第2章习题解1

合集下载

最新《计算机组成原理》第2章习题答案

最新《计算机组成原理》第2章习题答案

最新《计算机组成原理》第2章习题答案第⼆章习题解答1.设机器数的字长8位(含1位符号位),分别写出下列各⼆进制数的原码、补码和反码:0,-0,0.1000,-0.1000,0.1111,-0.1111,1101,-1101。

解:2.写出下列各数的原码、补码和反码:7/16,4/16,1/16,±0,-7/16,-4/16,-1/16。

解:7/16=7*2-4=0.01114/16=4*2-4=0.01001/16=1*2-4=0.0001真值原码补码反码7/16 0.0111 0.0111 0.01114/16 0.0100 0.0100 0.01001/16 0.0001 0.0001 0.0001+0 O.0OOO O.0OOO O.0OOO-0 1.0OOO O.0OOO 1.1111-1/16 1.0OO1 1.1111 1.1110-4/16 1.0100 1.1100 1.1011-7/16 1.0111 1.1001 1.10003.已知下列数的原码表⽰,分别写出它们的补码表⽰:[X1]原=O.10100,[X2]原=l.10111。

解:[X1]补=0.10100,[X2]补=1.01001。

4.已知下列数的补码表⽰,分别写出它们的真值:[X1]补=O.10100,[X2]补=1.10111。

解: X1=O.10100, X2=-0.01001。

5.设⼀个⼆进制⼩数X≥0,表⽰成X=0.a1a2a3a4a5a6,其中a1~a6取“1”或“O”:(1)若要X>1/2,a1~a6要满⾜什么条件?(2)若要X≥1/8,a1~a6要满⾜什么条件?(3)若要1/4≥X>1/16,a1~a6要满⾜什么条件?解:(1) X>1/2的代码为:0.100001~0.111111。

a1=1,a2+a3+a4+a5+a6=1。

(2) X≥1/8的代码为:0.001001~0.111111(1/8~63/64)a1+a2=0,a3=1或a1=0,a2=1,或a2=1(3)1/4≥X>1/16的代码为:0.000101~0.01000(5/64~1/4)a1+a2+a3 =0, a4=1,a5+a6=1 或a1+a2=0,a3=1 或a2=1,a1+a3+a4+a5+a6=06.设[X]原=1.a1a2a3a4a5a6(1)若要X>-1/2,a1~a6要满⾜什么条件?(2)若要-1/8≥X≥-1/4,a1~a6要满⾜什么条件?解:(1) X>-1/2的代码为:1.000001~1.011111(-1/64~-31/64)。

第二章-第一定律习题及解答

第二章-第一定律习题及解答
2.有10 mol的气体(设为理想气体),压力为1000 kPa,温度为300K,分别求出等温时下列过程的功:
(1)在空气压力为100 kPa时,体积胀大1dm3;
(2)在空气压力为100 kPa时,膨胀到气体压力也是100 kPa;
(3)等温可逆膨胀到气体压力为100 kPa。
解(1)属于等外压膨胀过程
W1=-p环ΔV=-100kPa×1dm3=-100J
(2)也是等外压膨胀过程
W2=-p环(V2-V1)=-nRT(1-p2/p1)
=-10mol×8.314J·K-1·mol-1×300K(1-100/1000)
=-22448J
(3)等温可逆膨胀过程
W3=-nRTln(p1/p2)
=-10mol×8.314J·K-1·mol-1×300K×ln(1000/100)
=-57431J
4.在291K和pӨ压力下,1mol Zn(s)溶于足量稀盐酸中,置换出1mol H2并放热152kJ。若以Zn和盐酸为体系,求该反应所作的功及体系内能的变化。
解Zn(s)+2HCl(aq) = ZnCl2(aq)+H2(g)
W = -pΔV = -p(V2-V1)≈-pV(H2) = -nRT
= -(1mol)×(8.314J·K-1·mol-1)×(291K)
= -2.42kJ
ΔU= Q+W = (-152-2.42)kJ =-154.4kJ
5.在298K时,有2mol N2(g),始态体积为15dm3,保持温度不变,经下列三个过程膨胀到终态体积为50 dm3,计算各过程的ΔU、ΔH、W和Q的值。设气体为理想气体。
=-5966J,
Q3=-W3=5966J。
7.理想气体等温可逆膨胀,体积从V1胀大到10V1,对外作了41.85kJ的功,体系的起始压力为202.65kPa。

复变函数习题解答(第2章)

复变函数习题解答(第2章)

p90第二章习题(一)[ 1, 6, 9, 14(3), 26 ]1. 设连续曲线C : z = z(t), t∈[α, β],有z’(t0) ≠ 0 (t0∈[α, β]),试证曲线C在点z(t0)有切线.【解】首先,因为当t →t0时,(z(t) -z(t0))/(t-t0) →z’(t0) ≠ 0,故| (z(t) -z(t0))/(t-t0) | → | z’(t0)| ≠ 0,因此存在δ> 0,使得∀t∈[α, β],当0 < | t-t0 | < δ时,有| (z(t) -z(t0))/(t-t0) |≠ 0,故| z(t) -z(t0) |≠ 0,即z(t) ≠z(t0).此时,存在唯一确定的过点z(t0)以及点z(t) (t ≠t0)的割线:(y(t) -y(t0))(X-x(t0)) + (x(t) -x(t0))(Y-y(t0)) = 0.此方程等价于(y(t) -y(t0))/(t-t0) · (X-x(t0)) + (x(t) -x(t0))/(t-t0) · (Y-y(t0)) = 0.当t→t0时,有y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0.因为z’(t0) ≠ 0,故y’(t0)2 + x’(t0)2≠ 0.直线y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0就是曲线C在点z(t0)处的切线.[这里采用的切线的定义:切线是指割线的极限位置的直线.在这个题目的证明中,我们主要说明两点:第一,当t充分接近t0 (t≠t0),有唯一确定的割线过点z(t0)和z(t);第二,当t →t0 (t≠t0)时,过z(t0)和z(t)的割线确实有“极限位置”] 6. 若函数f(z)在区域D内解析,且满足下述条件之一,试证f(z)在D内为常数.(6.1) 在D内f’(z) = 0;【解】设f(z) = u(x, y) + i v(x, y),(x, y)∈D.由f’(z) = 0及f’(z) = u x + i v x,知u x = v x = 0;由Cauchy-Riemann方程,v y = u x = 0,u y = -v x = 0;因u x = u y = 0,故u在区域D内为常数.因v x = v y = 0,故v在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.2) ( f(z))*在D内解析;【解】因f(z) = u(x, y) + i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = v y,v x = -u y;因( f(z))* = u(x, y) -i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = -v y,v x = u y;因此得到u x = u y = v x = v y = 0,所以u, v都在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.3) | f(z) |在D内为常数;【解】若| f(z) |在D内恒为零,则在D内f(z) = 0 (常数).若在D内| f(z) | = c > 0,则f(z) · ( f(z))* = c2.因f(z)在D内解析且f(z) ≠ 0,故( f(z))* = c2/ f(z)在D内解析.由(2)知f(z)在区域D内为常数.(6.4) Re( f(z))或Im( f(z))在D内为常数.【解】设f(z) = u(x, y) + i v(x, y).若u(x, y) = Re( f(z))在D内为常数,则u x = u y = 0.由Cauchy-Riemann方程,v x = -u y = 0,v y = u x = 0;所以v(x, y) = Im( f(z))也在D内为常数.故f(z)在区域D内为常数.9. 试证下面的定理:设f(z) = u(r, θ) + i v(r, θ),z = r e iθ,若u(r, θ), v(r, θ)在点(r, θ)是可微的,且满足极坐标的Cauchy-Riemann方程:∂u/∂r = (1/r)∂v/∂θ,∂v/∂r = (-1/r)∂u/∂θ(r > 0),则f(z)在点z是可微的,并且f’(z) = (cosθ-i sinθ)(∂u/∂r + i∂v/∂r) = (r/z)(∂u/∂r + i∂v/∂r).【解】注意到在点(r, θ)处,因为r > 0,r, θ也是(x, y)的可微函数,并且,r x = x/r = cosθ,r y = y/r = sinθ;θx = -y/r2 = - sinθ/r,θy = x/r2 = cosθ /r.所以u, v也是(x, y)的可微函数.由求导的链锁法则,我们有u x = u r·r x + uθ·θx = ((1/r)vθ)· cosθ + (-r v r) · (- sinθ/r)= vθ · (cosθ /r) + v r · sinθ= vθ ·θy + v r ·r y= v y;以及v x = v r·r x + vθ·θx = ((-1/r)uθ)· cosθ + (r u r) · (- sinθ/r)= uθ · (- cosθ /r) + u r · (- sinθ)= - (uθ ·θy + u r ·r y)= -u y;即满足Cauchy-Riemann方程,故f(z)在点z是可微的,且f’(a) = u x + i v x = (vθ · (cosθ /r) + v r · sinθ) + i (uθ · (- cosθ /r) + u r · (- sinθ))= (r u r · (cosθ /r) + v r · sinθ) + i ((-r v r) · (- cosθ /r) + u r · (- sinθ))= (cosθ-i sinθ)(∂u/∂r + i∂v/∂r)= (r/z)(∂u/∂r + i∂v/∂r).[ r = √(x2 + y2)在(x, y) ≠ (0, 0)处有连续的偏导数,所以是可微的.θ作为(x, y)函数在(x, y) ≠ (0, 0)处的可微性的证明如下(参考第一章习题13的解答):设D1 = { z∈ | Re(z) > 0},D2 = { z∈ | Im(z) > 0},D3 = { z∈ | Im(z) < 0},D4 = { z∈ | Re(z) < 0}.则 \{0} = D1⋂D2⋂D3⋂D4.在D1上,θ = arctan(y/x) + 2k1π;在D2上,θ = arccot(x/y) + 2k2π;在D3上,θ = arccot(x/y) -π + 2k3π;在D4上,θ = arctan(y/x) + π + 2k4π.不论在那个区域D j上,θ都有连续的偏导数,因此θ在 \{0}上是可微的.] 14. 试验证:(3) lim z→ 0 ( z–z cos z )/( z– sin z ) = 3.【解】因分母z– sin z的一阶导数1 – cos z在原点处的值为0,故此题不能直接用L’Hospital法则(第2题的结论).但可对lim z→ 0 sin z / z用L’Hospital法则.开始以为这个题目应该放在后面的章节,可是终究不甘心,考虑再三,退到sin z 最原始的定义,发现可以以它的实部和虚部为实变量展开.先用L’Hospital法则,lim z→ 0 sin z / z = cos 0 = 1,得到sin z = z + o(z),z→ 0.所以1 – cos z = 2 sin 2(z/2) = 2 ( z/2 + o(z) )2 = z2/2 + o(z2),z→ 0.而sin z = sin(x + i y) = exp( i (x + i y) ) – exp( –i (x + i y) )/(2 i)= (exp(–y)(cos x + i sin x) – exp(y)(cos x–i sin x))/(2 i)= (exp(y) + exp(–y)) sin x + i (exp(y) – exp(–y)) cos x )/2注意到当k + m≥ 3时,o(x k y m) = o(| z |3),z→ 0;故sin z = (1 + y2/2 + o(y3)) (x–x3/6 + o(x4) ) + i (y + y3/6 + o(y4)) (1 –x2/2 + o(x3))= (x + i y ) – (x3 + i 3x2y– 3xy2/2 –i y3 )/6 + o(z3) = z–z3/6 + o(z3),z→ 0.所以,( z–z cos z )/( z– sin z ) = z (1 – cos z )/( z– sin z )= z (z2/2 + o(z2))/(z3/6 + o(z3)) → 3,z→ 0.26. 试证:在将z平面适当割开后,函数f(z) = ( (1 – z ) z2 )1/3能分出三个单值解析分支.并求出在点z = 2取负值的那个分支在z = i处的值.【解】根据课本p83的结论,1和0是仅有的支点,∞不是支点.所以,将z平面沿从0到1的直线段I = { z∈ | Im(z) = 0, 0 ≤ Re(z) ≤ 1 }割开后,就能保证变点z不会单绕0或1转一周,因此在G= \I上函数f(z)就能分出三个单值解析分支.设g(z) = ((1 – z ) z2 )1/3是在点z = 2取负值的那个分支.设arg g(2) = π + 2kπ ( k∈ ).又设C是G内一条从2到i的任一曲线,当变点z沿着曲线C从2到i时,z的辐角的连续增量为∆C arg z = π/2 + 2k0π ( k0∈ ),因此∆C arg (z2 )= π + 4k0π,相应地,1 –z的辐角的连续增量为∆C arg (1 –z )= 3π/2 + 2k0π ( m∈ ),所以g(z)的辐角的连续增量为∆C arg g(z) = (π + 3π/4 + 6k0π)/3 = 7π/12 + 2k0π.根据课本p84的结论,g(i) = | g(i) | · exp( i ∆C arg g(z)) · exp( i arg g(2))= | ((1 –i )i2 )1/3 | · exp( i (7π/12 + 2k0π)) · exp( i (π + 2kπ))= - 21/6 · exp( 7πi/12 ).[从上述的做法中可以看出,我们不妨(事实上也常常地)取k, k0 = 0,并不会造成任何影响.这类题目用辐角的连续增量来考虑是方便的,否则就有可能陷入辐角难以选择的困境,因为那时我们已经忘记了要求辐角是随着变点z连续变化的.设z = r1 exp( iθ1),1 –z = r2 exp( iθ2),那么g(z) = (r12 r2 )1/3 exp( i (2θ1 + θ2 + 2kπ)/3) (k是0, 1, 2之一).当z = 2时,r1(2)= 2,r2(2)= 1;θ1(2) = 0,θ2(2)= π.由于g(2) = 21/3 exp( i (π + 2kπ)/3) < 0,故只能k = 1.当z = i时,r1(i)= 1,r2(i)= 21/2;θ1(i) = π/2,θ2(i) = 7π/4.所以g(i) = (21/2)1/3 exp( i (2(π/2) + 7π/4 + 2π)/3) = - 21/6 · exp( 7πi/12 ).但是,为什么θ2(i) = 7π/4而不是θ2(i) = –π/4 ?事实上,当初的θ1(2)和θ2(2)一旦选定,就决定了其这个单值解析分支中其他点的辐角选择,因为我们要求辐角是连续变化的.确定i的辐角θ1(i)时,要保证z从2到i的过程中,θ1(z)是连续变化的.故应该取θ1(i) = π/2.(增加了π/2)但1 –i的辐角θ2(i),则应该是从z = 2时θ2(2)= π开始连续变化到z = i时所得到的辐角θ2(i),也就是说,θ2从π开始增加了3π/4,因此θ2(i) = π + 3π/4 = 7π/4.特别强调的是:这里的θj(z)的连续变化,应该是随着同一个变点z来变化的.比如,如果我们认为z绕割线I反向地从2转到i,那么,θ1(i) = - 3π/2,这时,θ2(i) = π- 5π/4 = -π/4,显然,如此计算g(i)也会得到上述的结果.至此,我们应该可以看出,两种做法的本质是相同的.]∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞∙︒ℵℜ℘∇∏∑⎰ ⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,∃m∈ +,★〈α1, α2, ..., αn〉lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。

