平行线·平行公理及推论
平行线的性质和判定
![平行线的性质和判定](https://img.taocdn.com/s3/m/89d1d8f352d380eb63946d99.png)
平行线的性质和判定【知识要点归纳】1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行.注:点必须在直线外,而不是在直线上.(3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即“平行于同一条直线的两条直线平行”.2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行.注:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行;3.两直线平行的判定方法(1)平行线的定义.(2)平行公理的推论.(3)同位角相等,两直线平行.(4)内错角相等,两直线平行.(5)同旁内角互补,两直线平行.4.平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.重点讲解:一个定义(平行线),一个位置,五个判定,三个性质.【课堂过关训练】平行线的性质1.选择题:(1)下列说法中,不正确的是()A.同位角相等,两直线平行; B.两直线平行,内错角相等; C.两直线被第三条直线所截,同旁内角互补; D.同旁内角互补,两直线平行(2)如图1所示,AC平分∠BCD,且∠BCA=∠CAD=12∠CAB,∠ABC=75°,则∠BCA等于( • ) A.36° B.35° C.37.5° D.70°(1) (2) (3)(3)如图2所示,AD⊥BC于D,DG∥AB,那么∠B和∠ADG的关系是()A.互余 B.互补 C.相等 D.以上都不对(4)如图3,直线c与直线a、b相交,且a∥b,则下列结论:①∠1=∠2;②∠1=∠3;③∠3=∠2中,正确的个数为()A.0个 B.1个 C.2个 D.3个(5)如图4,若AB∥CD,则()A.∠1=∠2+∠3 B.∠1=∠3-∠2C.∠1+∠2+∠3=180° D.∠1-∠2+∠3=180°(6)如图5,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个 B.2个 C.3个 D.4个(4) (5) (6) (7)(7)已知两个角的两边分别平行,并且这两个角的差是90°,•则这两个角分别等于() A.60°,150° B.20°,110° C.30°,120° D.45°,135°(8)如图6所示,若AB∥EF,用含α、β、γ的式子表示x,应为()A.α+β+γ B.β+γ-αC.180°-α-γ+β D.180°+α+β-γ4.如图所示,已知AD、BC相交于O,∠A=∠D,试说明一定有∠C=∠B.5.如图所示,已知AB∥CD,AD∥BC,BF平分∠ABC,DE平分∠ADC,则一定有DE∥FB,它的根据是什么?6.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,•MG•平分∠BMF,MG交CD于G,求∠1的度数.平行线的判定1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = .2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE = .3.如图3所示(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°().(2)若∠2 =∠,则AE∥BF.(3)若∠A +∠ = 180°,则AE∥BF.4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5.如图5,AB ∥CD ,EG ⊥AB 于G ,∠1 = 50°,则∠ E = .6.如图6,直线l 1∥l 2,AB ⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有 . 8.如图8,AB ∥EF ∥CD ,EG ∥BD ,则图中与∠1相等的角(不包括∠1)共有 个. 二、解答下列各题9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G .10.如图10,DE ∥BC ,∠D ∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.11.如图11,已知AB ∥CD ,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)图51 A B C D E F GH 图7 1 2 D A C B l 1l 2 图81 A BFC DE G 图6C D F E B A 图912 ACB FGED图102 1BCED 图1112 ABEFDC12.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.求证:(1)AB ∥CD ; (2)∠2 +∠3 = 90°.综合练习:1.若α和β是同位角,且a =30°,则β的度数是( )A .30°B .150°C .30°或150°D .不能确定2.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( )A .30°和150°B .42°和138°C .都等于10°D .42°和138°或都等于10°3.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示.从图中可知,小敏画平行线的依据可能有( )①两直线平行,同位角相等;②两直线平行,内错角相等; ③同位角相等,两直线平行;④内错角相等,两直线平行.A .①②B .②③C .③④D .①④4.如图所示,AB ∥EF ,EF ∥CD ,EG 平分∠BEF ,∠B +∠BED +∠D=192°,∠B -∠D=24°,则C图1212 3AB DF∠GEF=__________.5.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是__________.6.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.8.已知,如图所示,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB ∥DC.9.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°,求证:DA⊥EF10.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C的关系,并证明你的结论.11.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.。
10.2平行线定义、平行线公理及推论(沪科版 )杨小平
![10.2平行线定义、平行线公理及推论(沪科版 )杨小平](https://img.taocdn.com/s3/m/0be399e3856a561252d36fcb.png)
3.
经过直线外一点, 有且只有一条直线与已知直线平行
B
5、完成下列推理,并在括号内注明理由。 (1)如图1所示,因为AB // DE,BC // DE(已知)。所以 在同一直线上 A,B,C三点___________( 经过直线外一点,有且只有一 ) 条直线与已知直线平行 (2)如图2所示,因为AB // CD,CD // EF(已知),所以 EF___ AB 如果两条直线都和第三条直线平行, ________ // ______( ) 那么这两条直线也互相平行 C A B A B
平行线的表示法:
我们通常用“//”表示平行。
A
· ·
C
B
AB ∥ CD
读作: “AB 平行于 CD”
· ·
m∥n
D
m
n
读作: “ m平行于n ”
在同一平面内,两条直线的位 置关系是 平行或相交
找一找,教室里 有哪些平行线?
