苏教版初三数学中考-圆-复习

合集下载

苏教版初三数学中考-圆-复习

苏教版初三数学中考-圆-复习

(第2题) 苏教版初三数学“圆”中考复习一、选择题1. 当两圆无公共点时,这两圆的位置关系一定是 ··········· ( )A .外离B .内含C .同心圆D .外离或内含 答案:D .解析:本题为容易题,考查了圆与圆的位置关系.根据两圆的位置关系,当两圆外离或内含时,两圆没有公共点,因此本题选D .2. 如图,已知AB 为⊙O 的直径,点C 在⊙O 上,若∠B =50°,则∠A 等于······················· ()A .80°B .60°C .50°D .40° 答案:D .解析:本题为容易题,考查了直径所对圆周角的特征.直径所对的圆周角是直角,故∠A 与∠B 互余,因此本题选D .3. 如图,圆周角∠ACB 的度数为48°,则圆心角∠AOB 的度数为······················· ( ) A .48° B .24° C .96°D .90°答案:C .解析:本题为容易题,考查了圆周角与圆心角的关系.同弧所对的圆周角是圆心角的一半,因此本题选C .4. 如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 长的最小值 ················ ( )A .2B .3C .4D .5答案:B .解析:本题为容易题,考查了垂径定理及其推论.当OM ⊥AB 时OM 最短,由垂径定理得AM =BM =4,根据勾股定理解得OM =3,因此本题选B .5. 两圆半径分别为2 cm 和6 cm ,若两圆相切,则圆心距为 ······· ( )A .4 cmB .8 cmC .10 cm 或2 cmD .8 cm 或4 cmA(第3题)O CBA BMO(第4题)解析:本题为容易题,考查了圆与圆的位置关系.两圆相切分为外切与内切,当两圆外切时,圆心距d =R +r ,当两圆内切时,圆心距d =R -r ,因此本题选D .6. 如图,P 为正△ABC 外接圆上一点,则∠APB 为 ··· ( )A .150°B .135°C .115°D .120°答案:D .解析:本题为容易题,考查了圆周角与圆心角的关系.由圆内接四边形的性质得∠P +∠C =180°,因此本题选D .7. 一个扇形的圆心角是120°,它的面积为3π cm 2,那么这个扇形的半径是 ( )AB .3 cmC .6 cmD .9 cm答案:B .解析:本题为容易题,考查了计算扇形的面积.扇形面积公式为S =2360n r ,因此本题选B .8. 已知两圆的圆心距是3,两圆半径分别是一元二次方程x 2-3x +2=0的两个根,则这两个圆的位置关系是 ······················ ( )A .外离B .外切C .相交D .内切答案:B .解析:本题为容易题,考查了圆与圆的位置关系.方程的两个根为1和2,由d =R +r 得两圆外切,因此本题选B .9. 如图,四边形ABCD 为⊙O 的内接四边形,∠BOD =120°,则∠BCD的度数为 ··················· ( )A .120°B .90°C .60°D .30°答案:A .解析:本题为容易题,考查了圆周角与圆心角的关系.由题意得∠A =60°,又根据圆内接四边形的性质得∠A +∠C =180°,因此本题选A .10.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( )A .30°B .30°或150°C .60°D .60°或120°BDC OA(第9题)AB C P(第6题)解析:本题为容易题,考查了圆周角与圆心角的关系.该弦与两半径围成一个正三角形,因此圆心角为60°,根据同弧所对的圆周角是圆心角的一半得30°,再根据圆内接四边形性质得优弧所对的圆周角为150°,因此本题选B.11.在Rt△ABC中,∠C=90°,AB=10 cm,AC=5 cm,若以C为圆心,4 cm为直径的⊙C 与AB的关系是··························· ( ) A.相离B.相交C.相切D.不能确定答案:A.解析:本题为中档题,考查了直线与圆的位置关系.通过计算可得BC=C到AB>2,因此本题选A.12.如图,梯形ABCD内接于⊙O,AB∥CD,AB为直径,DO平分∠ADC,则∠DAO的度数是···············( )A.90°B.80°C.70°D.60°答案:D.解析:本题为中档题,考查了圆的有关概念和平行的性质.由条件可得△AOD为正三角形,因此本题选D.13.过⊙O内一点M的最长弦长为10 cm,最短弦长为8 cm,那么OM的长为( )A.3 cm B.6 cm CD.9 cm答案:A.解析:本题为中档题,考查了垂径定理及其推论.最长弦为直径,故半径为5 cm,最短弦为垂直于直径的弦,由垂径定理构造直角三角形后由勾股定理得OM=3,因此本题选A.14.若圆锥的母线长为4 cm,底面半径为3 cm,则圆锥的侧面展开图的面积是( )A.6π cm2B.12π cm2C.18π cm2D.24π cm2答案:B.解析:本题为中档题,考查了计算圆锥的侧面积.圆锥的底面周长为6π,即为扇形的弧长,由扇形面积公式S=12lR,因此本题选B.15.如图,在△ABC中,AB=2,AC=1,以AB为直径的圆与AC相切,与边BC交于点D,则AD的长为··········· ( )ABA BOD C(第12题)A BDC(第15题)C.235D.435答案:A.解析:本题为中档题,考查了切线与过切线的半径之间的关系和直径所对圆周角的性质.由切线的概念得△ABC为Rt△,可得BC=5,又由直径所对圆周角是90°,用面积法可解出AD,因此本题选A.16.两圆相交,圆心距为5 cm,两圆半径分别为3 cm和4 cm,则公共弦长为( )A.2.4 cm B.4.8 cm C.1.8 cm D.3.6 cm答案:B.解析:本题为稍难题,考查了圆与圆的位置关系和解直角三角形.由条件可得,圆心和一个交点围成一个直角三角形,且斜边上的高为2.4 cm,因此本题选B.17. 已知Rt△ABC的两条直角边长为6和8,则它的内切圆与外接圆的圆心距为( )A.32B.332C.3 D.5答案:D.解析:本题为稍难题,考查了切线长定理和三角形的内心、外心.外心是三条边垂直平分线的交点,在斜边中点。

苏教版九年级上册数学[《圆》全章复习与巩固—知识点整理及重点题型梳理](提高版)

苏教版九年级上册数学[《圆》全章复习与巩固—知识点整理及重点题型梳理](提高版)