流体力学__第二章习题解答

流体力学__第二章习题解答

第2章 流体静力学2.1 大气压计的读数为100。

66kPa (755mmHg),水面以下7.6m 深处的绝对压力为多少?知:a a KP P 66.100= 3/1000m kg =水ρ m h 6.7= 求:水下h 处绝对压力 P解:aa KP ghP P 1756.71000807.96.100=⨯⨯+=+=ρ 2.2 烟囱高H=20m ,烟气温度t s =300℃,压力为p s ,确定引起火炉中烟气自动流通的压力差。

烟气的密度可按下式计算:p=(1。

25-0.0027t s )kg/m 3,空气ρ=1。

29kg/m 3。

解:把t 300s C =︒代入3s (1.250.0027)/s t kg m ρ=-得3s (1.250.0027)/s t kg m ρ=-33(1.250.0027300)/0.44/kg m kg m=-⨯=压力差s =-p ρρ∆a ()gH ,把31.29/a kg m ρ=,30.44/s kg m ρ=,9.8/g N kg =,20H m =分别代入上式可得s =-20p Pa ρρ∆⨯⨯a ()gH=(1.29-0.44)9.8166.6Pa =2.3 已知大气压力为98.1kN/m 2。

求以水柱高度表示时:(1)绝对压力为117.2kN/m2时的相对压力;(2)绝对压力为68。

5kN/m 2时的真空值各为多少? 解:(1)相对压力:p a =p-p 大气=117.72-98.1=19.62KN/2m以水柱高度来表示:h= p a/ g ρ=19。

62* 310 /(9.807* 310)=2.0m (2)真空值:2v a p =p p=98.168.5=29.6/m KN --以水柱高度来表示:h= p a/ g ρ=29。

6* 310 /(9.807* 310)=3。

0m2。

4 如图所示的密封容器中盛有水和水银,若A 点的绝对压力为300kPa ,表面的空气压力为180kPa,则水高度为多少?压力表B 的读数是多少?解:水的密度1000 kg/m 3,水银密度13600 kg/m 3A 点的绝对压力为:)8.0(20g gh p p H g o h A ρρ++=300⨯310=180⨯310+1000⨯9。

