高二传感器知识点总结

高二传感器知识点总结

高二传感器知识点总结一、传感器的基本概念传感器是一种能够感知周围环境并将感知到的信息转化为电信号或其他形式信号的器件。

传感器在工业自动化、智能家居、医疗设备、汽车工业等领域都有广泛的应用,对于提高生产效率、改善生活质量有着重要的作用。

二、传感器的分类1. 按照测量物理量分类传感器根据其测量的物理量不同可以分为温度传感器、压力传感器、光敏传感器、湿度传感器、力传感器、位移传感器等多种类型。

2. 按照传感原理分类传感器还可以按照其传感原理不同进行分类,常见的传感原理包括电阻传感器、电容传感器、电感传感器、霍尔传感器、红外线传感器、激光传感器等。

3. 按照传感器的工作原理分类按照传感器的工作原理可以分为接触式传感器和非接触式传感器两种。

接触式传感器需要直接接触被测物体,而非接触式传感器可以通过无线、光学或者声波等方式进行测量。

三、传感器的特点1. 灵敏度高传感器能够感知到微小的变化,具有高的灵敏度。

2. 可靠性高传感器具有良好的稳定性和可靠性,能够长时间稳定工作。

3. 多功能性强传感器可以感知多种物理量,具有多功能性。

4. 体积小、重量轻传感器通常体积小、重量轻,便于安装和携带。

5. 自动化程度高传感器可以实现自动检测和自动控制,有助于提高生产效率。

四、传感器的应用1. 工业自动化传感器在工业自动化领域有着广泛的应用,可以用于测量温度、压力、液位、流量等参数,实现设备的自动化控制。

2. 智能家居在智能家居领域,传感器可以应用于智能灯光控制、温湿度监测、门窗开关检测等方面,提高生活的便利性和舒适性。

3. 医疗设备在医疗设备领域,传感器可以用于心率监测、血压监测、血糖监测等,为医疗人员提供重要的生理参数。

4. 汽车工业在汽车工业中,传感器可以用于车速测量、车重检测、发动机温度检测等,提高车辆的性能和安全性。

五、传感器的未来发展趋势1. 多功能集成传感器未来发展趋势是实现多功能集成,将多种传感功能整合在一个器件中,提高传感器的智能化和多功能性。

第一章传感器技术基础知识

第一章传感器技术基础知识
频带:传感器增益保持在一定值内的频率范围为传感器频带 或通频带,对应有上、下截止频率。
时间常数:用时间常数τ来表征一阶传感器的动态特性。τ越小, 频带越宽。
固有频率:二阶传感器的固有频率ωn表征了其动态特性。
传感器的选用原则
与测量条件有关的因素 (1)测量的目的 (2)被测试量的选择 (3)测量范围 (4)输入信号的幅值,频带宽度 (5)精度要求 (6)测量所需要的时间
相应的响应曲线 :
传感器存在惯性,它的输出不能立即复现输入信号,而是从零开 始,按指数规律上升,最终达到稳态值。 理论上传感器的响应只在t趋于无穷大时才达到稳态值,但实际上 当t=4τ时其输出达到稳态值的98.2%,可以认为已达到稳态。 τ越小,响应曲线越接近于输入阶跃曲线, 因此,τ值是一阶传感器重要的性能参数。
测量
测量是指人们用实验的方法,借助于一定的仪器或 设备,将被测量与同性质的单位标准量进行比较,
并确定被测量对标准量的倍数,从而获得关于被测
量的定量信息。
xnu或
x——被测量值;
n x u
u——标准量,即测量单位;
n——比值,含有测量误差。
测量过程
传感器从被测对象获取被测量的信息,建立起 测量信号,经过变换、传输、处理,从而获得 被测量量值的过程。
线性传感器
S y x
灵敏度是它的静态特性的斜率,即S为常数。
非线性传感器
它的灵敏度S为一变量,用下式表示。
S dy dx
传感器的灵敏度如图1-3所示。
Y
Y
S y - y0
Yo
x
X O
a)线形传感器
Байду номын сангаас
Y dy
dx S dy dx X