苏教版九年级上册数学重难点突破知识点梳理及重点题型巩固练习《圆》全章复习与巩固—知识讲解(提高)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可; ②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. (3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA 、OB、OC 分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识【362179 课程名称:《圆》单元复习:经典例题3】1. 如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行(或重合)的直线与⊙O有公共点, 设OP=x,则x的取值范围是().≤x≤2C.0≤x≤2 D.x>2 A.-1≤x≤1 B.2【答案】B;【解析】如图,平移过P点的直线到P′,使其与⊙O相切,设切点为Q,连接OQ,由切线的性质,得∠OQP′=90°,∵OA∥P′Q,∴∠OP′Q=∠AOB=45°,∴△OQP′为等腰直角三角形,在Rt△OQP′中,OQ=1,OP′=2,∴当过点P且与OA平行的直线与⊙O有公共点时,0≤OP≤,当点P在x轴负半轴即点P向左侧移动时,结果为-2≤OP≤0.故答案为:-2≤OP≤2.【点评】本题考查了直线与圆的位置关系问题.关键是通过平移,确定直线与圆相切的情况,求出此时OP的值.举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OB平行的直线于⊙O有公共点,设P(x,0),则x的取值范围是().A.-1≤x<0或0<x≤1 B.0<x≤1 C.-2≤x<0或0<x≤2 D.x>1【答案】∵⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,∴过点P′且与OB平行的直线与⊙O相切时,假设切点为D,∴OD=DP′=1,OP′=2,∴0<OP≤2,同理可得,当OP与x轴负半轴相交时,-2≤OP<0,∴-2≤OP<0,或0<OP≤2.故选C.类型二、弧、弦、圆心角、圆周角的关系及垂径定理,2.如图所示,已知在⊙O中,AB是⊙O的直径,弦CG⊥AB于D,F是⊙O上的点,且CF CB BF交CG于点E,求证:CE=BE.【答案与解析】证法一:如图(1),连接BC ,∵ AB 是⊙O 的直径,弦CG ⊥AB ,∴ CB GB =.∵ CF BC =,∴ CF GB =.∴ ∠C =∠CBE .∴ CE =BE .证法二:如图(2),作ON ⊥BF ,垂足为N ,连接OE . ∵ AB 是⊙O 的直径,且AB ⊥CG ,∴ CB BG =.∵ CB CF =,∴ CF BC BG ==.∴ BF =CG ,ON =OD .∵ ∠ONE =∠ODE =90°,OE =OE ,ON =OD , ∴ △ONE ≌△ODE ,∴ NE =DE . ∵ 12BN BF =,12CD CG =, ∴ BN =CD ,∴ BN-EN =CD-ED ,∴ BE =CE .证法三:如图(3),连接OC 交BF 于点N .∵ CF BC =,∴ OC ⊥BF . ∵ AB 是⊙O 的直径,CG ⊥AB ,∵ BG BC =,CF BG BC ==.∴ BF CG =,ON OD =.∵ OC =OB ,∴ OC-ON =OB-OD ,即CN =BD .又∠CNE =∠BDE =90°,∠CEN =∠BED , ∴ △CNE ≌△BDE ,∴ CE =BE .【点评】上述各种证明方法,虽然思路各异,但都用到了垂径定理及其推论.在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【362179 课程名称:《圆》单元复习 :经典例题1-2】【变式】如图所示,在⊙O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .20【答案】如图,延长AO交BC于点D,过O作OE⊥BC于E.则三角形ABD为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt△ODE中,∠ODE=60°,∠DOE=30°,则DE=12OD=2,BE=BD-DE=10OE垂直平分BC,BC=2BE=20. 故选D类型三、与圆有关的位置关系3.一个长方体的香烟盒里,装满大小均匀的20支香烟.打开烟盒的顶盖后,二十支香烟排列成三行,如图(1)所示.经测量,一支香烟的直径约为0.75cm,长约为8.4cm.(1)试计算烟盒顶盖ABCD的面积(本小题计算结果不取近似值);(2)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部分,计算结果精确到,取)0.1cm3173..【答案与解析】(1)如图(2),作O1E⊥O2O3()3333332844AB cm +∴=⨯+=∴四边形ABCD 的面积是:(2)制作一个烟盒至少需要纸张:.【点评】四边形ABCD 中,AD 长为7支香烟的直径之和,易求;求AB 长,只要计算出如图(2)中的O 1E长即可.类型四、圆中有关的计算4.(2015•丹东)如图,AB 是⊙O 的直径,=,连接ED 、BD ,延长AE 交BD 的延长线于点M ,过点D 作⊙O 的切线交AB 的延长线于点C . (1)若OA=CD=2,求阴影部分的面积; (2)求证:DE=DM .【答案与解析】解:如图,连接OD , ∵CD 是⊙O 切线, ∴OD ⊥CD ,∵OA=CD=2,OA=OD , ∴OD=CD=2,∴△OCD 为等腰直角三角形, ∴∠DOC=∠C=45°, ∴S 阴影=S △OCD ﹣S 扇OBD=﹣=4﹣π;(2)证明:如图,连接AD , ∵AB 是⊙O 直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.举一反三:【变式】(2015•贵阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF+S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.类型五、圆与其他知识的综合运用5..【答案与解析】延长DB至点E,使BE=DC,连结AE∵△ABC是等边三角形∴∠ACB=∠ABC=60°,AB=AC∴∠ADB=∠ACB=60°∵四边形ABDC是圆内接四边形∴∠ABE=∠ACD在△AEB和△ADC中,∴△AEB≌△ADC∴AE=AD∵∠ADB=60°∴△AED是等边三角形∴AD=DE=DB+BE∵BE=DC∴DB+DC=DA.【点评】由已知条件,等边△ABC可得60°角,根据圆的性质,可得∠ADB=60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC.本例也可以用其他方法证明.如:(1)延长DC至F,使CF=BD,连结AF,再证△ACF≌△ABD,得出AD=DF,从而DB+CD=DA.(2)在DA上截取DG=DC,连结CG,再证△BDC≌△AGC,得出BD=AG,从而DB+CD=DA.6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π【答案】B;【解析】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【点评】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.即可求解.举一反三:【变式】某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( ).A. B.72 C.36 D.72【答案】本题解法很多,如两个小半圆面积和减去两个弓形面积等.但经过认真观察等腰直角三角形其对称性可知,阴影部分的面积由两个小半圆面积与三角形面积的和减去大半圆面积便可求得,所以由已知得直角边为,小半圆半径为(cm),因此阴影部分面积为. 故选C.。

九年级上册数学《圆》复习资料苏教版

九年级上册数学《圆》复习资料苏教版

九年级上册数学《圆》复习资料苏教版一、圆的定义、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

劣弧:小于半圆周的弧。

优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质、圆的对称性圆是轴对称图形,它的对称轴是直径所在的直线。

圆是中心对称图形,它的对称中心是圆心。

圆是旋转对称图形。

2、垂径定理。

垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

推论:平分弦的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

同弧所对的圆周角相等。

直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙o的半径为r,oP=d。

7、过两点的圆的圆心一定在两点间连线段的中垂线上。

不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

8、直线与圆的位置关系。

d表示圆心到直线的距离,r 表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

9、平面直角坐标系中,A、B。

0、圆的切线判定。

d=r时,直线是圆的切线。

切点不明确:画垂直,证半径。

经过半径的外端且与半径垂直的直线是圆的切线。

切点明确:连半径,证垂直。

1、圆的切线的性质。

经过切点的直径一定垂直于切线。

经过切点并且垂直于这条切线的直线一定经过圆心。

苏教版数学中考总复习[中考总复习:圆综合复习--知识点整理及重点题型梳理](基础)

苏教版数学中考总复习[中考总复习:圆综合复习--知识点整理及重点题型梳理](基础)