概率论第二章习题参考解答1

概率论第二章习题参考解答1

概率论第二章习题参考解答1. 用随机变量来描述掷一枚硬币的试验结果. 写出它的概率函数和分布函数. 解: 假设ξ=1对应于"正面朝上",ξ=0对应于反面朝上. 则 P (ξ=0)=P (ξ=1)=0.5 . 其分布函数为⎪⎩⎪⎨⎧≥<≤<=11105.000)(x x x x F 2. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 写出ξ的分布律和分布函数.解: 根据题意有 P (ξ=1)=2P (ξ=0) (1) 并由概率分布的性质知 P (ξ=0)+P (ξ=1)=1 (2) 将(1)代入(2)得3P (ξ=0)=1, 即P (ξ=0)=1/3 再由(1)式得 P (ξ=1)=2/3因此分布律由下表所示ξ0 1 P 1/32/3而分布函数为⎪⎩⎪⎨⎧>=<≤<=11103/100)(x x x x F 3. 如果ξ的概率函数为P {ξ=a }=1, 则称ξ服从退化分布. 写出它的分布函数F (x ), 画出F (x )的图形. 解: ⎩⎨⎧≥<=ax a x x F 10)(, 它的图形为4. 一批产品分一,二,三级, 其中一级品是二级品的两倍, 三级品是二级品的一半, 从这批产品中随机地抽取一个检验质量, 用随机变量描述检验的可能结果, 写出它的概率函数. 解 设ξ取值1,2,3代表取到的产品为一,二,三级, 则根据题意有 P (ξ=1)=2P (ξ=2) (1)P (ξ=3)=P (ξ=2)/2 (2) 由概率论性质可知P (ξ=1)+P (ξ=2)+P (ξ=3)=1 (3)(1),(2)代入(3)得:2P (ξ=2)+P (ξ=2)+P (ξ=2)/2=1解得P (ξ=2)=2/7, 再代回到(1)和(2)得 P (ξ=1)=4/7, P (ξ=3)=1/7 则概率函数为)3,2,1(271)(3=⨯==-i i P i ξ或列表如下:5. 一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求这4个中的次品数ξ的分布律.解: 基本事件总数为420C n =,有利于事件{ξ=i }(i =0,1,2,3,4)的基本事件数为ii i C C n -=4155, 则001.01731911718192051234)4(031.0171952121545171819201234)3(2167.01718191415231212141545171819201234)2(4696.01718191314151231314155171819201234)1(2817.01719137123412131415171819201234)0(445420115354202152542031515420415=⋅⋅=⋅⋅⋅⋅⋅⋅⋅====⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅====⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===C C P C C C P C C C P C C C P C C P ξξξξξ 6. 一批产品包括10件正品, 3件次品, 有放回地抽取, 每次一件, 直到取得正品为止, 假定每件产品被取到的机会相同, 求抽取次数ξ的概率函数.解: 每次抽到正品的概率相同, 均为p =10/13=0.7692, 则每次抽到次品的概率q =1-p =0.2308则ξ服从相应的几何分布, 即有),3,2,1(1331310)(1=⎪⎭⎫⎝⎛⋅===-i pq i P i i ξ7. 上题中如果每次取出一件产品后, 总以一件正品放回去, 直到取得正品为止, 求抽取次数ξ的分布律.解: 这样抽取次数就是有限的, 因为总共只有3件次品, 即使前面三次都抽到次品,第四次抽时次品 已经全部代换为正品, 因此必然抽到正品, 这样ξ的取值为1,2,3,4. 不难算出,0027.0131132133)4(0328.01312132133)3(1953.01311133)2(7692.01310)1(=⋅⋅===⋅⋅===⋅=====ξξξξP P P P8. 自动生产线在调整之后出现废品的概率为p , 当在生产过程中出现废品时立即重新进行调整, 求在两次调整之间生产的合格品数ξ的概率函数.解: 事件ξ=i 说明生产了i 次正品后第i +1次出现废品, 这是i +1个独立事件的交(1次发生i 次不发生, 因此有P (ξ=i )=p (1-p )i , (i =0,1,2,…)9. 已知随机变量ξ只能取-1,0,1,2四个值, 相应概率依次为cc c c 167,85,43,21, 确定常数c 并计算P {ξ<1|ξ≠0}.解: 根据概率函数的性质有1}2{}1{}0{}1{==+=+=+-=ξξξξP P P P即1167854321=+++cc c c 得2.3125163716710128167854321==+++=+++=c 设事件A 为ξ<1, B 为ξ≠0, (注: 如果熟练也可以不这样设)则32.0258167852121}2{}1{}1{}1{)0{}01{)()(}0|1{==++==+=+-=-==≠≠⋂<==≠<ξξξξξξξξξP P P P P P B P AB P P 10. 写出第4题及第9题中各随机变量的分布函数. 解: 第4题:⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=31327/6217/410)(x x x x x F第9题:当x <-1时: F (x )=P (ξ≤x )=0 当-1≤x <0时: F (x )=P (ξ≤x )=P (ξ=-1)=2162.03125.22121=⨯=c 当0≤x <1时: F (x )=P (ξ≤x )=P (ξ=-1)+P (ξ=0)=5405.03125.243214321=⎪⎭⎫ ⎝⎛+=+c c 当1≤x <2时: F (x )=P (ξ≤x )=P (ξ=-1)+P (ξ=0)+P (ξ=1)=8108.03125.2854321854321=⎪⎭⎫ ⎝⎛++=++c c c 当x ≥2时: F (x )=P (ξ≤x )=1 综上所述, 最后得:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤--<=21218108.0105405.0012162.010)(x x x x x x F 11. 已知ξ~⎪⎩⎪⎨⎧<<=其它1021)(x xx ϕ, 求ξ的分布函数F (x ), 画出F (x )的图形.解: 当x <0时: F (x )=0;当0≤x <1时:xx xt x t dt t dt t dt dt t x F xxx=-==+-⋅==+==+--∞-∞-⎰⎰⎰⎰00012112121210)()(12102100ϕ 当x ≥1时: F (x )=1 综上所述, 最后得⎪⎩⎪⎨⎧≥<≤<=111000)(x x xx x F 图形为12. 已知ξ~⎩⎨⎧<<=其它0102)(x x x ϕ, 求P {ξ≤0.5}; P (ξ=0.5);F (x ).解: 25.005.020)(}5.0{225.0025.005,0|=-==+==≤⎰⎰⎰∞-∞-x xdx dx dx x P ϕξ, 因ξ为连续型随机变量, 因此取任何点的概率均为零, 所以P {ξ=0.5}=0,求F (x ): 当x <0时, F (x )=0 当0≤x <1时, 220|20)()(x t tdt dt dt t x F xxx==+==⎰⎰⎰∞-∞-ϕ 当x ≥1时, F (x )=1 综上所述, 最后得:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F 13. 某型号电子管, 其寿命(以小时计)为一随机变量, 概率密度⎪⎩⎪⎨⎧≥=其它0100100)(2x x x ϕ, 某一个电子设备内配有3个这样的电子管, 求电子管使用150小时都不需要更换的概率.解: 先求一个电子管使用150小时以上的概率P (ξ≥150)为:3215010012100100)()150(|150121502150==+-===≥∞++-+∞+∞⎰⎰x dx xdx x P ϕξ 则3个这样的电子管构成贝努里独立试验概型, 试验三次发生三次的概率为2963.027832)3(33==⎪⎭⎫⎝⎛=p14. 设连续型随机变量ξ的分布函数为:⎪⎩⎪⎨⎧≥<≤<=111000)(2x x Ax x x F 求系数A ; P (0.3<ξ<0.7); 概率密度φ(x ).解: 因ξ是连续型随机变量, 因此F (x )也必是连续曲线, 则其在第二段(0,1)区间的曲线必能和第三段(1,+∞)的曲线接上, 则必有 A ×12=1, 即A =1. 则分布函数为⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F P (0.3<ξ<0.7)=F (0.7)-F (0.3)=0.72-0.32=0.49-0.09=0.4概率密度φ(x )为⎩⎨⎧<≤='=其它0102)()(x x x F x ϕ15. 服从柯西分布的随机变量ξ的分布函数是F (x )=A +B arctg x , 求常数A ,B ;P {|ξ|<1}以及概率密度φ(x ). 解: 由F (-∞)=0, 得A +Barctg (-∞)=02=-πB A(1)再由F (+∞)=1,得12)arctg(=+=+∞+πB A B A(2)综和(1),(2)两式解得π1,21==B A 即x x F arctg 121)(π+=5.0214411111)1()1()11()1|(|==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--==--=--=<<-=<πππππξξarctg arctg F F P P2111)()(x x F x +⋅='=πϕ16. 服从拉普拉斯分布的随机变量ξ的概率密度||)(x Ae x -=ϕ, 求系数A 及分布函数F (x ).解: 这实际上是一个分段函数, φ(x )可重新写为⎩⎨⎧<≥=-0)(x Aex Ae x xxϕ 根据性质1)(=⎰+∞∞-dx x ϕ, 又因φ(x )为偶函数, 因此有1222)(|==-==∞+-+∞-+∞∞-⎰⎰A Aedx Aedx x x xϕ, 则有A =1/2因此⎪⎩⎪⎨⎧<≥==--02102121)(||x e x e ex x x x ϕ.求分布函数F (x ). 当x <0时, 有xxtxt x e e dt e dt t x F 212121)()(====∞-∞-∞-⎰⎰ϕ当x ≥0时, 有x x xtxt t x e e e dt e dt e dt t x F ----∞-∞--=+-=-=+==⎰⎰⎰21121212121212121)()(00ϕ 综上所述, 最后得⎪⎩⎪⎨⎧≥-<=-0211021)(x e x e x F x x17. 已知⎩⎨⎧<<+-=其它01031212)(~2x x x x ϕξ, 计算P {ξ≤0.2|0.1<ξ≤0.5}解: 设事件A ={ξ≤0.2}, B ={0.1<ξ≤0.5}, 则要计算的是条件概率P (A |B ), 而)()()|(B P AB P B A P =, 而事件AB ={ξ≤0.2}∩{0.1<ξ≤0.5}={0.1<ξ≤0.2} 因此有148.03.006.0004.06.024.0032.0)1.0301.06001.04()2.0304.06008.04()364(d )31212()(}2.01.0{)(2.01.0232.01.022.01.0=-+-+-=⨯+⨯-⨯-⨯+⨯-⨯==+-=+-==≤<=⎰⎰x x x xx x dx x P AB P ϕξ256.03.006.0004.05.15.15.0)1.0301.06001.04()5.0325.06125.04()364(d )31212()(}5.01.0{)(5.01.0235.01.025.01.0=-+-+-=⨯+⨯-⨯-⨯+⨯-⨯==+-=+-===≤<=⎰⎰x x x xx x dx x P B P ϕξ最后得5781.0256.0148.0)()()|(}5.01.0|2.0{====≤<≤B P AB P B A P P ξξ18. 已知xxce x +-=2)(~ϕξ, 确定常数c .解: 首先证明普阿松广义积分π=⎰+∞∞--x e xd 2, 因为函数2x e -并不存在原函数, 因此需要一技巧. 令⎰+∞∞--=x eI x d 2, 则⎰⎰⎰+∞∞-+∞∞-+-+∞∞--=⎥⎦⎤⎢⎣⎡=y x e x e I y x x d d d )(22222作极坐标代换, 令θθsin ,cos r y r x ==, 则积分区间为全平面, 即θ从0积到2π, r 从0积到+∞, 且θd d d d r r y x =, 因此有πππθπ====∞+-+∞-+∞-⎰⎰⎰020202222)d(212rr r e r e rdr ed I , 所以I =π.现确定常数c , 由性质1)(=⎰+∞∞-dx x ϕ,1d d 41)21(414141212222====⎰⎰⎰+∞∞---+∞∞-+-⋅⋅+-+∞∞-+-πcedx ecex cex cex x x xx得421πe c =19. 已知⎩⎨⎧>>=-其它)0()(~λλϕξλa x e c x x, 求常数c 及P {a -1<ξ≤a +1}.解: 由性质1)(=⎰+∞∞-dx x ϕ得1d d 0)(|==-=+=-∞+-+∞-∞-+∞∞-⎰⎰⎰aax ax ace ce x e c x dx x λλλλϕ 解得 aec λ=, 因此有⎩⎨⎧>>=--其它)0()()(λλϕλa x e x a x则λλλλλλϕξ---+---+--=-==+==+≤<-⎰⎰⎰⎰e e due x ex x x a a P u u a aa x a a a a 1d d 0d )()11(|111)(111求边缘概率分布, 与是否独立?解: 按下表计算ξ与η的边缘分布:得的边缘分布如下表所示:当i =1及j =0时,因202.026.0}0{}1{0}0,1{)2(0)1(110⨯====≠====ηξηξP P p p P p因此ξ与η相互间不独立.21. 假设电子显示牌上有3个灯泡在第一排, 5个灯泡在第二排. 令ξ,η分别表示在某一规定时间内第一排和第二排烧坏的灯泡数. 若ξ与η的联合分布如下表所示: 试计算在规定时间内下列事件的概率: (1) 第一排烧坏的灯泡数不超过一个; (2) 第一排与第二排烧坏的灯泡数相等;(3) 第一排烧坏的灯泡数不超过第二排烧坏的灯泡数.