第3章 圆轴扭转
材料力学 第03章 扭转
sin 2 , cos 2
由此可知:
sin 2 , cos 2
(1) 单元体的四个侧面( = 0°和 = 90°)上切 应力的绝对值最大; (2) =-45°和 =+45°截面上切应力为零,而 正应力的绝对值最大;
[例5-1]图示传动轴,主动轮A输入功率NA=50 马力,从 动轮B、C、D输出功率分别为 NB=NC=15马力 ,ND=20马 力,轴的转速为n=300转/分。作轴的扭矩图。
解:
NA 50 M A 7024 7024 1170 N m n 300 NB 15 M B M C 7024 7024 351 m N n 300 NC 20 M D 7024 7024 468N m n 300
第3章
扭
转
§3.1
一、定义 二、工程实例 三、两个名词
概
述
一、定义
Me Me
扭转变形 ——在一对大小相等、转向相反的外力偶矩
作用下,杆的各横截面产生相对转动的
变形形式,简称扭转。
二、工程实例
1、螺丝刀杆工作时受扭。
Me
主动力偶
阻抗力偶
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
公式的使用条件:
1、等直的圆轴, 2、弹性范围内工作。
圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面:
2 A
I p d A (2π d )
2
d 2 0
O
2 π(
4
d /2
4
)
0
πd 4 32
d
d A 2π d
材料力学第三章 扭转
n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2
材料力学第三章
33
G=
M el0 ϕI p
= M el0 ϕ ⋅ πd 4
=
150 × 0.1× 32 0.012π × 204 ×10−12
= 79.6 GPa
3-8 设有 1 圆截面传动轴,轴的转速 n = 300 r/min,传递功率 P = 80 kW,轴材料的 许用切应力[τ ] = 80 MPa,单位长度许用扭转角[θ ] = 1.0° / m ,切变模量 G = 80 GPa。试
τ max
= Tmax Wp
≤ [τ ]
3-6 金属材料圆轴扭转破坏有几种形式? 答 塑性金属材料和脆性金属材料扭转破坏形式不完全相同。塑性材料试件在外力偶作 用下,先出现屈服,最后沿横截面被剪断,如图 a 所示;脆性材料试件受扭时,变形很小, 最后沿与轴线约 45°方向的螺旋面断裂,如图 b 所示。
(2)用简化公式
τ max
=
8FD πd 3
=
8 ×1.5 ×103 × 50 ×10−3 π × 83 ×10−9
= 373 MPa
< [τ ],安全。
讨论:由于 c = D d = 50 8 = 6.25 < 10 ,故应用解(1)中修正公式计算((1)(2)计算
值相差较大)。
3-7 一圆截面等直杆试样,直径 d = 20 mm,两端承受外力偶矩 M e = 150 N⋅ m 作用。 设由试验测得标距 l0 = 100 mm 内轴的相对扭转角ϕ = 0.012 rad,试确定切变模量 G 。
设计轴的直径。
解 T = 9549 × P = 9549 × 80 = 2546 N ⋅ m
n
300
材料力学第3章扭转
试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。
第三节圆轴剪切与扭转变形_化工设备机械类
12
挤压面积的计算
d
挤压力
t Fbs
Abs=td
bs
Fbs Abs
计算挤压面
①挤压面为平面,计算挤压面就是该面
②挤压面为弧面,取受力面对半径的投 影面
13
§3-1 剪切与挤压
§3.1.3 剪切与挤压强度计算
剪应力强度条件: FS
A
挤压强度条件:
bs
Fbs Abs
bs
塑性材料: 0.6 0.8 bs 1.7 2