苏教版中考数学总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:圆综合复习—知识讲解(基础)【考纲要求】1.圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明定会有下降趋势,不会有太复杂的大题出现;2.今后的中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念1. 圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点诠释:圆心确定圆的位置,半径确定圆的大小.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB ,BC ,AC 都是弦.②直径:经过圆心的弦叫做直径,如AC 是⊙O 的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC 、BAC 都是⊙O 中的弧,分别记作BC ,BAC .④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC 是半圆. ⑤劣弧:像BC 这样小于半圆周的圆弧叫做劣弧.⑥优弧:像BAC 这样大于半圆周的圆弧叫做优弧.⑦同心圆:圆心相同,半径不相等的圆叫做同心圆.⑧弓形:由弦及其所对的弧组成的图形叫做弓形.⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.⑪圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB ,∠BOC 是圆心角.⑫圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC 、∠ACB 都是圆周角.考点二、圆的有关性质1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合.2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示:要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:圆周角性质的前提是在同圆或等圆中.考点三、与圆有关的位置关系1.点与圆的位置关系要点诠释:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点诠释:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R 、r 为两圆半径(R ≥r).d 为圆心距.要点诠释:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r 1-r 2”时,要特别注意,r 1>r 2.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°. 要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a 、边心距r 、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n =°,180cos n r R n=°, 2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a =,1122n n n n n S a r n P r ==.考点五、圆中的计算问题1.弧长公式:180n R l π=,其中l 为n °的圆心角所对弧的长,R 为圆的半径. 2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇. 3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长. 圆锥的全面积是它的侧面积与它的底面积的和.要点诠释:在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.考点六、求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.【典型例题】类型一、圆的有关概念及性质1. (2015•石景山区一模)如图,A ,B ,E 为⊙0上的点,⊙O 的半径OC ⊥AB 于点D ,若∠CEB=30°,OD=1,则AB 的长为( )A .B .4C .2D .6【思路点拨】连接OB ,由垂径定理可知,AB=2BD ,由圆周角定理可得,∠COB=60°,在Rt △DOB 中,OD=1,则BD=1×tan60°=,故AB=2.【答案】C;【解析】连接OB,∵AB是⊙O的一条弦,OC⊥AB,∴AD=BD,即AB=2BD,∵∠CEB=30°,∴∠COB=60°,∵OD=1,∴BD=1×tan60°=,∴AB=2,故选C.【总结升华】弦、弦心距,则应连接半径,构造基本的直角三角形是垂径定理应用的主要方法.举一反三:【变式】如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5.则AB的长是()A、2cmB、3cmC、4cmD、【答案】解:连接OA,∵CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,∴AB=2AM,∵CD=5cm,∴OD=OA=12CD=12×5=52cm,∵OM:OD=3:5,∴OM=35OD=×=,∴在Rt△AOM中,=2,∴AB=2AM=2×2=4cm.故选C.类型二、与圆有关的位置关系2.如图所示,已知AB为⊙O的直径,直线BC与⊙O相切于点B,过A作AD∥OC交⊙O于点D,连接CD.(1)求证:CD是⊙O的切线;(2)若AD=2,直径AB=6,求线段BC的长.【思路点拨】要证明DC是⊙O的切线,因为点D在⊙O上,所以连接交点与圆心证垂直即可.【答案与解析】(1)证明:如图(2),连接OD.∵ AD∥OC,∴∠1=∠3,∠2=∠A,∴ OA=OD,∴∠3=∠A,∴∠1=∠2.∵ OD=OB,OC=OC.∴△COD≌△COB,∴∠CDO=∠CBO=90°,∴ CD是⊙O的切线.(2)解:连接BD ,∵ AB 是⊙O 的直径,∴ ∠ADB =90°.在△DAB 和△BOC 中,∵ ∠ADB =∠OBC ,∠A =∠2,∴ △DAB ∽△BOC ,∴AD BD OB BC =, ∴ OB BD BC AD =. 在Rt △DAB 中,由勾股定理得BD ==∴ 32BC ⨯== 【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,已知CD 是△ABC 中AB 边上的高,以CD 为直径的⊙O 分别交CA 、CB 于点E 、F ,点G 是AD 的中点.求证:GE 是⊙O 的切线.【答案与解析】证法1:连接OE 、DE(如图(1)).∵ CD 是⊙O 的直径,∴ ∠AED =∠CED =90°.∵ G 是AD 的中点,∴ EG =12AD =DG . ∴ ∠1=∠2.∵ OE =OD ,∴ ∠3=∠4.∴ ∠1+∠3=∠2+∠4,即∠OEG =∠ODG =90°.∴ GE 是⊙O 的切线.证法2:连接OE 、ED(如图(2)).在△ADC中,∠ADC=90°,∴∠A+∠ACD=90°.又∵ CD是⊙O的直径,∴∠AED=∠CED=90°.在△AED中,∠AED=90°,G是AD中点,∴ AG=GE=DG,∴∠A=∠AEG.又∵ OE=OC,∴∠OEC=∠ACD.又∵∠A+∠ACD=90°,∴∠AEG+∠OEC=90°.∴∠OEG=90°,∴ OE⊥EG.∴ GE是⊙O的切线.类型三、与圆有关的计算3.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:(1)通过计算(结果保留根号与π).(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为 cm;(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为 cm;(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.【思路点拨】(1)(Ⅰ)连接正方形的对角线BD,利用勾股定理求出BD的长即可;(Ⅱ)利用勾股定理求出小正方形对角线的长即可;(Ⅲ)找出过A、B、C三点的圆的圆心及半径,利用勾股定理求解即可;(2)连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,再根据勾股定理解答.【答案与解析】解:(1)(Ⅰ)如图连接BD,∵ AD=3×5=15cm,AB=5cm,∴ BD==cm;(Ⅱ)如图所示,∵三个正方形的边长均为5,∴ A、B、C三点在以O为圆心,以OA为半径的圆上,∴ OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为10cm;(Ⅲ)如图所示,连接OA,OB,∵ CE⊥AB,AC=BC,∴ CE是过A、B、C三点的圆的直径,∵ OA=OB=OD,∴ O为圆心,∴⊙O的半径为OA,OA==5cm,∴能盖住三个正方形所需的圆形硬纸板最小直径为5×2=10cm;(2)如图④为盖住三个正方形时直径最小的放置方法,连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点,设OG=x,则OP=10-x,则有:,解得:,则ON=,∴直径为.【总结升华】此题比较复杂,解答此题的关键是找出以各边顶点为顶点的圆的圆心及半径,再根据勾股定理解答.举一反三:【变式】如图,图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动.(1)求图1中∠APN的度数是;图2中,∠APN的度数是,图3中∠APN的度数是.(2)试探索∠APN的度数与正多边形边数n的关系(直接写答案).【答案】解:(1)图1:∵点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动,∴∠BAM=∠CBN,又∵∠APN=∠BPM,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°;同理可得:图2中,∠APN=90°;图3中∠APN=108°.(2)由(1)可知,∠APN=所在多边形的内角度数,故在图n中,.4.如图所示,半圆的直径AB=10,P为AB上一点,点C,D为半圆的三等分点,则阴影部分的面积等于________.【思路点拨】观察图形,可以适当进行“割”与“补”,使阴影面积转化为扇形面积. 【答案】256π; 【解析】连接OC 、OD 、CD .∵ C 、D 为半圆的三等分点,∴ ∠AOC =∠COD =∠DOB =180603=°°. 又∵ OC =OD ,∴ ∠OCD =∠ODC =60°,∴ DC ∥AB ,∴ PCD OCD S S =△△,∴ 2605253606S S ππ===阴影扇形OCD. 答案:256π. 【总结升华】用等面积替换法将不规则的图形转化为简单的规则图形是解本类题的技巧.类型四、与圆有关的综合应用5.(2014•黄陂区模拟)如图,在△ABC 中,以AC 为直径的⊙O 交BC 于D ,过C 作⊙O 的切线,交AB 的延长线于P ,∠PCB=∠BAC .(1)求证:AB=AC ;(2)若sin ∠BAC=35,求tan ∠PCB 的值.【思路点拨】(1)连接AD,根据圆周角定理求得∠ADC=90°,根据弦切角定理求得∠PCB=∠CAD,进而求得∠CAD=∠BAD,然后根据ASA证得△ADC≌△ADB,即可证得结论.(2)作BE⊥AC于E,得出BE∥PC,求得∠PCB=∠CBE,根据已知条件得出=,从而求得=,根据AB=AC,得出tan∠CBE===,就可求得tan∠PCB=.【答案与解析】解:(1)连接AD,∵AC是⊙O的直径,∴∠ADC=90°,∴AD⊥BC,∵PC是⊙O的切线,∴∠PCB=∠CAD,∵∠PCB=∠BAC,∴∠CAD=∠BAD,在△ADC和△ADB中,,∴△ADC≌△ADB(ASA),∴AB=AC.(2)作BE⊥AC于E,∵PC是⊙O的切线,∴AC⊥PC,∴BE∥PC,∴∠PCB=∠CBE,∵sin∠BAC==,∴=,∵AB=AC,∴tan∠CBE===,∴tan∠PCB=.【总结升华】本题考查了圆周角定理,切线的性质,三角形全等的判定和性质,直角三角函数等,作出辅助线构建直角三角形是解题的关键.举一反三:【圆的综合复习 例2】【变式】已知:如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC=30°,CD 是⊙O 的切线,ED ⊥AB 于F .(1)判断△DCE 的形状并说明理由;(2)设⊙O 的半径为1,且213-=OF ,求证△DCE ≌△OCB .【答案】(1)解:∵∠ABC=30°,∴∠BAC=60°.又∵OA=OC,∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD=90°,∴∠DCE=180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED=90°-∠BAC=30°.故△CDE 为等腰三角形.(2)证明:在△ABC 中,∵AB=2,AC=AO=1,∴BC=2212-=3.OF=213-,∴AF=AO+OF=213+. 又∵∠AEF=30°,∴AE=2AF=3+1.∴CE=AE-AC=3=BC .而∠OCB=∠ACB-∠ACO=90°-60°=30°=∠ABC,故△CDE ≌△COB.6.如图,已知⊙O 的直径AB =2,直线m 与⊙ O 相切于点A ,P 为⊙ O 上一动点(与点A 、点B 不重合),PO 的延长线与⊙ O 相交于点C ,过点C 的切线与直线m 相交于点D .(1)求证:△APC ∽△COD .(2)设AP =x ,OD =y ,试用含x 的代数式表示y .(3)试探索x 为何值时, △ACD 是一个等边三角形.【思路点拨】(1)可根据“有两个角对应相等的两个三角形相似”来说明 △APC ∽△COD ; (2)根据相似三角形的对应边成比例,找出x 与y 的关系;(3)若△ACD 是一个等边三角形,逆推求得x 的值.【答案与解析】解 (1)∵PC 是⊙O 的直径,CD 是⊙O 的切线, ∴∠PAC =∠OCD =90°.由△DOA ≌△DOC ,得到∠DOA =∠DOC , ∴∠APC =∠COD , ∴△APC∽△COD.(2)由△APC∽△COD,得AP OC PC OD = , ∴y x 12= 则 xy 2= (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=,于是2OD OC =,可得2y =,从而1=x ,故当1x =时,ACD △是一个等边三角形.【总结升华】本例是一道动态几何题.(1)考查了相似三角形的判定,证三角形相似有:两个角分别对应相等的两个三角形相似;两条边分别对应成比例,且夹角相等的两个三角形相似;三条边分别对应成比例的两个三角形相似;(2)考查了相似三角形的性质.利用第一问的结论,得出对应边成比例,找出y 与x 间的关系.(3)动点问题探求条件.一般运用结论逆推的方法找出结论成立的条件.本题应从ACD △是一个等边三角形出发,逆推6030ADC ODC ∠=∠=,,于是2OD OC =,可得2y =,从而1=x , 故当1x =时,ACD △是一个等边三角形.举一反三:【圆的综合复习 例1】【变式】如图,MN 是⊙O 的直径,2MN =,点A 在⊙O 上,30AMN =∠,B 为弧AN 的中点,P 是直径MN 上一动点,则PA PB +的最小值为( )A. C.1 D.2【答案】选B ;解:过B 作BB ′⊥MN 交⊙O 于B ′,连接AB ′交MN 于P ,此时PA+PB =AB ′最小. 连AO 并延长交⊙O 于C ,连接CB ′,在Rt △ACB ′中,AC =2,∠C =190452⨯=°°,∴ sin 4522AB AC '==⨯=°。