解: 假设事件A 为第一排烧坏的灯泡数不超过一个, B 为第一排与第二排烧坏的灯泡数相等, C 为第一排烧坏的灯光数不超过第二排烧坏的灯泡数. 则事件A 发生的概率为上表中头两排概率之和52.008.006.005.004.002.001.009.007.005.003.001.001.0)(104=++++++++++++==∑∑==i j ij p A P事件B 发生的概率为上表中从0行0列开始的斜对角线之和14.006.005.002.001.0)(3=+++==∑=i ii p B P事件C 发生的概率为上表中斜对角线上右的各个数相加(包括斜对角线上的数), 但为减少运算量, 也可以考虑其逆事件C 的概率, 然后用1减去它. 而C 的概率为上表中斜对角线的左下角的所有概率之和(不包括斜对角线):89.011.01)04.001.003.001.001.001.0(1)(1)(=-=+++++-=-=C P C P22. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).解: 因为有两个2一个1, 因此第一次取到2号的概率为P (ξ=2)=2/3, 第一次取到1号的概率为P (ξ=1)=1/3. 第一次取到2号后还剩下一个2号一个1号, 则在此条件下第二次取到1号的概率P (η=1|ξ=2)=P (η=2|ξ=2)=1/2. 而第一次取到1号后还剩下两个2号, 因此这时P (η=1|ξ=1)=0, P (η=2|ξ=1)=1. 综上所述并用乘法法则可得312132)2|2()2()2,2(312132)2|1()2()1,2(31131)1|2()1()2,1(0031)1|1()1()1,1(22211211=⨯=========⨯=========⨯=========⨯========ξηξηξξηξηξξηξηξξηξηξP P P p P P P p P P P p P P P p23. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 列出(ξ,η)的概率分布表, 写出关于η的边缘分布. 解: 从上面数组可知ξ只取-1,0,2这三个值, 而η只取0,31,1这三个值, 因此总共可构成九个. 概率分布表及η的边缘分布计算如下即η的边缘分布率如下表所示24. 袋中装有标上号码1,2,2,3的4个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求(ξ,η)的分布律(袋中各球被取机会相同).解: 第一次取到号码1,2,3的概率为P{ξ=1}=P(ξ=3)=1/4P{ξ=2}=1/2在第一次取到号码i条件下,第二次取到号码j的概率各为P{η=1|ξ=1}=P{η=3|ξ=3}=0P{η=2|ξ=1}=P{η=2|ξ=3}=2/3P{η=3|ξ=1}=P{η=1|ξ=3}=1/3P{η=1|ξ=2}=P{η=3|ξ=2}=1/3P{η=2|ξ=2}=1/3则p11=P{ξ=1,η=1}=P{ξ=1}P{η=1|ξ=1}=0p12=P{ξ=1,η=2}=P{ξ=1}P{η=2|ξ=1}=1/6p13=P{ξ=1,η=3}=P{ξ=1}P{η=3|ξ=1}=1/12p21=P{ξ=2,η=1}=P{ξ=2}P{η=1|ξ=2}=1/6p22=P{ξ=2,η=2}=P{ξ=2}P{η=2|ξ=2}=1/6p23=P{ξ=2,η=3}=P{ξ=2}P{η=3|ξ=2}=1/6p31=P{ξ=3,η=1}=P{ξ=3}P{η=1|ξ=3}=1/12p32=P{ξ=3,η=2}=P{ξ=3}P{η=2|ξ=3}=1/6p33=P{ξ=3,η=3}=P{ξ=3}P{η=3|ξ=3}=025. 表示随机地在1-4的4个整数中取出的一个整数,η表示在1-ξ中随机地取出的一个整数值,求(ξ,η)的联合概率分布.解: 因ξ取四个数中的任何一个概率相等, 因此有P{ξ=i}=1/4, (i=1,2,3,4)而在ξ=i的条件下, (i=1,2,3,4), η取1到i的概率也相同,为1/i, 即P{η=j|ξ=i}=1/i, (i=1,2,3,4;j=1-i)因此有p ij=P{ξ=i,η=j}=P{ξ=i}P{η=j|ξ=i}=1/(4i), (i=1,2,3,4; j=1-i),联合概率分布如下表所示:26. 已知(ξ,η)~⎪⎩⎪⎨⎧≤≤+=其它04,0)sin(),(πϕy x y x c y x ,试确定常数c 并求η的边缘概率密度.解: 根据性质1),(=⎰⎰+∞∞-+∞∞-dydx y x ϕ, 有1)12(]220122[)]4sin([sin )]4cos([cos )]cos([)sin(40440404040=-=+--=+-=+-=+-=+⎰⎰⎰⎰c c x x c x x dx c y x dx c dydx y x c ππππππππ解得12)12)(12(12121+=+-+=-=c ,因此,⎪⎩⎪⎨⎧≤≤++=其它04,0)sin()12(),(πϕy x y x y x求η的边缘概率密度: 当40π≤≤y 时:)8sin(22)12()]4cos()[cos 12()cos()12()sin()12(),()(4042ππϕϕκπ+-+==+-+==++-=++==⎰⎰∞+∞-y y y y x dx y x dx y x y上式后一等式利用了三角函数公式2sin 2sin2cos cos A B A B B A -+=-, 而计算三角函数8sin π的值, 又是在已知224cos=π的前提下,利用半角公式2cos 12sin θθ-=得222222124cos18sin-=-=-=ππ当y 取区间]4,0[π之外的值时, 0)(1=y ϕ.因此最后得:⎪⎩⎪⎨⎧≤≤+-+=其它040)8sin(22)12()(2ππϕy y y27. 已知ξ服从参数p =0.6的0-1分布, 在ξ=0及ξ=1条件下, 关于η的条件分布分别如下二表所示:求二元随机变量(,)的联合概率分布, 以及在≠1时关于的条件分布. 解: 根据题意已知P {ξ=0}=1-p =1-0.6=0.4, P {ξ=1}=p =0.6 则根据乘法法则有:p 01=P {ξ=0,η=1}=P {ξ=0}P {η=1|ξ=0}=0.4×(1/4)=0.1 p 02=P {ξ=0,η=2}=P {ξ=0}P {η=2|ξ=0}=0.4×(1/2)=0.2 p 03=P {ξ=0,η=3}=P {ξ=0}P {η=3|ξ=0}=0.4×(1/4)=0.1 p 11=P {ξ=1,η=1}=P {ξ=1}P {η=1|ξ=1}=0.6×(1/2)=0.3 p 12=P {ξ=1,η=2}=P {ξ=1}P {η=2|ξ=1}=0.6×(1/6)=0.1 p 13=P {ξ=1,η=3}=P {ξ=1}P {η=3|ξ=1}=0.6×(1/3)=0.2由表中可以算出P {η≠1}=1-P {η=1}=1-(p 01+p 11)=1-0.4=0.6 P {ξ=0,η≠1}=p 02+p 03=0.2+0.1=0.3 P {ξ=1,η≠1}=p 12+p 13=0.1+0.2=0.3 因此有5.06.03.0}1{}1,1{}1|1{5.06.03.0}1{}1,0{}1|0{==≠≠==≠===≠≠==≠=ηηξηξηηξηξP P P P P P则在η≠1时关于ξ的条件分布律如下表所示:28. 第22题中的两个随机变量ξ与η是否独立?当ξ=1时η的条件分布是什么?: , 因为 P {ξ=1}=1/3, P {η=1}=1/3 而P {ξ=1,η=1}=0≠P {ξ=1}P {η=1} 在ξ=1条件下, 因13/13/1}1{}2,1{}1|2{03/10}1{}1,1{}1|1{================ξηξξηξηξξηP P P P P P因此在此条件下η服从单点分布或退化分布, 只取值为2, 取值为2的条件概率为1.=p i (1)p j (2), 算得联合分布律如下表所示 根据此联合分布律可算出43129611211)2/1,2/1()1,1(1)0(1)0(121484481161)1,0()3,2()1(==--==-==-=-=-==+-=≠+==+===+=-===+ηξηξηξηξηξηξηξP P P P P P P30. 测量一矩形土地的长与宽, 测量结果得到如下表所示的分布律(长与宽相互独立), 求周解: 因ζ=2ξ+2η, 可知ζ的取值为96,98,100,102,104, 又因ξ与η独立, 因此有 P {ζ=96}==P {ξ=29}P {η=19}=0.3×0.3=0.09P {ζ=98}=P {ξ=29}P {η=20}+P {ξ=30}P {η=19}=0.3×0.4+0.5×0.3=0.27 P {ζ=100}=P {ξ=29}P {η=21}+P {ξ=30}P {η=20}+P {ξ=31}}P {η=19}==0.3×0.3+0.5×0.4+0.2×0.3=0.35P {ζ=102}=P {ξ=30}P {η=21}+P {ξ=31}P {η=20}=0.3×0.5+0.2×0.4=0.23 P {ζ=104}=P {ξ=31}P {η=21}=0.2×0.3=0.06η的分布.解: 因周长=2πR , 面积=πR , 因此当半径R 取值10,11,12,13时, ξ的取值为62.83, 69.12,32. 一个商店每星期四进货, 以备星期五,六,日3天销售, 根据多周统计, 这3天销售件数 ξ问三天销售总量∑==31i iξη这个随机变量可以取哪些值?如果进货45件, 不够卖的概率是多少? 如果进货40件, 够卖的概率是多少?解: 因η的取值为ξ1,ξ2,ξ3三个随机变量可能取值之和, 因此可能的取值为从10+13+17=40到12+15+19=46之间的每一个整数值, 即40,41,42,43,44,45,46. 因此, 如进货15件, 不够卖的概率在η取值为46时出现, 即 P {η=46}=P {ξ1=12}P {ξ2=15}P {ξ3=19}=0.1×0.1×0.1=0.001 如进货40件, 够卖的概率发生在η取值为40时出现, 即P {η=40}=P {ξ1=10}P {ξ2=13}P {ξ3=17}=0.2×0.3×0.1=0.006 33. 求出第22题中ξ+η的分布律.ξ与η的联合分布律如下表: 则P {+=2}=P {=1,=1}=0P {ξ+η=3}=P {ξ=1,η=2}+P {ξ=2,η=1}=2/3 P {ξ+η=4}=P {ξ=2,η=2}=1/334. 求出第23题中ξ-η的分布律 解: 因(ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12.因此ξ-η也只取0-0=0, -1-1=-2, -1-1/3=-4/3, 2-0=2这四个值, 相应的概率也还是依次为1/6, 35. 已知P {ξ=k }=a /k , P {η=-k }=b /k (k =1,2,3), ξ与独立, 确定a ,b 的值; 求出(ξ,η)的联合概率分布以及ξ+η的概率分布. 解: 由概率分布的性质有131211}{31=⎪⎭⎫⎝⎛++==∑=a k P k ξ, 解得 5455.0116312111==++=a,191411}{31=⎪⎭⎫⎝⎛++=-=∑=b k P k η 解得 7347.04936914111==++=b 因此有P {ξ=1}=0.5455, P {ξ=2}=0.5455/2=0.2727, P {ξ=3}=0.1818 P {η=-1}=0.7347, P {η=-2}=0.1837, P {η=-3}=0.0816 因ξ与η独立, 则有p 11=P {ξ=1,η=-1}=P {ξ=1}P {η=-1}=0.5455×0.7347=0.4008 p 12=P {ξ=1,η=-2}=P {ξ=1}P {η=-2}=0.5455×0.1837=0.1002 p 13=P {ξ=1,η=-3}=P {ξ=1}P {η=-3}=0.5455×0.0816=0.0445 p 21=P {ξ=2,η=-1}=P {ξ=2}P {η=-1}=0.2727×0.7347=0.2004 p 22=P {ξ=2,η=-2}=P {ξ=2}P {η=-2}=0.2727×0.1837=0.0501 p 23=P {ξ=2,η=-3}=P {ξ=2}P {η=-3}=0.2727×0.0816=0.0223 p 31=P {ξ=3,η=-1}=P {ξ=3}P {η=-1}=0.1818×0.7347=0.1336 p 32=P {ξ=3,η=-2}=P {ξ=3}P {η=-2}=0.1818×0.1837=0.0333 p 33=P {ξ=3,η=-3}=P {ξ=3}P {η=-3}=0.1818×0.0816=0.0148计算+的概率分布: P {ξ+η=-2}=p 13=0.0445P {ξ+η=-1}=p 12+p 23=0.1002+0.0223=0.1225P {ξ+η=0}=p 11+p 22+p 33=0.4008+0.0501+0.0148=0.4657 P {ξ+η=1}=p 21+p 32=0.2004+0.0333=0.2337 P{ξ+η=2}=p 31=0.1336即ξ+η的概率分布率如下表所示36. 已知服从区间[0,1]上的均匀分布, 求的函数=3+1的概率分布. 解: 根据题意知ξ的概率密度φξ(x )为⎩⎨⎧≤≤=其它0101)(x x ξϕ 则η的分布函数为)31(}31{}13{}{)(-=-≤=≤+=≤=x F x P x P x P x F ξηξξη 对其求导得η的概率密度与ξ的概率密度间的关系为⎪⎩⎪⎨⎧≤≤=⎪⎩⎪⎨⎧≤-≤=-=-'='=其它其它041310131031)31(31)31(31)()(x x x x F x F x ϕϕξηη即η服从在区间[1,4]上的均匀分布.37. 已知ξ~⎪⎩⎪⎨⎧>+=其它0)1(2)(2x x x πϕ, ξηln =, 求η的概率密度.解: 求η的分布函数F η(x )为)(}{}{ln }{)(x x e F e P x P x P x F ξηξξη=≤=≤=≤=因e x 总大于0, 而当x 大于0时F ξ(x )为x t t t dt t x F x xxarctg 2arctg 2d )1(2)()(|002πππϕξ==+==⎰⎰∞- 因此有x x e e F x F arctg 2)()(πξη==则η的概率密度为其分布函数的求导:xxee x F x 212)()(+⋅='=πϕηη。