脆性材料: 0.8 1.0 bs 0.9 1.5
14
§3-1 剪切与挤压
§3.1.3 剪切与挤压强度计算
A
A向
B向
B
注意:实际挤压面 是半圆柱
剪力FS
挤压力Fbs 剪力作用 面积
挤压力计算 面 积 Abs
剪应力 — 1、计算面积是剪力的真实作用区
2、名义剪应力是真实的平均剪应力
挤压应力 — 1、计算面积不一定是挤压力真实作用区 2、名义挤压应力不一定是平均挤压应力
m1
m4
n
A
B
C
D
T
– –
4.78
6.37
x
9.56
38
§3.2.3 扭转时内力的计算
39
§3-3 圆轴扭转时的应力
•分析圆轴扭转时的应力需要考虑三方面的关系:一是 变形几何关系;二是应力应变关系;三是静力学关系。 一、利用几何关系求剪应变分布规律
1、实验观察和假设推论
40
41
实验现象:
(1)各圆周线的形状、大小以及两圆周线间的距离均无 变化,只是绕轴线转了不同的角度; (2)所有纵向线仍近似地为一条直线,只是都倾斜了同 一个角度,使原来的矩形变成平行四边形。
第三章 扭 转
第三章 扭 转 1 扭转的力学模型①构件特征——构件为圆截面直杆。
②受力特征——外力偶矩的作用面与杆件轴线相垂直。
③变形特征——杆件各横截面绕杆轴作相对转动。
2圆轴扭转时,横截面上的内力偶矩——扭矩 ①传动轴的速度、传递的功率与外力偶矩之间的关系为{}{}{}minr n KW P M mN e 9950=∙ ②扭矩——构件受扭时,横截面上的内力偶矩,以T 表示。
③扭矩的正负号规定——用右手螺旋法则,扭矩矢量的方向指向截面的为负,背离截面的为正。
④扭矩图——表示圆杆各截面上的扭矩沿杆轴线方向变化规律的图线。
3圆轴扭转时,横截面上的应力、强度条件 (1)横截面上的切应力①分布规律——一点的切应力的大小与该点到圆心的距离成正比,其方向与该点的半径相垂直。
②计算公式 ρτP I T =PP max W TR I T ==τ (2)极惯性矩与扭转截面系数, ①实心圆截面 432D I P π= , 316D W P π=②空心圆截面 ()()444413232αππ-=-=D dDI P ,()44116απ-=D WP式中, Dd =α (3)圆轴扭转的强度条件 []ττ≤=Pmax W T(4)强度计算的三类问题①强度校核 []ττ≤=Pmax W T②截面设计 []τTW P ≥,由P W 计算D⑧许可荷载计算 []P e W M τ≤,由T 计算e M 4.圆轴扭转时的变形,刚度条件 (1)圆轴扭转时的变形小变形时,圆轴的二任意横截面之间仅产生相对的角位移,称为相对扭转角。
① 相对扭转角 ()rad GI TLP=ϕ ②单位长度扭转角 ()m rad GI Tdx d P'==ϕϕ 计算相对扭转角ϕ的公式,应在长度L 范围内,T ,G 和P I 均为常数,若其中任意参数T 或G 或P I 不为常数,则应分段计算ϕ,然后叠加。
2)圆轴扭转时的刚度条件 []()()m GI max T max 'P '0180ϕπϕ≤⨯=5.矩形截面杆扭转的主要结果 (1)横截面上的最大切应力横截面上的最大切应力发生在矩形截面的长边中点处;即 3b Tmax βτ=式中,β为与比值h 有关的系数,可查文献1中表3—1获得。
圆轴的扭转工程力学
偶,其力偶矩T称为截面1-1上的扭矩。
扭矩的单位与外力偶矩的单位相同,常用的单位为牛米(N·m) 及千牛米(kN·m)。
下一页 返回
3.2 扭矩和扭矩图
扭矩的正负号用右手螺旋法则判定:将扭矩看做矢量,右手 的四指弯曲方向表示扭矩的转向,大拇指表示扭矩矢量的指 向。若扭矩矢量的方向离开截面,则扭矩为正(图7-3a、b); 反之,若扭矩矢量的方向指的截面,则扭矩为负(图7-3c、d)。 这样,同一截面左右两侧的扭转,不但数值相等,而且符号 相同。
第三章 圆轴扭转
3.1 扭转的概念和外力偶矩的计算 3.2 扭矩和扭矩图 3.3 圆轴扭转时的应力与强度条件 3.4 圆轴扭转时的变形及刚度条件 小 结