传感器技术基础知识教材

传感器技术基础知识教材

1.用物理现象、化学反应和生物效应设计制作各种用途 的传感器,这是传感器技术的重要基础工作。
例如,利用某些材料的化学反应制成的能识别气体的“电 子鼻”;利用超导技术研制成功的高温超导磁传感器等。
2.传感器向高精度、一体化、小型化的方向发展。 工业自动化程度越高,对机械制造精度和装配精度要求 就越高,相应地测量程度要求也就越高。因此,当今在传感 器制造上很重视发展微机械加工技术。
2. 测量方法 测量方法是实现测量过程所采用的具体方法,
应当根据被测量的性质、特点和测量任务的要求来 选择适当的测量方法。按照测量手续可以将测量方 法分为直接测量和间接测量;按照获得测量值的方 式可以分为偏差式测量、零位式测量和微差式测量; 此外,根据传感器是否与被测对象直接接触,可区 分为接触式测量和非接触式测量;而根据被测对象 的变化特点又可分为静态测量和动态测量等。
6.传感器的代号 依次为主称(传感器) 被测量—转换原理—序 号
主称——传感器,代号C; 被测量——用一个或两个汉语拼音的第一个大 写字母标记。见附录表2; 转换原理——用一个或两个汉语拼音的第一个 大写字母标记。见附录表3; 序号——用一个阿拉伯数字标记,厂家自定, 用来表征产品设计特性、性能参数、产品系列 等。例:应变式位移传感器: C WY-YB-20; 光纤压力传感器:C Y-GQ-2。
间的关系式为:y=f(x1x2x3…) 。间接测量手续多,
花费时间长,当被测量不便于直接测量或没有相应直 接测量的仪表时才采用。
(2)偏差式测量、零位式测量和微差式测量 Ⅰ.偏差式测量 在测量过程中,利用测量仪表指针相对 于刻度初始点的位移(即偏差)来决定被测量的测量方法,称为 偏差式测量。它以间接方式实现被测量和标准量的比较。 偏差式测量仪表在进行测量时,一般利用被测量产生的 力或力矩,使仪表的弹性元件变形,从而产生一个相反的作 用,并一直增大到与被测量所产生的力或力矩相平衡时,弹 性元件的变形就停止了,此变形即可通过一定的机构转变成 仪表指针相对标尺起点的位移,指针所指示的标尺刻度值就 表示了被测量的数值。偏差式测量简单、迅速,但精度不高, 这种测量方法广泛应用于工程测量中。

公共基础知识传感器技术基础知识概述

公共基础知识传感器技术基础知识概述

《传感器技术基础知识概述》一、引言在当今科技飞速发展的时代,传感器技术作为现代信息技术的三大支柱之一,正发挥着越来越重要的作用。

传感器犹如人类的感官,能够感知周围环境的各种物理量、化学量和生物量,并将其转化为电信号或其他易于处理和传输的信号,为人们提供了了解和控制世界的重要手段。

从智能手机中的各种传感器到工业自动化中的精密传感器,从医疗诊断中的生物传感器到环境监测中的智能传感器,传感器技术已经广泛应用于各个领域,深刻改变了人们的生活和工作方式。