第2章习题答案

第2章习题答案

第2章2-1 半径为a的无限薄带电圆盘上面电荷密度为ρ=r2,r为圆盘上任意点到圆心的距离,求圆盘上的总电量。

解:Q=∬ρ∙rdφdrS =∫r3∙dra∙∫dφ2π=πr42。

2-2 半径为a的球体内有均匀分布的电荷,其总电量为Q,若该球以角速度ω绕其自身的任意中轴旋转,求球体内的体电流密度。

解:J V⃗⃗⃗ =3qωrsinθ4πa3φ⃗⃗ 。

2-3 无限薄的导电面放置于z=0平面内的0<x<0.05m的区域中,流向y⃗方向的5A电流按正弦规律分布于该面内,在x=0和x=0.05m处线电流密度为0,在x=0.025m处线电流密度为最大,求J S⃗⃗ 的表达式。

解:电流分布如下图所示:x0.025 0.05J S⃗⃗ =5sin(πx0.05)a y⃗⃗⃗⃗ 。

2-4 三根长度为l、电荷均匀分布、线密度分别为ρl1,ρl2和ρl3的线电荷构成的等边三角形,设ρl1=2ρl2=2ρl3,计算三角形中心处的电场。

解:E y⃗⃗⃗⃗ =ρh4πε0∫√(h2+x2)3l2−l2=4πεh√4h2+l2,由电荷密度关系可知:2|E1|=|E2|=|E3|,|E2|=2E,|E1|=E,|E3|=2E,因此,E1⃗⃗⃗⃗ +E2⃗⃗⃗⃗ +E3⃗⃗⃗⃗ =0。

2-5 两无限长的同轴圆柱壳面,半径为a 和b ,内外导体上均匀分布电荷,密度分别为ρS1,ρS2,求r <a ,a <r <b ,r >b 时各点的电场及两导体间的电压。

解:用高斯定理求E 。

做高斯面(闭合面), ∵轴对称∴高斯面为圆柱闭合面,为左图所示 ①E1(r <a ,内导体内) 设导体为理想导体,则E 1=0;②E2(a <r <b ,内导体与外导体之间圆柱空间)∵同轴无限长,∴圆柱侧面(高斯面)上E 2处处相等,且E只有ρ方向分量d 矢量为高斯封闭面的外法线n ds n s,=E 2·d s : 上下底面:E 2·d s =0(∵E 2⊥d s,cos90°=0) 侧面:E 2·d s =E 2·ds (∵E 2∥d s,cos 0°=1)10222222επρεπρalQlE dS E dS E S d E s S=====⋅∴⎰⎰⎰⎰⎰⎰侧侧∴ρρερˆ012aE s = ③3E( r >b ,外导体壳外)E 32πl ρ=212επρπρblal s s +∴3E =ρρερρˆ021ba s s + (2)两导体内电压ab Va ba d a d E d E l d E V sb a s b aba b a ab ln 10101ερρρερρρρρ===⋅=⋅=⎰⎰⎰⎰ 当r <a 时,E⃗ =0;当a <r <b 时,E ⃗ =ρS1a+ρS2brε0r ,U =∫E ⃗ ∙dr b a =(ρS1a +ρS2b )ε0ln ab 。

第二章习题解1

第二章习题解1

其中Δx为绝对误差;x为现有仪表的读数;A为 高精度仪表的读数
∆ x = x − A = ( 77 . 8 − 80 ) mA
= − 2 . 2 mA
C
= − ∆ x = 2 . 2 mA
∆x − 2.2 γ A = ×100% = ×100% = −2.75% A 80
∆x − 2.2 ×100% = −2.83% γ x = ×100% = x 77.8
实际相对误差为-2.75%;示值相对误差为-2.83%
∆x m 2 .2 γm = × 100% = × 100% = 2.2% 100 xm
在0.1、0.2、0.5、1.0、1.5、2.5、5.0七个等 级中只能是2.5级。 答:(1) –2.2mA,2.2mA,-2.83% (2) 2.5级 ■
U
Im
= 5 . 00 V
−3
I m = 1 × 10
A
5 . 00 U Im 3 = Ω = 5 × 10 Ω RI = −3 1 × 10 Im
测得值
Ux R′ = = RI + Rx x Ix
∆Rx = R′ − Rx = RI x
绝对误差 相对误差
∆Rx RI γ′ = = × 100 % R Rx Rx
± s2%
≤ 0 . 42 %
在0.1、0.2、0.5、1.0、1.5、2.5、5.0七个等 级中可以选0.2级,即
± s2%
= ± 0 .2 %
(3) 使用用量程为590V的电压表时
γ xm 3
xm 3 ∆x m 3 = × 100% = ± s3 % × x x
x
m 3
= 500
V
x = 250 |γ

物理化学 答案 第二章_习题解答

物理化学 答案 第二章_习题解答

=
(0.3 × 48.66 +
0.7 ×12) KJ·mol-1
=
23.0KJ·mol-1
B
∑ ∑ ∑ S
2-2 已知当 NaCl 溶液在 1kg 水中含物质的量为 n(单位为 mol)的 NaCl 时,体积 V 随 n 的变化关系为:
V/m3 = 1.00138×10-3 + 1.66253×10-5n/mol +1.7738×10-3(n/mol)3/2 + 1.194×10-7(n/mol)2
求当 n 为 2mol 时 H2O 和 NaCl 的偏摩尔体积为多少? 解:设水用“A”表示,NaCl 用“B”表示,由题意得:
1
⎜⎜⎝⎛
∂V ∂n B
⎟⎟⎠⎞ = 1.66253 ×10−5
+ 1.7738 ×10−3
×
3 2
1
× (n / mol) 2
+ 1.194 × 10−7
× 2(n / mol)
那么当 n=2 时,NaCl 的偏摩尔体积
VB
= 1.66253 × 10−5
+ 1.7738 × 10−3
×
3
×
2
1 2
mol·dm3 = 0.547mol·dm-3
bB
=
nB mA
=
wB M (1 − wB )
=
0.095 0.18 × (1 − 0.095)
mol·kg-1 = 0.583mol·kg-1
2-4 若将 25℃、101.325KPa 纯理想气体的状态定为气体的标准状态,则氧气的标准
熵 S1O =205.03J·K-1·mol-1,现改为 25℃、100Kpa 的纯理想气体作为气体的标准态,氧气

应用数值分析(第四版)课后习题答案第2章

应用数值分析(第四版)课后习题答案第2章

第二章习题解答1. ( 1) R n Xn中的子集“上三角阵”和“正交矩阵”对矩阵乘法是封闭的。

(2)R n Xn中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是封闭的。

-1设A是nXn的正交矩阵。

证明A也是nXn的正交矩阵。

证明:⑴证明:A为上三角阵,B为上三角阵,A, B R n na ij 0(i j ),b ij 0(i j)nC AB 则G j a ik b kj, C j 0(i j)k1上三角阵对矩阵乘法封闭。

以下证明:A为正交矩阵,B为正交矩阵,A,B R n nAA T A T A E,BB T B T B E(AB)((AB)T) ABB T A T E,( AB)T(AB) B T A T AB EAB为正交矩阵,故正交矩阵对矩阵乘法封闭。

(2) A是nXn的正交矩阵A A-1 =A-1A=E 故(A-1) -1 =AA-1(A1) -1= (A-1) -1A-1 =E 故A-1也是nXn 的正交矩阵。

设A是非奇异的对称阵,证A也是非奇异的对称阵。

A非奇异.A可逆且A-1非奇异又A T=A .( A-1)T=( A T)-1=A-1故A-1也是非奇异的对称阵设 A 是单位上(下)三角阵。

证A-1也是单位上(下)三角阵。

-1证明:A是单位上三角阵,故|A|=1 ,.A可逆,即A存在,记为(b ij ) n Xnn由 A A =E,则a j b jk ik (其中a ij 0 j >i 时,1)j1故b nn=1, b ni=0 (n 丰 j)类似可得,b ii =1 (j=1 …n) b jk=0 (k > j)即A-1是单位上三角阵综上所述可得。