苏教版初三数学复习方法与技巧

苏教版初三数学复习方法与技巧

苏教版初三数学复习方法与技巧数学作为一门学科,无疑是初中学生们必须面对的挑战之一。

而在初三阶段,数学的重要性更是凸显出来。

为了帮助初三学生们更好地复习数学,下面将介绍一些适用于苏教版初三数学的复习方法和技巧。

一、建立知识框架初三数学的内容较为繁杂,需要学生们对各个知识点建立起一个完整的框架。

因此,在开始复习之前,学生们应该先整理自己的笔记和课堂讲义,将知识点分类整理,建立知识框架。

可以用思维导图、纸质笔记本等方式进行整理,以便于学生们更好地理解和记忆。

二、重点内容的梳理在框架建立完成后,学生们需要有针对性地梳理重点内容。

初三数学中,一些基础概念和定理是学习后续知识的基础。

因此,学生们可以将这些基础知识进行集中复习,熟练掌握。

同时,重点题型也是需要重点关注的内容,对于容易混淆或者易错的题目,可以进行针对性训练,加强记忆和理解。

三、内外部资源的利用为了更好地复习数学,学生们可以充分利用各种资源。

除了学校教材和作业本外,还可以参考辅导书籍、网络资料、习题集等来增强理解和记忆。

同时,可以参加数学辅导班或者寻求老师、同学的帮助。

利用外部资源的好处在于可以接触不同的讲解方式和角度,帮助学生更好地理解和掌握数学知识。

四、动手实践练习复习数学不仅仅是记忆知识点,更加需要学生们进行动手实践。

通过大量的练习题和例题,可以帮助学生们巩固知识,提高解题能力。

初三数学考试中,往往需要学生们应用知识来解决实际问题,因此,需要学生们进行大量的实战训练。

可以选择一些典型题目进行分析、解答和总结,一定要注重提高解题速度和准确度。

五、复习计划的制定对于复习数学这样的一门学科,制定一个合理的复习计划是非常必要的。

学生们可以根据自己的实际情况,将复习时间合理分配。

同时,在计划中要有明确的目标和每日的任务,可以按照章节或者题型进行划分。

而且,要保持良好的复习习惯,每天都要有固定的学习时间和环境,避免拖延和浪费时间。

六、做好错题总结在复习中,经常遇到解题错误的情况是正常的。

苏教版九年级上册数学第二章对称图形圆【4】圆周角

苏教版九年级上册数学第二章对称图形圆【4】圆周角

3、如图,四边形ABCD内接于⊙O,
∠CBE=75º,则∠AOC=

典型例题
例4 如图,在⊙O的内接四边形ABCD中,DB=DC, ∠DAE是四边形ABCD的一个外角.∠DAE与∠DAC相 等吗?为什么?
拓展提高
1、如图⊙O1与⊙O2都经过A、B两点,经过点A的直线CD 与⊙O1交于点C,与⊙O2交于点D.经过点B的直线EF与 ⊙O1交于点E,与⊙O2交于点F.
求证:CE∥DF
D A
C
O1
O2
F
E
B
拓展提高
2、如图,AB是半圆的直径,AD是半圆的弦, C是弧BD的中点,∠BAD=50°. 求∠ABC的度数.
课堂小结
1、圆内接四边形------顶点在圆上的四边形,该圆 叫四边形的外接圆。 2、圆内接四边形的性质:圆内接四边形对角互补.
作业
P60练习
2.4 圆周角(1)
2.4 圆周角(1)
复习:
请说说△ABC与⊙O的关系
A
⊙O是△ABC的外接圆
O
B
△ABC 是⊙O的内接三角形
C
点O叫做 △ABC的外心
2.4 圆周角(1)
三角形的外心的位置与三角形的形状的关系有何 规律?
2.4 圆周角(1)
认识新朋友: ——圆周角
C
O
B A
定义:顶点在圆上,两边都和圆相交的角叫做圆周角.
A
如图,AB=100m,∠C=45°,
求这个圆的直径.
O
C
B
2.4 圆周角(2)
实际应用:
“有一个圆形模具,现在只有一个直角三 角板,请你找出它的圆心”.你现在能解决吗?
作业
P58练习