本文将对传感器技术的基础知识进行全面的概述,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。

二、传感器的基本概念(一)定义传感器是一种能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。

敏感元件是指传感器中直接感受被测量的部分,它能将被测量转化为另一种物理量;转换元件则将敏感元件输出的物理量转换为电信号或其他易于处理和传输的信号。

(二)分类传感器的分类方法有很多种,常见的分类方式有以下几种:1. 按被测量分类:可分为物理量传感器、化学量传感器和生物量传感器。

物理量传感器包括温度传感器、压力传感器、位移传感器、速度传感器等;化学量传感器包括气体传感器、湿度传感器等;生物量传感器包括生物传感器、免疫传感器等。

2. 按工作原理分类:可分为电阻式传感器、电容式传感器、电感式传感器、压电式传感器、磁电式传感器、光电式传感器等。

3. 按输出信号分类:可分为模拟式传感器和数字式传感器。

模拟式传感器输出的是连续变化的电信号,数字式传感器输出的是离散的数字信号。

(三)主要性能指标1. 灵敏度:指传感器在稳态下输出变化量与输入变化量之比,它反映了传感器对被测量的敏感程度。

2. 线性度:指传感器的输出与输入之间的线性关系程度,通常用非线性误差来表示。

3. 精度:指传感器的测量结果与真实值之间的接近程度,它包括准确度和精密度两个方面。

传感器与检测技术基础知识

传感器与检测技术基础知识

X Ax A0
测量值:由测量器具读数装置 所指示出来的被测量的数值。
【例1】
约定真值:被测 量用基准器测量
出来的值。 (真值的替身)
某采购员分别在A 、B 、C 三家商店购买 100kg牛肉干、10kg牛肉干、1kg牛肉干,发现均 缺少约0.5kg,但该采购员对C家卖牛肉干的商店
意见最大,是何原因?
(2)相对误差 —— 反映测量值的精度
①实际相对误差
A
X A0
100%
②示值相对误差
x
X Ax
100%
③满度相对误差
m
X Am
100%
仪器 满度值
当ΔX取为ΔXm时,最大满度相对误差就被用来 确定仪表的精度等级S:—— 反映仪表综合误差的 大小
S X m 100 Am

S X m 100 Amax Amin
1.传感器的静态特性 —— 被测量的值处于稳定
(1)线性度
状态时的输出-输入关系。
指传感器的输出与输入之间数量关系的线性 程度。
传感器的输出与输入关系:
y a0 a1x1 a2x2 anxn
如果传感器非线性的方次不高,输入量变化 范围较小,则可用一条直线(切线或割线)近似 地代表实际曲线的一段,使传感器的输出-输入特 性线性化,所采用的直线称为拟合直线。
(仪表下限刻 度值不为零时)
S X m 100 Am
若已知仪表的精度等级和量程,则最大绝对误 差为?
Xm S% Am
我国电工仪表等级分为七级,即: 0.1、0.2、0.5、1.0、1.5、2.5、5.0级
【思考题】有一数字温度计,它的测量范围为 - 50℃ ~ + 150℃,精度为0.5级。求当示值分别为 - 20℃和 + 100℃时的绝对误差和示值相对误差。

传感器基础知识PPT课件

传感器基础知识PPT课件

精度等级以一系列标准百分比数值分档表示。 代表传感器测量的最大允许误差,即相对误差。
2020/5/28
.
10
4. 灵敏度:灵敏度是指传感器输出的
变化 量与引起该变化量的输入变化 量之比,如下图所示。
s y x
2020/5/28
.
11
灵敏度表征传感器对输入量变化的反应能力
(a) 线性传感器
(b) 非线性传感器
二阶传感器的固有频率ωn表征了其动态特性。
.
35
1.1.4 传感器的命名、代号和图形符号
1.传感器的命名
传感器的全称应由“主题词+四级修饰语”组成,即 主题词 —— 传感器 一级修饰语 —— 被测量,包括修饰被测量的定语。 二级修饰语 —— 转换原理,一般可后缀以“式”字。 三级修饰语 —— 特征描述,指必须强调的传感器结构、性能、材料特
和快速地测得非电量的技术。
(2)非电量电测量技术优点:
测量精度高、反应速度快、能自动连续地进行测 量、可以进行遥测、便于自动记录、可以与计算 机联结进行数据处理、可采用微处理器做成智能
仪表、能实现自动检测与转换等。
.
43
酒精测试仪
呼气管
.
44
电子湿度计模块
封装后的外 形
.
45
1.2.2 测量方法
2020/5/28
.
47
1.2. 3 检测系统
检测系统又分:开环检测系统与闭环检测系统
开环检测系统:
2020/5/28
.
48
1.2. 3 检测系统
闭环检测系统 :
2020/5/28
.
49
1.2. 4 测量误差及数据处理