F t Xn中的子集“正交矩阵”,“非奇异的对称阵”和“单位上(下)三角阵”对矩阵求逆是封闭的。

2、试求齐次线行方程组Ax=0 的基础解系。

1 21 41A= 0 11 000 01 4512 1 411 2 1 41 解 : A=1 1 01 0 450 1451451 2 0 0 410 08 140 1 0 4 5 -14 514514581445故齐次线行方程组 Ax=0的基础解系为14, 2510 013. 求以下矩阵的特征值和特征向量。

信号与系统课后答案 第2章 习题解

信号与系统课后答案 第2章 习题解

第2章 习 题2-1 求下列齐次微分方程在给定起始状态条件下的零输入响应(1)0)(2)(3)(22=++t y t y dt d t y dt d ;给定:2)0(,3)0(==--y dt dy ; (2)0)(4)(22=+t y t y dt d ;给定:1)0(,1)0(==--y dtd y ;(3)0)(2)(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dt dy ; (4)0)()(2)(22=++t y t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy ; (5)0)()(2)(2233=++t y dt d t y dt d t y dt d ;给定:2)0(,1)0(,1)0(22===---y dt d y dt d y 。

(6)0)(4)(22=+t y dt d t y dt d ;给定:2)0(,1)0(==--y dtdy 。

解:(1)微分方程的特征方程为:2320λλ++=,解得特征根:121, 2.λλ=-=- 因此该方程的齐次解为:2()t th y t Ae Be --=+.由(0)3,(0)2dy y dt--==得:3,2 2.A B A B +=--=解得:8, 5.A B ==- 所以此齐次方程的零输入响应为:2()85tty t e e--=-.(2)微分方程的特征方程为:240λ+=,解得特征根:1,22i λ=±.因此该方程的齐次解为:()cos(2)sin(2)h y t A t B t =+.由(0)1,(0)1d y y dx --==得:1A =,21B =,解得:11,2A B ==. 所以此齐次方程的零输入响应为:1()cos(2)sin(2)2y t t t =+.(3)微分方程的特征方程为:2220λλ++=,解得特征根:1,21i λ=-± 因此该方程的齐次解为:()(cos()sin())th y t e A t B t -=+.由(0)1,(0)2dy y dx--==得:1,2,A B A =-= 解得:1,3A B ==.所以齐次方程的零输入响应为:()(cos()3sin())ty t e t t -=+.(4)微分方程的特征方程为:2210λλ++=,解得二重根:1,21λ=-.因此该方程的齐次解为:()()th y t At B e -=+. 由(0)1,(0)2dy y dx--==得:1,2,B A B =-=解得:3, 1.A B == 所以该方程的零输入响应为:()(31)ty t t e -=+.(5)微分方程的特征方程为:3220λλλ++=,解得特征根: 1,21λ=-,30λ=. 因此该方程的齐次解为:()()th y t A Bt C e -=++.由22(0)1,(0)1,(0)2d d y y y dx dt---===得:1,1,22A C B C C B +=-=-=. 解得:5,3,4A B C ==-=-.所以方程的零输入响应为:()5(34)ty t t e -=-+.(6)微分方程的特征方程为:240λλ+=,解得特征根:120,4λλ==-. 因此该方程的齐次解为:4()th y t A Be -=+.由(0)1,(0)2d y y dx --==得:1,42A B B +=-=.解得:31,22A B ==-. 所以此齐次方程的零输入响应为:431()22ty t e -=-.2-2 已知系统的微分方程和激励信号,求系统的零状态响应。

第2章习题参考答案

第2章习题参考答案

R12 (Rab // 8 Rbc //12) //(Rac //10) 4
(b) R12 (10 // 14) //(6 // 12 8) 3.92 5. 对图 x2.5 所示电桥电路, 应用 Y 等效变换求: (1) 对角线电压 U ; (2) 电压 U ab 。

A 为 0。因为已经被短路掉,没有电流。
2. 电路如图 x2.2 所示,求电压 U 12 以及电流表 A1 和 A2 的读数。
解:如图 x2.2a 所示: R12 20 // 20 10 , R13 4 // 6 2.4
i2
30 0.97 A , i1 i2 0.5 0.48 A 31
解: R12 4 得到 R1
R13 6
R23 10
R2 R12 R23 2 R12 R23 R13
R13 R12 6 R12 R23 R13 5 R23 R13 3 R12 R23 R13
R3
3 2 U 5 3 5 2 5V 5 5
A. U S 40V 的理想电压源 B. I S 4A 的理想电流源 C. U S 0.4V 的理想电压源与 R 10 的电阻相并联的电路 D. U S 40V 的理想电压源与 R 10 的电阻相并联的电路 3.有 3 个电阻相并联,已知 R1 2,R2 3,R3 6 。在 3 个并联电阻的两端 外加电流 I S 18A 的电流源,则对应各电阻中的电流值分别为( A. I R1 3A, I R 2 6A,I R 3 9A C. I R1 6A,I R 2 9A,I R 3 3A B ) 。
U ab (
24 6 24) 5 150V 5 5

微积分课后题答案第二章习题详解

微积分课后题答案第二章习题详解
解:函数在其第二类间断点处的左、右极限不一定均不存在.
例如是其的一个第二类间断点,但即在处左极限存在,而,即在处右极限不存在.
4.求下列函数的间断点,并说明间断点的类型:
(1) f(x)= ;(2) f(x)=;
(3) f(x)= ;(4) f(x)= ;
(5) f(x)= .
解: (1)由得x=-1, x=-2
证:
,由极限的保号性知.
,使当时有,此时与同号,因为n为奇数,所以(2X)n与(-2X)n异号,于是与异号,以在上连续,由零点存在定理,至少存在一点,使,即至少有一实根.
(7)正确,见教材§2.3定理5;
(8)错误,只有非零的无穷小量的倒数才是无穷大量。零是无穷小量,但其倒数无意义。
3. 指出下列函数哪些是该极限过程中的无穷小量,哪些是该极限过程中的无穷大量.
(1) f(x)= ,x→2;(2) f(x)=lnx,x→0+,x→1,x→+∞;
(3) f(x)= ,x→0+,x→0-;(4) f(x)= -arctanx,x→+∞;
也即,所以当时,.
再证必要性:
若当时,,则,
所以==.
综上所述,当x→x0时,(x)~β(x)的充要条件是
=0.
2. 若β(x)≠0,β(x)=0且存在,证明(x)=0.
证:
即.
3. 证明: 若当x→0时,f(x)=o(xa),g(x)=o(xb),则f(x)·g(x)=o(),其中a,b都大于0,并由此判断当x→0时,tanx-sinx是x的几阶无穷小量.
解: ∵f(0)=a,
要f(x)在x=0处连续,必须.
即a=1.
6※.设f(x)= ,讨论f(x)的连续性.

《材料力学》第2章 轴向拉(压)变形 习题解讲解

《材料力学》第2章 轴向拉(压)变形 习题解讲解

第二章轴向拉(压变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。

(b)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。

(c)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。

(d)解:(1)求指定截面上的轴力(2)作轴力图中间段的轴力方程为:轴力图如图所示。

[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力[习题2-4] 图示一混合屋架结构的计算简图。

屋架的上弦用钢筋混凝土制成。

下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个的等边角钢。

已知屋面承受集度为的竖直均布荷载。

试求拉杆AE和EC横截面上的应力。

解:(1)求支座反力由结构的对称性可知:(2)求AE和EG杆的轴力①用假想的垂直截面把C铰和EG杆同时切断,取左部分为研究对象,其受力图如图所示。

由平衡条件可知:②以C节点为研究对象,其受力图如图所示。

由平平衡条件可得:(3)求拉杆AE和EG横截面上的应力查型钢表得单个等边角钢的面积为:[习题2-5] 石砌桥墩的墩身高,其横截面面尺寸如图所示。

荷载,材料的密度,试求墩身底部横截面上的压应力。

解:墩身底面的轴力为:墩身底面积:因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。

[习题2-6]图示拉杆承受轴向拉力,杆的横截面面积。

如以表示斜截面与横截面的夹角,试求当时各斜截面上的正应力和切应力,并用图表示其方向。

解:斜截面上的正应力与切应力的公式为:式中,,把的数值代入以上二式得:轴向拉/压杆斜截面上的应力计算题目编号10000 100 0 100 100.0 0.0 习题2-6100 30 100 75.0 43.310000100 45 100 50.0 50.010000100 60 100 25.0 43.310000100 90 100 0.0 0.010000[习题2-7]一根等直杆受力如图所示。

电工与电子技术第二章习题祥解(陶桓齐)华中科技大学出版社

电工与电子技术第二章习题祥解(陶桓齐)华中科技大学出版社

第2章习题解答2-1 试用电压源与电流源等效变换的方法计算题图2-1中8Ω电阻两端的电压U cd 。

解:根据题目的要求,应将题图2-111 将题图3Ω电阻可以直接合并为4Ω电阻;将解题图11(a)所示电路中10A 2Ω电阻,作为10A 电流源的内阻;注意:(1)在多个电源共同作用的电路中,欲进行电源合并化简时,并联的电压源不能直接合并,而串联的电流源也不能直接合并;(2)待求电压U cd 是8Ω电阻上的电压降,因此,在等效变换过程中一定要保留该电阻不被变换掉,否则,将无法计算U cd ;(3)在两种电源的等效变换过程中,理想电流源电流的方向(即箭头)应和理想电压源电压的极性(即+极性)对应;(4)回路中多段电压求和时,一定要遵照基尔霍夫第二定律进行运算,否则容易出错。

2-2 试用电压源与电流源等效变换的方法计算题图2-2中3Ω电阻中的电流I 。

题题2-1 -+cd U-+cd U 解题图11(a)-+cdU 解题图11(b) -+cd题题2-2解题图12(a)解题图12(i)解题图12(j)解:根据题目的要求,应用两种电源的等效变换法,将题图2-2所示电路按照解题图12所示的变换顺序,最后化简为解题图12(j)所示的电路,电流I 为A 2.0822I =+=注意:(1) 一般情况下,与理想电流源串联的电阻可视为短路、而与理想电压源并联的电阻可视为开路。

故题图2-2所示电路最左边支路中的2Ω电阻可视为0;(2)在变换过程中,一定要保留待求电流I 的支路不被变换掉;(3)根据电路的结构,应按照a-b 、c-d 、e-f 的顺序化简,比较合理。

2-3 计算题图2-3中1Ω电阻上的电压U ab 。

V题题2-3Ω解题图13(b)ΩΩ解题图13(e)13的顺序化简,将题图2-3所示U ab 为2-4 试用电压源与电流源等效变换的方法计算题图2-4中2Ω电阻中的电流I 。

