平行公理及推论 考点训练(含答案解析)
平行线定理平行线公理练习题(附答案)
![平行线定理平行线公理练习题(附答案)](https://img.taocdn.com/s3/m/60cdd5ce14791711cd7917b2.png)
平行线定理平行线公理练习题一、单选题1 .在△ABC 中,NA 是钝角,下列图形中,正确画出8C 边上的高的是()2 .如图,AABC 中.AD 是8C 边上的高,BF 分别是® C ZABC 的平分线,ZBAC = 50o,ZA8C = 6()o4iJZE4D + ZA8 = ()A.75°B.80°C.85°D.90° 3 .已知正多边形的一个外角为36° ,则该正多边形的边数为()A.12B.10C.8D.64•在下列长度的三条线段中,不能组成三角形的是()A. 2 cni3 cm 4 cmB.3 cm 6 cm 6 cmC. 2 cm2cni6cm 5 .一个四边形截去一个角后,可以变成()A.三角形B.四边形 C 五边形 6 .如图,已知△ABC,点D 在3C 的延长线上.NACO = 140。
,々 = 50。
,则Z4的度数为()A.50°B.140°7,下列图形不具有稳定性的是() D.5cni6cnL7cmD.以上都有可能 01200 D.90°8 .如图,在中,CD平分NAC3交/W于点D,过点D作OE/8C交AC于点E ,若/4 = 54。
,々=46。
,则/。
石的度数为()A.45°B.40°C.39°D.35°9,给出下列说法:①等边三角形是等腰三角形:②三角形按边的相等关系分类可分为等腰三角形、等边三角形和三边都不相等的三角形;③三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中正确的有()A.0个B.1个C.2个D.3个10.若一个三角形三个内角度数的比为2:3:4,则这个三角形是()A.直角三角形 B ,等边三角形 C .钝角三角形 D.锐角三角形二、解答题11.如图,在Rt△ABC中4cB = 90°. ZA = 40。
(完整版)平行线及其判定与性质练习题
![(完整版)平行线及其判定与性质练习题](https://img.taocdn.com/s3/m/9c5d49064693daef5ff73de9.png)
平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。
(______,________)(3)如果∠2+∠1=180°,那么_____。
(________,______)(4)如果∠5=∠3,那么_______。
(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。
(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。
(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。
七年级下册知识点《平行公理及推论150题含解析》
![七年级下册知识点《平行公理及推论150题含解析》](https://img.taocdn.com/s3/m/c2e68629f01dc281e53af0bd.png)
七年级下册知识点《平行公理及推论150题含解析》一、选择题(本大题共58小题,共174.0分)1.下列说法中正确的个数有两点之间的所有连线中,线段最短;过一点有且只有一条直线与已知直线垂直;平行于同一直线的两条直线互相平行;直线外一点到这条直线的垂线段叫做点到直线的距离.A. 4个B. 3个C. 2个D. 1个【答案】C【解析】【分析】本题考查了直线、线段的性质,点到直线的距离,两点间的距离的定义,是基础题,熟记性质与概念是解题的关键.根据直线的性质,两点间的距离的定义,线段的性质以及直线的表示对各小题分析判断即可得解.【解答】解:①两点之间的所有连线中,线段最短,正确;②过平面上的一点有且只有一条直线与已知直线垂直,故本命题错误;③平行于同一直线的两条直线互相平行,正确;④直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本命题错误;综上所述,正确的有①,③共2个.故选C.2.下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)同旁内角互补;(3)相等的角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)经过直线外一点,有且只有一条直线与已知直线平行.A. 2个B. 3个C. 4个D. 5个【答案】A【解析】【分析】本题考查了平行线的定义、平行线的性质、平行公理等内容,侧重基础知识,值得关注.(1)根据平行线的定义解答;(2)根据平行线的性质解答;(3)根据对顶角的定义解答;(4)根据点到直线的距离的定义解答;(5)根据平行公理解答.【解答】解:(1)符合平行线的定义,故本选项正确;(2)应为“两直线平行,同旁内角互补”,故本选项错误;(3)相等的角是指度数相等的角,未必为对顶角,故本选项错误;(4)应为“从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离”故本选项错误;(5)这是平行公理,故本选项正确;故选A.3.下列说法中正确的个数()①不相交的两条直线是平行线;②过一点有且只有一条直线与已知直线平行;③平行于同一直线的两直线平行;④同旁内角相等,两直线平行.A. 1B. 2C. 3D. 4【答案】A【解析】解:①在同一平面内,不相交的两条直线叫做平行线,故原命题错误;②应为过直线外一点可以而且只可以画一条直线与已知直线平行,故命题错误;③平行于同一直线的两直线平行;命题正确;④应同旁内角互补,两直线平行,故原命题错误.所以正确的有一个.故选:A.根据平行线的定义,平行公理以及平行线与线段的区别对各小题分析判断后利用排除法求解.本题主要考查了平行线的定义及平行公理,都是基础知识,需要熟练记忆.4.已知在同一平面内,有三条直线a,b,c,若a∥b,b∥c,则直线a与直线c之间的位置关系是()A. 相交B. 平行C. 垂直D. 平行或相交【答案】B【解析】解:∵在同一平面内,直线a∥b,直线b∥c,∴直线c与直线a的位置关系是:a∥c.故选:B.根据平行公理的推论直接判断直线c与直线a的位置关系即可.此题主要考查了平行公理的推论,熟练记忆推论内容是解题关键.5.在下列命题中,为真命题的是()A. 相等的角是对顶角B. 平行于同一条直线的两条直线互相平行C. 同旁内角互补D. 垂直于同一条直线的两条直线互相垂直【答案】B【解析】解:A、相等的角不一定是对顶角,故此选项错误;B、平行于同一条直线的两条直线互相平行,正确;C、两直线平行,同旁内角互补,故此选项错误;D、垂直于同一条直线的两条直线互相平行,故此选项错误.故选:B.分别利用对顶角的性质以及平行线的性质和推论进而判断得出即可.此题主要考查了命题与定理,熟练掌握平行线的性质与判定是解题关键.6.下列说法中正确的是()A. 过一点有且仅有一条直线与已知直线平行B. 若AC=BC,则点C是线段AB的中点C. 相等的角是对顶角D. 两点之间的所有连线中,线段最短【答案】D【解析】解:A、过直线外一点有且仅有一条直线与已知直线平行,故此选项错误;B、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=AB,则点C是线段AB的中点,故此选项错误;C、相等的角是对顶角,说法错误,应是对顶角相等,故此选项错误;D、两点之间的所有连线中,线段最短,说法正确,故此选项正确;故选:D.根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行可判断A的正误;根据中点的性质判断B的正误;根据对顶角的性质判断C的正误;根据线段的性质判断D的正误.此题主要考查了平行公理、对顶的性质、线段的性质、中点,关键是熟练掌握课本基础知识,牢固掌握定理.7.点P,Q都是直线l外的点,下列说法正确的是()A. 连接PQ,则PQ一定与直线l垂直B. 连接PQ,则PQ一定与直线l平行C. 连接PQ,则PQ一定与直线l相交D. 过点P只能画一条直线与直线l平行【答案】D【解析】解:PQ与直线l可能平行,也可能相交,故A、B、C,均错误;过直线外一点有且只有一条直线与已知直线平行,故D正确.故选:D.根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可做出回答.本题主要考查的是平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.8.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【解答】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的长度叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.9.下列语句是真命题的有()①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行.A. 2个B. 3个C. 4个D. 5个【答案】A【解析】【分析】本题考查了命题与定理的知识,解题的关键是了解点到直线的距离的定义、平行线的性质、线段的性质等知识,难度不大.利用点到直线的距离的定义、平行线的性质、线段公理等知识分别判断后即可确定正确的选项.【解答】解:①点到直线的垂线段的长度叫做点到直线的距离,故错误,是假命题;②两直线平行,内错角相等,故错误,是假命题;③两点之间线段最短,正确,是真命题;④过直线外一点有且只有一条直线与已知直线平行,错误,是假命题;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行,正确,是真命题,真命题有2个.故选A.10.下列说法正确的个数是()①同位角相等;②两条不相交的直线叫做平行线;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:①∵同位角不一定是两平行直线被截得到,∴同位角相等错误,故本小题错误;②应为,在同一平面内两条不相交的直线叫做平行线,故本小题错误;③应为过直线外一点有且只有一条直线与已知直线平行,故本小题错误;④三条直线两两相交,总有一个或三个交点,故本小题错误;⑤若a∥b,b∥c,则a∥c,正确.综上所述,说法正确的有⑤共1个.故选:A.根据平行线的定义,平行公理和相交线对各小题分析判断利用排除法求解.本题考查了平行公理,相交线与平行线,同位角的定义,是基础题,熟记概念是解题的关键.11.下列说法正确的是()A. 有且只有一条直线与已知直线平行B. 垂直于同一条直线的两条直线互相垂直C. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D. 在平面内过一点有且只有一条直线与已知直线垂直【答案】D【解析】解:A、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、垂直于同一条直线的两条直线互相平行,故本选项错误;C、从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故本选项错误;D、在平面内过一点有且只有一条直线与已知直线垂直符合垂直的性质,故本选项正确.故选:D.根据点到直线距离的定义对各选项进行逐一分析即可.本题考查的是点到直线的距离,熟知从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离是解答此题的关键.12.下列说法错误的是()A. 平面内过一点有且只有一条直线与已知直线平行B. 平面内过一点有且只有一条直线与已知直线垂直C. 两点之间的所有连线中,线段最短D. 如果a∥b,b∥c,那么a∥c【答案】A【解析】解:A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项说法错误.B、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项说法正确.C、两点之间的所有连线中,线段最短,故本选项说法正确.D、根据平行公理知,如果a∥b,b∥c,那么a∥c,故本选项说法正确.故选:A.根据平行公理及推理,平行线的判定以及线段的性质判断.本题考查了平行线的判定与性质、线段的性质以及平行公理及推论,逐一分析三条结论的正误是解题的关键.13.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A. 平行B. 垂直C. 平行或垂直D. 无法确定【答案】A【解析】【分析】本题主要考查平行线的判定.如果一条直线垂直于两平行线中的一条,那么它与另一条一定也垂直.再根据“垂直于同一条直线的两直线平行”,可知L1与L8的位置关系是平行.灵活运用“垂直于同一条直线的两直线平行”是解决此类问题的关键.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A14.下列说法中正确的个数有()①在同一平面内,不重合的两条直线的位置关系为平行或垂直;②过一点有且只有一条直线与已知直线平行;③平行于同一直线的两条直线互相平行;④垂直于于同一直线的两条直线互相平行;⑤三角形的角平分线,中线及高都是射线.A. 4个B. 3个C. 2个D. 1个【答案】C【解析】解:①在同一平面内,不重合的两条直线的位置关系为平行或垂直;错误,应该是在同一平面内,不重合的两条直线的位置关系为平行或相交.②过一点有且只有一条直线与已知直线平行;错误,应该是过直线外一点有且只有一条直线与已知直线平行③平行于同一直线的两条直线互相平行;正确.④垂直于于同一直线的两条直线互相平行;正确.⑤三角形的角平分线,中线及高都是射线.错误,应该都是相等.故选:C.根据平行线的判定方法以及三角形的高,角平分线,中线的定义一一判断即可.本题考查平行线的判定,三角形的高,角平分线,中线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.下列说法错误的是:A. 平面内过一点有且只有一条直线与已知直线平行B. 平面内过一点有且只有一条直线与已知直线垂直C. 两点之间的所有连线中,线段最短D. 如果a∥b,b∥c,那么a∥c【答案】A【解析】【分析】本题考查了平行线的判定与性质、线段的性质以及平行公理及推论,逐一分析三条结论的正误是解题的关键.根据平行公理及推理,平行线的判定以及线段的性质判断.【解答】解:A.在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项说法错误.B.在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项说法正确.C.两点之间的所有连线中,线段最短,故本选项说法正确.D.根据平行公理知,如果a∥b,b∥c,那么a∥c,故本选项说法正确.故选A.16.如图,,则下列说法中一定正确的是()A.B.C.D.【答案】B【解析】【分析】此题考查的是平行线的性质和平行公理的推论.通过观察图形的结构特征结合已知条件正确作出辅助线构造平行公理的基本图形是关键.过点C作CM∥AB,则根据平行线的传递性,得CM∥DE.先利用AB∥CM,可得∠1+∠BCM=180°,即∠BCM=180°-∠1,再利用CM∥DE,可得∠3=∠DCM,而∠2-∠BCM=∠3,整理可得出三个角的关系式.【解答】解:过点C作CM∥AB,∵AB∥DE,∴CM∥DE,∴∠1+∠BCM=180°,∠MCD=∠3,又∠BCM=∠2-∠MCD=∠2-∠3,∴180°-∠1=∠2-∠3,∴∠1+∠2-∠3=180°.故选B.17.如图,下列推理错误的是()A. ∵∠1=∠2,∴a∥bB. ∵b∥c,∴∠2=∠4C. ∵a∥b,b∥c,∴a∥cD. ∵∠2+∠3=180°,∴a∥c【答案】D【解析】解:∵∠1=∠2,∴a∥b,选项A正确;∵b∥c,∴∠2=∠4,选项B正确;∵a∥b,b∥c,∴a∥c,选项C正确;∵∠2+∠3=180°,∴b∥c,选项D错误;故选:D.由平行线的判定与性质得出选项A、B、C正确,D错误;即可得出结论.本题考查了平行线的判定与性质、平行线公理;熟练掌握平行线的判定与性质是解决问题的关键.18.直线a、b、c在同一平面内,以下四种说法中,正确的个数有()(1)如果a⊥b,b⊥c,那么a∥c;(2)如果a∥b,b∥c,那么a∥c(3)如果a∥b,b⊥c,那么a⊥c;(4)如果a与b相交,b与c相交,那么a与c 相交.A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:(1)如果a⊥b,b⊥c,那么a∥c,故正确;(2)如果a∥b,b∥c,那么a∥c,故正确;(3)如果a∥b,b⊥c,那么a⊥c,故正确;(4)如果a与b相交,b与c相交,那么a与c不一定相交,故错误.故选:C.根据平行线的定义:在同一平面内,不相交的两条直线叫平行线,以及平行公理及推论矩形判断即可.本题考查了平行公理及推论和平行线的定义,在同一平面内,不相交的两条直线叫平行线;如果两条直线都与第三条直线平行,那么这两条直线也互相平行等来判断.19.下列说法:①任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线与已知直线平行;③若直线a∥b,b∥c,则a∥c;④若直线则a∥b。