你会在格纸上画平行线吗?
a
b
c
d
2、平行线的画法: (2)放 (2)靠 (3)移 (4)画
2、平行线的画法:
(1)放Biblioteka P(2)靠(3)移 (4)画
·
动手实践
过直线AB外一点P作直线AB的平行 线,看看你能作出吗?能作出几条?
·
A B
P
(1)经过点C能画出几条直 线与直线AB平行?
人们在长期实践中总 (2)过点D画一条直线与 结出来的结论叫基本 事实,也称为公理, 直线AB平行,它与(1)中 它可以作为以后推理 所画的直线平行吗? 的依据.
·· ·
D 图1 E
C
D
E 图2
F
本节课你的收获是什么?
平行线(定义、平行公理及推论)
![平行线(定义、平行公理及推论)](https://img.taocdn.com/s3/m/7e48253abed5b9f3f90f1c89.png)
么这两条直线也互相平行(平行于同一条
直线的两条直线互相平行)
几何语言:∵a∥b b∥c(已知)
∴a∥c (如果两条直线都与第 三条直线平行,那么这两条直线也互相平行)
试一试
1、在同一个平面内,不相交的两条直线叫做平行线.
则在同一个平面内,不重合的两条直线的位置关系
是 相交和平行.
D 2 、用符号“∥”表示图中平行四
C
边形的两组对边分别平行.
A
B
AB∥ CD,AD∥ BC.
3、完成下列推理,并在括号内注明理由。
(1)如图1,因为AB // DE,BC // DE, 则A,B,C三点在同
一条直线上吗? _在__同__一__直__线__上(
经过直线外一点,有且只有一 条直线与这条直线平行
)
(2)如图2,因为AB // CD,CD // EF(已知),所以 ____A_B___ // ___E_F_____( 如果两条直线都和第三条直线平行,)
2、平行线的表示方法:
如何用几何语言描述平行 呢?
A
B
C
D
(1)平行用符号“∥”表示,
直线AB与直线CD平行
记作:AB∥CD,读作“AB平行于CD”.
(2)注意:平行线是相互的,使用平行符号“∥” 时,可写成AB∥CD,也可以写成: CD∥AB.
a
b
直线a与直线b平学科网 行, 记作:a∥b.也可以写成: b ∥ a .
那么这两条直线也互相平行
·· · A B C
A
B
C
D
D
E
F
图1
图2
4、读下列语句,并画出图形
(1)点P是直线AB外一点,直线CD经过点P,且 与直线AB平行。
平行线的判定及性质 例题及练习
![平行线的判定及性质 例题及练习](https://img.taocdn.com/s3/m/51d148dd28ea81c758f5785b.png)
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
平行线的判定及性质
![平行线的判定及性质](https://img.taocdn.com/s3/m/28aeba107e21af45b207a867.png)
授课主题平行线教学目的1.理解平行线的概念,掌握平行公理及其推论;2.掌握平行线的判定方法及性质,并能进行简单的推理3. 掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论;教学重点平行线的判定及性质教学内容【知识梳理】要点一、平行线1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.要点诠释:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.3.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.要点三、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点四、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点五、命题、定理、证明1.命题:判断一件事情的语句,叫做命题.要点诠释:(1)命题的结构:每个命题都由题设、结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(2)命题的表达形式:“如果……,那么…….”,也可写成:“若……,则…….”(3)真命题与假命题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题.2.定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理也可以作为继续推理的依据.3.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.要点诠释:(1)证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事实、定理等.(2)判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可.要点六、平移1. 定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点诠释:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.2. 性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.【典型例题】类型一、平行线例1.下列说法正确的是()A.不相交的两条线段是平行线.B.不相交的两条直线是平行线.C.不相交的两条射线是平行线.D.在同一平面内,不相交的两条直线叫做平行线.【答案】D例2.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行。