36题题2-4解题图14(a)解: A 122228I =++-=2-5 应用支路电流法计算题图2-5所示电路中的各支路电流。

《电工与电子技术基础》第2章正弦交流电路习题解答

《电工与电子技术基础》第2章正弦交流电路习题解答

67
(1)i= u Z
(2)I= U R + XC
(3)
I
=
R
U − jωC
(4)I= U Z
(7) I = − j U ωC
(5)U=UR+UC
(8)
I
=
j
U ωC
(6)U =UR + UC
解:在
R、C
串联电路中,总阻抗 Z
=
R

j
X
C
=
R

j
1 ωc
而 Z=
R2
+
X
2 C
I = U Z
L = XL =
8
= 25.5 (mH)
2πf 2 × 3.14 × 50
2.10 题 2.10 图中,U1=40V,U2=30V,i=10sin314t A,则 U 为多少?写出其瞬时值表 达式。
解:由电路图可知,电压 u1 与电流 i 同方向,而电压 u2 超前电流 i90º,所以
U=
U12
+
U
2.2 两个频率相同的正弦交流电流,它们的有效值是 I1=8A,I2=6A,求在下面各种情况 下,合成电流的有效值。
(1)i1 与 i2 同相。 (2)i1 与 i2 反相。 (3)i1 超前 i2 90º角度。 (4)i1 滞后 i2 60º角度。
解:(1) I = I1 + I2 = 8 + 6 = 14 (A)
− j4 2 − j2
=
2+
2j
+
− j4(2 + j2) (2 − j2)(2 + j2)
=3+
j (Ω)

第二章课后习题

第二章课后习题

第二章课后习题2.2:假设一副充分洗乱了的扑克牌(含52张牌),(1)任一特定排列所给出的信息量是多少?(2)若从中抽取13张牌,所给出的信息量是多少?解:(1)任一特定排列所给出的信息量为事件A ;52张扑克牌的排列方式有A 5252,则牌P ()a =!521;即任一特定的信息量是I a )(=-㏒52!; (2)若从中抽取13张则其概率为P=1352134C ; 即其信息量为a I =-㏒1352134C ; 2.3:居住某地区的女孩子有25%是大学生,在女大学生中有75%是身高160CM 一上的,而女孩子中身高160cm 以上的占总数的一半。

假如我们得知“身高160cm 以上的某女生是大学生”的消息,问获得多少信息量?解:设某地区的女孩子是大学生为A 事件:则)(A P =0.25; 女孩中身高160cm 以上的为B 事件:则)(B P =0.5;且P(B/A)=0.75,则P(A/B)=)()(B P AB P =)()/()(B P A B P A P ∙=0.375; 则已知该事件获得的信息量为:I=㏒0.375= 1.415比特。

2.4:设离散无记忆信源⎪⎪⎭⎫ ⎝⎛)(X P X =⎭⎬⎫⎩⎨⎧8/14/14/18/34321a a a a ,其发出的消息为(202120130213001203210110321010021032011223210),求(1)此消息的自信息量是多少?(2)在此消息中平均每个符号携带的信息量是多少?解:信源无记忆,所以各消息之间相互独立,根据已知条件发出个消息所包含的信息量分别为:I(00=a )=㏒38=1.415比特 I(11=a )=㏒4=2比特I(22=a )=㏒4=2比特I(33=a )=㏒8=3比特得“0”共有14个,“1”有13个,“2”有12个,“3”有6个;得到的消息为I=14×1. 415+13×2+12×2+6×3≈87.81比特;(2)每个符号携带的信息量:I=4581.87=1.95比特/符号。

电力电子变流技术课后答案第2章

电力电子变流技术课后答案第2章

第二章 单相可控整流电路习题与思考题解2-1.什么是整流它是利用半导体二极管和晶闸管的哪些特性来实现的解:整流电路是一种AC /DC 变换电路,即将交流电能变换为直流电能的电路,它是利用半导体二极管的单向导电性和晶闸管是半控型器件的特性来实现的。

2-2.某一电热装置(电阻性负载),要求直流平均电压为75V ,电流为20A ,采用单相半波可控整流电路直接从220V 交流电网供电。

计算晶闸管的控制角α、导通角θ、负载电流有效值,并选择晶闸管。

解:(1)整流输出平均电压Ud =⎰παωωπ22).(.sin 221t td U =⎰παωωπ).(.sin 2212t td U=2cos 145.02cos 1222ααπ+≈⎪⎭⎫⎝⎛+U U cos α=5152.0122045.0752145.022=-⨯⨯=-U U d则 控制角α≈60° 导通角θ=π-α=120° (2).负载电流平均值I d =RU d=20(A) 则 R =U d /I d =75/20=Ω 负载电流有效值I ,即为晶闸管电流有效值I V1,所以I =I V1=()⎰⎪⎪⎭⎫ ⎝⎛παωωπt d t R U 22sin 221=παπαπ22sin 412-+R U =(A) (3).当不考虑安全裕量时I V1=k fe I VEAR = 则晶闸管通态平均电流 I VEAR =I V1 /= /=(A) 晶闸管可能承受的最大正反向电压为 311220222≈⨯=U (V)所以,可选择额定通态平均电流为30A 、额定电压为400V 的晶闸管。

按裕量系数2,可选择额定通态平均电流为50A 、额定电压为700V 的晶闸管。

2-3.带有续流二极管的单相半波可控整流电路,大电感负载保证电流连续。

试证明输出整流电压平均值2cos 122απ+=U U d ,并画出控制角为α时的输出整流电压u d 、晶闸管承受电压u V1的波形。

结构力学第2章习题及参考答案

结构力学第2章习题及参考答案

M
0 K
FAy
5
1 20 52 2
510 kNm
FQ0K FAy 20 5 52 kN
(3)求三铰拱 K 截面内力。
yK
4 fx(l x) l2
3 m , tanK
yK
4 f (l 2x) l2
2 5
sin K
2 22 522 29来自, cosK5 22 52
5 29
MK
M
0 K
FH yK
510 130 3 120
kN
m
FQK FQ0K cosK FH sinK 52
5 130 29
2 0 29
FNK FN0K sinK FH cosK 52
2 130 29
5 140 kN 29
2-12 图示圆弧三饺拱,求支座反力及截面 D 的 M 、FQ 、FN 值。 20kN/m
5kN

FN1x
A
25kN
D Ⅰ FN2y
FN2x FN2
(b)
ⅡC
FN3

B 10kN
(c)
解 (1)求支座反力 FAx 0 , FBy 10 kN , FAy 25kN
(2)求指定杆轴力 Ⅰ—Ⅰ截面(图(b))
MD 0 , FN1x 30kN , FN1
5 2
FN1x
15
5 kN
M A 0 , FN2y 5kN , FN2
由对称性得
FNAC FN2 30 2 kN , FN1 30 kN
FNBE FN1 30 kN 由 E 结点的平衡条件,得
FN3 15 2 kN
3m 3m 3m 1.5m 1.5m
2-9 选用较简捷的方法计算图示桁架中指定杆的轴力。

高等数学第二章习题详细解答答案

高等数学第二章习题详细解答答案

1 ⎧ 2 1 ⎪ x sin , x ≠ 0 (2)∵ y = ⎨ ,而 lim y = lim x 2 sin = 0 = y x = 0 ,所以函数在 x = 0 处连续 x x →0 x →0 x ⎪ x=0 ⎩ 0,
1 x = 0 ,所以函数在 x = 0 点处可导. 而 lim x →0 x−0 x 2 sin
−2 sin cos (x + Δx) − cos x 3.解: ( cos x)′ = lim = lim Δx → 0 Δx →0 Δx Δx sin 2 x + Δx 2 = − sin x = - lim sin ⋅ lim Δx → 0 Δx → 0 Δx 2 2
4. 解:(1)不能,(1)与 f ( x ) 在 x0 的取值无关,当然也就与 f ( x ) 在 x0 是否连续无关, 故是 f ′( x0 ) 存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价. 5. 解:(1) 5 x
9 −1 = 4 ,而 y′ = (x 2 )′ = 2 x ,令 2 x = 4 , 3 −1
得: x = 2 ,所以该抛物线上过点 (2, 4) 的切线平行于此割线. 10.解:(1)连续,但因为
f (0+ h )− f (0 ) = h
因而 lim
h→0
3
h −0 1 = 2/ 3 h h
f (0 + h) − f (0) 1 = lim 2 / 3 = +∞ ,即导数为无穷大。 → h 0 h h
∴ f +′(0) ≠ f −′(0) = −1 ,所以 f ′(0) 不存在.
13. 解 : 当 x > 0 时 , f ( x) = x 是 初 等 函 数 , 所 以 f ′( x) = 3 x ; 同 理 , 当 x < 0 时

第二章 课后习题解答

第二章 课后习题解答

13.在生产者—消费者问题中,如果两个 .在生产者 消费者问题中 如果两个wait操 消费者问题中, 操 作即wait(mutex)和wait(empty)位置互换, 位置互换, 作即 和 位置互换 会产生什么后果? 会产生什么后果? 解答】如果两个wait操作即 操作即wait(mutex)和 【解答】如果两个 操作即 和 wait(empty)位置互换,则有可能产生死锁。 位置互换, 位置互换 则有可能产生死锁。
6
10.在创建一个进程时,所要做的工作有 .在创建一个进程时, 哪些? 哪些? 解答】 【解答】操作系统通过进程创建原语来创 建一个进程。 建一个进程。创建原语通过下述步骤创建 一个进程: 一个进程: (1)申请空白 )申请空白PCB。 。 (2)为新进程分配资源。 )为新进程分配资源。 (3)初始化进程控制块。 )初始化进程控制块。 (4)将新建进程插入就绪态队列。 )将新建进程插入就绪态队列。
8
第2章 进程管理 章
12.在生产者—消费者问题中,如果缺少了 .在生产者 消费者问题中 消费者问题中, signal(full)或signal(empty),对执行结果将 或 , 会有何影响? 会有何影响? 【解答】若缺少释放资源的原语操作,则会导致生产者或 解答】若缺少释放资源的原语操作,
消费者进程不能再继续工作。 消费者进程不能再继续工作。 如缺少了signal(full),则消费者进程可能得不到所需的临 如缺少了 , 界资源如缓冲区,不能取一件产品;同样,如果缺少signal 界资源如缓冲区,不能取一件产品;同样,如果缺少 empty),则生产者进程又可能得不到所需的资源, ),则生产者进程又可能得不到所需的资源 (empty),则生产者进程又可能得不到所需的资源,不 能存放一件产品。 能存放一件产品。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题一、单项选择题1.A 2.C 3.B 4.C 5.A 6.B 7.B 8.B 9.C 10.C二、填空1、关系中主码的取值必须惟一且非空,这条规则是实体完整性规则。