考点02 平行线及其判定(解析版)
![考点02 平行线及其判定(解析版)](https://img.taocdn.com/s3/m/8431afa61711cc7930b71603.png)
考点02 平行线及其判定1.(四川省眉山市东坡区2020-2021学年七年级上学期期末数学试题)已知直线a ,b ,c 是同一平面内的三条不同直线,下面四个结论:①若//,//,a b b c 则//a c ;②若//,,a b a c ⊥则b c ⊥;③若,,a b b c ⊥⊥则a c ⊥;④若a c ⊥且c 与b 相交,则a 与b 相交,其中,结论正确的是( ) A .①② B .③④C .①②③D .②③④【答案】A【分析】根据平行公理及其推论:在同一平面内,垂直于同一条直线的两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可求解.【详解】①根据“同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行”判定:若//,//,a b b c 则//a c ;故说法正确;②若//,,a b a c ⊥则b c ⊥,故说法正确;③根据“在同一平面内,垂直于同一条直线的两直线平行”判定:若,,a b b c ⊥⊥则a c ⊥;说法错误; ④若a c ⊥且c 与b 相交,则a 与b 不一定相交,故说法错误 故正确的有:①② 故选:A【点睛】本题主要考查平行公理及其推论,解题的关键是熟练掌握同一平面内两直线的位置关系. 2.(福建省泉州市丰泽区2020-2021学年七年级上学期期末数学试题)下列各项正确的是( ) A .有公共顶点且相等的两个角是对顶角 B .过一点有且只有一条直线与已知直线垂直C .直线外一点到已知直线的垂线段叫做这点到直线的距离D .同一平面内,两条直线的位置关系只有相交和平行两种 【答案】D【分析】分别利用对顶角的定义、垂线、平行公理以及点到直线的距离以及分别分析得出即可. 【详解】解:A 、有公共顶点且相等的两个角不一定是对顶角,故此选项错误,不合题意;B 、在同一平面内,经过一点能画一条且只能画一条直线与已知直线垂直,故此选项错误,不合题意;C 、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故此选项错误,不合题意;D 、同一平面内,两条直线的位置关系只有相交和平行两种,正确,符合题意. 故选:D .【点睛】此题主要考查了平行公理以及垂线以及对顶角和点到直线的距离等定义,正确把握相关定义是解题关键.3.(江苏省宿迁市沭阳县2020-2021学年七年级上学期期末数学试题)下列说法错误的是()A.平面内过一点有且只有一条直线与已知直线平行、B.平面内过一点有且只有一条直线与已知直线垂直C.两点之间的所有连线中,线段最短D.对顶角相等【答案】A【分析】根据平行线公理,垂线的性质以及线段的性质,对顶角的性质,逐一判断选项,即可得到答案.【详解】解:A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项说法错误.B、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项说法正确.C、两点之间的所有连线中,线段最短,故本选项说法正确.D、对顶角相等故本选项说法正确.故选:A.【点睛】本题考查了平行线公理、垂线的性质、线段的性质以及对顶角的性质,熟练掌握上述性质和公理,是解题的关键.4.(陕西省宝鸡市凤翔县2020-2021学年七年级上学期期末数学试题)下列说法中正确的个数为()①不相交的两条直线叫做平行线;②平面内,过一点有且只有一条直线与已知直线垂直;③平行于同一条直线的两条直线互相平行;④在同一平面内,两条直线不是平行就是相交.A.1个B.2个C.3个D.4个【答案】C【分析】本题从平行线的定义及平行公理入手,对选项逐一分析即可.【详解】解:①不相交的两条直线叫做平行线必须是在同一个平面内才能成立,故错误.②平面内,过一点有且只有一条直线与已知直线垂直是正确的.③平行于同一条直线的两条直线互相平行,正确.④在同一平面内,两条直线不是平行就是相交是正确的.正确的说法共3个故选:C.【点睛】本题考查平行线的定义及平行公理,正确理解概念是解题关键.5.(四川省成都市石室中学2020-2021学年七年级上学期期末数学试题)下列叙述,其中不正确的是()A.两点确定一条直线B.同角(或等角)的余角相等C.过一点有且只有一条直线与已知直线平行D.两点之间的所有连线中,线段最短【答案】C【分析】由直线的性质可判断,A由同角(或等角)的余角的性质可判断,B由平行线的特点可判断,C由线段的性质可判断.D从而可得答案.【详解】解:两点确定一条直线,正确,故A不符合题意,同角(或等角)的余角相等,正确,故B不符合题意,过直线外一点有且只有一条直线与已知直线平行,故C符合题意,两点之间的所有连线中,线段最短,正确,故D不符合题意,故选:.C【点睛】本题考查的是直线,线段的特点,平行线的特点,同角(或等角)的余角的性质,掌握以上知识是解题的关键.6.(江苏省苏州市工业园区西附初中2020-2021学年七年级下学期初考试数学试卷下列说法中:①若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直;=,则C是线段AB的中点;②若AC BC③在同一平面内,不相交的两条线段必平行;④两点确定一条直线.其中说法正确的个数()A.1B.2C.3D.4【答案】B【分析】根据平行线的定义、垂线的定义、相交线的定义、两点确定一条直线,对各个小题分析判断即可得解.【详解】解:①若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,该说法正确;=,则C是线段AB的中点,原说法错误;②若点C在线段AB上,且AC BC③在同一平面内,不相交的两条直线必平行,原说法错误;④两点确定一条直线,此说法正确.故选B.【点睛】本题考查了平行线的定义、垂线的定义、相交线的定义、两点确定一条直线,是基础题,熟练掌握概念是解题的关键7.(江苏省苏州市昆山市2020-2021学年七年级上学期期末数学试题)下列说法正确的是()A.具有公共顶点的两个角是对顶角B.,A B两点之间的距离就是线段ABC.两点之间,线段最短D.不相交的两条直线叫做平行线【答案】C【分析】根据对顶角的定义,线段的定义及性质,平行线的定义进行判断【详解】解:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,故A选项不符合题意;,A B两点之间的距离就是线段AB的长度,故B选项不符合题意;两点之间,线段最短,故C选项符合题意;在同一平面内,不相交的两条直线叫做平行线,故D选项不符合题意故选:C【点睛】此题考查对顶角、线段定义及性质已经平行线的概念,正确理解概念是解题关键.8.(北京市平谷区2020-2021学年七年级上学期期末数学试题)下列语句正确的个数是()①直线外一点与直线上各点连接的所有线段中,垂线段最短②两点之间直线最短③在同一平面内,两条不重合的直线位置关系不平行必相交④两点确定一条直线A.1B.2C.3D.4【答案】C【分析】根据垂线段的定义、两点之间的距离、平行线和相交线、直线的性质进行分析即可.【详解】解:①直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;②两点之间直线最短,直线可以两边无限延伸不可测,该说法错误;③在同一平面内,两条不重合的直线位置关系不平行必相交,正确;④两点确定一条直线,正确.正确的有:①③④,故选:C.【点睛】本题考查垂线段的定义、两点之间的距离、平行线和相交线、直线的性质,掌握相关定理,是解题关键.9.(江苏省南京市玄武区南京外国语学校2020-2021学年七年级上学期期末数学试题)下列说法:①对顶角相等;②两点间线段是两点间距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤若AC BC =,则点C 是线段AB 的中点;⑥同角的余角相等正确的有_________.(填序号) 【答案】①④⑥【分析】利用对顶角的性质判断①,利用两点距离定义判定②,利用平行公理判定③,利用垂线公里判定④,利用线段中点定义判定⑤,利用余角的性质判定⑥.【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离,所以两点间线段是两点间距离不正确;③由过直线外一点有且只有一条直线与已知直线平行,所以过一点有且只有一条直线与已知直线平行不正确;④过一点有且只有一条直线与已知直线垂直正确;⑤由线段中点的性质,若AC BC =,点C 在AB 上,则点C 是线段AB 的中点,所以若AC BC =,则点C 是线段AB 的中点不正确; ⑥同角的余角相等正确; 正确的有①④⑥. 故答案为:①④⑥.【点睛】本题考查对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质等问题,掌握对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质是解题关键. 10.(江苏省沭阳县修远中学2020-2021学年七年级上学期第二次月考数学试题)给出下列说法:①同角的补角相等;②相等的角是对顶角;③两点确定一条直线;④过一点有且只有一条直线与已知直线平行,其中正确的有___个. 【答案】2【分析】根据补角的性质、对顶角的性质、直线的性质、平行线的性质依次判断. 【详解】同角的补角相等,故①符合题意;对顶角相等,但相等的角不一定是对顶角,故②不符合题意; 两点确定一条直线,故③符合题意;过直线外一点有且只有一条直线与已知直线平行,故④不符合题意; 故答案为:2.【点睛】此题考查了平行线的判定等知识,掌握补角的性质、对顶角的性质、直线的性质、平行线的判定是解题的关键.a c,a与11.(河南省信阳市淮滨县淮滨县第一中学2019-2020学年七年级下学期期末数学试题)如果//b d,那么d与c的关系为________.b相交,//【答案】相交【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,根据图形即可直接解答.【详解】解:d和c的关系是:相交.故答案为:相交.【点睛】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.12.(江苏省淮安市淮安区2020-2021学年七年级上学期期末数学试题)如图,△ABC的三个顶点均在格点处.(1)过点B画AC的平行线BD;(2)过点A画BC的垂线AE;(请用黑水笔描清楚)【答案】(1)画图见解析;(2)画图见解析.【分析】(1)利用网格特点,把C点向右平移4格得到点,D画直线BD即可,(2)利用网格特点,结合每一个网格都为一个小正方形,利用正方形的性质画BC的垂线AE即可.【详解】解:(1)如图,直线BD即为所画的AC平行线,(2)如图,直线AE即为所画的BC垂线,【点睛】本题考查的是利用网格图的特点画直线的平行线与垂线,平移的性质,垂线的定义,掌握网格特点与画图方法是解题的关键.∠13.(北京市通州区首都师范大学附属中学2020-2021学年七年级上学期期末数学试题)如图,点P是AOB 的边OB上的一点.(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)若每个小正方形的边长是1,则点P到OA的距离是___________;PE PH OE的大小关系是_____________________(用“<”连接).(5)线段,,<<【答案】(1)见解析;(2)见解析;(3)见解析;(4)1;(5)PH PE OE【分析】(1)(2)根据题意画垂线;(3)根据题意画平行线;(4)根据点到直线距离的定义计算;(5)根据直角三角形的直角边小于斜边可以证得.∠的边OB上的一点.【详解】如图,点P是AOB(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)由题意PH即点P到OA的距离,且PH=1,所以答案为1;(5)因为在RT△PHE中,PH是直角边,PE是斜边,所以PH<PE,同理在RT△POE中,PE是直角边,OE是斜边,所以PE<OE,<<.所以线段PE,PH,OE的大小关系是PH PE OE故答案为PH<PE<OE.【点睛】本题考查垂线和平行线的画法、垂线的应用及直角三角形的性质,熟练掌握“垂线段最短”的定理是解题关键.14.(江苏省苏州市工业园区西附初中2020-2021学年七年级下学期初考试数学试卷在如图所示的方格纸中,A B C都在格点上.每个小正方形的顶点称为格点,点,,CD AB,画出直线CD;(1)找一格点D,使得直线//⊥于点F,画出直线AE,并注明垂足F.(2)找一格点E,使得直线AE BC【答案】(1)见解析;(2)见解析【分析】(1)根据直线的定义,平行线的定义画出图形即可.(2)根据直线的定义,垂线的定义画出图形即可.【详解】解:(1)直线CD如图所示;(2)直线AE,点F如图所示.【点睛】本题考查作图-应用与设计作图,平行线的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.15.(江苏省苏州市昆山市2020-2021学年七年级上学期期末数学试题)在如图所示的方格纸中,每个小正A B C都在格点上.方形的顶点称为格点,点,,()1找一格点D,使得直线//CD AB,画出直线CD;()2找一格点E,使得直线AE BC⊥于点F,画出直线AE,并注明垂足F;()3找一格点G,使得直线BG AB⊥,画出直线BG;()4连接AG,则线段,,AB AF AG的大小关系是(用“<”连接).<<【答案】(1)见解析;(2)见解析;(3)见解析;(4)AF AB AG【分析】(1)将AB沿着BC方向平移,使其过点C,此时经过的格点即为所求;(2)延长CB,作AE与CB交于F点,此时E点即为所求;(3)过B点作AB的垂线,经过的格点即为所求;(4)在两个直角三角形中比较即可得出结论.【详解】(1)如图所示,符合题意的格点有D1,D2两个,画出其中一个即可;(2)如图所示:E点即为所求,垂足为F点;(3)如图所示,点G 即为所求;(4)如图所示,显然,在Rt ABF 中,AB AF >;在Rt ABG 中,AG AB >, 故答案为:AF AB AG <<.【点睛】本题考查应用与设计作图,平行线的判定与性质以及垂线的定义,熟练掌握基本性质定理是解题关键.16.(江苏省南京市玄武区南京外国语学校2020-2021学年七年级上学期期末数学试题)如图,所有小正方形的边长都是1个单位,A 、B 、C 均在格点上仅用无刻度直尺画图:(1)过点A 画线段BC 的平行线AD ; (2)过点B 画线段BC 的垂线,垂足为B ; (3)过点C 画线段AB 的垂线,垂足为E ; (4)线段CE 的长度是点C 到直线________的距离;(5)线段CA 、CE 的大小关系是_________(用“<”连接),理由是__________________. 【答案】(1)见解析;(2)见解析;(3)见解析;(4)AB ;(5)CE CA <;垂线段最短.【分析】(1)(2)(3)利用网格的特点直接作出平行线及垂线即可; (4)利用垂线段的性质直接回答即可;(5)利用垂线段最短比较两条线段的大小即可.【详解】(1)如图,直线AD即为所求;(2)如图,直线BF即为所求(3)如图,直线CE即为所求;(4)AB;垂线段最短.(5)CE CA简单的基本作图.11。
平行公理及推论
![平行公理及推论](https://img.taocdn.com/s3/m/fd9765f010661ed9ac51f385.png)
(6)点到直线的垂线段叫做点到直线的距离
A.1个B.2个C.3个D.4个
二、填空题
6.下列说法正确的是________(填序号).
①同位角相等;②对顶角相等;③在同一平面内,不相交也不重合的两条射线一定平行;④过直线外一点有且只有一条直线与这条直线平行;⑤如果直线 ,那么 ;⑥垂线段最短;⑦过一点有且只有一条直线与已知直线垂直.