八年级数学平行线的证明知识点
![八年级数学平行线的证明知识点](https://img.taocdn.com/s3/m/cfd24bc8b04e852458fb770bf78a6529647d354d.png)
八年级数学平行线的证明知识点八年级数学平行线的证明知识点在日复一日的学习、工作或生活中,大家最不陌生的就是证明了吧,证明是我们经常用到的应用文体。
写证明的注意事项有许多,你确定会写吗?以下是店铺帮大家整理的八年级数学平行线的证明知识点,希望对大家有所帮助。
八年级数学平行线的证明知识点 11、平行线的性质一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补.也可以简单的说成:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
2、判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.也可以简单说成:同位角相等两直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.其他两条可以简单说成:内错角相等两直线平行同旁内角相等两直线平行初中数学常见公式常见的初中数学公式1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.三角形内角和定理三角形三个内角的和等于180°6.多边形内角和定理 n边形的内角的和等于(n-2)×180°7.定理1 关于某条直线对称的两个图形是全等形初中5种数学提分方法1.细心地发掘概念和公式2.总结相似类型的题目3.收集自己的典型错误和不会的题目4.就不懂的问题,积极提问、讨论5.注重实践(考试)经验的培养初中数学有理数的运算加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
平行公理及其推论
![平行公理及其推论](https://img.taocdn.com/s3/m/969b5a4453ea551810a6f524ccbff121dd36c59e.png)
平行公理及其推论平行公理是几何学中的基本公理之一,它是建立在直觉上的,没有证明过程。
平行公理表明,通过一点外一直线的直线只有一条与给定直线平行的直线。
平行公理的推论可以帮助我们解决一些与平行直线相关的问题。
根据平行公理,我们可以得出如果两条直线分别与第三条直线平行,那么这两条直线也是平行的。
这个推论可以通过反证法来证明。
假设两条直线分别与第三条直线平行,但它们不是平行的。
那么通过这两条直线和第三条直线可以构造出一个三角形,根据三角形内角和定理,这个三角形的内角和应该等于180度,但这与我们的假设相矛盾。
所以,我们可以得出结论,如果两条直线分别与第三条直线平行,那么这两条直线也是平行的。
平行公理的推论还可以帮助我们解决一些与平行线之间的角相关的问题。
例如,如果两条平行线被一条横切线所截,那么所得的对应角相等。
这个推论可以通过同位角定理来证明。
根据平行公理,我们知道这两条平行线被一条横切线所截,所以我们可以得到一组对应角。
根据同位角定理,这些对应角相等。
平行公理的推论还可以帮助我们解决一些与平行线之间的距离相关的问题。
例如,如果两条平行线被一条横切线所截,那么所得的相交线段是等长的。
这个推论可以通过平行线性质来证明。
根据平行公理,我们知道这两条平行线被一条横切线所截,所以我们可以得到一组相交线段。
根据平行线性质,这些相交线段是等长的。
总结起来,平行公理及其推论在几何学中起着重要的作用。
它们帮助我们解决了很多与平行直线相关的问题,包括角和距离的性质。
通过运用这些推论,我们可以更好地理解和应用平行公理,进一步推导出更多的结论和定理。
平行公理是几何学中的一个基本概念,它为我们建立起了一个严密而完整的几何体系,为我们研究和探索几何学提供了基础。
平行线的判定例题与讲解
![平行线的判定例题与讲解](https://img.taocdn.com/s3/m/591c570deff9aef8941e0633.png)
3 平行线的判定1.平行线的判定公理(1)平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单记为:同位角相等,两直线平行.如图,推理符号表示为:∵∠1=∠2,∴AB∥CD.谈重点同位角相等,两直线平行①平行线的判定公理是证明两直线平行的原始依据;②应用时,应先确定同位角及形成同位角的是哪两条直线;③本判定方法是由两同位角相等(数量关系)来确定两条直线平行(位置关系),所以在推理过程中要先写“两角相等”,然后再写“两线平行”.(2)平行公理的推论:①垂直于同一条直线的两条直线平行.若a⊥b,c⊥b,则a∥c;②平行于同一条直线的两条直线平行.若a∥b,c∥b,则a∥c.【例1】工人师傅想知道砌好的墙壁的上下边缘AB和CD是否平行,于是找来一根笔直的木棍,如图所示将其放在墙面上,那么,他通过测量∠EGB和∠GFD的度数,就知道墙壁的上下边缘是否平行了.请问:∠EGB和∠GFD满足怎样的条件时,墙壁的上下边缘才会平行?你的依据是什么?解析:判定两条直线是否平行,常根据两条直线被第三条直线所截而构成的角来判断.题中∠EGB和∠GFD是直线AB和直线CD(墙的上下边缘)被直线EF所截时形成的同位角,根据“同位角相等,两直线平行”,可知只有∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.答案:∠EGB和∠GFD相等时,墙壁的上下边缘才会平行.其依据是同位角相等,两直线平行.2.