2、关系代数中专门的关系运算包括:选择、投影、连接和除法,主要实现查询类操作。

3、关系数据库的关系演算语言是以谓词演算为基础的DML语言。

4、关系数据库中,关系称为表,元组亦称为行,属性亦称为列。

5、数据库描述语言的作用是定义数据库。

6、一个关系模式可以形式化地表示为R(U,D,dom,F)。

7、关系数据库操作的特点是一次一集合式操作。

8.数据库的所有关系模式的集合构成关系数据库模型,所有的关系集合构成关系数据库。

9、在关系数据模型中,两个关系R1与R2之间存在1:m的联系,可以通过在一个关系R2中的外键或外码或外部关键字在相关联的另一个关系R1中检索相对应的记录。

10、将两个关系中满足一定条件的元组连接到一起构成新表的操作称为θ-连接操作。

三、简单、计算或查询1、试述关系模型的三要素内容。

解:(1)关系模型的数据结构——关系关系模型的数据结构:非常单一,在用户看来,关系模型中数据的逻辑结构是一张二维表。

但关系模型的这种简单的数据结构能够表达丰富的语义,描述出现实世界的实体以及实体间的各种联系。

(2)关系模型的关系操作:关系模型给出了关系操作的能力,它利用基于数学的方法来表达关系操作,关系模型给出的关系操作往往不针对具体的RDBMS语言来表述。

关系模型中常用的关系操作包括:选择(select)、投影(project)、连接(join)、除(divide)、并(union)、交(intersection)、差(difference)等查询(query)操作和添加(insert)、删除(delete)、修改(update)等更新操作两大部分。

查询的表达能力是其中最主要的部分。

早期的关系操作能力通常用代数方式或逻辑方式来表示,分别称为关系代数和关系演算。

关系代数是用对关系的运算(即元组的集合运行)来表达查询要求的方式。

关系演算是用谓词来表达查询要求的方式。

关系演算又可按谓词变元的基本对象是元组变量还是域变量分为元组关系演算和域关系演算。

关系代数、元组关系演算和域关系演算三种语言在表达功能上是等价的。

另外还有一种介于关系代数和关系演算之间的语言SQL(Structured Query Language)。

SQL不但具有丰富的查询功能,而且具有数据定义、数据操纵和数据控制功能,是集查询、DDL、DML、DCL于一体的关系数据语言。

它充分体现了关系数据语言的特点和优点,是关系数据库的国际标准语言。

因此,关系数据语言可以分成三类:1) 关系代数:用对关系的集合运算表达查询要求,例如 ISBL。

2) 关系演算:用谓词表达查询要求,可分为两类:①元组关系演算:谓词变元的基本对象是元组变量,例如 APLHA、QUEL;②域关系演算:谓词变元的基本对象是域变量,例如QBE。

3) 关系数据语言,例如SQL。

这些关系数据语言的共同特点是:语言具有完备的表达能力,是非过程化的集合操作语言,功能强,能够嵌入到高级语言中使用。

(3)关系模型的三类完整性约束:关系模型提供了丰富的完整性控制机制,允许定义三类完整性:实体完整性、参照完整性和用户自定义的完整性。

其中实体完整性和参照完整性是关系模型必须满足的完整性约束条件,应该由关系系统自动支持。

用户自定义的完整性是应用领域特殊要求而需要遵循的约束条件,体现了具体领域中的语义约束。

2、试述关系数据库语言的特点和分类。

解:见上题“2)关系模型的关系操作”。

3、定义并理解下列概念,说明它们间的联系与区别:(1)域、笛卡尔积、关系、元组、属性(2)主码、候选码、外码(3)关系模式、关系、关系数据库解:(1)域、笛卡尔积、关系、元组、属性1)域:域是一组具有相同数据类型的值的集合。

2)笛卡尔积:给定一组域D1、D2、…、Dn(这些域中可以包含相同的元素,即可以完全不同,也可以部分或全部相同), D1、D2、…、Dn的笛卡尔积为D 1×D2×…×Dn={(d1,d2,…,dn)|di∈Di,i=1,2,…,n}3)关系(Relation):D1×D2×…×Dn的任一子集叫作在域D1,D2,…Dn上的关系,用R(D1,D2,…Dn)表示。

关系是笛卡尔积的子集,反过来说,看到某关系,也要看到该关系背后存在的其所属于的笛卡尔积,关系内容无论如何变都变化不出其所属于的笛卡尔积的,这是笛卡尔积概念的意义所在。

4)表的每行对应一个元组。

5)表的每列起一个唯一的名字,称为属性。

联系:关系是笛卡尔积的子集,所以关系也是一个二维表,表的每行对应一个元组,表的每列对应一个域。

由于域可以相同,为了加以区分,必须对每列起一个唯一的名字,称为属性。

(2)主码、候选码、外码1)候选码:若关系中的某一属性组的值能唯一地标识一个元组,则称该属性组为候选码(Candidate key),关系至少含有一个候选码。

2)主码:一个关系至少有一个候选码,则选定其中一个为主控使用者,称为主码(Primary key)。

3)外码:设F是基本关系R的一个或一组属性,但不是关系R的码,如果F与基本关系S的主码K s相对应,则称F是基本关系R的外码(Foreign key)。

联系:关系的候选码中选定一个称为主码,主码即是候选码;而外码是与另一关系的主码相对应的属性组。

(3)关系模式、关系、关系数据库关系数据库中,关系模式是型,关系是值。

关系模式是对关系的描述,一个关系模式应当是一个5元组。

1)关系模式:关系的描述称为关系模式(Relation Schema)。

一个关系模式应当是一个五元组。

它可以形式化地表示为:R(U, D, dom, F)。

其中R为关系名,U为组成该关系的属性名集合,D为属性组U中属性所来自的域的集合,dom为属性向域的映象集合,F为属性间数据的依赖关系集合。

2)关系:关系实际上就是关系模式在某一时刻的状态或内容。

也就是说,关系模式是型,关系是它的值。

3)关系数据库:在关系模型中,实体以及实体间的联系都是用关系来表示。

在一个给定的现实世界领域中,所有实体及实体之间的联系的关系的集合构成一个关系数据库。

联系:关系模式是静态的、稳定的,而关系是动态的、随时间不断变化的,因为关系操作在不断地更新着数据库中的数据。

但在实际使用中,常常把关系模式和关系统称为关系,读者可以从上下文中加以区别。

关系的集合构成一个关系数据库,关系数据库也有型和值之分。

关系数据库的型也称为关系数据库模式,是对关系数据库的描述,是关系模式的集合。

关系数据库的值也称为关系数据库,是关系的集合。

关系数据库模式与关系数据库通常统称为关系数据库。

4、关系数据库的完整性规则有哪些?试举例说明。

解:1)关系模型的完整性规则是对关系的某种约束条件。

关系模型中可以有三类完整性约束:实体完整性、参照完整性和用户定义的完整性。

2)(1)实体完整性:若属性组(或属性)K是基本关系R的主码(或称主关键字),则所有元组K的取值唯一,并且K中属性不能全部或部分取空值。

例如:在课程关系T中,若“课程名”属性为主码,则“课程名”属性不能取空值,并且课程名要唯一。

(2)参照完整性:若属性(或属性组)F是基本关系R的外码,它与基本关系S的主码K s相对应(基本关系R和S可能是相同的关系),则对于R中每个元组在F上的值必须为:或者取空值(F的每个属性值均为空值);或者等于S中某个元组的主码值。

例如,对于“学生(学号,姓名,性别,年龄,系别号)、系别(系别号,系名)”两关系,“系别号”为学生关系的外码。

它要满足参照完整性。

对于学生关系中的每个元组的“系别号”属性只能取下面两类值:空值,表示尚未给该学生分配系别;非空值,则该值必须是系别关系中某个元组的“系别号”的值,表示该学生不可能分配到一个不存在的系中,即被参照关系“系别”中一定存在一个元组,它的主码值等于该参照关系“学生”中的外码值。

(3)用户定义的完整性:用户定义的完整性就是针对某一具体应用的关系数据库所制定的约束条件,它反映某一具体应用所涉及的数据必须满足的语义要求。

例如,对于学生关系中的年龄,我们可以按需要定义“年龄>8并且年龄<45”的自定义规则。

5、关系代数运算有哪两大类,试说明每种运算的操作含义。

解:1)关系代数的运算按运算符的不同主要分为传统的集合运算和专门的关系运算两类。

(1)传统的集合运算:包括并、交、差、广义笛卡尔积四种运算。

(2)专门的关系运算:包括选择、投影、连接、除等。

2)各运算的操作含义(1)并:设关系R和关系S具有相同的目n,且相应的属性取自同一个域,则关系R与关系S的并由属于R或属于S的所有元组组成。

记作:R∪S={t|t∈R∨t∈S}(2)差:设关系R和关系S具有相同的目n,且相应的属性取自同一个域,则关系R与关系S的差由属于R而不属于S的所有元组组成。

记作:R-S={t| t∈R∧t∉S }(3)交:设关系R和关系S具有相同的目n,且相应的属性取自同一个域,则关系R与关系S的交由既属于R又属于S的所有元组组成。

记作:R∩S={t| t∈R∧t∈S}(4)广义笛卡尔积:两个分别为n目和m目的关系R和S的广义笛卡尔积是一个(n+m)列的元组的集合。

元组的前n列是关系R的一个元组,后m列是关系S的一个元组。

若R有k1个元组,S有k2个元组,则关系R和关系S的广义笛卡尔积有k1×k2个元组。

记作:R×S={tr ts| tr∈R∧ts∈S}(5)选择:选择又称为限制(Restriction)。

它是在关系R中选择满足给定条件的诸元组,记作:σF(R) = {t|t∈R∧F(t)=“真”}(6)投影:关系R上的投影是从R中选择出若干属性列组成新的关系。

记作:︵∏A (R) = { t[A] | t ∈R }(7)连接:连接也称为θ连接。

它是从两个关系的广义笛卡尔积中选取属性间满足一定条件的元组。

记作:S R BA ∞θ={ t r t s |t r ∈R ∧t s ∈S ∧t r [A]θt s [B] }θ为”=”的连接运算称为等值连接。

它是从关系R 与S 的广义笛卡尔积中选取A 、B 属性值相等的那些元组。

等值连接表示为:SR BA ∞=={ t r t s |r t ∈R ∧t s ∈S ∧t r [A]=t s [B]}。

为此:SR BA ∞==σA=B (R×S )自然连接(Natural join )是一种特殊的等值连接,它要求两个关系中进行比较的分量必须是相同的属性组,并且要在结果中把重复的属性去掉。

相关文档
最新文档