传感器技术及其应用复习基础知识

传感器技术及其应用复习基础知识

第1章 传感器基础知识1 什么是传感器?按照国标定义,“传感器”应该如何说明含义?答:从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。

我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。

从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。

我国国家标准对传感器的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。

定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。

按使用的场合不同传感器又称为变换器、换能器、探测器。

2 传感器由哪几部分组成?试述它们的作用及相互关系。

答:组成——由敏感元件、转换元件、基本电路组成;①敏感元件:指传感器中直接感受被测量的部分。

②传感器:能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。

③信号调理器:对于输入和输出信号进行转换的 装置。

④变送器:能输出标准信号的传感器关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。

传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。

第二章:传感器特性 何谓传感器的静态特性,传感器的主要静态特性有哪些? 静态特性是指检测系统的输入为不随时间变化的恒定信号时,系统的输出与输入之间的关系。

主要包括线性度、灵敏度、迟滞、重复性、漂移等。

(1) 线性度指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。

(2) 灵敏度灵敏度是传感器静态特性的一个重要指标。

其定义为输出量的增量Δy 与引起该增量的相应输入量增量Δx 之比。

它表示单位输入量的变化所引起传感器输出量的变化,显然,灵敏度S 值越大,表示传感器越灵敏.(3) 迟滞传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象称为迟滞。

《传感器与检测技术(胡向东第3版)》

《传感器与检测技术(胡向东第3版)》

传感器与检测技术(胡向东第3版)简介《传感器与检测技术(胡向东第3版)》是传感器与检测技术领域的经典教材,由胡向东教授撰写。

本书系统地介绍了传感器的基本原理、分类及其在各个领域的应用。

重点介绍了常见的传感器类型和检测技术,以及相关的原理、性能评价方法和设计要点。

本书内容丰富、实用,并结合了大量的应用实例,为读者提供了全面的传感器与检测技术知识。

目录本书共分为以下几个部分:第一部分:传感器基础知识1.传感器概述2.传感器的分类3.传感器的基本原理第二部分:常见传感器类型4.温度传感器5.压力传感器6.光学传感器7.振动传感器8.气体传感器9.液体传感器第三部分:传感器性能评价与设计10.传感器的性能评价方法11.传感器的设计要点12.传感器的接口电路设计第四部分:传感器应用技术13.传感器在环境监测中的应用14.传感器在工业自动化中的应用15.传感器在医疗领域中的应用16.传感器在农业领域中的应用17.传感器在安全监控中的应用第五部分:传感器发展趋势与展望18.传感器的发展历程19.传感器的未来发展趋势内容概述本书通过对传感器的基本原理、分类及其在各个领域的应用进行详细介绍,使读者对传感器与检测技术有一个全面的了解。