C.同旁内角互补,两直线平行
D.平行于同一直线的两条直线平行
3.在同一平面内,a、b、c是直线,下列说法正确的是( )
A.若a∥b,b∥c则a∥cB.若a⊥b,b⊥c,则a⊥c
C.若a∥b,b⊥c,则a∥cD.若a∥b,b∥c,则a⊥c
4.下列说法中正确的个数有()
①经过一点有且只有一条直线与已知直线垂直;
②经过直线外一点,有且只有一条直线与已知直线平行,正确;
③连接直线外一点与直线上各点的所有线段中,垂线段最短,正确;
④两条直线相交,对顶角相等,正确;
故选:C.
【点睛】
本题考查垂线的性质,平行公里,对顶角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
5.B
【分析】
根据垂线段、内错角、对顶角以及平行垂直等定义判断即可.
12.如图,在方格纸上:
(1)已有的四条线段中,哪些是互相平行的?
(2)过点M画AB的平行线.
(3)过点N画GH的平行线.
13.直线a∥b,b∥c,直线d与a相交于点A.
(1)判断a与c的位置关系,并说明理由;
(2)判断c与d的位置关系,并说明理由.
参考答案
1.D
【分析】
浙教版七年级数学下册专题1.3平行线的判定(知识解读)(原卷版+解析)
![浙教版七年级数学下册专题1.3平行线的判定(知识解读)(原卷版+解析)](https://img.taocdn.com/s3/m/62f33e885122aaea998fcc22bcd126fff7055dc6.png)
专题1.3 平行线的判定(知识解读)【学习目标】1.理解和掌握平行线的判定公理及3个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.【知识点梳理】知识点1:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点2:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。
几何语言:∵∠1=∠2∴AB∥CD(同位角相等,两直线平行)判定方法(2):两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。
∵∠2=∠3∴AB∥CD(内错角相等,两直线平行)判定方法(3):两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行简单说成:同旁内角互补,两直线平行。
∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)【典例分析】【考点1:平行线公理及推论】【典例1】(2023秋•鼓楼区校级期末)下列说法正确的是()A.不相交的两条直线叫做平行线B.同一平面内,过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线【变式1】(2023秋•奉化区校级期末)下列说法正确的是()A.两点之间,直线最短B.永不相交的两条直线叫做平行线C.若AC=BC,则点C为线段AB的中点D.两点确定一条直线【典例2】(2023春•麒麟区期末)下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c【变式2-1】(2023春•阳春市校级月考)下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个A B.2个C.3个D.4个【变式2-2】(2023春•饶平县校级期中)若AB∥CD,AB∥EF,则∥,理由是.【考点2:平行线判定】【典例3】(2023秋•香坊区校级期中)如图,下列各组条件中,能得到AB∥CD 的是()A.∠1=∠3B.∠2=∠4C.∠B=∠D D.∠1+∠2+∠B=180°【变式3-1】(2023春•台江区校级期中)如图,过直线外一点作已知直线的平行线,其依据是()A.两直线平行,同位角相等B.内错角相等,两直线平行C.同位角相等,两直线平行D.两直线平行,内错角相等【变式3-2】(2023•德保县二模)如图,能判定AD∥BC的条件是()A.∠1=∠3B.∠1=∠2C.∠2=∠3D.∠2=∠4【变式3-3】(2023春•宾阳县期中)如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①②③④D.①③④【典例4】(2023春•重庆月考)如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.证明:∵AF⊥CE(已知)∴∠AOE=90°()又∵∠1=∠B()∴()∴∠AFB=∠AOE()∴∠AFB=90°()又∵∠AFC+∠AFB+∠2=(平角的定义)∴∠AFC+∠2=()°又∵∠A+∠2=90°(已知)∴∠A=∠AFC()∴(内错角相等,两直线平行)【变式4-1】(2023秋•社旗县期末)〖我阅读〗“推理”是数学的一种基本思想,包括归纳推理和演绎推理.演绎推理是一种从一般到特殊的推理,它借助于一些公认的基本事实及由此推导得到的结论,通过推断,说明最后结论的正确.〖我会做〗填空(理由或数学式)已知:如图,∠1=∠E,∠B=∠D.求证:AB∥CD.证明:∵∠1=∠E()∴()∴+∠2=180° ()∵∠B=∴+=180°∴AB∥CD()【变式4-2】(2023春•岳池县期末)把下面的说理过程补充完整:已知,如图,直线AB,CD被直线EF所截,点H为CD与EF的交点,GH ⊥CD于点H,∠2=30°,∠1=60°.试说明:AB∥CD.解:∵GH⊥CD(),∴∠CHG=90°()又∵∠2=30°(),∴∠3=()∴∠4=60°()又∵∠1=60°()∴∠1=∠4()∴AB∥CD()【变式4-3】(2023春•宁远县期末)完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α().∵DE平分∠BDC(已知),∴∠BDC=2∠β ()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°().∴AB∥CD().【典例5】(2023春•大埔县期末)如图,已知∠A=∠C,AD⊥BE,BC⊥BE,点D在线段EC上,求证:AB∥CD.【变式5-1】(2023秋•西乡县期末)如图,已知∠A=∠ADE,∠C=∠E.求证:BE∥CD.【变式5-2】(2023春•宣恩县期末)如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?专题1.3 平行线的判定(知识解读)【学习目标】1.理解和掌握平行线的判定公理及两个判定定理.2.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式,通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.【知识点梳理】知识点1:平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.记作:如果a∥b,a∥c,那么a∥c注意:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)“平行公理的推论”也叫平行线的传递性知识点2:平行线判定判定方法(1):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行。
数学七年级下学期第2讲 平行线的判定(1)
![数学七年级下学期第2讲 平行线的判定(1)](https://img.taocdn.com/s3/m/f0de7b287f21af45b307e87101f69e314332fa88.png)
第2讲平行线的判定(核心考点讲与练)一、平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.考点一:平行公理及推论【例题1】(2019春•余姚市期末)已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥c C.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c【变式训练1】(2018春•杭州期中)下列说法:①两点之间的距离是两点间的线段的长度;②过一点有且只有一条直线与已知直线平行;③两点之间的所有连线中,线段最短;④若a⊥b,c⊥b,则a与c的关系是平行;⑤只有一个公共点的两条直线叫做相交直线;其中正确的是.【变式训练2】(2020春•椒江区期末)如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?考点二:平行线的判定【例题2】(2021秋•平阳县期中)如图,下列条件中①∠1=∠2;②∠3=∠4;③∠2+∠5=∠6;④∠DAB+∠2+∠3=180°,能判断AD∥BC的是()A.①③④B.①②④C.①③D.①②③④【变式训练1】(2021秋•余姚市期中)木条a、b、c如图用螺丝固定在木板α上且∠ABM =50°,∠DEM=70°,将木条a、木条b、木条c看作是在同一平面α内的三条直线AC、DF、MN,若使直线AC、直线DF达到平行的位置关系,则下列描述错误的是()A.木条b、c固定不动,木条a绕点B顺时针旋转20°B.木条b、c固定不动,木条a绕点B逆时针旋转160°C.木条a、c固定不动,木条b绕点E逆时针旋转20°D.木条a、c固定不动,木条b绕点E顺时针旋转110°【变式训练2】(2021春•拱墅区期末)如图,已知∠F+∠FGD=90°(其中∠F>∠FGD),添加一个以下条件:①∠F+∠FEA=180°;②∠F+∠FGC=180°;③∠FEB+2∠FGD=90°;④∠FGC﹣∠F=90°.能证明AB ∥CD的是()A.①B.②C.③D.④【变式训练3】(2021春•萧山区期末)如图,下列条件中能判断AD∥BC的是()①∠1=∠2;②∠3=∠4;③∠2+∠5=∠6;④∠DAB+∠2+∠3=180°.A.①③④B.①②④C.①③D.①②③④【变式训练4】(2021春•怀安县期末)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【变式训练5】(2021•下城区一模)如图,直角三角形ABC的顶点A在直线m上,分别度量:①∠1,∠2,∠C;②∠2,∠3,∠B;③∠3,∠4,∠C;④∠1,∠2,∠3.可判断直线m与直线n是否平行的是()A.①B.②C.③D.④【例题3】(2021春•椒江区期末)如图,∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD为75°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转度.【变式训练1】(2021春•鄞州区期中)如图,下列条件中:①∠BAD+∠ABC=180°;②∠1=∠2;③∠3=∠4;④∠BAD=∠BCD,能判定AD∥BC的是.【变式训练2】(2020秋•婺城区校级期末)如图,点E是BA延长线上一点,在下列条件中:①∠1=∠3;②∠5=∠B;③∠1=∠4且AC平分∠DAB;④∠B+∠BCD=180°,能判定AB∥CD的有.(填序号)【变式训练3】(2021春•奉化区校级期末)如图,点E在AD的延长线上,下列四个条件:①∠1=∠2;②∠C+∠ABC=180°;③∠C=∠CDE;④∠3=∠4,能判断AB∥CD的是(填序号).【变式训练4】(2021•柳南区校级模拟)如图把三角板的直角顶点放在直线b上,若∠1=40°,则当∠2=度时,a∥b.【例题4】(2021春•槐荫区期末)点B,E分别在AC,DF上,BD,CE分别交AF于点G,H,∠AGB=∠EHF,∠C=∠D.求证:AC∥DF.【变式训练1】(2021春•乾安县期末)已知:如图,直线l分别与直线AB,CD相交于点P,Q,PM垂直于l,∠1+∠2=90°.求证:AB∥CD.【变式训练2】(2020春•岱岳区期末)将一副三角尺拼图,并标点描线如图所示,然后过点C作CF平分∠DCE,交DE于点F.(1)求证:CF∥AB;(2)求∠EFC的度数.【变式训练3】(2020春•麻城市校级月考)根据要求完成下面的填空:如图,直线AB,CD被EF所截,若已知∠1=∠2,说明AB∥CD的理由.解:根据得∠2=∠3又因为∠1=∠2,所以∠=∠,根据得:∥.【变式训练4】(2020秋•温州月考)已知:如图,∠ACD=2∠B,CE平分∠ACD.求证:CE∥AB.【变式训练5】(2019春•秀洲区期中)如图,如果∠1+∠3=180°,那么AB与CD平行吗,请说明理由.类型一、平行公理及推论【例题5】在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行。
2019-2020学年七年级下数学《平行公理及推论》练习题 (50)
![2019-2020学年七年级下数学《平行公理及推论》练习题 (50)](https://img.taocdn.com/s3/m/c5f629ebdd3383c4bb4cd2df.png)
2019-2020学年七年级下数学《平行公理及推论》练习题
1.下列说法中
①两点之间,直线最短;
②经过直线外一点,能作一条直线与这条直线平行;
③和已知直线垂直的直线有且只有一条;
④在平面内过一点有且只有一条直线垂直于已知直线.
正确的是:②,④.(只需填写序号)
【分析】根据线段、射线和直线的基本定义与性质来解答本题即可.
【解答】解:①两点之间,直线距离最短,故①错误;
②经过直线外一点,能作一条直线与这条直线平行,故②正确;
③过直线外一点和已知直线垂直的直线有且只有一条,故③错误;
④在平面内过一点有且只有一条直线垂直于已知直线,故④正确.
故答案为:②、④.
【点评】本题考查的是线段、射线和直线的基本定义与性质;注意两点之间,线段距离最短.