平行线的判定定理(1)判定定理1两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单记为:同旁内角互补,两直线平行.符号表示:如下图,∵∠2+∠3=180°,∴AB∥CD.谈重点同旁内角互补,两直线平行①定理是根据公理推理得出的真命题,可直接应用;②应用时,找准哪两个角是同旁内角,使哪两条直线平行.(2)判定定理2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单记为:内错角相等,两直线平行.符号表示:如上图,∵∠2=∠4,∴AB∥CD.【例2-1】如图,小明利用两块相同的三角板,分别在三角板的边缘画直线AB和CD,这是根据________,两直线平行.解析:由题图可看出,直线AB和CD被直线BC所截,此时两块相同的三角板的两个最小角的位置关系正好是内错角,所以这是根据内错角相等,来判定两直线平行的.答案:内错角相等【例2-2】如图,下列说法中,正确的是().A.因为∠A+∠D=180°,所以AD∥BCB.因为∠C+∠D=180°,所以AB∥CDC.因为∠A+∠D=180°,所以AB∥CDD .因为∠A+∠C=180°,所以AB∥CD错解:A或B或D错解分析:判定直线平行所需要的内错角或同旁内角找不准.条件不能推出结论.正解:C正解思路:∠A与∠D是直线AB和CD被直线AD所截得到的同旁内角.因为∠A+∠D =180°,所以AB∥CD.3.平行线的判断方法平行线的判定方法主要有以下六种:(1)平行线的定义(一般很少用).(2)同位角相等,两直线平行.(3)同旁内角互补,两直线平行.(4)内错角相等,两直线平行.(5)同一平面内,垂直于同一条直线的两条直线相互平行.(6)如果两条直线都和第三条直线平行,那么这两条直线平行.析规律如何选择判定两直线平行的方法①在利用平行线的公理或定理判定两条直线是否平行时,要分清同位角、内错角以及同旁内角是由哪两条直线被第三条直线所截而构成的;②证明两条直线平行,关键是看与待证结论相关的同位角或内错角是否相等,同旁内角是否互补.【例3】如图,直线a,b与直线c相交,形成∠1,∠2,…,∠8共八个角,请你填上你认为适当的一个条件:__________,使a∥b.解析:本题主要是考查平行线的三种判定方法.若从“同位角相等,两直线平行”考虑,可填∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8中的任意一个条件;若从“内错角相等,两直线平行”考虑,可填∠3=∠6,∠4=∠5中的任意一个;若从“同旁内角互补,两直线平行”考虑,可填∠3+∠5=180°,∠4+∠6=180°中的一个条件;从其他方面考虑,还可以填∠1=∠8,∠2=∠7,∠1+∠7=180°,∠2+∠8=180°,∠4+∠7=180°,∠3+∠8=180°,∠2+∠5=180°,∠1+∠6=180°中的任意一个条件.答案:答案不唯一,如可填下列之一:∠1=∠5或∠4=∠5或∠3+∠5=180°…4.平行线判定的应用(1)平行线的生活应用数学来源于生活,同样生活中也有大量的平行线,其判定平行的方法也常在生活中遇到.如木工师傅判定所截得的木板的对边是否平行,工人师傅判定所制造的机器零件是否符合平行的要求……对于生活中的平行线判断,关键是利用工具确定与平行有关的角是否相等,比较常用的是利用直角尺判断同位角是否相等,从而判定两直线是否平行.(2)平行线在数学中的运用平行线判定方法在数学中的运用主要通过角之间的关系判定两条直线平行,进一步解决其他有关的问题.常见的条件探索题就是其应用之一.探索题是培养发散思维能力的题型,它具有开放性,所要求的答案一般不具有唯一性.解决探索性问题,不仅能提高分析问题的能力,而且能开阔视野,增加对知识的理解和掌握.释疑点判定平行的关键判定两直线平行,关键是确定角的位置关系及大小关系.【例4-1】如图,一个零件ABCD需要AB边与CD边平行,现只有一个量角器,测得拐角∠ABC=120°,∠BCD=60°,这个零件合格吗?__________(填“合格”或“不合格”).解析:要判断AB边与CD边平行,则需满足同旁内角互补的条件.∵∠ABC=120°,∠BCD=60°,∴∠ABC+∠BCD=120°+60°=180°.∴AB∥CD.∴这个零件合格.答案:合格【例4-2】已知:如图在四边形ABCD中,∠A=∠D,∠B=∠C,试判断AD与BC的位置关系,并说明理由.分析:根据四边形ABCD的内角和是360°,结合已知条件得到∠A+∠B=180°,根据同旁内角互补,两直线平行得AD∥BC.解:AD与BC的位置关系是平行.理由:∵四边形ABCD的内角和是360°,∴∠A+∠B+∠C+∠D=360°.∵∠A=∠D,∠B=∠C,∴∠A+∠B=180°.∴AD∥BC(同旁内角互补,两直线平行).点评:本题考查四边形的内角和以及利用同旁内角互补,来判定两直线平行.。
平行线的判定、性质公理及定理
![平行线的判定、性质公理及定理](https://img.taocdn.com/s3/m/f8c61881c1c708a1284a44f3.png)
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
考点一平行线的判定:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.2.两直线被第三条直线所截,如果内错角相等,那么这两条直线平行.3. 两直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.注意:证明两直线平行,关键是找到与特征结论相关的角.例1.如下图,当∠1=∠3时,直线a、b平行吗?当∠2+∠3=180°时,直线a、b平行吗?为什么?你有几种方法。