第一部分主要讲解传感器的基础知识,包括传感器的概述、分类和基本原理。

第二部分详细介绍了常见的传感器类型,如温度传感器、压力传感器、光学传感器、振动传感器、气体传感器和液体传感器等。

第三部分主要介绍传感器的性能评价方法、设计要点和接口电路设计等内容。

第四部分着重介绍了传感器在环境监测、工业自动化、医疗领域、农业领域和安全监控中的应用技术。

最后一部分讨论了传感器的发展历程和未来发展趋势。

本书强调理论与实践相结合,通过大量的实例和案例,让读者更好地理解传感器的应用。

同时,本书还对传感器的性能评价和设计进行了详细的介绍,帮助读者在实际应用中能够选择适合的传感器,并设计出满足要求的传感器接口电路。

传感器的基础知识

传感器的基础知识
Y a1X a2 X 2 an X n
理想的线性 关系
关于原点对称, 在输入X=0较大的范围
有较好的线性关系
线性差,一 般很少采用
一般情况
1.3传感器的类型和特性
传感器的静态特性指标
静态特性校准曲线
传感器静态校准曲线(实际曲线)是在静态标准条件下测定的。 利用一定精度等级的校准设备,对传感器进行往复循环测 试,即可得到输出-输入数据。将这些数据取平均,即为传 感器的静态校准曲线。
Y a0 a1X a2 X 2 an X n
讨论a0=0时的情形,即静态特性曲线通过原点的情形:
(1) 理想的线性特性 (2) 仅有奇次非线性项 (3) 仅有偶次非线性项 (4)同时有奇偶次非线性项
Y a1X
Y a1X a3 X 3 a5 X 5
Y a1X a2 X 2 a4 X 4
传感器的分类
•按被测对象的参数分类 位移传感器、力传感器、力矩传感器、压力传感器、振
动传感器、加速度传感器、流量传感器、流速传感器、液 位传感器、温度传感器、湿度传感器等 • 按变换原理分类
电阻式传感器、电容式传感器、电感式传感器、压电式 传感器、光电式传感器、热电式传感器、超声波传感器、 光栅传感器、红外传感器、光纤传感器、激光传感器等 • 按输出特性的线性与否分类
Y
0
X
1.3传感器的类型和特性
传感器的静态特性指标
(1)线性度 (2)灵敏度 (3)最小检测量和分辨力 (4)迟滞 (5)重复性 (6)零点漂移 (7)温漂
1.3传感器的类型和特性 y
传感器的静态特性指标
(1)线性度
YFS 实 际 特性 曲 线
在规定的条件下,传感器静态 校准曲线(实际曲线)与拟合直线 间最大偏差与满量程输出值的百 分比称为线性度。

传感器技术基础知识

传感器技术基础知识

2 电学量
包括电流、电压、电阻等。
传感器的特点和性能指标
高精度
测量结果具有较高的准确性。
稳定性好
在长期使用中能够保持稳ቤተ መጻሕፍቲ ባይዱ的性能。
响应速度快
能够在短时间内对变化做出反应。
耐用性强
能够承受较高的工作条件。
传感器的分类和应用领域
1
机械量传感器
常见应用领域包括工业自动化、汽车
电学量传感器
2
制造和航天航空等。
随着科技的不断进步,传感器技术也在不断发展,朝着更小、更精确、更智能的方向发展。 人工智能、物联网和大数据分析等技术的应用,将进一步拓展传感器的应用领域。
传感器技术基础知识
本演示将介绍传感器技术的基础知识,涵盖了传感器的定义、作用以及不同 类型的传感器原理和应用领域。
传感器技术的定义和作用
传感器技术是指应用于各个领域中的装置,能够感知并转换物理或化学量, 以提供相关信息来监测、控制和决策。
传感器在各个行业中起着至关重要的作用,如工业生产、农业、环境保护、 医疗、交通等,为实现智能化和自动化提供支持。
常见应用领域包括电力系统、电子设
备和家用电器等。
3
光学量传感器
常见应用领域包括摄影、安全监控和 医学诊断等。
传感器在智能制造中的应用
传感器在智能制造中发挥关键作用,通过实时监测和反馈,提高生产效率、 质量和安全性。
智能传感器、无线传感器网络和云计算技术的发展,进一步推动了智能制造 的进程。
传感器技术的发展趋势和未来发展方向
传感器的基本原理
1
电阻原理
根据物体的电阻变化来测量物理量,如电流、温度和压力。
2
电磁原理
通过检测物质受到的电磁场的影响来测量物理量,如速度、位移和震动。