1。
人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)
![人教版七年级下册数学《平行线及其判定》期末复习讲义(含知识点和习题)](https://img.taocdn.com/s3/m/1d67407a7f21af45b307e87101f69e314332fa62.png)
第五章《相交线与平行线》期末复习讲义5.2平行线及其判定【知识回顾】一.平行线1.定义:在同一平面内,__________的两条直线叫做平行线2.要点剖析(1):平行线的特征:在同一平面内;是直线;没有公共点。
(2)在同一平面内,不重合的两条直线的位置关系只有相交和平行两种,重合的直线视为一条直线。
(3)平行线是指的两条直线的位置关系,两条射线或线段平行,是指的它们所在的直线平行。
二.平行线的画法1.“一落”把三角尺的一边落在已知直线上2.“二靠”用直尺紧靠三角尺的另一边3.“三推”把三角尺沿着直尺推到三角尺的一边刚好过已知点的位置4.“四画”沿三角尺过已知点的边画直线三.平行公理及其推论1.平行公理:经过直线外一点,_________一条直线与这条直线平行2.平行公理的推论:如果两条直线都与_________直线平行,那么这两条直线也互相平行四.平行线的判定1.同位角相等,两直线_________2.内错角相等,两直线_________3.同旁内角互补,两直线___________4.在同一平面内,垂直于_______________的两条直线互相平行题型拓展题型1 平行公理及其推论的应用例1:1.如图,取一张长方形的硬纸板ABCD,将硬纸板ABCD对折使CD与AB重合,EF 为折痕.把长方形ABEF平放在桌面上,另一个面CDEF无论怎么改变位置,总有CD∥AB存在,你知道为什么吗?例2:2.如图,取一张长方形的硬纸片ABCD对折,MN是折痕,把ABNM平摊在桌面上,另一个面CDMN不论怎样改变位置,总有MN∥∥.因此∥.题型2 综合运用各种判定方法判定两条直线平行例1:3.如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?例2:4.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()题型3 平行线判定的开放探究题例1:5.如图,∠A=60°,∠1=60°,∠2=120°,猜想图中哪些直线平行,并证明.例2:6.如图,直线a,b被c所截,∠1=50°,若要a∥b,则需增加条件(填图中某角的度数);依据是.题型4 平行线的判定在实际生活中的应用例1:7.如图所示,给你两块同样的三角板和一根直尺(直尺比桌子长),请你设计一个方案,检验桌子的相对边缘线是否平行?例2:8.在铺设铁轨时,两条直轨必须是互相平行的,如图,已经知道∠2是直角,那么再度量图中已标出的哪个角,就可以判断两条直线是否平行?为什么?课后提高训练9.下列说法错误的是()A.平行于同一条直线的两直线平行B.两直线平行,同旁内角互补C.对顶角相等D.同位角相等10.如图,下面哪个条件不能判断AC∥EF的是()A.∠1=∠2B.∠4=∠C C.∠1+∠3=180°D.∠3+∠C=180°11.如图,平面内有五条直线l1、l2、l3、l4、l5,根据所标角度,下列说法正确的是()A.l1∥l2B.l2∥l3C.l1∥l3D.l4∥l512.如图,在下列条件中,能判断AB∥CD的是()A.∠1=∠4B.∠BAD=∠BCDC.∠BAD+∠ADC=180°D.∠2=∠313.如图所示,下列推理正确的是()A.∵∠1=∠4(已知)∴AB∥CD(内错角相等,两直线平行)B.∵∠2=∠3(已知)∴AE∥DF(内错角相等,两直线平行)C.∵∠1=∠3(已知)∴AB∥DF(内错角相等,两直线平行)D.∵∠2=∠2(已知)∴AE∥DC(内错角相等,两直线平行)14.下列说法中正确的个数为()①过一点有且只有一条直线与已知直线垂直②两条直线被第三条直线所截,同位角相等③经过两点有一条直线,并且只有一条直线④在同一平面内,不重合的两条直线不是平行就是相交A.1个B.2个C.3个D.4个15.如图,下列能判定AB∥CD的条件有(填序号)①∠B+∠BCD=180°;②∠2=∠3;③∠1=∠4;④∠B=∠5;⑤∠D=∠5.16.如图,要使BE∥DF,需补充一个条件,你认为这个条件应该是(填一个条件即可).17.一副三角板按如图所示叠放在一起,其中点C、D重合,若固三角板定ABC,改变三角板AED的位置(其中A点位置始终不变),当∠CAD=时,ED∥AC.18.如图,直线a、b被直线c所截,现给出的下列四个条件:①∠4=∠7;②∠2=∠5;③∠2+∠3=180°;④∠2=∠7.其中能判定a∥b的条件的序号是.19.已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.20.如图,若∠1=42°,∠2=53°,∠3=85°,则直线l1与l2平行吗?判断并说明理由.21.如图,已知CD⊥AD于点D,DA⊥AB于点A,∠1=∠2,试说明DF∥AE.解:因为CD⊥AD(已知),所以∠CDA=90°().同理∠DAB=90°.所以∠CDA=∠DAB=90°().即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4().所以DF∥AE().22.完成下列证明过程,并在括号内填上依据.如图,点E在AB上,点F在CD上,∠1=∠2,∠B=∠C,求证AB∥CD.证明:∵∠1=∠2(已知),∠1=∠4(),∴∠2=∠4(等量代换),∴().∴∠3=∠C().又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD().参考答案与解析1.解:∵四边形FECD是矩形,∴CD∥EF;又∵四边形ABEF是矩形,∴AB∥EF,∴CD∥AB.2.解:∵长方形的硬纸片ABCD对折,MN是折痕,∴MN∥AB,MN∥CD,即MN∥AB∥CD,∴AB∥CD(平行于同一直线的两条直线互相平行).故各空依次填AB、CD、AB、CD.3.解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.4.解:因为∠1+∠2=180°,∠2+∠4=180°(已知),所以∠1=∠4,(同角的补角相等)所以a∥c.(内错角相等,两直线平行)又因为∠2+∠3=180°(已知)∠3=∠6(对顶角相等)所以∠2+∠6=180°,(等量代换)所以a∥b.(同旁内角互补,两直线平行)所以b∥c.(平行于同一条直线的两条直线平行).故答案为:同角的补角相等;内错角相等,两直线平行;对顶角相等;等量代换;同旁内角互补,两直线平行;平行于同一条直线的两条直线平行.5.解:如图,∵∠A=60°,∠1=60°,∴∠A=∠1,∴DE∥AC.又∵∠A=60°,∠2=120°,∴∠A+∠2=180°,∴EF∥AB.6.解:∵∠3=50°,1=50°,∴∠1=∠3,∴a∥b(同位角相等,两直线平行).故答案为:∠3=50°;同位角相等;两直线平行.7.解:(1)将直尺放在桌面上,使其与桌面一组对边相交;(2)将三角板一边贴近直尺,斜边贴近桌面边缘;(3)使另一个三角形同样方法放置,如果相符合说明对边平行,原理如图所示,若∠1=∠2则a∥b,再检查另一组对边是否平行.8.解:①通过度量∠3的度数,若满足∠2+∠3=180°,根据同旁内角互补,两直线平行,就可以验证这个结论;②通过度量∠4的度数,若满足∠2=∠4,根据同位角相等,两直线平行,就可以验证这个结论;③通过度量∠5的度数,若满足∠2=∠5,根据内错角相等,两直线平行,就可以验证这个结论.9. D10.C11.D12.C13.B14.B15.解:选项①中∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),所以正确;选项②中,∵∠2=∠3,∴AD∥BC(内错角相等,两直线平行),所以错误;选项③中,∵∠1=∠4,∴AB∥CD(内错角相等,两直线平行),所以正确;选项④中,∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),所以正确;选项⑤中,∠D=∠5,∴AD∥BC(内错角相等,两直线平行),所以错误;故答案为:①③④.16.解:添加条件为:∠D=∠COE.理由如下:∵∠D=∠COE,∴BE∥DE(同位角相等,两直线平行).故答案为:∠D=∠COE(答案不唯一).17.解:如图所示:当ED∥AC时,∠CAD=∠D=30°;如图所示,当ED∥AC时,∠E=∠EAC=60°,∴∠CAD=60°+90°=150°;故答案为:30°或150°.18.解:当∠4=∠7时,a∥b,故①正确;当∠2=∠5时,无法证明a∥b,故②错误;当∠2+∠3=180°时,无法证明a∥b,故③错误;当∠2=∠7时,a∥b,故④正确;故答案为:①④.19.证明:∵∠A=∠C=120°,∠AEF=∠CEF=60°,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴AB∥EF,CD∥EF,∴AB∥CD.20.解:直线l1与l2平行,理由:∵∠1=∠4,∠2=∠5,∠1=42°,∠2=53°,∴∠4=42°,∠5=53°,又∵∠3=85°,∴∠3+∠5=85°+53°=138°,∴∠3+∠5+∠4=138°+42°=180°,∴l1∥l2(同旁内角互补,两直线平行).21.解:因为CD⊥AD(已知),所以∠CDA=90°(垂直的定义),同理∠DAB=90°.所以∠CDA=∠DAB=90°(等量代换),即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4(等式的性质1),所以DF∥AE(内错角相等,两直线平行).22.证明:∵∠1=∠2(已知),∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴CE∥BF(同位角相等,两直线平行).∴∠3=∠C(两直线平行,同位角相等).又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:对顶角相等;CE∥BF;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行.。
七年级数学下册 专题 第6讲 平行线重点、考点知识总结及练习
![七年级数学下册 专题 第6讲 平行线重点、考点知识总结及练习](https://img.taocdn.com/s3/m/399726e6852458fb770b56ee.png)
专题第6讲平行线知识点1 平行公理及推论1. 在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.直线a与直线b不相交时,直线a与b互相平行,记作a∥b.2. 平行公理:经过直线外一点,有且只有一条直线与已知直线平行.平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 【典例】1.如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与(1)中所作的直线平行吗?【解析】解:(1)由平行公理可知,过直线a外的一点B画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与(1)中所作的直线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【方法总结】本题考查了平行公理及其推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.在公理中,要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论是判定两直线平行的一种常用方法,要牢固掌握.【随堂练习】1.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)在同一平面内,两条直线的位置关系只有相交,平行两种;(4)不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个【解答】解:(1)在同一平面内,过直线外一点一点有且只有一条直线与已知直线平行,原来的说法错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直,原来的说法错误;(3)在同一平面内,两条直线的位置关系只有相交,平行两种是正确的;(4)在同一平面内,不相交的两条直线叫做平行线,原来的说法错误.故说法中错误的个数是3个.故选:C.2.请你动手试试,过一条直线外的一点作这条直线的平行线,能作几条?由此能得出一个什么数学结论.____________________________.【解答】解:过一条直线外的一点作这条直线的平行线,能做1条,理由是:过直线外一点有且只有一条直线与这条直线平行.故答案为:能做一条,过直线外一点有且只有一条直线与这条直线平行.知识点2 平行线的判定1. 平行线的判定方法:判定方法1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.如图1,∵∠4=∠2,∴a∥b.判定方法2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.如图2,∵∠4=∠5,∴a∥b.判定方法3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.如图3,∵∠4+∠1=180°,∴a∥b.2. 重要结论:在同一平面内,垂直于同一条直线的两条直线互相平行.注意:条件“同一平面”不能缺少,否则结论不成立.【典例】1.如图,BE平分∠ABD,DE平分∠BDC,且∠E为直角,AB与CD平行吗?试说明理由.【解析】解:AB∥CD.理由:∵BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β(角平分线的定义),∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换).∵∠E为直角,即∠E=90°(已知),∴∠α+∠β=90°(直角三角形的两个锐角互余),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).【方法总结】首先根据角平分线的定义可得∠ABD=2∠α,∠BDC=2∠β,根据等量代换可得∠ABD+∠BDC=2(∠α+∠β).由∠E为直角可得∠α+∠β=90°,进而得到∠ABD+∠BDC=180°,然后根据“同旁内角互补,两直线平行”可得答案.此题主要考查了平行线的判定,关键是掌握角平分线的定义和平行线的判定方法.【随堂练习】1.完成下面的证明,括号内填根据.如图,直线a、b、c被直线l所截,量得∠1=65°,∠2=115°,∠3=65°.求证:a∥b证明:∠1=65°,∠3=65°∴_______∴___________________∵∠2=115°,∠3=65°∴____________∴___________________∴a∥b【解答】证明:∵∠1=65°,∠3=65°∴∠1=∠3,∴a∥c(同位角相等,两直线平行),∵∠2=115°,∠3=65°∴∠2+∠3=180°,∴b∥c(同旁内角相等,两直线平行)∴a∥b(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)故答案为:∠1=∠3;a∥c(同位角相等,两直线平行);∠2+∠3=180°;b ∥c(同旁内角相等,两直线平行).2.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【解答】解:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义),∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°,∴AB∥CD(同旁内角互补,两直线平行).3.如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC的过程填写完整.证明:∵AB⊥AC∴∠_____=____°(______)∵∠1=30°∴∠BAD=∠_____+∠___=_____°又∵∠B=60°∴∠BAD+∠B=_____°∴AD∥BC(______________)【解答】证明:∵AB⊥AC∴∠BAC=90°(垂直定义)∵∠1=30°∴∠BAD=∠BAC+∠1=120°又∵∠B=60°∴∠BAD+∠B=180°∴AD∥BC(同旁内角互补,两直线平行)故答案为:BAC,90,垂直定义,BAC,1,120,180,同旁内角互补,两直线平行.知识点3 平行线的性质平行线的性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.如图1,∵a∥b,∴∠4=∠2.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.如图2,∵a∥b,∴∠4=∠5.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:同旁内角互补,两直线平行.如图3,∵a∥b,∴∠4+∠1=180°.【典例】1.如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,并说明理由.【解析】解:点B是P,Q在直线HG上的反射点,理由:∵点P为A,B在直线MN上的反射点,∴∠APM=∠BPQ,又∵HG∥MN,∴∠APM=∠BAP,∠BPQ=∠PBA,∴∠PAB=∠PBA,又∵AP∥BQ,∴∠PAB=∠QBG,∴∠PBA=∠QBG,∴点B是P,Q在直线HG上的反射点.