例2.请将下面的空补充完整1.如右图,若∠1=∠2,则_______∥_______()若∠3=∠4,则_________∥_________()若∠5=∠B,则_________∥_________()若∠D+∠DAB=180°,则______∥_______()2.如右图,∠1+∠2=180°(已知)∠3+∠2=180°()∴∠1=_________∴AB∥CD()课堂练习:1.如图6-21,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥C D.2.已知,如下图(1),(2),直线AB∥ED.求证:∠ABC+∠CDE=∠BCD.(1) (2) 3.如图,如果AB∥CD,求角α、β、γ与180º之间的关系式.4.如图,已知CD 是∠ACB 的平分线,∠ACB = 500,∠B = 700,DE ∥BC,求:∠EDC 和 ∠BDC 的度数。
达标训练: 一.选择题1.下列命题中,不正确的是( )A .两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B .两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C .两条直线被第三条直线所截,那么这两条直线平行D .如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如右图,直线a 、b 被直线c 所截,现给出下列四个条件: ( ) (1)∠1=∠2,(2)∠3=∠6,(3)∠4+∠7=180°,(4)∠5+∠8=180°, 其中能判定a ∥b 的条件是( ) A .(1)(3) B .(2)(4) C .(1)(3)(4) D .(1)(2)(3)(4) 3.如右图,如果∠1=∠2,那么下面结论正确的是( ) A .AD ∥BC B .AB ∥CD C .∠3=∠4 D .∠A =∠C4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来 的方向相同,这两次拐弯的角度可能是( ) A .第一次向右拐40°,第二次向左拐40° B .第一次向右拐50°,第二次向左拐130° C .第一次向右拐50°,第二次向右拐130° D .第一次向左拐50°,第二次向左拐130° 二.填空题αγβED C BAAB D E12FOCABDE5.如右图,∠1=∠2=∠3,则直线l 1、l 2、l 3的关系是________.6.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________ . 7.同垂直于一条直线的两条直线________. 8.根据图形及上下文的含义推理并填空. (1)∵∠A =_______(已知)∴AC ∥ED ( ) (2)∵∠2=_______(已知)∴AC ∥ED ( ) (3)∵∠A +_______=180°(已知) ∴AB ∥FD ( ) 三.解答题9.已知:如图7,∠1=∠2,且BD 平分∠ABC . 求证.AB ∥CD .10、.如图,∠A BC =∠BCD, ∠1=∠2,求证:BE ∥CF.11.如图,是大众汽车的标志图案,其中蕴涵着许多几何知识. 根据下面的条件完成证明.已知:如图,BC//AD ,BE//AF . (1) 求证:B A ∠=∠;(2) 若︒=∠135DOB ,求A ∠的度数.12.已知:如图,∠3与∠1互余,∠3与∠2互余.求证:AB ∥CD.考点二:1.平行线的性质.公理:两直线平行,同位角相等. 定理:两直线平行,内错角相等.CFDEBAOHG321ED C BA定理:两直线平行,同旁内角互补.例1.如图,BE∥DF,∠B =∠D,求证.AD∥BC.课堂作业:1.如上图,AB∥CD,AD∥BC则下列结论成立的是( )A.∠A+∠C=180°B.∠A+∠B=180°C.∠B+∠D=180°D.∠B=∠D2.若两个角的一边在同一条直线上,另一边互相平行,那么这两个角的关系是( )A.相等B.互补C.相等或互补D.相等且互补3.如右图,已知∠1=∠2,∠BAD=57°,则∠B=________.4.已知:如图,AD⊥BC,EF⊥BC,∠4=∠C.求证:∠1=∠2.5.如图所示,已知AB⊥BD于点B,ED⊥BD于点D,且AB=CD,BC=DE,那么AC与CE有什么关系?写你的猜想,并说明理由6、如图所示:已知:AB∥DE。
平行线及平行公理
![平行线及平行公理](https://img.taocdn.com/s3/m/c692464e767f5acfa1c7cd80.png)
同一平面内互不重合的三条直线公 共点的个数可能是 0个,1个,2个或3个 个或3
判断题
1. 不相交的两条直线叫做平行线 (× ) 不相交的两条直线叫做平行线.( 2. 在同一平面内,两条不平行的直线必相 在同一平面内, 交. (√ ) 3.有且只有一个公共点的两条直线是相交 有且只有一个公共点的两条直线是相交 直线. 直线. (√ ) 4.在同一平面内两 条直线的位置只有平行 在同一平面内两 相交. 相交 (√ ) 5.在同一平面内不相交的两条线段必平行 5.在同一平面内不相交的两条线段必平行 (× )
三. 平行公理的推论
如果两条直线都和第三条直线平行, 如果两条直线都和第三条直线平行, 那么这两条直线也互相平行. 那么这两条直线也互相平行.
符号语言: 符号语言: 已知) ∵a‖b b‖c (已平行公理的推论
a b c
在同一平面内, 四. 在同一平面内,两条直线的位 置关系只有平行和相交
P.
A
B
二. 平行公理 经过直线外一点 ,有且只有一条直 线与这条直线平行 . P C D
.