返回
3.1 扭转的概念和外力偶矩的计算
3.1.1 扭转的概念
机械中的轴类零件往往承受扭转作用。 杆件产生扭转变形的受力特点是:在垂直于杆件轴线的平面
3.3.2 圆截面极惯性矩IP及扭转截面系 数WP的计算
1. 实心圆截面
对实心圆截面,可取半径为ρ,宽度为dρ的圆环形微面积
(图3-6),dA=2πρdρ , 则实心圆截面的极惯性矩IP为
IP
A
2dA
D 0
/
2
2
3d
=
D 4
32
≈0.1D4
实心圆截面的抗扭截面系数WP为
WP
IP D/2
D 3
3.1.2 外力偶矩的计算
为了求出圆轴扭转时截面上的内力,必须先计算出轴上的外力偶
矩。在工程计算中,作用在轴上的外力偶矩的大小往往是不直接
给出的,通常是给出轴所传递的功率和轴的转速。第4章已述功率、
材料力学-第三章
21
第三章 扭转
3.5 圆轴扭转强度计算
22
扭转失效与扭转极限应力
扭转屈服应力:s 扭转强度极限:b 扭转强度极限:b 扭转屈服应力(s )和扭转强度极限(b ),统 称为材料的扭转极限应力u。
23
圆轴扭转强度条件
材料的扭转许用应力为:
u
n
n为安全系数。
强度条件为:
max
(2) 若将轮1与轮2的位置对调,试求轴内的最大扭矩。
(3) 若将轮1与轮3的位置对调,试求轴内的最大扭矩。
33
提高圆轴扭转时强度和刚度的措施
• 提高轴的转速 • 合理布局主动轮和被动轮的位置 • 采用空心轴 • 选用优质材料,提高剪切模量
34
例3-8:图示圆柱形密圈螺旋弹簧,承受轴向载荷F作用。 所谓密圈螺旋弹簧,是指螺旋升角α很小(例如小于5º )的 弹簧。设弹簧的平均直径D,弹簧丝的直径d,试分析弹簧 丝横截面上的应力并建立相应的强度条件。
第三章 扭转
3.1 扭转的概念
1
扭转的概念
以横截面绕轴 线作相对旋转为 主要特征的变形 形式,称为扭转。
2
受力特点: 变形特点:
受到垂直于构件轴线的外力偶 矩的作用。
构件的轴线保持不变,各横截面绕 轴线相对转动 截面间绕轴线的相对角位移,称为扭转角
使杆发生扭转变形的外力偶,称为扭力偶,其矩 称为扭力偶矩。 凡是以扭转为主要变形的直杆,称为轴。
公式的适用条件:以平面假设为基础;适用胡克定律。
18
圆轴截面的极惯性矩和抗扭截面模量
IP
d4
32
WP
d3
16
19
空心圆截面的极惯性矩和抗扭截面模量
圆轴扭转
空心圆截面:
Wt
D3
16
(1
d4 D4
)
D3
16
(1 4 )
四 等直圆杆扭转时的应力
例题1 已知空心圆截面的扭矩T=1kN·m,D=40mm,d=20mm,求 最大、最小切应力。
解:
max
T
Wt
T
16
D3
(1
d4 D4
)
max min
16 1000
4.按大小比例和正负号,将各段杆的扭矩画在基线两 侧,并在图上标出数值和正负号
例题1 画出图示杆的扭矩图 3kN·m Ⅰ 5kN·m Ⅱ 2kN·m
解: AC段
m 0
AⅠ 3kN·m
CⅡ
T1 T2
3kN·m
B 2kN·m
T1 3 0 T1 3kN m
BC段 m 0
T2 2 0 T2 2kN m
ρ
τdA b dA
O2 T
四 等直圆杆扭转时的应力
4 极惯性矩
【公式3-16;公式3-18】
IP
2dA
A
D
2 2 2 d 0
O
D4
32
D
环形截面:
IP
32
(D4
d4)
d D
极惯性矩单位: m4
四 等直圆杆扭转时的应力
同一截面,扭矩T,极惯性矩IP为常数,因此各点 切应力τ的大小与该点到圆心的距离ρ成正比,方向垂 直于圆的半径,且与扭矩的转向一致
例题3 画出图示杆的扭矩图
4kN·mⅠ 6kN·mⅡ 8kN·mⅢ 6kN·m
材料力学——第三章 扭转
33
材 料 力 学
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
34
材 料 力 学