苏教版(SJ)2022-2023学年九年级数学上册期中期末重难点突破专题06 圆【含答案】

苏教版(SJ)2022-2023学年九年级数学上册期中期末重难点突破专题06 圆【含答案】

苏教版(SJ)2022-2023学年九年级数学上册期中期末重难点突破专题06 圆【热考题型】【重难点突破】考查题型一 圆的基本概念1.下列说法中,正确的是( )A .弦是直径B .半圆是弧C .过圆心的线段是直径D .圆心相同半径相同的两个圆是同心圆2.有下列四个①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C .2个D .1个3.下列说法错误的是( )A .直径是圆中最长的弦B .长度相等的两条弧是等弧C .面积相等的两个圆是等圆D .半径相等的两个半圆是等弧4.已知的半径是6cm ,则中最长的弦长是( )O OA.6cm B.12cm C.16cm D.20cm5.下列叙述中不正确的是( )A.圆是中心对称图形,圆心是它的对称中心B.圆是轴对称图形,直径是它的对称轴C.连接圆上两点的线段叫弦D.圆上两点间的部分叫弧考查题型二求圆中弦的条数6.如图,图中的弦共有( )A.1条B.2条C.3条D.4条7.如图,在⊙O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦.A.2B.3C.4D.58.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2B.3C.4D.5考查题型三圆的周长面积问题9.如图中三个小圆周长之和与大圆周长比较,较长的是( )A.三个小圆周长之和B.大圆周长C.一样长D.不能确定10.如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的()A.27倍B.14倍C.9倍D.3倍11.如图,一枚半径为rA.4πr B.2πr C.πr D.2r12.如图,两个同心圆中有两条互相垂直的直径,其中大圆的半径是2,则图中阴影部分的面积是()π2π3π4πA.B.C.D.13.如图,一块直径为a +b 的圆形钢板,从中挖去直径分别为a 与b 的两个圆,则剩余阴影部分面积为( )A .B .C .D .2ab()24a b π-2ab π4ab π14.一个圆的周长是,它的面积是( )10πA .B .C .D .25π5π100π10π15.如图,长方形ABCD 的面积为300cm 2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm 2的圆(π取3),请通过计算说明理由.16.如图,AB 是⊙O 的直径,把AB 分成几条相等的线段,以每条线段为直径分别画小圆,设AB =a ,那么⊙O 的周长l =πa .计算:(1)把AB 分成两条相等的线段,每个小圆的周长;21122l a l π==(2)把AB 分成三条相等的线段,每个小圆的周长l 3= ;(3)把AB 分成四条相等的线段,每个小圆的周长l 4= ;(4)把AB 分成n 条相等的线段,每个小圆的周长ln = .结论:把大圆的直径分成n 条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是大圆周长的 .请仿照上面的探索方法和步骤,计算推导出每个小圆面积与大圆面积的关系.考查题型四确定圆的条件17.过A,B,C三点能确定一个圆的条件是()①AB=2,BC=3,AC=5;②AB=3,BC=3,AC=2;③AB=3,BC=4,AC= 5.A.①②B.①②③C.②③D.①③18.在同一平面内,过已知A,B,C三个点可以作的圆的个数为( )A.0B.1C.2D.0或119.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能20.A ,B ,C 为平面上的三点,AB =2,BC =3,AC =5,则( )A .可以画一个圆,使A ,B ,C 都在圆周上B .可以画一个圆,使A ,B 在圆周上,C 在圆内C .可以画一个圆,使A ,C 在圆周上,B 在圆外D .可以画一个圆,使A ,C 在圆周上,B 在圆内21.下列各图形中,各个顶点一定在同一个圆上的是( )A .正方形B .菱形C .平行四边形D .梯形考查题型五 找圆心的位置22.如图,一圆弧过方格的格点A 、B 、C ,在方格中建立平面直角坐标系,使点A 的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )A .(0,0)B .(﹣2,1)C .(﹣2,﹣1)D .(0,﹣1)23.如图,外接圆的圆心坐标是( )ABCA.(5,2)B.(2,3)C.(1,4)D.(0,0)24.坐标网格中一段圆弧经过格点A、B、C.其中点B的坐标为(4,3),点C坐标为(6,1),则该圆弧所在圆的圆心坐标为A.(0,0)B.(2,-1)C.(0,1)D.(2,1)专题06 圆【热考题型】【重难点突破】考查题型一圆的基本概念1.下列说法中,正确的是()A.弦是直径B.半圆是弧C.过圆心的线段是直径D.圆心相同半径相同的两个圆是同心圆【详解】过圆心的弦是直径,不是所有的弦都是直径,故A选项错误;圆上任意两点间的部分是弧,故半圆是弧,故B正确;过圆心的弦是直径,故C选项错误;圆心相同,半径不等的两个圆是同心圆,故D错误,所以本题选B.2.有下列四个①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A.4个B.3个C.2个D.1个【详解】解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确;②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.故选:B .3.下列说法错误的是( )A .直径是圆中最长的弦B .长度相等的两条弧是等弧C .面积相等的两个圆是等圆D .半径相等的两个半圆是等弧【详解】解:A 、直径是圆中最长的弦,所以选项的说法正确,不符合题意;B 、在同圆或等圆中,长度相等的两条弧是等弧,所以选项的说法错误,符合题意;C D 、半径相等的两个半圆是等弧,所以选项的说法正确,不符合题意.D 故选:B .4.已知的半径是6cm ,则中最长的弦长是( )O O A .6cmB .12cmC .16cmD .20cm 【详解】解:∵在圆中,最长的弦是直径,且的半径是6cm ,O ∴中最长的弦长=6×2=12cm ,O 故选:B .5.下列叙述中不正确的是( )A.圆是中心对称图形,圆心是它的对称中心B.圆是轴对称图形,直径是它的对称轴C.连接圆上两点的线段叫弦D.圆上两点间的部分叫弧【详解】解:A.圆是中心对称图形,圆心是它的对称中心,正确;B.圆是轴对称图形,直径所在的直线为圆的对称轴,错误;C.连接圆上两点的线段叫弦,正确;D.圆上两点间的部分叫弧,正确;故选B.考查题型二求圆中弦的条数6.如图,图中的弦共有( )A.1条B.2条C.3条D.4条【详解】解:图形中有弦AB和弦CD,共2条,故选B.7.如图,在⊙O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦.A.2B.3C.4D.5【详解】根据弦的概念,AB、BC、EC为圆的弦,共有3条弦.故选B.8.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2B.3C.4D.5【详解】解:由图可知,点A、B、E、C是⊙O上的点,图中的弦有AB、BC、CE,一共3条.故选B.考查题型三圆的周长面积问题9.如图中三个小圆周长之和与大圆周长比较,较长的是( )A.三个小圆周长之和B.大圆周长C.一样长D.不能确定【详解】如图,设大圆的直径为d,三个小圆的直径依次为d',d″,d‴,则大圆周长为πd;三个小圆周长之和为πd'+πd″+πd‴=π(d'+d″+d‴).因为d=d'+d″+d‴,所以三个小圆周长之和与大圆周长一样长.10.如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的()A.27倍B.14倍C.9倍D.3倍【详解】解:由圆和正方形的对称性,可知:OA=OD,OB=OC,∵圆的直径与正方形的对角线之比为3:1,∴设OB =x ,则OA =3x ,BC =2x ,∴圆的面积=π(3x )2=9πx 2,正方形的面积==2x 2,()2122x ∴9πx 2÷2x 2=,即:圆的面积约为正方形面积的14倍,9142π≈故选B .11.如图,一枚半径为r 的硬币沿着直线滚动一圈,圆心经过的距离是( )A .4πrB .2πrC .πrD .2r【详解】圆心经过的距离就是圆的周长,所以是2πr .故选B.12.如图,两个同心圆中有两条互相垂直的直径,其中大圆的半径是2,则图中阴影部分的面积是( )A .B .C .D .π2π3π4π【详解】解:根据题意,大圆、小圆都被两条互相垂直的直径平均分成4份,由圆的旋转对称性,可得阴影部分的面积刚好拼成大圆的一半,阴影部分面积:π×22=2π,12故选:B .13.如图,一块直径为a +b 的圆形钢板,从中挖去直径分别为a 与b 的两个圆,则剩余阴影部分面积为( )A .B .C .D .2ab()24a b π-2ab π4ab π【详解】阴影部分面积为=222()()()222a b a b πππ+--2ab π故选C.14.一个圆的周长是,它的面积是( )10πA .B .C .D .25π5π100π10π【详解】解:设圆的半径为r ,∵圆的周长为10π,∴2πr=10π,即r=5,则圆的面积S=πr 2=25π.故选:A .15.如图,长方形ABCD 的面积为300cm 2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm 2的圆(π取3),请通过计算说明理由.【详解】解:设长方形的长DC 为3xcm ,宽AD 为2xcm .由题意,得 3x•2x=300,∵x >0,∴x =∴AB=,BC=cm .∵圆的面积为147cm 2,设圆的半径为rcm ,∴πr 2=147,解得:r=7cm .∴两个圆的直径总长为28cm .∵,382428<=⨯=<∴不能并排裁出两个面积均为147cm 2的圆.16.如图,AB 是⊙O 的直径,把AB 分成几条相等的线段,以每条线段为直径分别画小圆,设AB =a ,那么⊙O 的周长l =πa .计算:(1)把AB 分成两条相等的线段,每个小圆的周长;21122l a l π==(2)把AB 分成三条相等的线段,每个小圆的周长l 3= ;(3)把AB 分成四条相等的线段,每个小圆的周长l 4= ;(4)把AB 分成n 条相等的线段,每个小圆的周长ln = .结论:把大圆的直径分成n 条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是大圆周长的 .请仿照上面的探索方法和步骤,计算推导出每个小圆面积与大圆面积的关系.【详解】(2)l ;13(3)l ;14(4)l ;;1n 1n每个小圆面积=π=,而大圆的面积=π(•a )2=πa 22112a n ⎛⎫ ⎪⎝⎭ 2214a n π1214即每个小圆的面积是大圆的面积的.21n 考查题型四 确定圆的条件17.过A ,B ,C 三点能确定一个圆的条件是( )①AB =2,BC =3,AC =5;②AB =3, BC =3,AC =2;③AB =3,BC =4,AC = 5.A .①②B .①②③C .②③D .①③【详解】经过不在同一直线上的三点可以确定圆,能构成三角形的三点一定可以确定一个圆,因为只有C 选项中的三点能构成三角形,故选C.18.在同一平面内,过已知A ,B ,C 三个点可以作的圆的个数为( )A .0B .1C .2D .0或1【详解】解答:解:当A 、B 、C 三个点共线,过A 、B 、C 三个点不能作圆;当A 、B 、C 不在同一条直线上,过A 、B 、C 三个点的圆有且只有一个,即三角形的外接圆;故选D .19.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是( )A.①B.②C.③D.均不可能【详解】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选A.20.A,B,C为平面上的三点,AB=2,BC=3,AC=5,则( )A.可以画一个圆,使A,B,C都在圆周上B.可以画一个圆,使A,B在圆周上,C在圆内C.可以画一个圆,使A,C在圆周上,B在圆外D.可以画一个圆,使A,C在圆周上,B在圆内【详解】∵A,B,C是平面内的三点,AB=2,BC=3,AC=5,∴AB+BC=AC,∴可以画一个圆,使A,C在圆上,B在圆内.故选D.21.下列各图形中,各个顶点一定在同一个圆上的是()A.正方形B.菱形C.平行四边形D.梯形【详解】解:∵正方形对角线相等且互相平分,∴四个顶点到对角线交点距离相等,∴正方形四个顶点定可在同一个圆上.故选A.考查题型五找圆心的位置22.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )A.(0,0)B.(﹣2,1C.(﹣2,﹣1)D.(0,﹣1)【详解】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C .23.如图,外接圆的圆心坐标是( )ABCA .(5,2)B .(2,3)C .(1,4)D .(0,0)【详解】如图,作AB ,BC 的中垂线,交于点D ,点D 即为外接圆的圆心,坐标为ABC (5,2).故选A .24.坐标网格中一段圆弧经过格点A 、B 、C .其中点B 的坐标为(4,3),点C 坐标为(6,1),则该圆弧所在圆的圆心坐标为A .(0,0)B .(2,-1)C .(0,1)D .(2,1)【详解】如图,根据已知点的坐标画出平面直角坐标系,连接BC ,线段AB 的垂直平分线EF 交BC 的垂直平分线于Q ,则Q 为圆弧的圆心,∴圆心的坐标是()21-,故选B .。