A
B
如图: 如图:AB‖EF, CD‖EF, 想一想,直线AB CD可能相交吗 为什么? AB与 可能相交吗? 想一想,直线AB与CD可能相交吗?为什么?
A C E
B D F
P
答:不可能.假设AB与CD相交,设交点为P, 不可能.假设AB与CD相交,设交点为 , AB 相交 因为AB‖EF, CD‖EF,于是过点 于是过点P就有两条 因为AB‖EF, CD‖EF,于是过点 就有两条 直线AB CD都与EF平行 与平行公理相矛盾, AB, 都与EF平行, 直线AB,CD都与EF平行,与平行公理相矛盾, 所以直线AB与CD不能相交 只能平行. 直线AB 不能相交, 所以直线AB与CD不能相交,只能平行.
平行线及其判定知识点总结、例题解析
![平行线及其判定知识点总结、例题解析](https://img.taocdn.com/s3/m/b77004af9e3143323968935f.png)
平行线及其判定知识点总结、例题解析知识点1【平行线】在同一平面内,不重合的两条直线的只有两种位置关系:平行和相交。
1、平行线的定义:在同一平面内,不相交的两条直线叫平行线.记作:a∥b;读作:直线a平行于直线b.2、平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合②靠:用直尺紧靠三角板的一条直角边③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点④画:沿着这条斜边画一条直线,所画直线与已知直线平行3、平行线公理及推论(1)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.注意区别垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用。
如果a∥b,b∥c,那么a∥c。
【例题1】下列叙述正确的是()A、两条直线不相交就平行B、在同一平面内,不相交的两条线叫做平行线C、在同一平面内,不相交的两条直线叫做平行线D、在同一平面内,不相交的两条线段叫做平行线【答案】C【例题2】在同一平面内,不重合的两条直线的位置关系有()A、平行或垂直B、平行或相交C、垂直或相交D、平行、垂直或相交【答案】B【例题3】下列说法中正确的序号有_______①一条直线的平行线只有一条:②过一点与已知直线平行的直线只有一条:③因为a∥b,c∥d,所以a∥d:④经过直线外一点有且只有一条直线与己知直线平行【解析】①一条直线有无数条平行线;②必须过直线外一点,如果点在直线上,会出现重合。
【答案】④【例题4】下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行。
其中正确的有()。
A、1个;B、2个;C、3个;D、4个。
【解析】②③需在同一平面内,④过直线外一点【答案】A知识点2【平行线的判定】(1)判定方法1:两条直线被第三条所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)(2)判定方法2:两条直线被第三条所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行.∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)(3)判定方法3:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行.∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行判定方法补充:①两条直线都和第三条直线平行,那么这两条直线平行.②在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.【例题5】如图所示,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5:②∠1=∠7:③∠2+∠3=180°:④∠4=∠7,其中能判断a∥b的条件的序号是()A、①②B、①③C、①④D、③④【答案】A【例题6】如图,下列条件中,不能判断直线l1∥l2的是()A、∠1=∠3B、∠2=∠3C、∠4=∠5D、∠2+∠4=180°【答案】B【例题7】如图,已知BE平分∠ABC,CF平分∠BCD,∠1=∠2,求证:AB∥CD【答案】∵∠1=∠2∴2∠1=2∠2,即∠ABC=∠BCD∴AB∥CD(内错角相等,两直线平行)【例题8】如图,在四边形ABCD中,AD∥BC,∠ABC=∠CDA,BE、DF分别是∠ABC和∠ADC 的平分线,求证:BE∥DF【解析】想要证明EB∥DF,根据平行钱的判定方法,只要证明∠AEB=∠ADF即可【答案】证明:∵AD∥BC∴∠AEB=∠EBC∵∠ABC=∠ADC,BE、DF分别是∠ABC和∠ADC的平分线∴∠EBC=∠ADF∴∠AEB=∠ADF∴EB∥DE【例题9】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由【答案】解:AB∥CD。
平面几何五大公理
![平面几何五大公理](https://img.taocdn.com/s3/m/deaa7975f6ec4afe04a1b0717fd5360cba1a8df9.png)
平面几何五大公理一、直线公理:通过两个不同点,可以画出一条直线。
直线是平面几何中最基本的概念之一。
根据直线公理,我们可以通过连接两个不同点来得到一条直线。
直线可以看作是无限延伸的,没有宽度和厚度。
直线可以用两个不同的点来确定,其中一个点是直线上的任意一点,另一个点可以在直线上也可以在直线外。
二、点线公理:通过两个不同点,只能画出一条直线。
点线公理是指通过两个不同点只能画出一条直线。
这个公理保证了直线的唯一性。
如果通过两个不同的点可以画出两条不同的直线,那么它们就不再是直线,而是两条不相交的曲线或者折线。
三、平行线公理:通过一点,在平面外只能有一条直线与已知直线平行。
平行线公理是指通过一点,在平面外只能有一条直线与已知直线平行。
这个公理保证了平行线的唯一性。