《传感器课件》课件

《传感器课件》课件

纳米传感器
探索纳米级传感器在材料科学和环境监测中的 应用。
智能传感器
探究智能传感器的概念和未来发展趋势。
七、传感器实验及应用案例

传感器实验介绍
介绍一些有趣的传感器实验,让学生亲自动手。
传感器应用案例分析
分析一些真实的传感器应用案例,探索其实际价值。
八、总结
1 传感器发展历程回顾
回顾传感器技术的发展历程和里程碑事件。
1 传感器网络简介
了解传感器网络及其在物 联网中的作用。
2 传感器网络通信协议
探究常用的传感器网络通 信协议。
3 传感器网络应用场景
观察传感器网络在不同场 景中的应用案例。
六、传感器未来发展方向
生物传感器
展望生物传感器在医疗和健康领域的前景。
机器视觉传感器
了解机器视觉传感器在自动化和智能工业中的 重要性。
深入了解传感器的工作原理和基本原理。
二、主要传感器类型
温度传感器
介绍温度传感器及其在各个领域中的应用。
湿度传感器
探究湿度传感器的特点和应用场景。
压力传感器
了解压力传感器的原理及其在工业环境中的应用。
光电传感器
详细介绍光电传感器的工作原理和使用方式。
三、传感器测量精度分析
1
精度定义及分类
澄清什么是精度,并了解传感器精度的分类。
2
误差消除方法
探索如何减少或消除传感器测量中的误差。
3
传感器校准技术
介绍传感器校准的方法和流程。
四、传感器接口技术
模拟信号输出
了解传感器通过模拟信号进行 输出的技术。
数字信号输出
探究传感器通过数字信号进行 输出的方法。
串行通信接口
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度计反映出来的温度与介质温度的差值就称为动态误差。
造成温度计输出波形失真和产生动态误差的原因,是温度
计有热惯性(由传感器的比热容和质量大小决定)和传热 热阻,使得在动态测温时传感器输出总是滞后于被测介质 的温度变化。这种热惯性是温度计固有的,决定了温度计 测量快速温度变化时会产生动态误差。
结论:
对于同一大小的输入信号,传感器的正反行程输出信号大小不相等。
产生这种现象的主要原因:
传感器敏感元件材料的物理性质和 机械零部件的缺陷所造成的。
迟滞大小通常由实验确定
γ 迟滞误差 H



1 2
max YFS
100 %
式中:ΔHmax—正反行程输出值间的最大差值。
根据中华人民共和国国家标准(GB7665-87) 传感器(Transducer/Sensor):能感受规定的被
测量并按照一定的规律转换成可用输出信号的器件 和装置。
包含的概念:
① 传感器是测量装置,能完成检测任务;
② 它的输入量是某一被测量,可能是物理量,也可 能是化学量、生物量等;
4.复性
重复性:传感器在输入量按同一方向作全量程连续多次变化 时,所得特性曲线不一致的程度
重复性误差γR属于随机误差,常用标准偏差表示,也可用正 反行程中的最大偏差表示,即:
R


1 2
Rm a x YFS
100 %
二、传感器的动态特性
传感器的动态特性:
其输出对随时间变化的输入量的响应特性。 当被测量随时间变化,是时间的函数时,则传感器的
相对偏差γL
实际特性曲线与拟合直线之间的偏差称为传感器的非 线性误差(或线性度),通常用相对误差γL表示 :
L