【方法总结】依据点P为A,B在直线MN上的反射点,即可得到∠APM=∠BPQ,再根据平行线的性质,即可得到∠PAB=∠PBA,经过等量代换可得∠PBA=∠QBG,所以点B是P,Q在直线HG 上的反射点.本题是新定义题,正确理解“反射点”的概念和特征,并熟练应用平行线的性质是解题的关键.【随堂练习】1.如图,已知AB∥CD,点E在AC的右侧,∠BAE,∠DCE的平分线相交于点F.探索∠AEC与∠AFC之间的等量关系,并证明你的结论.【解答】解:∠AEC=2∠AFC.理由:如图,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,∴∠AEG=∠BAE,∠CEG=∠DCE,∴∠AEC=∠AEG+∠CEG=∠BAE+∠DCE,同理可得∠AFC=∠BAF+∠DCF,∵∠BAE,∠DCE的平分线相交于点F,∴∠BAE=2∠BAF,∠DCE=2∠DCF,∴∠AEC=2(∠BAF+∠DCF)=2∠AFC.2.课上教师呈现一个问题:已知:如图1,AB∥CD,EF⊥AB于点O,FG交CD于点P,当∠1=30°时,求∠EFG的度数.甲、乙、丙三位同学用不同的方法添加辅助线解决问题,如图:甲同学辅助线的做法和分析思路如下:辅助线:过点F作MN∥CD.分析思路:①欲求∠EFG的度数,由图可知只需转化为求∠2和∠3的度数之和;②由辅助线作图可知,∠2=∠1,从而由已知∠1的度数可得∠2的度数;③由AB∥CD,MN∥CD推出AB∥MN,由此可推出∠3=∠4;④由已知EF⊥AB,可得∠4=90°,所以可得∠3的度数;⑤从而可求∠EFG的度数.(1)请你根据乙同学所画的图形,描述辅助线的做法,并写出相应的分析思路.辅助线:_________________分析思路:(2)请你根据丙同学所画的图形,求∠EFG的度数.【解答】解:(1)辅助线:过点P作PN∥EF交AB于点N.分析思路:①欲求∠EFG的度数,由辅助线作图可知,∠EFG=∠NPG,因此,只需转化为求∠NPG的度数;②欲求∠NPG的度数,由图可知只需转化为求∠1和∠2的度数和;③又已知∠1的度数,所以只需求出∠2的度数;④由已知EF⊥AB,可得∠4=90°;⑤由PN∥EF,可推出∠3=∠4;AB∥CD可推出∠2=∠3,由此可推∠2=∠4,所以可得∠2的度数;⑥从而可以求出∠EFG的度数.(2)如图,过点O作ON∥FG,∵ON∥FG,∴∠EFG=∠EON∠1=∠ONC=30°,∵AB∥CD,∴∠ONC=∠BON=30°,∵EF⊥AB,∴∠EOB=90°,∴∠EFG=∠EON=∠EOB+∠BON=90°+30°=120°.3.问题情境:(1)如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小颖同学的解题思路是:如图2,过点P作PE∥AB,请你接着完成解答问题迁移:(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?(提示:过点P作PE∥AD),请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你猜想∠CPD、∠α、∠β之间的数量关系.【解答】解:(1)过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=50°,∠CPE=180°﹣∠C=60°,∴∠APC=50°+60°=110°;(2)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当P在BO之间时,∠CPD=∠α﹣∠β.理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.知识点4 平行线的判定与性质的综合运用两直线平行⇔同位角相等.两直线平行⇔内错角相等.同旁内角互补⇔两直线平行.“⇔”叫做“等价于”,即由左边能推出右边,由右边也能推出左边.【典例】1.如图,已知∠1=∠2,∠3=∠4,∠5=∠A,试说明:BE∥CF.【解析】解:如图,∵∠3=∠4(已知),∴AE∥BC(内错角相等,两直线平行),∴∠EDC=∠5(两直线平行,内错角相等).∵∠5=∠A(已知),∴∠EDC=∠A(等量代换),∴DC∥AB(同位角相等,两直线平行),∴∠5+∠ABC=180°(两直线平行,同旁内角互补),即∠5+∠2+∠3=180°.∵∠1=∠2(已知),∴∠5+∠1+∠3=180°(等量代换),即∠BCF+∠3=180°,∴BE∥CF(同旁内角互补,两直线平行).2.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=____________________.(2)如图2,若AC∥BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系是否发生变化?(3)已知:如图3,三角形ABC,试说明:∠A+∠B+∠C=180°.【解析】解:(1)如图1,过P作PE∥l1,∵l1∥l2,∴PE∥l1∥l2,∴∠APE=∠A,∠BPE=∠B,∴∠APB=∠APE+∠BPE=∠A+∠B,故答案为:∠A+∠B.(2)如图2,过点P作PE∥AC,则∠A=∠1.∵AC∥BD,∴PE∥BD,∴∠B=∠EPB.∵∠APB=∠BPE﹣∠1,∴∠APB=∠B﹣∠A;(3)如图3,过点A作MN∥BC,则∠B=∠1,∠C=∠2.∵∠BAC+∠1+∠2=180°,∴∠BAC+∠B+∠C=180°.【方法总结】平行线的判定是由角的关系得到两直线平行,平形线的性质是由两直线平行得到角之间的关系,他们都可以作为说理的依据.其他常见的说理依据有:已知、等量代换、对顶角相等、等角的余角相等、等角的补角相等、平行于同一条直线的两条直线互相平行、三角形的内角和等于180°等.【随堂练习】1.如图,DE⊥AB,∠1=∠A,∠2+∠3=180°,试判断CF与AB的位置关系,并说明理由.【解答】解:CF⊥AB,理由如下:∵∠1=∠A(已知)∴AC∥FG(同位角相等,两直线平行)∴∠2=∠ACF(两直线平行,内错角相等)∴∠2+∠3=180°(已知)∴∠ACF+∠3=180°∴DE∥CF(同旁内角互补,两直线平行)∴∠DEF=∠1+∠2∵DE⊥AB∴∠1+∠2=90°∴CF⊥AB2.如图1,直线AG与直线BH和DI分别相交于点A和点G,点C为DI上一点,且CE⊥AG,垂足为点E,∠DCE﹣∠HAE=90°.(1)求证:BH∥DI.(2)如图2:直线AF交DC于,AM平分∠EAF,AN平分∠BAE,证明:∠AFG =2∠MAN.【解答】证明:(1)因为∠DCE+∠ECG=180°,∠CEG+∠CGA+∠ECG=180°,所以∠DCE=∠CEG+∠CGA因为CD⊥AG所以∠DCE﹣∠CGA=∠CEG=90°又因为∠DCE﹣∠HAE=90°所以∠CGA=∠HAE所以BH∥DI(2)因为AM平分∠EAF AN平分∠BAE所以∠EAM=∠F AM∠EAN=∠BAN又因为∠MAN=∠EAN﹣∠EAM所以∠MAN=∠BAN﹣∠F AM又因为∠BAN=∠BAF+∠F AN∠F AM=∠MAN+∠F AN所以∠MAN=∠BAF﹣∠MAN所以∠BAF=2∠MAN又所以BH∥DI所以∠AFG=∠BAF所以∠AFG=2∠MAN.知识点5 命题、定理、证明1. 命题:判断一件事情的语句叫做命题.数学中的命题常可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.2. 真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.3. 定理:经过推理证实的真命题叫做定理.判断一个命题正确性的推理过程叫做证明.4. 判断一个命题是真命题,需要进行证明;判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.【典例】1.判断下列命题是真命题还是假命题.如果是真命题,请证明,如果是假命题,请举出反例.(1)两个锐角的和是钝角;(2)在同一平面内,垂直于同一条直线的两条直线互相平行.【解析】解:(1)“两个锐角的和是钝角位”是假命题,如30°和40°的和为70°;(2)“在同一平面内,垂直于同一条直线的两条直线互相平行”为真命题.已知:如图,在同一平面内,直线b⊥a,直线c⊥a.证明:如图,∵b⊥a,c⊥a,∴∠1=90°,∠2=90°,∴∠1=∠2,∴b∥c.【方法总结】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.(1)任意找两个锐角,使它们的和为锐角或直角即可;(2)写出已知、求证,作出图形,利用平行线的判定即可证明命题为真命题.【随堂练习】1.已知:三条不同的直线a、b、c在同一平面内:①a∥b;②a⊥c;③b⊥c;④a⊥b.请你用①②③④所给出的其中两个事项作为条件,其中一个事项作为结论(用如果…那么…的形式,写出命题,例如:如果a⊥c、b⊥c、那么a∥b).(1)写出一个真命题,并证明它的正确性;(2)写出一个假命题,并举出反例.【解答】解:(1)如果a⊥c、b⊥c、那么a∥b;理由:如图,∵a⊥c、b⊥c,∴∠1=90°,∠2=90°,∴∠1=∠2,∴a∥b.(2)如果a⊥c、b⊥c、那么a⊥b;反例:见上图,如果a⊥c、b⊥c、那么a∥b.2.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.【解答】已知:∠1=∠2,∠B=∠C求证:∠A=∠D证明:∵∠1=∠3又∵∠1=∠2∴∠3=∠2∴EC∥BF∴∠AEC=∠B又∵∠B=∠C∴∠AEC=∠C∴AB∥CD∴∠A=∠D综合运用1.“垂直于同一直线的两直线平行”的题设:_______________________________________,结论:___________________________.【答案】两条直线都垂直于同一条直线这两条直线互相平行【解析】解:把命题可以写成“如果…那么…”,则如果后面为题设,那么后面为结论.“垂直于同一直线的两直线平行”改写成为“如果…那么…”的形式为:如果两条直线都垂直于同一条直线,那么这两条直线互相平行.题设:两条直线都垂直于同一条直线;结论为:这两条直线互相平行.故答案为:两条直线都垂直于同一条直线这两条直线互相平行2.如图,已知长方形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为C',若∠ADC'=24°,则∠BDC的度数为______________.【答案】57°【解析】解:如图,设AD与BC′交于点E.∵四边形ABCD是矩形,∴∠C=90°,AD∥BC,∠ADC=90°,∴∠3=∠4,∠1=∠2+∠4.∵△BDC′是由△BDC翻折得到,∴∠2=∠4,∠C=∠C′=90°,∠BDC=∠BDC′∴∠2=∠3,∵∠ADC′=24°,∴∠1=90°﹣∠EDC′=66°,∵∠1=∠2+∠4=2∠2,×66°=33°,∴∠2=∠3=12∴∠BDC=∠D-∠3=90°-33°=57°.故答案为57°.3.在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)所示.以上说法谁对谁错?为什么?【解析】解:甲、乙说法都不对,都少了三种情况.a∥b,c与a,b相交如图(1);a,b,c两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.4.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?【解析】解:C,D,E三点共线.理由:因为过直线AB外一点C有且只有一条直线与AB平行,直线CD、DE都经过点C 且与AB平行,所以直线CD、DE重合,所以点C、D、E三点共线.5.如图,已知AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,AC与BD平行吗?AE与BF平行吗?【解析】解:因为∠1=35°,∠2=35°(已知),所以∠1=∠2.所以AC∥BD(同位角相等,两直线平行).又因为AC⊥AE(已知),所以∠EAC=90°(垂直的定义).所以∠EAB=∠EAC+∠1=125°.同理可得,∠FBG=∠FBD+∠2=125°.所以∠EAB=∠FBG(等量代换).所以AE∥BF(同位角相等,两直线平行).6.判断下列命题是真命题还是假命题;如果是假命题,请举一个反例.(1)两个锐角的和是锐角;(2)若a>b,则a2>b2;【解析】解:(1)假命题.反例为:两个锐角分别为40°,60°,它们的和为100°,为钝角;(2)假命题.反例为:a=1,b=﹣3,但是a2=1<b2=9.7.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE 平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.【解析】解:∵∠EFG=90°,∠E=35°,∴∠FGH=180°-∠EFG-∠E=180°-90°-35°=55°.∵GE平分∠FGD,∴∠FHG=∠HGD=55°.∵AB∥CD,∴∠FHG=∠HGD =55°.∴∠FHE=180°-∠FHG=180°-55°=125°.在△EFH中,∠EFB=180°-∠FHE-∠E=180°-125°-35°20°.8.如图,已知:AB∥CD,∠1=∠2,∠3=∠4,求证:(1)∠4=∠DAC;(2)AD∥BE.【解析】证明:(1):∵AB∥CD,∴∠4=∠BAF(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠DAC,∴∠4=∠DAC,(2)∵∠4=∠DAC,∠3=∠4,∴∠3=∠DAC,∴AD∥BE(内错角相等,两直线平行).。
平行线的判定例题与讲解
![平行线的判定例题与讲解](https://img.taocdn.com/s3/m/78a6e6afa26925c52cc5bfee.png)
3平行线的判定1.平行线的判定公理(1)平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行•简单记为:同位角相等,两直线平行.如图,推理符号表示为:•// 1=/ 2,••• AB// CD.(位置关系),所以在推理过程中要先写(2)平行公理的推论:①垂直于同一条直线的两条直线平行.②平行于同一条直线的两条直线平行.②应用时,应先确定同位角及形成相等(数量关系)来确定两条直线平行,然后再写“两线平行”.a丄b, C丄b,贝U a / c;a/ b, c/ b,贝U a/ c.AB和CD是否平行,于是找来一根笔EGB和/ GFD的度数,就知道断.题中/ EGB和/ GFD是直线AB和直线CD(墙的上下边缘)被直线EF所截时形成的同位角,根据“同位角相等,两直线平行”,可知只有/ EGB和/ GFD 相等时,墙壁的上下边缘才会平行.D答案:/ EGB和/ GFD相等时,墙壁的上下边缘才会平行.其依据是同位角相等,两直线平行.2.平行线的判定定理(1)判定定理1两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单记为:同旁内角互补,两直线平行. 符号表示:如下图,•••/••• AB// CD.谈重点同位角相等,两直线平行①平行线的判定公理是证明两直线平行的原始依据; 同位角的是哪两条直线;③本判定方法是由两同位角【例11工人师傅想知道砌好的墙壁的上下边缘直的木棍,如图所示将其放在墙面上,那么,他通过测量/ 墙壁的上下边缘是否平行了.请问:/ 才会平行?你的依据是什么?解析:判定两条直线是否平行,常根据两条直线“两角相等”EGB和/ GFD满足怎样的条件时,墙壁的上下边缘被第三条直线所截而构成的角来判谈重点 同旁内角互补,两直线平行①定理是根据公理推理得出的真命题, 可直接应用;②应用时,找准哪两个角是同旁内 角,使哪两条直线平行.(2)判定定理2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单记为:内错角相等,两直线平行.符号表示:如上图, •// 2=/ 4,.・.AB // CD.【例2— 11如图,小明利用两块相同的三角板,分别在三角板的边缘画直线 AB 和CD ,这是根据 _________ ,两直线平行.解析:由题图可看出,直线 AB 和CD 被直线BC 所截,此时两块相同的三角板的两个最小角的位置关系正好是内错角,所以这是根据内错角相等,来判定两直线平行的. 答案:内错角相等【例2-21如图,下列说法中,正确的是 ().3. 平行线的判断方法平行线的判定方法主要有以下六种:(1) 平行线的定义(一般很少用). (2) 同位角相等,两直线平行. (3) 同旁内角互补,两直线平行. (4) 内错角相等,两直线平行.(5) 同一平面内,垂直于同一条直线的两条直线相互平行.(6) 如果两条直线都和第三条直线平行,那么这两条直线平行. 析规律如何选择判定两直线平行的方法①在利用平行线的公理或定理判定两条直线是否平行时, 旁内角是由哪两条直线被第三条直线所截而构成的;②证明两条直线平行,关键是看与待证结论相关的同位角或内错角是 角是否互补.A .因为/B .因为/C .因为/D .因为/ A +/ D = 180 °C +/D = 180 ° A +/ D = 180 ° A +/ C = 180 ° 所以 所以 所以 所以 AD // BC AB // CD AB // CD AB // CD错解:A 或B 或D错解分析:判定直线平行所需要的内错正解:C正解思路:/ A 与/ D 是直线AB 和CD 被直 角或同旁内角找不准.条件不能推出结 线AD 所截得到的同旁内角.因为 / A +/ D 论.葛本方法塔本能力=180° 所以 AB // CD.要分清同位角、内错角以及同•否相等,同旁内【例3】 如图,直线a , b 与直线c 相交,形成/ 1,/ 2,…,/ 8共八个角,请你填 上你认为适当的一个条件:解析:本题主要是考查平行线的三种判定方法.4. 