如果通过一点可以有两条或多条直线与已知直线平行,那么这些直线就不再是平行线,而是相交或重合的直线。
四、垂直公理:如果两条直线与一条直线相交,且两条直线的内部角相等,那么这两条直线是垂直的。
垂直公理是指如果两条直线与一条直线相交,且两条直线的内部角相等,那么这两条直线是垂直的。
垂直是指两条直线相互间的角度为90度。
垂直的直线在数学和几何中有着重要的应用,例如垂直线可以用来构造垂直平分线、垂直角等。
五、同位角公理:如果两条直线被一条直线截断,那么同位角相等。
同位角公理是指如果两条直线被一条直线截断,那么同位角相等。
同位角是指位于两条相交直线的同一侧,并且分别位于两条直线之间的角。
同位角公理是平面几何中关于角度相等的重要性质之一。
通过同位角公理,我们可以推导出许多与角度有关的性质,例如相应角、内错角等。
总结起来,平面几何五大公理是直线公理、点线公理、平行线公理、垂直公理和同位角公理。
这些公理是平面几何中最基本的原理,它们构成了平面几何的基础。
通过这些公理,我们可以推导出许多与直线、角度、平行等概念有关的性质和定理。
这些公理和定理的应用广泛,不仅在数学中有重要意义,还在物理、工程、建筑等领域中有着广泛的应用。
平行线知识点
![平行线知识点](https://img.taocdn.com/s3/m/4b00837d01f69e3143329411.png)
【基础知识点】1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 。
2、两条直线的位置关系(1)在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。
(2)因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)(3)判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定: ①有且只有一个公共点,两直线相交;②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行如左图所示,∵b ∥a ,c ∥a∴b ∥c注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行。
5、三线八角两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。
如图,直线b a ,被直线l 所截 ①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做同位角(位置相同) ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内),叫做内错角(位置在内且交错)③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做同旁内角。
④三线八角也可以成模型中看出。
同位角是“A ”型;内错角是“Z ”型;同旁内角是“U ”型。
6、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全。
例如:a b c a b l 1 2 3 45 6 7 81 6 B A D2345 7 8 9F EC如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD ;⑷∠2与∠6;⑸∠5与∠8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同之处,从而引出课题.
二、动手试一试,你就会有收获
活动2
问题:
如图,分别将木条
并把它们想象成两端无限延伸的三条直线.转动
a
,直线a 从在c 的左侧与直线b 相交逐步变为在右侧与b 相交.想象一下,在这个过程中,有没有直线a 与直线b 不相交的位置呢?
生:图师生活动:
学生分组活动,动手操作,在组内交流、讨论.教师到小组参与活动,倾听学生的交流,并帮助学生,指导他们完成任务,在此基础上,教师给出平行的表示方法.
活动3 问题:
(1)展示一组图片,请同学们找出其中的平行线或请同学们在教室里找平行线.
(2)在同一平面内,两条直线有几种位置关系?动手画一画.
师生活动:
试画一画,同桌可以讨论. 生:两种,相交和平行.
由此师生共同小结:在同一平面内,两条直线的位置只有相交、平行两种.
〖设计说明〗让学生体会图形是描述现实世界的重要手段.通过自己动手画图,在自我探索的过程中,发现同一平面内直线的位置关系.
尝试反馈,巩固练习: 1.判断正误
(1)两条不相交的直线叫做平行线.( ) (2)有且只有一个公共点的两直线是相交直线.( )
(3)在同一平面内,不相交的两直线一定平行.( )
(4)一个平面内的两条直线,必把这个平面分成四部分.( )
2.下列说法中正确的是( )
A .在同一平面内,两条直线的位置关系有相交、垂直、平行三种
B .在同一平面内,不垂直的两直线必平行
C .在同一平面内,不平行的两直线必垂直
D .在同一平面内,不相交的两直线一定不垂直
师生活动:
学生回答,并简要说明理由.教师重点强调平行线定义中的前提条件“同一平面内”及垂直是相交的一种特殊情况.
活动4 问题:
我们很容易画出两条相交直线,而对于平行线的画法,我们在小学就学过用直尺和三角板画,下面请同学在练习本上完成.
已知直线AB 和AB 外一点P ,过P 画直线CD ,使CD ∥AB .(如图)
线.如何表示上图中a •与b 的
平行呢?
生:a =b .
生:不行,平行的符号如果用“=”来表示,就与等于号无法区别开来.
师:的确如此,那怎么办呢?我们不妨再来看一下“活动1”中的实物图.
生:在木条转动的过程中,存在一个直线a 与直线b 不相交的位置,•这时直线a 与b 互相平行.
师:因此,在同一平面内不相交的两条直线叫做平行线.如何表示上图中a •与b 的平行呢?
生:a =b .
生:不行,平行的符号如果用“=”来表示,就与等于号无法区别开来.
师:的确如此,那怎么办呢?我们不妨再来看一下“活动1”中的实物图.
中不仅有横向的平行线,还有纵向、斜向的平行线,想一想,同学们一定有办法.