苏教版初三数学教材几何题解题技巧

苏教版初三数学教材几何题解题技巧

苏教版初三数学教材几何题解题技巧几何是初中数学中的重要内容之一,对于初三学生来说,掌握几何解题技巧是必不可少的。

本文将为大家介绍几种解题技巧,帮助大家更好地应对苏教版初三数学教材中的几何题。

一、图形的性质和定理在几何题中,我们常常需要利用图形的性质和定理来推导出结论。

因此,熟练掌握各种图形的性质和定理是解题的关键。

1. 三角形的性质对于三角形来说,熟练掌握其性质是解题的基础。

我们常用的三角形性质有:(1) 任意两边之和大于第三边:a + b > c(2) 任意两边之差小于第三边:|a - b| < c(3) 三角形内角和为180°:∠A + ∠B + ∠C = 180°(4) 等腰三角形的底角相等:∠A = ∠B(5) 等边三角形的三个内角均为60°掌握这些性质,能够帮助我们更好地理解和解决与三角形相关的题目。

2. 圆的性质对于圆的性质,我们需要掌握以下几点:(1) 圆的周长公式:C = 2πr(2) 圆的面积公式:S = πr²(3) 直径和半径的关系:d = 2r(4) 弧度制和角度制的转化关系:360° = 2π弧度掌握这些性质有助于我们解决与圆相关的计算和推导题。

二、几何题解题步骤解决几何题时,我们需要按照一定的步骤进行推导和计算。

下面是解题的一般步骤:1. 阅读题目阅读题目是解题的第一步,我们需要仔细理解题目,明确题目要求和给出的条件。

2. 绘制图形根据题目给出的条件,我们需要在纸上绘制相应的几何图形,以便更好地理解和分析题目。

3. 利用性质和定理根据题目所给的条件,我们可以利用图形的性质和定理进行推导和计算。

通过运用正确的定理和性质,可以简化题目,减少计算量。

4. 运用计算方法在解决几何题时,我们常常需要运用计算方法,如计算面积、周长等。

根据题目的要求,我们选择合适的计算方法进行推导和计算。

5. 给出解答在解决几何题后,我们需要给出解答,明确题目的要求,并清晰地写出推导和计算过程。

苏教版初三数学九年级上册知识点总结归纳

苏教版初三数学九年级上册知识点总结归纳

苏教版初三数学九年级上册知识点总结归纳第一章一元二次方程思维导图:知识点归类知识点一一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

注意:一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。

一元二次方程的解法用一元二次方程解决问题列一元二次方程解应用题时,我们一般将解题过程归结为“审、设、列、解、检验、答”六步。

(1) “审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系.(2) “设”是指设未知数,在一道应用题中,往往含有几个未知量,应恰当地选择其中的一个未知量用字母x表示,然后根据各量之间的数量关系,将其他几个未知量用含x的代数式表示出来.(3) “列”就是指列方程,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.(4) “解”是指解方程,即求出未知数的值。

(5) “检验”是指检验方程的解能否保证实际问题有意义.在解实际应用题时,一定要注意检验求得的一元二次方程的根是否与题意相符,不相符的一定要舍去。

(6) “答”是指完成以上步骤后,回归到原始问题,写出答案。

第2章对称图形-圆圆是轴对称图形,每一条直径都是它的对称轴,因此圆有无数条对称轴。

精品学习网初中频道为大家编辑了对称图形圆知识点,希望对大家有帮助。

2.1 圆1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

2.2 圆的对称性(1)圆是满足x轴对称的,这样只需要计算原来的1/2点的位置;(2)圆是满足y轴对称的,这样只需要计算原来的1/2点的位置;(3)圆是满足y = x or y = -x轴对称的,这样只需要计算原来的1/2点的位置;2.3 确定圆的条件1.定理:不在同一直线上的三个点确定一个圆.定理中“不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有” .2.通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也随之确定了.2.4 圆周角圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。