平行线判定的应用 (1) 平行线的生活应用数学来源于生活,同样生活中也有大量的平行线,其判定平行的方法也常在生活中遇 到.如木工师傅判定所截得的木板的对边是否平行, 工人师傅判定所制造的机器零件是否符 合平行的要求……对于生活中的平行线判断,关键是利用工具确定与平行有关的角是否相等, 是利用直角尺判断同位角是否相等 ,从而判定两直线是否平行.(2) 平行线在数学中的运用平行线判定方法在数学中的运用主要通过角之间的关系判定两条直 .线平行,进一步解决其他有关的问题.常见的条件探索题就是其应用之一. 探索题是培养发散思维能力的题型,它具有开放性,所要求的答案一般不具有唯一性.解决探索性问题,不仅能提高分析问题的 能力,而且能开阔视野,增加对知识的理解和掌握.释疑点判定平行的关键判定两直线平行,关键是.确定角的位置关系及大小关系.【例4— 11如图,一个零件 ABCD 需要AB 边与CD 边平行•,现只有一个量角器,测 得拐角/ ABC =120° / BCD = 60°这个零件合格吗? _________________________________ (填“合格”或“不合 格”).DG. JB解析:要判断AB 边与CD 边平行,则需满足同旁内角互补的条件. / BCD = 60°,•••/ ABC + / BCD = 120° + 60° = 180°.••• AB // CD.•••这个零件合格. 答案:合格若从"同位角相等,两直线平行 /8中的任意一个条件;若从“内错角相等,两直线平行 若从“同旁内角互补,两直线平行 一个条件;从其他方面考虑,还可以填 / 1= / 8, / 2 =/7, / 1 + /7= 180° / 2 +/8= 180° / 4 +/ 7=180° / 3+/ 8 = 180° / 2 + ./ 5= 180° / 1+/ 6= 180° 中的任意一个条件.答案:答案不唯一,如可填下列之一:/ 1 = / 5或/ 4 =/ 5或/ 3+/ 5 = 180°…【SOS 展创新磁用考虑,可填/ 1= / 5, / 2 = / 6, / 3= / 7, /.4 =/ 3= / 6, / 4=/5中的任意一个; 考虑,可填 ”考虑,可填 / 3+/ 5= 180° , / 4+/ 6= 180°中的比较常用的 AiE •••/ ABC = 120° ,【例4—21 已知:如图在四边形ABCD中,/ A =/ D , / B =/ C,试判断AD与BC 的位置关系,并说明理由.分析:根据四边形ABCD的内角和是360°,结合已知条件得到 / A +/ B = 180°,根据同旁内角互补,两直线平行得AD // BC.解:AD与BC的位置关系是平行.理由:•••四边形ABCD的内角和是360°•••/ A+/ B+/ C+/ D = 360°•// A= / D, / B= / C,•••/ A+ / B= 180°••• AD // BC(同旁内角互补,两直线平行)•点评:本题考查四边形的内角和以及利用同旁内角互补,来判定两直线平行.。
平行线及其判定知识点总结、例题解析
![平行线及其判定知识点总结、例题解析](https://img.taocdn.com/s3/m/b77004af9e3143323968935f.png)
平行线及其判定知识点总结、例题解析知识点1【平行线】在同一平面内,不重合的两条直线的只有两种位置关系:平行和相交。
1、平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.2、平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合②靠:用直尺紧靠三角板的一条直角边③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点④画:沿着这条斜边画一条直线,所画直线与已知直线平行3、平行线公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.注意区别垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用。
如果a∥b,b∥c,那么a∥c。
【例题1】下列叙述正确的是()A、两条直线不相交就平行B、在同一平面内,不相交的两条线叫做平行线C、在同一平面内,不相交的两条直线叫做平行线D、在同一平面内,不相交的两条线段叫做平行线【答案】C【例题2】在同一平面内,不重合的两条直线的位置关系有()A、平行或垂直B、平行或相交C、垂直或相交D、平行、垂直或相交【答案】B【例题3】下列说法中正确的序号有_______①一条直线的平行线只有一条:②过一点与已知直线平行的直线只有一条:③因为a∥b,c∥d,所以a∥d:④经过直线外一点有且只有一条直线与己知直线平行【解析】①一条直线有无数条平行线;②必须过直线外一点,如果点在直线上,会出现重合。
【答案】④【例题4】下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行。
其中正确的有()。
A、1个;B、2个;C、3个;D、4个。
【解析】②③需在同一平面内,④过直线外一点【答案】A知识点2【平行线的判定】(1)判定方法1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)(2)判定方法2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行.∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)(3)判定方法3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行.∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行判定方法补充:①两条直线都和第三条直线平行,那么这两条直线平行.②在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.【例题5】如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5:②∠1=∠7:③∠2+∠3=180°:④∠4=∠7,其中能判断a∥b的条件的序号是()A、①②B、①③C、①④D、③④【答案】A【例题6】如图,下列条件中,不能判断直线l1∥l2的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°【答案】B【例题7】如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,求证:AB∥CD【答案】∵∠1=∠2∴2∠1=2∠2,即∠ABC=∠BCD∴AB∥CD(内错角相等,两直线平行)【例题8】如图,在四边形ABCD中,AD∥BC,∠ABC=∠CDA,BE、DF分别是∠ABC和∠ADC 的平分线,求证:BE∥DF【解析】想要证明EB∥DF,根据平行钱的判定方法,只要证明∠AEB=∠ADF即可【答案】证明:∵AD∥BC∴∠AEB=∠EBC∵∠ABC=∠ADC,BE、DF分别是∠ABC和∠ADC的平分线∴∠EBC=∠ADF∴∠AEB=∠ADF∴EB∥DE【例题9】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由【答案】解:AB∥CD。
人教版七年级下知识点试题精选-平行公理及推论
![人教版七年级下知识点试题精选-平行公理及推论](https://img.taocdn.com/s3/m/c20e140d647d27284b7351ad.png)
七年级下册平行公理及推论一.选择题(共20小题)1.下列说法正确的个数()(1)在同一平面内,两条直线的位置关系只有两种:相交和平行.(2)过一点有一条直线平行于已知直线.(3)有且只有一条直线垂直于已知直线.(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.(5)平面上三条直线相交,最多能够形成3对对顶角.(6)如果两条直线都与第三条直线垂直,那么这两条直线互相平行.(7)两条相交直线构成的角中,互为邻补角的最多有4对.A.1个 B.2个 C.3个 D.4个2.下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.垂直于同一条直线的两条直线平行C.有理数与数轴上的点一一对应D.垂线段最短3.下面各语句中,正确的是()A.相等的角是对顶角B.过一点有且只有一条直线与已知直线平行C.直线外一点到该直线的垂线段叫点到直线的距离D.同角或等角的余角相等4.下列说法正确的是()A.不相交的两条直线是平行线B.在同一平面内,两条平行的直线有且只有一个交点C.在同一平面内,两条直线的位置关系只有平行和相交两种D.过一点有且只有一条直线与已知直线平行5.下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个 B.2个 C.3个 D.4个6.下列推理中,错误的是()A.因为AB⊥EF,EF⊥CD,所以AB⊥CDB.因为∠α=∠β,∠β=∠γ,所以∠α=∠γC.因为a∥b,b∥c,所以a∥cD.因为AB=CD,CD=EF,所以AB=EF7.若直线l1∥l,l2∥l,则()A.l1∥l2B.l l⊥l2C.l1与l2相交D.以上都不对8.直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是()A.相交B.平行C.垂直D.不确定9.下列选项中正确的是()A.相等的角是对顶角B.两直线平行,同旁内角相等C.直线外一点到这条直线的垂线段,叫点到直线的距离D.经过直线外一点,有且只有一条直线与这条直线平行10.小明与小刚在讨论数学问题时,有如下对话:小明:在同一平面内,过一点A有且只有一条直线与已知直线m平行.小刚:在同一平面内,过一点A有且只有一条直线与已知直线m垂直.你认为小明与小刚谁说的是正确的?()A.小明正确B.小刚正确C.小明与小刚都正确D.都不正确11.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直12.下列语句中,正确的是()A.两点之间的线段叫做两点之间的距离B.如果一点到一条线段的两端点的距离相等,那么这点叫线段的中点C.经过直线外一点,有且只有一条直线与这条直线平行D.过直线外一点作已知直线的垂线,这点与垂足之间的线段叫点到直线的距离13.下列说法错误的是()A.过直线外一点有且仅有一条直线与它平行B.在同一平面内,不同的两条直线只有一个交点C.经过一点有且只有一条直线与已知直线垂直D.经过两点有且只有一条直线14.如果两条不同的直线都和第三条直线平行,那么这两条直线的位置关系是()A.平行B.相交C.平行或相交D.互相垂直15.给出下列说法:①对顶角相等;②等角的补角相等;③两点之间所有连线中,线段最短;④过任意一点P,都能画一条直线与已知直线平行.其中正确说法的个数是()A.1 B.2 C.3 D.416.下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c17.下列说法:①若a与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.其中错误的有()A.3个 B.2个 C.1个 D.0个18.如图,过点A画直线L的平行线,能画()A.两条以上B.2条 C.1条 D.0条19.下列说法错误的是()A.在同一平面内,没有公共点的两条直线是平行线B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.经过直线外一点有且只有一条直线与该直线平行D.在同一平面内,不相交的两条线段是平行线20.下列结论中,不正确的是()A.两点确定一条直线B.等角的余角相等C.过一点有且只有一条直线与已知直线平行D.两点之间,线段最短二.填空题(共20小题)21.设l1,l2,l3为同一平面内三条不同直线,若l1⊥l2,l2⊥l3,则l1与l3的位置关系是.22.经过一点,有且只有一条直线与已知直线平行.23.(1)如图,因为直线AB、CD相交于点P,AB∥EF,所以CD不平行于EF();(2)因为直线a∥b,b∥c,所以a∥c().24.若AB∥CD,HG∥CD,则有∥∥.25.直线a、b、c在同一平面内,(1)如果a⊥b,b⊥c,那么a∥c;(2)如果a ∥b,b∥c,那么a∥c;(3)如果a∥b,b⊥c,那么a⊥c;(4)如果a与b相交,b与c相交,那么a与c相交;在上述四种说法中,正确的有个.26.因为AB∥CD,EF∥AB,根据,所以.27.已知直线l及l外一点P,若过点P画直线与l平行,那么这样的直线有条.28.在同一平面内有四条直线a,b,c,d,已知:a∥d,b∥c,b∥d,则a和c 的位置关系是.29.如图,直线AB,CD表示一条公路的两边,且AB∥CD,点E为直线AB,CD 外一点,现过点E作边CD的平行线,只需过点E作的平行线即可,其理由是.30.在同一平面内,与已知直线a平行的直线有条;而经过直线外一点P,与已知直线a平行的直线有且只有条.31.在同一平面内,已知直线a、b、c,且a∥b,b⊥c,那么直线a和c的位置关系是.32.对于同一平面内的三条不同直线a、b、c,若a∥b,b∥c,则直线a、c的位置关系是.33.直线L同侧有A、B、C三点,若A、B两点确定的直线L1与B、C两点确定的直线L2都与L平行,则A、B、C三点共线,其理论依据是.34.如果a∥b,b∥c,那么a c.35.若点P为直线AB外一点,则过点P且平行于AB的直线有条.36.如果直线a∥b,b∥c,那么直线a与c的位置关系是.37.若AB∥CD,AB∥EF,则∥,理由是.38.已知A,B,C三点及直线EF,过B点作AB∥EF,过B点作BC∥EF,那么A,B,C三点一定在同一条直线上,依据是.39.已知直线a∥b,b∥c,则直线a、c的位置关系是.40.若直线a∥b,b∥c,则.三.解答题(共10小题)41.直线a∥b,b∥c,直线d与a相交于点A.(1)判断a与c的位置关系,并说明理由;(2)判断c与d的位置关系,并说明理由.42.在同一平面内,直线l的同侧有A、B、C三点,如果AB∥l,BC∥l,那么A、B、C三点是否在同一直线上?为什么?43.如图,已知OA∥CD,OB∥CD,那么∠AOB是平角,为什么?44.如图所示,AB∥DC,在AD上取一点E,过E作EF∥AB交BC于F,试说明EF与DC的位置关系,并解释原因.45.如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?46.如图,AD∥BC,E为AB上任一点,过E点作EF∥AD交DC于F.问EF与BC的位置关系怎样,为什么?47.判断题(正确的画“√”,错误的画“×”)(1)a、b、c是直线,且a∥b,b∥c,则a∥c.(2)a、b、c是直线,且a⊥b,b⊥c,则a⊥c..48.如图,AB∥CD,E为AC的中点,(1)请过E作线段EF,且使EF∥AB,EF与BD相交于F;(2)请回答:EF与CD平行吗?为什么?49.a,b,c不在同一平面内,a∥b,b∥c,那么a∥c是真命题吗?50.探索与发现:(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是,请说明理由.(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是(直接填结论,不需要证明)(3)现在有2011条直线a1,a2,a3,…,a2011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2011的位置关系.七年级下册平行公理及推论参考答案与试题解析一.选择题(共20小题)1.下列说法正确的个数()(1)在同一平面内,两条直线的位置关系只有两种:相交和平行.(2)过一点有一条直线平行于已知直线.(3)有且只有一条直线垂直于已知直线.(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.(5)平面上三条直线相交,最多能够形成3对对顶角.(6)如果两条直线都与第三条直线垂直,那么这两条直线互相平行.(7)两条相交直线构成的角中,互为邻补角的最多有4对.A.1个 B.2个 C.3个 D.4个【分析】根据直线平行、相交的定义及平行公理和推论对各选项分析判断后利用排除法求解.【解答】解:(1)在同一平面内,两条直线的位置关系只有两种:相交和平行,说法正确.(2)过一点有一条直线平行于已知直线,说法错误,应该是过直线外一点有一条直线平行于已知直线.(3)有且只有一条直线垂直于已知直线,说法错误,应该是同一平面内有且只有一条直线垂直于已知直线.(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离,说法错误,应该是从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.(5)平面上三条直线相交,最多能够形成3对对顶角.说法错误,应该是6对.(6)如果两条直线都与第三条直线垂直,那么这两条直线互相平行,说法错误,应该是在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行.(7)两条相交直线构成的角中,互为邻补角的最多有4对,说法正确.故选:B.【点评】本题是对概念和公理的考查,准确记忆是解答本题的关键.2.下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.垂直于同一条直线的两条直线平行C.有理数与数轴上的点一一对应D.垂线段最短【分析】根据平行公理以及垂线的性质定理即可作出判断.