生:可以用斜画法,用“∥”来表示两条直线平行.
师:同学们的确很棒!通常,我们用“∥”来表示两条直线的平行,如图(多媒体演示).
图(1)中a 与b 平行可记作:a ∥b .
图(2)中AB 与CD 平行可记作:AB ∥CD .
握定义.为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发学生的好奇心和求知欲.在得出平行的定义的基础上,给出平行的表示方法,体会到平行的表示方法的合理性,有助于学生
尝试反馈,巩固练习:
1.画线段AB =45mm ,画任意射线AX ,在AX 上取C ′、D ′、B ′三点,使AC ′=C ′D ′=D ′B ′,连结BB ′,用三角板画CC ′∥BB ′,DD ′∥BB ′,分别交AB 于C 、D .量出AC 、CD 、DB 的长(精确到1mm ). 2.读下列语句,并画图形. (1)点P 是直线AB 外一点,直线CD 经过点P ,且与直线AB 平行; (2)直线AB 、CD 是相交直线,点P 是直线AB 、CD 外一点,直线E F 经过点P •与直线AB 平行与直线CD 相交于点E ; (3)如图,过点D 画DE ∥AC ,交BC 的延长线于E .
活动5
问题:
如图,P 、Q 分别是直线EF 外两点,过P 画AB ∥EF ,过Q 画CD ∥EF .
师生活动:
学生可在练习本上完成,教师让学生积极发表意见,然后给出正确结论.
师:我们观察图,如果AB ∥E F ,CD ∥ED ,那么,直线AB 、CD 能不能相交?
生:(观察,回答)不相交,即AB ∥CD .
师:为什么呢?同桌可以讨论.
(学生积极讨论,各抒己见)
我们观察图,如果直线AB 与CD 相交,交点
为M ,那么会产生什么问题呢?请同学们讨论.
(学生在教师的引导下思考、讨论,得出结
论)
的理解和记忆.
师生活动: 学生能够很快完成,然后请一个学生在黑板上板演,其
他学生观察他的画图过程是否正确,然后师生一同更正.教师应重点强调:
(1)在推动三角尺时,直尺不要动;
(2)画平行线必须用直尺和三角板,不能徒手画.
师生活动:
学生在练习本上按要求画图,并由两个学生在黑板上画第2题的(2)(3)题,•学生画完后,教师给出第1题的图形(提前做好的投影片)
,请同学们回答测量结果,然后共同回答第2题的(2)(3)题.
师:我们学习了“过直线外一点画已知直线的平行线”,请同学们回忆,•过直线外一点能不能画直线的垂线,能画几条?
生:能画一条,并且只能画一条.
师:平行线呢? 生:(学生动手操作,思考后总结)经过直线外一点,有且只有一条直线与已知直线平行.
师:我们把这个结论叫平
行公理(教师板书).
〖设计说明〗这组练习重
点巩固平行线的画法及理解描
述图形和位置关系的语句,•
能够根据语句画出正确图形,
要求学生用准确的几何语言反
师:同学们想得很好.因为AB ∥E F ,CD ∥EF ,于是过点M 就有两条直线AB 、CD 都与E F 平行,根据平行公理,这是不可能的,这就是说,AB 与CD 不能相交,只能平行.由此,我们可得平行公理的推论.
板书:
如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
也就是说:如果b ∥a ,c ∥a ,那么b ∥c (如图).
师:在同一平面内,不相交的两直线是平行的,那么不相交的两条射线或线段也是平行的,对吗?为什么?
生:(学生思考后回答)不对,给出反例图形,例如:如图所示,射线OA 与O ′A ′就不相交,也不平行.
师:同学们想一想,当我们说两条射线或线段平行时,实际上是什么平行才可以呢?
生:它们所在直线的平行.
映图形,正确理解几何语言是
画好图形的前提.
板书设计
5.2.1 平行线 (一)
(二)尝试反馈,巩固练习 (三)小结
5.2.1 平行线 (一)
(二)尝试反馈,巩固练习
(三)小结
在教学平行线一课时,无论是从教学设计还是实际课堂教学,我个人觉得,我是成功的,但也有不足.在课程改革的今天,我作为一名从教近十年的教师,真正从过去的“师者,传道授业解惑也”跳出来,变学生为学习的主体,教师只是做点拨,大胆放手,让学生充分发挥他们的主动性,真正成为学习的主人还是有点放不开。
但是通过前一段时间的认真学习、反思,使我更加理解当前的教育形式,教师首先更新教育观念,要有创新精神,对学生在学习上要放手,培养他们学会学习、学会合作、学会探究,变被动为主动、变不会学为会学,逐步养成良好的学习习惯.
在教学平行线的内容时,首先创设一个情境,激发学生的学习兴趣,通过动手操作,让学生从中发现两条直线的位置发生怎样的变化?从中发现了什么?学生通过动手实践,得出结论,这一设计的目的引出平行线的定义.然后重点理解。