苏科版数学九年级上册2.1《圆的复习》ppt课件

苏科版数学九年级上册2.1《圆的复习》ppt课件

O
M
A
N
切线长定理
切线长定理:
从圆外一点引圆的两条切线,它们的切
线长相等即:∵PA、PB是的两条切线
∴PA=PB
PO平分∠BPA
B
O P
A
圆内正多边形的计算
(1)正三角形
C
在⊙O中 △ABC是正三角形,有关计算在 O
Rt△BOD中进行,OD:BD:OB= 1: 3 : 2
B
D
A
(2)正四边形
同理,四边形的有关计算在Rt△OAE中进行 B
C
,OE :AE:OA= 1:1: 2
O
(3)正六边形
A
E
D
同理,六边形的有关计算在Rt△OAB中进行
,AB:OB:OA= 1: 3 : 2
O
B A
弧长、扇形面积公式
(1)弧长公式:
l n R
180
O
(2)扇形面积公式: S n R2 1 lR
360 2
A
S
l
B
侧面展开图
(1)圆柱侧面展开图
B
O
A
圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所 D C
对的弧是等弧
即:在⊙O中,∵∠C、∠D都是所对的圆周角
B
O
∴∠C=∠D
A
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆 C
,所对的弦是直径
即:在⊙O中,∵AB是直径 或∵∠C=90°
∴∠C=90°
A
S表 S侧 2S底= 2 rh 2 r2
B B1
(O 2)圆锥侧面展开图
R
C

苏教版九年级数学知识点

苏教版九年级数学知识点

苏教版九年级数学知识点学习从来⽆捷径,循序渐进登⾼峰。

如果说学习⼀定有捷径,那只能是勤奋,因为努⼒永远不会骗⼈。

学习需要勤奋,做任何事情都需要勤奋。

下⾯是⼩编给⼤家整理的⼀些九年级数学的知识点,希望对⼤家有所帮助。

九年级下册数学知识点归纳圆重点①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的⾓的定理;④与圆有关的⽐例线段定理。

☆内容提要☆⼀、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦⼼距;等圆、同圆、同⼼圆。

3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的⾓:⑴圆⼼⾓定义(等对等定理)⑵圆周⾓定义(圆周⾓定理,与圆⼼⾓的关系)⑶弦切⾓定义(弦切⾓定理)⼆、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连⼼线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的⽐例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三⾓形、四边形)2.三⾓形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中⼼⾓:初中数学复习提纲内⾓的⼀半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素,初中数学复习提纲、初中数学复习提纲等)六、⼀组计算公式1.圆周长公式2.圆⾯积公式3.扇形⾯积公式4.弧长公式5.⼸形⾯积的计算⽅法6.圆柱、圆锥的侧⾯展开图及相关计算七、点的轨迹六条基本轨迹⼋、有关作图1.作三⾓形的外接圆、内切圆2.平分已知弧3.作已知两线段的⽐例中项4.等分圆周:4、8;6、3等分九、重要辅助线1.作半径2.见弦往往作弦⼼距3.见直径往往作直径上的圆周⾓4.切点圆⼼莫忘连5.两圆相切公切线(连⼼线)6.两圆相交公共弦初三数学知识点1、⼆次根式:形如式⼦为⼆次根式;性质:是⼀个⾮负数;2、⼆次根式的乘除:3、⼆次根式的加减:⼆次根式加减时,先将⼆次根式华为最简⼆次根式,再将被开⽅数相同的⼆次根式进⾏合并.4、海伦-秦九韶公式:,S是的⾯积,p为.1:等号两边都是整式,且只有⼀个未知数,未知数的次是2的⽅程.2:配⽅法将⽅程的⼀边配成完全平⽅式,然后两边开⽅;因式分解法:左边是两个因式的乘积,右边为零.1:⼀元⼆次⽅程在实际问题中的应⽤2:韦达定理设是⽅程的两个根,那么有3:⼀个图形绕某⼀点转动⼀个⾓度的图形变换性质:对应点到中⼼的距离相等;对应点与旋转中⼼所连的线段的夹⾓等于旋转⾓旋转前后的图形全等.2中⼼对称:⼀个图形绕⼀个点旋转180度,和另⼀个图形重合,则两个图形关于这个点中⼼对称;中⼼对称图形:⼀个图形绕某⼀点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中⼼对称图形;3关于原点对称的点的坐标1圆、圆⼼、半径、直径、圆弧、弦、半圆的定义2垂直于弦的直径圆是图形,任何⼀条直径所在的直线都是它的对称轴;垂直于弦的直径平分弦,并且平⽅弦所对的两条弧;平分弦的直径垂直弦,并且平分弦所对的两条弧.3弧、弦、圆⼼⾓在同圆或等圆中,相等的圆⼼⾓所对的弧相等,所对的弦也相等.4圆周⾓在同圆或等圆中,同弧或等弧所对的圆周⾓相等,都等于这条弧所对的圆⼼⾓的⼀半;半圆(或直径)所对的圆周⾓是直⾓,90度的圆周⾓所对的弦是直径.5点和圆的位置关系点在圆外d>r点在圆上d=r点在圆内dR+r外切d=R+r相交R-r九年级数学学习⽅法技巧⾃学能⼒的培养是深化学习的必由之路在学习新概念、新运算时,⽼师们总是通过已有知识⾃然⽽然过渡到新知识,⽔到渠成,亦即所谓“温故⽽知新”。

苏教版九年级数学知识点整理

苏教版九年级数学知识点整理

苏教版九年级数学知识点整理只有学习精彩,生命才精彩,只有学习成功,事业才成功。

每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。

下面是小编给大家整理的一些九年级数学的知识点,希望对大家有所帮助。

初三年级数学知识点【数的开方】1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.2.平方根的性质:(1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.3.平方根的表示方法:a的平方根表示为和.注意:可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为.注意:0的算术平方根还是0.5.三个重要非负数:a2≥0,|a|≥0,≥0.注意:非负数之和为0,说明它们都是0.6.两个重要公式:(1);(a≥0)(2).7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方.8.立方根的性质:(1)正数的立方根是一个正数;(2)0的立方根还是0;(3)负数的立方根是一个负数.9.立方根的特性:.10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.11.实数:有理数和无理数统称实数.12.实数的分类:(1)(2).13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:初三数学下册知识点整理1.解直角三角形1.1.锐角三角函数锐角a的正弦、余弦和正切统称∠a的三角函数。