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故选项错误;B、在同一平面内垂直于同一条直线的两条直线平行,故该选项错误;C、实数与数轴上的点一一对应,故选项错误;D、从直线外一点到这条直线上各点所连的线段中,垂直线段最短,故该选项正确.故选D.【点评】本题考查了平行公理以及垂线的性质定理,正确理解定理是关键.3.下面各语句中,正确的是()A.相等的角是对顶角B.过一点有且只有一条直线与已知直线平行C.直线外一点到该直线的垂线段叫点到直线的距离D.同角或等角的余角相等【分析】A、根据对顶角的定义进行判断;B、根据平行公理进行判断;C、根据点到直线的距离的定义进行判断;D、根据余角的性质进行判断.【解答】解:A、相等的角不一定是对顶角,故本选项错误;B、经过直线外一点,有且只有一条直线与这条直线平行,故本选项错误;C、直线外一点到直线的垂线段的长度,叫做点到直线的距离,故本选项错误;D、同角或等角的余角相等,故本选项正确.故选D.【点评】本题考查了对顶角的定义,平行公理,点到直线的距离的定义,余角的性质,是基础知识,比较简单.4.下列说法正确的是()A.不相交的两条直线是平行线B.在同一平面内,两条平行的直线有且只有一个交点C.在同一平面内,两条直线的位置关系只有平行和相交两种D.过一点有且只有一条直线与已知直线平行【分析】根据平行线的定义和平行公理及推论,对每个选项进行判断.【解答】解:A、不相交的两条直线是平行线,错误,应强调在同一平面内.B、在同一平面内,两条平行的直线有且只有一个交点,错误,在同一平面内,两条平行的直线没有交点.C、正确.D、过一点有且只有一条直线与已知直线平行,错误,过直线外一点有且只有一条直线与已知直线平行.故选C.【点评】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.5.下列说法中,正确的个数为()(1)过一点有无数条直线与已知直线平行(2)如果a∥b,a∥c,那么b∥c(3)如果两线段不相交,那么它们就平行(4)如果两直线不相交,那么它们就平行A.1个 B.2个 C.3个 D.4个【分析】根据平行线的定义、公理及推论判断.【解答】解:(1)过直线外一点有且只有一条直线与已知直线平行,故错误;(2)根据平行公理的推论,正确;(3)线段的长度是有限的,不相交也不一定平行,故错误;(4)应该是“在同一平面内”,故错误.正确的只有一个,故选A.【点评】掌握平行线的定义、公理及推论,并具有一定的判断能力,举反例也是一种方法.6.下列推理中,错误的是()A.因为AB⊥EF,EF⊥CD,所以AB⊥CDB.因为∠α=∠β,∠β=∠γ,所以∠α=∠γC.因为a∥b,b∥c,所以a∥cD.因为AB=CD,CD=EF,所以AB=EF【分析】根据相关的定义或定理判断.【解答】解:A、AB⊥EF,EF⊥CD,答案不确定,有多个答案,AB可能与CD平行,也可能垂直,在空间中也可能异面等,故A选项错误;B、由∠α=∠β,∠β=∠γ,根据角的等量代换可知,∠α=∠γ,故B选项正确;C、由a∥b,b∥c,根据平行线的平行的传递性可知a∥c,故C选项正确;D、根据线段长度的等量代换可知AB=EF,易知D选项正确;综上所述,答案选A.【点评】主要考查学生对平行公理及推论的运用,注意等量代换的应用.7.若直线l1∥l,l2∥l,则()A.l1∥l2B.l l⊥l2C.l1与l2相交D.以上都不对【分析】根据平行于同一直线的两直线互相平行解答.【解答】解:∵l1∥l,l2∥l,∴l1∥l2.故选A.【点评】本题主要考查直线的平行公理.8.直线a、b、c中,a∥b,b∥c,则直线a与直线c的关系是()A.相交B.平行C.垂直D.不确定【分析】根据如果两条直线都和第三条直线平行,那么这两条直线也互相平行.【解答】解:由于直线a、b都与直线c平行,依据平行公理的推论,可推出a ∥b,故选B.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.9.下列选项中正确的是()A.相等的角是对顶角B.两直线平行,同旁内角相等C.直线外一点到这条直线的垂线段,叫点到直线的距离D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据对顶角的性质、平行线的性质、点到直线的距离概念、平行线的公理逐个进行判断,可知D正确.【解答】解:A中,只能说对顶角相等,而不是相等的角都是对顶角,错误;B中,两直线平行,同旁内角互补,而不是相等,错误;C中,距离应是垂线段的长度,而不是线段本身,错误;D中,这是平行公理,正确.故选D.【点评】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.10.小明与小刚在讨论数学问题时,有如下对话:小明:在同一平面内,过一点A有且只有一条直线与已知直线m平行.小刚:在同一平面内,过一点A有且只有一条直线与已知直线m垂直.你认为小明与小刚谁说的是正确的?()A.小明正确B.小刚正确C.小明与小刚都正确D.都不正确【分析】在同一平面内,由于过直线外一点有且只有一条直线与已知直线平行,过直线外或直线上一点有且只有一条直线与已知直线垂直,由此即可判定小明与小刚谁说的是正确的.【解答】解:∵过直线外一点有且只有一条直线与已知直线平行,过直线外或直线上一点有且只有一条直线与已知直线垂直,而小明:过一点A有且只有一条直线与已知直线m平行,不知道A是否在直线m外,故说法错误;小刚:过一点A有且只有一条直线与已知直线m垂直,无论A在直线外还是直线上都有且只有一条直线与已知直线m垂直,故说法正确.∴小刚说的是正确的.故选B.【点评】本题考查的重点是平行公理和垂线的性质,解题时主要抓住点A与直线m的位置关系即可解决问题.11.下列说法中可能错误的是()A.过直线外一点有且只有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线垂直C.两条直线相交,有且只有一个交点D.若两条直线相交成直角,则这两条直线互相垂直【分析】根据平行公理和相交线、垂线的定义利用排除法求解.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,故本选项正确;B、应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项错误;C、两条直线相交,有且只有一个交点,故本选项正确;D、若两条直线相交成直角,则这两条直线互相垂直,直线垂直的定义,故本选项正确.故选B.【点评】本题主要考查公理定义,熟练记忆公理和定义是学好数学的关键.12.下列语句中,正确的是()A.两点之间的线段叫做两点之间的距离B.如果一点到一条线段的两端点的距离相等,那么这点叫线段的中点C.经过直线外一点,有且只有一条直线与这条直线平行D.过直线外一点作已知直线的垂线,这点与垂足之间的线段叫点到直线的距离【分析】根据两点间的距离的定义,线段中点的定义,平行公理,以及点到直线的距离的定义对各选项分析判断后利用排除法求解.【解答】解:A、应为两点之间的线段的长度叫做两点之间的距离,故本选项错误;B、应为如果线段上一点到这条线段的两端点的距离相等,那么这点叫线段的中点,故本选项错误;C、经过直线外一点,有且只有一条直线与这条直线平行,故本选项正确;D、应为过直线外一点作已知直线的垂线,这点与垂足之间的线段的长度叫点到直线的距离,故本选项错误.故选C.【点评】本题考查了平行公理,两点间的距离的定义,点到直线的距离的定义,是基础题,熟记概念是解题的关键.13.下列说法错误的是()A.过直线外一点有且仅有一条直线与它平行B.在同一平面内,不同的两条直线只有一个交点C.经过一点有且只有一条直线与已知直线垂直D.经过两点有且只有一条直线【分析】直接利用平行公理以及其推论和垂线的定义分析得出即可.【解答】解:A、过直线外一点有且仅有一条直线与它平行,正确,不合题意;B、在同一平面内,不同的两条直线最多只有一个交点,正确,不合题意;C、应为:在同一平面内,经过一点有且只有一条直线与已知直线垂直,故错误,符合题意;D、经过两点有且只有一条直线,正确,不合题意.故选:C.【点评】此题主要考查了平行公理及推论和垂线的定义,正确把握相关定义是解题关键.14.如果两条不同的直线都和第三条直线平行,那么这两条直线的位置关系是()A.平行B.相交C.平行或相交D.互相垂直【分析】直接根据平行公理即可得出结论.【解答】解:∵两条不同的直线都和第三条直线平行,∴这两条直线平行.故选A.【点评】本题考查的是平行公理及推论,熟知如果两条直线都与第三条直线平行,那么这两条直线也互相平行是解答此题的关键.15.给出下列说法:①对顶角相等;②等角的补角相等;③两点之间所有连线中,线段最短;④过任意一点P,都能画一条直线与已知直线平行.其中正确说法的个数是()A.1 B.2 C.3 D.4【分析】根据对顶角相等,补角的性质,线段的性质以及平行公理对各小题分析判断即可得解.【解答】解:①对顶角相等,正确;②等角的补角相等,正确;③两点之间所有连线中,线段最短,正确;④应为过直线外任意一点P,都能画一条直线与已知直线平行,综上所述,说法正确的有①②③共3个.故选C.【点评】本题考查了平行公理,线段的性质,余角和补角的性质,对顶角相等的性质,熟记各性质是解题的关键.16.下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行“进行分析,得出正确答案.【解答】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、没有两条直线都和第三条直线平行,推不出平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行.故选C.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.17.下列说法:①若a与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.其中错误的有()A.3个 B.2个 C.1个 D.0个【分析】利用同一个平面内,两条直线的位置关系解答.【解答】解:①若a与c相交,则a与b不一定相交;故错误;②若a∥b,b∥c,那么a∥c;故正确;③在同一平面内,过一点有且只有一条直线与已知直线平行;故错误;④在同一平面内,两条直线的位置关系有平行、相交、两种;故错误.故选A.【点评】本题考查了平行公理及推论,相交线、平行线的定义,熟记熟记公理、定理对学好几何比较关键.18.如图,过点A画直线L的平行线,能画()A.两条以上B.2条 C.1条 D.0条【分析】经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线L的平行线,能画1条.故选:C.【点评】本题考查了平行公理及推论.平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.19.下列说法错误的是()A.在同一平面内,没有公共点的两条直线是平行线B.如果两条直线都与第三条直线平行,那么这两条直线也互相平行C.经过直线外一点有且只有一条直线与该直线平行D.在同一平面内,不相交的两条线段是平行线【分析】分别利用平行公理以及平行线的判定与性质分别分析得出答案.【解答】解:A、在同一平面内,没有公共点的两条直线是平行线,正确,不合题意;B、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确,不合题意;C、经过直线外一点有且只有一条直线与该直线平行,正确,不合题意;D、在同一平面内,不相交的两条线段是平行线,错误,符合题意.故选:D.【点评】此题主要考查了平行公理以及平行线的判定与性质,正确把握相关定理是解题关键.20.下列结论中,不正确的是()A.两点确定一条直线B.等角的余角相等C.过一点有且只有一条直线与已知直线平行D.两点之间,线段最短【分析】根据平行公理,直线的性质,线段的性质以及余角和补角的性质对各选项分析判断即可得解.【解答】解:A、两点确定一条直线,正确,故本选项错误;B、等角的余角相等,正确,故本选项错误;C、应为过直线外一点有且只有一条直线与已知直线平行,故本选项正确;D、两点之间,线段最短,正确,故本选项错误.故选C.【点评】本题主要考查了平行公理和及推论,直线和线段的性质,以及余角和补角的性质,是基础题,熟记相关性质是解题的关键.二.填空题(共20小题)21.设l1,l2,l3为同一平面内三条不同直线,若l1⊥l2,l2⊥l3,则l1与l3的位置关系是l1∥l3.【分析】根据在同一平面内,两条直线都与同一条直线垂直,则这两直线平行作答.【解答】解:∵在同一平面内,l1⊥l2,l2⊥l3,∴l1∥l3,即l1与l3的位置关系是平行,故答案为:l1∥l3.【点评】本题考查了平行线的判定,解题时利用了:在同一平面内,两条直线都与同一条直线垂直,则这两直线平行.22.经过直线外一点,有且只有一条直线与已知直线平行.【分析】根据平行公理解答.【解答】解:经过直线外一点,有且只有一条直线与已知直线平行.故答案为:直线外.【点评】本题考查了平行公理,是基础题,熟记公理是解题的关键.23.(1)如图,因为直线AB、CD相交于点P,AB∥EF,所以CD不平行于EF(经过直线外一点,有且只有一条直线与这条直线平行);(2)因为直线a∥b,b∥c,所以a∥c(平行于同一直线的两条直线平行).【分析】(1)利用经过直线外一点,有且只有一条直线与这条直线平行,进而得出答案;(2)利用平行于同一直线的两条直线平行进而得出答案.【解答】解:(1)如图,因为直线AB、CD相交于点P,AB∥EF,所以CD不平于EF(经过直线外一点,有且只有一条直线与这条直线平行);故答案为:经过直线外一点,有且只有一条直线与这条直线平行.(2)因为直线a∥b,b∥c,所以a∥c(平行于同一直线的两条直线平行).故答案为:平行于同一直线的两条直线平行.【点评】此题主要考查了平行公理与推论,正确把握相关定理是解题关键.24.若AB∥CD,HG∥CD,则有AB∥CD∥HG.【分析】根据平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线平行;可知AB∥CD∥HG.【解答】解:∵AB∥CD,HG∥CD∴AB∥CD∥HG.故答案为AB∥CD∥HG.【点评】本题考查了平行公理推论.。
平行公理及推论
![平行公理及推论](https://img.taocdn.com/s3/m/fa8659283069a45177232f60ddccda38376be18c.png)
平行公理及推论精选题23道一.选择题(共17小题)1.下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.不相交的两条直线叫做平行线C.两点确定一条直线D.两点间的距离是指连接两点间的线段2.已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥cC.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c3.下列说法错误的是()A.对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行4.下列说法:①两点之间,直线最短;②若AC=BC,且A,B,C三点共线,则点C是线段AB的中点;③经过一点有且只有一条直线与已知直线垂直;④经过一点有且只有一条直线与已知直线平行.其中正确的说法有()A.1个B.2个C.3个D.4个5.下列说法正确的是()①平面内,不相交的两条直线是平行线;②平面内,过一点有且只有一条直线与已知直线垂直;③平面内,过一点有且只有一条直线与已知直线平行;④相等的角是对顶角;⑤P是直线a外一点,A、B、C分别是a上的三点,P A=1,PB=2,PC=3,则点P到直线a的距离一定是1.A.1个B.2个C.3个D.4个6.下列说法正确的是()A.两点之间,直线最短B.过一点有一条直线平行于已知直线C.和已知直线垂直的直线有且只有一条D.在平面内过一点有且只有一条直线垂直于已知直线7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个8.在同一平面内,下列说法正确的是()A.两点之间的距离就是两点间的线段B.与同一条直线垂直的两条直线也垂直C.过一点有且只有一条直线与已知直线平行D.过一点有且只有一条直线与已知直线垂直9.下列说法正确的是()A.相等的两个角是对顶角B.过一点有且只有一条直线与已知直线平行C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.过一点有且只有一条直线与已知直线垂直10.下列说法:(1)两点之间的距离是两点间的线段;(2)如果两条线段没有交点,那么这两条线段所在直线也没有交点;(3)邻补角的两条角平分线构成一个直角;(4)同一平面内,过一点有且只有一条直线与已知直线垂直;(5)同一平面内,过一点有且只有一条直线与已知直线平行.其中正确的是()A.1个B.2个C.3个D.4个11.在同一平面内三条不同的直线a、b、c,其中a⊥b,a⊥c,则直线b与直线c的关系是()A .相交B .平行C .垂直D .不确定12.下列说法正确的是( )A .如果两个角相等,那么这两个角是对顶角B .内错角相等C .过直线外一点有且只有一条直线与已知直线平行D .一个角的补角一定是钝角13.给出下列说法:①对顶角相等;②等角的补角相等;③两点之间所有连线中,线段最短;④过任意一点P ,都能画一条直线与已知直线平行.其中正确说法的个数是( )A .1B .2C .3D .4 14.下列说法:①5ab 、x 2−3、a π都是整式;②x 2﹣xy +y 2是按字母y 的升幂排列的多项式;③在墙上钉一根木条,最少需要2枚钉子,理由是“两点之间,线段最短”;④过一点有且只有一条直线与已知直线平行.其中正确的个数为( )A .1个B .2个C .3个D .4个15.下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;其中正确的有( )个.A .0B .1C .2D .316.下列语句不正确的是( )A .在同一平面内,过直线外一点有且只有一条直线与已知直线平行.B .两直线被第三直线所截,如果同位角相等,那么两直线平行C .两点确定一条直线D .内错角相等17.下面各语句中,正确的是( )A .相等的角是对顶角B .同旁内角互补C .过一点有且只有一条直线与已知直线平行D .同角或等角的余角等二.填空题(共6小题)18.如图:PC ∥AB ,QC ∥AB ,则点P 、C 、Q 在一条直线上.理由是:.19.如图,MC∥AB,NC∥AB,则点M,C,N在同一条直线上,理由是.20.已知:a,b,c为不重合的三条直线,a∥b,b∥c,则a∥c.理由是.21.若直线a∥b,b∥c,则,其理由是.22.如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由.23.如图,在直线a的同侧有P、Q、R三点,若PQ∥a,QR∥a,则P、Q、R三点(填“在”或“不在”)同一条直线上.。