Lm ax 100 % YFS
式中:ΔLmax——最大非线性绝对误差;
YFS —满量程输出。
用最小二乘法求取的拟合直线的拟合精度最高。
2.灵敏度
灵敏度S:传感器的输出量增量Δy与引起输出量增量的 输入量增量Δx的比值,即:
线性传感器
S y x
灵敏度是它的静态特性的斜率,即S为常数。
非线性传感器
它的灵敏度S为一变量,用下式表示。
S dy dx
传感器的灵敏度如图1-3所示。
Y
Y
S y - y0
Yo
x
X O
a)线形传感器
Y dy
dx S dy dx X
O
b)非线形传感器
3.迟滞
传感器在正(输入量增大)反(输入量减小)行程期间其输 出-输入特性曲线不重合的现象称为迟滞。
转换电路
转换元件输出的电路参数接入基本转换电 路便可转换成电量输出。由于输出信号比 较微弱,需要通过信号调理和转换电路进 行放大和运算调制,同时必须有辅助电源。
二、传感器的分类
1.根据被测物理量分类 速度传感器、位移传感器、加速度传感器、温度
传感器、压力传感器等。(适用于实际使用者) 2.按工作原理分类
传感器与检测技术
第一章 传感器技术基础知识
1.1 传感器的组成和分类 1.2 传感器的基本特征 1.3 检测技术的基础知识
第一节 传感器的组成和分类
一、传感器的组成
广义: 传感器是一种能把特定的信息(物理、化学、 生物)按一定规律转换成某种可用信号输出的 器件和装置。
狭义: 能把外界非电信息转换成电信号输出的器件。
输出量也是时间的函数,其间的关系要用动特性来表 示。
除了具有理想的比例特性外,输出信号将不会与 输入信号具有相同的时间函数,
这种输出与输入间的差异就是所谓的动态误差。
动态测温问题实例
把一支温度计从温度为t0℃环境中迅速插入一个温度为t℃的 恒温水槽中(插入时间忽略不计),这时温度计温度从t0℃突 然上升到t,而温度计反映出来的温度从t0℃变化到t℃需要经 历一段时间,即有一段过渡过程。
线性度、灵敏度、迟滞性和重复性等
1.线性度
线性度是指传感器的输出与输入之间数量关系的线性程度。 可分为线性特性和非线性特性。用一个多项式表示:
y a 0 a1x1 a 2 x 2 ... a n x n
式中:a0——输入量x为零时的输出量; a1,a2,…,an——非线性项系数。
实际使用中,希望得到线性关系,
如非线性的方次不高,输入量变化范围较小时,可用一条直线(切线 或割线)近似地代表实际曲线的一段,如图1-2所示,使传感器输出— 输入特性线性化。
所采用的直线称为拟合直线。
图1-2 几种直线拟合方法
即使是同类 传感器
拟合直线不 同
其线性度也 是不同的
(a) 理论拟合; (b) 过零旋转拟合; (c) 端点连线拟合; (d) 端点平移拟合
③ 它的输出量是某种物理量,这种量要便于传输、 转换、处理、显示等,这种量可以是气、光、电量, 但主要是电量;
④ 输出输入有对应关系,且应有一定的精确程度。
传感器是检测系统的第一个环节。 顾名思义,传感器的功能是一感二传,即感受被测
信息,并传送出去。 根据传感器的功能要求,它一般应由三部分组成,
即:敏感元件、转换元件、转换电路。
被测量 敏感元件
转换元件
电量输出 信号调理转换电路
辅助电源
敏感元件
能够灵敏地感受被测量并作出响应的元件,如金属 或半导体应变片,能感受压力的大小而引起形变, 形变程度就是对压力大小的响应。铂电阻能感受温 度的升降而改变其阻值,阻值的变化就是对温度升 降的响应,所以铂电阻就是一种温度敏感元件,而 金属或半导体应变片,就是一种压力敏感元件。
转换元件
上面介绍的敏感元件,其中有许多可兼做转换元件。 转换元件实际上就是将敏感元件感受的被测量转换 成电路参数的元件。如果敏感元件本身就能直接将 被测量变成电路参数,那么,该敏感元件就是具有 了敏感和转换两个功能。如热敏电阻,它不仅能直 接感受温度的变化,而且能将温度变化转换成电阻 的变化,也就是将非电路参数(温度)直接变成了 电路参数(电阻)。
应变式、电压式、电容式、涡流式、差动变压器 式等。(适用于初学者) 3.按能量的传递方式分类
有源和无源传感器。
第二节 传感器的基本特性
一、传感器的静态特性
传感器的静态特性是指被测量的值处于稳定状态 时的输出输入关系 。
其输入量与输出量之间的关系式中不含有时间变量。
衡量静态特性的重要指标
相关文档
最新文档