如果∠a是Rt△ABC的一个锐角,则有1.2.锐角三角函数的计算1.3.解直角三角形在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B (第2题) 苏教版初三数学“圆”中考复习一、选择题1. 当两圆无公共点时,这两圆的位置关系一定是 ··········· ( )A .外离B .内含C .同心圆D .外离或内含 答案:D .解析:本题为容易题,考查了圆与圆的位置关系.根据两圆的位置关系,当两圆外离或内含时,两圆没有公共点,因此本题选D .2. 如图,已知AB 为⊙O 的直径,点C 在⊙O 上,若∠B =50°,则∠A 等于 ······················· ()A .80°B .60°C .50°D .40° 答案:D .解析:本题为容易题,考查了直径所对圆周角的特征.直径所对的圆周角是直角,故∠A 与∠B 互余,因此本题选D .3. 如图,圆周角∠ACB 的度数为48°,则圆心角∠AOB 的度数为······················· ( ) A .48° B .24° C .96°D .90°答案:C .解析:本题为容易题,考查了圆周角与圆心角的关系.同弧所对的圆周角是圆心角的一半,因此本题选C .4. 如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 长的最小值 ··············· ( )A .2B .3C .4D .5答案:B .解析:本题为容易题,考查了垂径定理及其推论.当OM ⊥AB 时OM 最短,由垂径定理得AM =BM =4,根据勾股定理解得OM =3,因此本题选B .5. 两圆半径分别为2 cm 和6 cm ,若两圆相切,则圆心距为 ······ ( )A .4 cmB .8 cmC .10 cm 或2 cmD .8 cm 或4 cmA(第3题)O CBA BMO(第4题)解析:本题为容易题,考查了圆与圆的位置关系.两圆相切分为外切与内切,当两圆外切时,圆心距d =R +r ,当两圆内切时,圆心距d =R -r ,因此本题选D .6. 如图,P 为正△ABC 外接圆上一点,则∠APB 为 ··· ( )A .150°B .135°C .115°D .120°答案:D .解析:本题为容易题,考查了圆周角与圆心角的关系.由圆内接四边形的性质得∠P +∠C =180°,因此本题选D .7. 一个扇形的圆心角是120°,它的面积为3π cm 2,那么这个扇形的半径是 ( )AB .3 cmC .6 cmD .9 cm答案:B .解析:本题为容易题,考查了计算扇形的面积.扇形面积公式为S =2360n r ,因此本题选B .8. 已知两圆的圆心距是3,两圆半径分别是一元二次方程x 2-3x +2=0的两个根,则这两个圆的位置关系是 ······················ ( )A .外离B .外切C .相交D .内切答案:B .解析:本题为容易题,考查了圆与圆的位置关系.方程的两个根为1和2,由d =R +r 得两圆外切,因此本题选B .9. 如图,四边形ABCD 为⊙O 的内接四边形,∠BOD =120°,则∠BCD的度数为 ····················( )A .120°B .90°C .60°D .30°答案:A .解析:本题为容易题,考查了圆周角与圆心角的关系.由题意得∠A =60°,又根据圆内接四边形的性质得∠A +∠C =180°,因此本题选A .10.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( )A .30°B .30°或150°C .60°D .60°或120°BDC OA(第9题)AB C P(第6题)解析:本题为容易题,考查了圆周角与圆心角的关系.该弦与两半径围成一个正三角形,因此圆心角为60°,根据同弧所对的圆周角是圆心角的一半得30°,再根据圆内接四边形性质得优弧所对的圆周角为150°,因此本题选B .11.在Rt △ABC 中,∠C =90°,AB =10 cm ,AC =5 cm ,若以C 为圆心,4 cm 为直径的⊙C 与AB 的关系是 ·························· ( )A .相离B .相交C .相切D .不能确定答案:A .解析:本题为中档题,考查了直线与圆的位置关系.通过计算可得BC =从而点C 到AB2,因此本题选A .12.如图,梯形ABCD 内接于⊙O ,AB ∥CD ,AB 为直径,DO 平分∠ADC ,则∠DAO 的度数是 ················ ( )A .90°B .80°C .70°D .60°答案:D .解析:本题为中档题,考查了圆的有关概念和平行的性质.由条件可得△AOD 为正三角形,因此本题选D .13.过⊙O 内一点M 的最长弦长为10 cm ,最短弦长为8 cm ,那么OM 的长为 ( )A .3 cmB .6 cmCD .9 cm答案:A .解析:本题为中档题,考查了垂径定理及其推论.最长弦为直径,故半径为5 cm ,最短弦为垂直于直径的弦,由垂径定理构造直角三角形后由勾股定理得OM =3,因此本题选A .14.若圆锥的母线长为4 cm ,底面半径为3 cm ,则圆锥的侧面展开图的面积是 ( )A .6π cm 2B .12π cm 2C .18π cm 2D .24π cm 2答案:B .解析:本题为中档题,考查了计算圆锥的侧面积.圆锥的底面周长为6π,即为扇形的弧长,由扇形面积公式S =12lR ,因此本题选B .15.如图,在△ABC 中,AB =2,AC =1,以AB 为直径的圆与AC 相切,与边BC 交于点D ,则AD 的长为 ··········· ( )ABODC(第12题)ABDCA .255B.455C .235D .435答案:A .解析:本题为中档题,考查了切线与过切线的半径之间的关系和直径所对圆周角的性质.由切线的概念得△ABC 为Rt △,可得BC =5,又由直径所对圆周角是90°,用面积法可解出AD ,因此本题选A .16.两圆相交,圆心距为5 cm ,两圆半径分别为3 cm 和4 cm ,则公共弦长为 ( )A .2.4 cmB .4.8 cmC .1.8 cmD .3.6 cm答案:B .解析:本题为稍难题,考查了圆与圆的位置关系和解直角三角形.由条件可得,圆心和一个交点围成一个直角三角形,且斜边上的高为2.4 cm ,因此本题选B .17. 已知Rt △ABC 的两条直角边长为6和8,则它的内切圆与外接圆的圆心距为 ( )A .32B .332C .3D .5答案:D .解析:本题为稍难题,考查了切线长定理和三角形的内心、外心.外心是三条边垂直平分线的交点,在斜边中点。

内心是三条角平分线交点,画张图,设BC=6,AC=8,则AB=10,AB 中点为G 。

由于内心到三条边距离相等,所以作这个点到三边的垂线,交AB 于F ,BC 于D ,AC 于E ,内心为I ,则IE=IF=ID 。

(S 为ABC ∆的面积)S=AC ⨯BC/2=24,S 还可以看作三角形AIC.CIB.AIB 面积的相加,则S= IE ⨯AC/2+ID ⨯BC/2+IF ⨯AB/2=24,所以IE=IF=ID=2,四边形IDCE 为正方形.可得CE=2,AE=AC-EC=6=AF ,所以GF=AF-AG=1,由勾股定理得5因此本题选D .18.如图,若⊙O 的直径AB 与弦AC 的夹角为30°,切线CD 与AB 的延长线交于点D ,且⊙O 的半径为2,则CD 的长为······················ ( ) ABCODA.B.C .2 D .4 答案:A .解析:本题为稍难题,考查了切线与过切点的半径之间的关系和解直角三角形.连结OC ,根据已知条件可得: AO =CO =2,OC ⊥CD ,∠COD =60°,因此本题选A .19.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a >b ),则此圆的半径为 ·················· ( )A .2a b+ B .2a b- C .2a b +或2a b-D .a +b 或a -b答案:C .解析:本题为较难题,考查了圆及其有关概念.由于点P 可能在圆外、圆上和圆内,故应分别讨论.当点P 在圆外和圆上时圆的半径为2a b -,当点P 在圆内时圆的半径为2a b+,因此本题选C .20.如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点.CD = BD ,∠C =70°.现给出以下四个结论: ①∠A = 45°;②AC = AB ; ③»ºAEBE =; ④22CE AB BD ⋅=.其中正确结论的序号是 ······················· ( )A .① ②B .② ③C .② ④D .③ ④ 答案:C .解析:本题为较难题,考查了圆周角与圆心角的关系和直径所对圆周角的特征.连结AD ,可得AD ⊥BC ,由条件可得AC =AB ,∠A =40°;连结BE ,∠A ≠∠EBA ,③错;连结ED ,由△CED ∽△CBA 可得CE ·CA =CD ·CB ,因此本题选C . 重点、难点:本单元的重点是对基本图形的掌握,能在复杂的图形中分解出基本图形,或通过添加适当的辅助线,构造或分解基本图形,学会将较复杂问题转化为易解决问题;本单元的难点是圆的综合性问题,渗透了转化、方程化、由特殊到一般、分类讨论等思想方法以及运动变化的观点,以及圆中一些隐含条件的挖掘.(第20题) A B ODEC。

相关文档
最新文档