北师大版七年级下册数学《平行公理及推论》同步练习(含答案)
![北师大版七年级下册数学《平行公理及推论》同步练习(含答案)](https://img.taocdn.com/s3/m/9407be67001ca300a6c30c22590102020740f214.png)
平行公理及推论一 、选择题1.如图所示,两直线AB CD 、平行,则l 23456∠+∠+∠+∠+∠+∠= ( )A .630︒B .720︒C .800︒D .900︒二 、填空题2.如图,CD BE ∥,则231∠+∠-∠的度数等于 .3.如图,已知AE BD ∥,1=130230∠︒∠=︒,,则C ∠= .4.已知:如图所示,AB CD ∥,1=110∠︒,2120∠=︒,则α∠=____5.如图,已知AB DE ∥,80ABC ∠=︒,140CDE ∠=︒,则BCD ∠= .三 、解答题65HG 4321DCF EB A321ED C BA 21ED CB Aα21D C E BA EDCB A6.已知,如图360B BED D ∠+∠+∠=︒.求证:AB CD ∥.7.(1)如图⑴,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠,1B ∠、2B ∠、…、1n B -∠之间的关系.(2)如图⑵,已知14MA NA ∥,探索1A ∠、2A ∠、3A ∠、4A ∠,1B ∠、2B ∠之间的关系.(3)如图⑶,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠之间的关系.8.请你分析下面的题目,从中总结规律,填写在空格上,并选择一道题目具体书写证明.(1)如图⑴,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AME ∠,CNE ∠.求证:MG NH ∥.从本题我能得到的结论是: .(2)如图⑵,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分BMF ∠, CNE ∠.求证:MG NH ∥.从本题我能得到的结论是: .(3)如图⑶,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AMF ∠, CNE ∠,相交与点O .求证:MG NH ⊥. 从本题我能得到的结论是: . (4)如图⑷,已知:AB ,CD 相交于O ,OF 平分AOC ∠,OE 平分BOD ∠.求证:F ,O ,E 三点共线.从本题我能得到的结论EDCBA是: .平行公理及推论答案解析一 、选择题1.D;分别过E F C H ,,,点做AB 的平行线,再求各个角度的和.选D二 、填空题2.180︒3.20︒4.50;如图所示,过点E 作AB 的平行线EF ,则1324180∠+∠=∠+∠=︒,∵1110∠=︒,2120∠=︒ ∴34360110120130∠+∠=︒-︒-︒=︒,∴α∠=18013050︒-︒=︒ 5.40︒三 、解答题6.过E 作EF AB ∥则180B BEF ∠+∠=︒,∵360B BED D ∠+∠+∠=︒,即360B BEF FED D ∠+∠+∠+∠=︒ ∴180FED D ∠+∠=︒ ∴EF CD ∥ ∴AB CD ∥.7.(1)12121n n A A A B B B -∠+∠++∠=∠+∠++∠;(向右凸出的角的和=向左凸出的角的和,1A ∠,n A ∠均为锐角) (2)123412180A A A A B B ∠+∠+∠+∠=∠+∠+;注意和第⑴问的区别; (3)123(1)180n A A A A n ∠+∠+∠++∠=-⨯.总结方法思想,巧作平行线.8.(1) 两直线平行,同位角的角平分线平行.43α21D CFE BA F EDCBA(2)证明:∵AB ∥CD ,∴BMF CNE ∠=∠ 又∵MG ,NH 分别平分BMF ∠,CNE ∠∴1122GMF BMF CNE HNM ∠=∠=∠=∠,∴MG ∥NH从本题我能得到的结论是: 两直线平行,内错角的角平分线平行. (3)证明:∵AB ∥CD ,∴180AMF CNE ∠+∠= 又∵MG ,NH 分别平分AMF ∠,CNE ∠ ∴119022GMF HNE AMF CNE ∠+∠=∠+∠=∴18090MON GMF HNE ∠=-∠-∠=,∴MG ⊥NH从本题我能得到的结论是: 两直线平行,同旁内角的角平分线垂直. (4)证明:∵AB ,CD 相交于O ,∴AOC BOD ∠=∠ ∵OF 平分AOC ∠,OE 平分BOD ∠ ∴12AOF AOC ∠=∠,12DOE BOD ∠=∠∵180AOC AOD ∠+∠=,∴180AOF AOD DOE ∠+∠+∠=即F ,O ,E 三点共线 从本题我能得到的结论是: 对顶角的平分线,在一条直线上. 要证明三点共线 ,我们可以通过证明这三点所成的角为180.。
知识点252 平行公理及推论填空题
![知识点252 平行公理及推论填空题](https://img.taocdn.com/s3/m/4acf4c1290c69ec3d5bb758f.png)
填空题1、下列说法:(1)两点之间的所有连线中,线段最短;(2)相等的角是对顶角;(3)过一点有且仅有一条直线与已知直线平行;(4)长方体是四棱柱.其中正确的有(填正确说法的序号).考点:平行公理及推论。
分析:根据所学公理和性质解答.解答:解:(1)应为两点之间的所有连线中,直线段最短,故本说法错误;(2)相等的角不一定是对顶角,但对顶角相等,故本说法错误;(3)应为过直线外一点有且仅有一条直线与已知直线平行,故本说法错误;(4)长方体是四棱柱,正确.故正确的有(4).点评:本题是对数学语言的严谨性的考查,记忆数学公理、性质概念等一定要做的严谨.2、在同一平面内,若直线a∥c,b∥c,则a b.考点:平行公理及推论。
分析:根据“平行于同一直线的两条直线互相平行”判断a,b的关系.解答:解:∵a∥c,b∥c,∴a∥b(平行于同一直线的两条直线互相平行).故填∥.点评:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.3、①a,b,c是直线,且a∥b,b∥c,则a c;②a,b,c是直线,且a⊥b,b⊥c,则a c.考点:平行公理及推论;垂线。
分析:运用平行公理的推论及垂线的性质作答.解答:解:①∵a∥b,b∥c,∴a∥c(平行于同一条直线的两直线平行);②∵a⊥b,b⊥c,∴a∥c(垂直于同一条直线的两直线平行).点评:本题考查公理“平行于同一条直线的两直线平行和垂直于同一条直线的两直线平行”,熟练掌握公理、定理是学好几何的关键.4、若a∥b,b∥c,则a c,这是根据.考点:平行公理及推论。
分析:由a∥b,b∥c,根据如果两条直线都与第三条直线平行,那么这两条直线也平行,可证得a∥c.解答:解:∵a∥b,b∥c,∴a∥c(如果两条直线都与第三条直线平行,那么这两条直线也平行).点评:此题考查了平行线的传递性:如果两条直线都与第三条直线平行,那么这两条直线也平行.5、在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也.考点:平行公理及推论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【考点训练】平行公理及推论-1一、选择题(共5小题)1.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个2.若直线l1∥l,l2∥l,则()A.l1∥l2B.l l⊥l2C.l1与l2相交D.以上都不对3.下列命题中真命题是()A.过一点可以画无数条直线和已知直线平行B.如果甲看乙的方向是北偏东60°,那么乙看甲的方向是南偏西30°C.三条直线交于一点,对顶角最多有6对D.与同一条直线相交的两条直线相交4.下列说法正确的是()A.两点之间直线最短B.连接两点间的线段叫做两点间的距离C.经过直线外一点有且只有一条直线与已知直线平行D.如果两个角互补,那么这两个角中,一个是锐角,一个是钝角5.(2010•柳州)三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A.a⊥b B.a∥b C.a⊥b或a∥b D.无法确定二、填空题(共3小题)(除非特别说明,请填准确值)6.(2008•浦东新区二模)在同一平面内,已知直线a、b、c,且a∥b,b⊥c,那么直线a 和c的位置关系是_________.7.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行;③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线.正确的是:_________.(只需填写序号)8.下列说法:(1)两点之间的所有连线中,线段最短;(2)相等的角是对顶角;(3)过一点有且仅有一条直线与已知直线平行;(4)长方体是四棱柱.其中正确的有_________(填正确说法的序号).三、解答题(共2小题)(选答题,不自动判卷)9.探索与发现:(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是_________,请说明理由.(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是_________(直接填结论,不需要证明)(3)现在有2011条直线a1,a2,a3,…,a2011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2011的位置关系.10.如图,已知直线l和直线外一点P,过点P作直线l的平行线m和垂线a.参考答案与试题解析一、选择题(共5小题)1.(2008•黔南州)在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个考点:平行公理及推论;直线的性质:两点确定一条直线;垂线;平行线.专题:常规题型.分析:根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.解答:解:①过两点有且只有一条直线,正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故本小题错误;③经过直线外一点有且只有一条直线与已知直线垂直,正确;④经过直线外一点有且只有一条直线与已知直线平行,正确,综上所述,正确的有①③④共3个.故选C.点评:本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.2.(2002•佛山)若直线l1∥l,l2∥l,则()A.l1∥l2B.l l⊥l2C.l1与l2相交D.以上都不对考点:平行公理及推论.分析:根据平行于同一直线的两直线互相平行解答.解答:解:∵l1∥l,l2∥l,∴l1∥l2.故选A.点评:本题主要考查直线的平行公理.3.(2000•绵阳)下列命题中真命题是()A.过一点可以画无数条直线和已知直线平行B.如果甲看乙的方向是北偏东60°,那么乙看甲的方向是南偏西30°C.三条直线交于一点,对顶角最多有6对D.与同一条直线相交的两条直线相交考点:平行公理及推论;方向角;对顶角、邻补角.分析:对各选项分析判断后利用排除法求解.解答:解:A、过直线外一点可以画一条直线和已知直线平行,故本选项错误;B、如果甲看乙的方向是北偏东60°,那么乙看甲的方向是南偏西60°,故本选项错误;C、三条直线交于一点,对顶角最多有6对,正确;D、与同一条直线相交的两条直线可以相交,也可以平行,故本选项错误.故选C.点评:本题主要考查几何基础知识,打好基础是走向成功的关键.4.下列说法正确的是()A.两点之间直线最短B.连接两点间的线段叫做两点间的距离C.经过直线外一点有且只有一条直线与已知直线平行D.如果两个角互补,那么这两个角中,一个是锐角,一个是钝角考点:平行公理及推论;线段的性质:两点之间线段最短;两点间的距离;余角和补角.分析:分别根据线段的性质、两点间的距离的定义、平行公理、两个角互补的定义作答.解答:解:A、直线是无限长的,不能度量长度.故错误;B、线段是图形,距离是数字,不能说线段是距离.故错误;C、正确;D、两个角互补,还有可能这两个角都是直角.故错误.点评:对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.5.(2010•柳州)三条直线a、b、c,若a∥c,b∥c,则a与b的位置关系是()A.a⊥b B.a∥b C.a⊥b或a∥b D.无法确定考点:平行公理及推论.分析:根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行”进行分析,得出正确答案.解答:解:由于直线a、b都与直线c平行,依据平行公理的推论,可推出a∥b,故选B.点评:本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.二、填空题(共3小题)(除非特别说明,请填准确值)6.(2008•浦东新区二模)在同一平面内,已知直线a、b、c,且a∥b,b⊥c,那么直线a和c的位置关系是a⊥c.考点:平行公理及推论.专题:存在型.分析:根据平行线的性质进行解答即可.解答:解:如图所示:同一平面内,已知直线a、b、c,且a∥b,b⊥c,∵a∥b,∴∠1=∠2,∴b⊥c,∴∠2=90°,∴∠1=90°,故答案为:a⊥c.点评:本题考查的是平行公理及其推论,即若两条平行线中的一条垂直于另一条直线,那么另一条也垂直于这条直线.7.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行;③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线.正确的是:②,④.(只需填写序号)考点:平行公理及推论;垂线.分析:根据线段、射线和直线的基本定义与性质来解答本题即可.解答:解:①错误:两点之间,直线距离最短;②正确:经过直线外一点,能作一条直线与这条直线平行;③错误:过直线外一点和已知直线垂直的直线有且只有一条;④正确:在平面内过一点有且只有一条直线垂直于已知直线;所以正确的是②、④.点评:本题考查的是线段、射线和直线的基本定义与性质;注意两点之间,线段距离最短.8.下列说法:(1)两点之间的所有连线中,线段最短;(2)相等的角是对顶角;(3)过一点有且仅有一条直线与已知直线平行;(4)长方体是四棱柱.其中正确的有(4)(填正确说法的序号).考点:平行公理及推论.分析:根据所学公理和性质解答.解答:解:(1)应为两点之间的所有连线中,直线段最短,故本说法错误;(2)相等的角不一定是对顶角,但对顶角相等,故本说法错误;(3)应为过直线外一点有且仅有一条直线与已知直线平行,故本说法错误;(4)长方体是四棱柱,正确.故正确的有(4).点评:本题是对数学语言的严谨性的考查,记忆数学公理、性质概念等一定要做的严谨.三、解答题(共2小题)(选答题,不自动判卷)9.探索与发现:(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是a1⊥a3,请说明理由.(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是a1∥a4(直接填结论,不需要证明)(3)现在有2011条直线a1,a2,a3,…,a2011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2011的位置关系.考点:平行公理及推论.专题:规律型.分析:(1)根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答;(2)根据(1)中结论即可判定垂直;(3)根据规律发现,与脚码是偶数的直线互相平行,与脚码是奇数的直线互相垂直,根据此规律即可判断.解答:解:(1)a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;(2)同(1)的解法,如图2,直线a1与a4的位置关系是:a1∥a4;(3)直线a1与a3的位置关系是:a1⊥a3,直线a1与a4的位置关系是:a1∥a4,以此类推,直线a1与a2011的位置关系是:a1⊥a2011.点评:本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导.10.如图,已知直线l和直线外一点P,过点P作直线l的平行线m和垂线a.考点:垂线;平行公理及推论.专题:作图题.分析:用基本作图的方法作垂线a,然后作a的垂线即可得m.解答:平行线、垂线各(3分).图形正确,保留作图痕迹(2分),结论(1分)直线m、a即所求.点评:本题考查了过直线外一点作已知直线的垂线的方法.。