4、切应力分布规律假设
因为筒壁的厚度很小,可以认为沿筒壁厚度切应力均匀分布;
35
材 料 力 学
5、薄壁圆筒的扭转切应力
T
rm
2 rm t T
m1
m4
15.9(kN m)
A
P2 m2 m3 9.549 4.78 (kN m) n P4 m4 9.549 6.37 (kN m) n
17
B
C
D
材 料 力 学
2、求扭矩
m2
T1 m2 0
T1 4.78kN m
T2 m2 m3 0
材 料 力 学
三、切应变
纯剪切单元体的相对两侧面 发生微小的相对错动, a
´
c
´
b
d
t
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
圆筒两端的相对扭转角为υ,圆筒 的长度为L,则切应变为
L r
r L
39
材 料 力 学
四、剪切虎克定律:
当剪应力不超过材料的剪切比例
齿轮轴
9
材 料 力 学
§3-2、外力偶矩的计算 扭矩和扭矩图
一.外力偶矩的计算 ——直接计算
M=Fd
10
材 料 力 学
按输入功率和转速计算
已知 轴转速-n 转/分钟 输出功率-P 千瓦 计算:力偶矩M
电机每秒输入功: 外力偶作功:
W P 1000(N.m)
材料力学 第 三 章 扭转
以及间距不变,半径仍为直线。
定性分析横截面上的应力
(1)∵ε = 0∴σ = 0
(2)∵ γ ≠ 0∴τ ≠ 0
因为同一圆周上切应变相同,所以同 一圆周上切应力大小相等,并且方向 垂直于其半径方向。
切应变的变化规律:
D’
取楔形体
O1O2ABCD 为 研究对象
γ ≈ tgγ = DD' = Rdϕ
dx dx
微段扭转
变形 dϕ
γ ρ ≈ tgγ ρ = dd′ = ρ ⋅ dϕ
dx dx
γ
ρ
=
ρ
dϕ
dx
dϕ / dx-扭转角变化率
圆轴横截面上任一点的切应变γρ
与该点到圆心的距离ρ成正比。
(二)物理关系:由应变的变化规律→应力的分布规律
弹性范围内 τ max ≤ τ P
τ max
=
T
2π r 2t
=
180 ×103
2π × 0.132× 0.03
= 56.5MPa
(2) 利用精确的扭转理论可求得
τ max
=
π D3
T
(1−α 4 )
16
=
180 ×103
π×
0.293
⎡ ⎢1 −
⎜⎛
230
⎟⎞
4
⎤ ⎥
16 ⎢⎣ ⎝ 290 ⎠ ⎥⎦
= 62.2MPa
思考题
由两种不同材料组成的圆轴,里层和外层材料的 切变模量分别为G1和G2,且G1=2G2。圆轴尺寸如 图所示。圆轴受扭时,里、外层之间无相对滑动。 关于横截面上的切应力分布,有图中(A)、(B)、 (C)、(D)所示的四种结论,请判断哪一种是正 确的。
材料力学教案 第3章 扭转
第3章扭转教学目的:理解圆轴扭转的受力和变形特点,剪应力互等定理;掌握圆轴受扭时的内力、应力、变形的计算;熟练掌握圆轴受扭时的强度、刚度计算。
教学重点:外力偶矩的计算、扭矩图的画法;纯剪切的切应力;圆杆扭转时应力和变形;扭转的应变能。
教学难点:圆杆扭转时截面上切应力的分布规律;切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别;掌握扭转时的强度条件和刚度条件,能熟练运用强度和刚度计算。
教具:多媒体。
通过工程实例建立扭转概念,利用幻灯片演示和实物演示表示扭转时的变形。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
通过例题、练习和作业熟练掌握强度和刚度计算。
本章中给出了具体情形下具体量的计算公式,记住并会使用这些公式,强调单位的统一,要求学生在学习和作业中体会。
教学内容:扭转的概念;扭转杆件的内力(扭矩)计算和画扭矩图;切应力互等定理及其应用,剪切胡克定律与剪切弹性模量;扭转时的切应力和变形,圆杆扭转时截面上切应力的分布规律;扭转杆件横截面上的切应力计算方法和扭转强度计算方法;扭转杆件变形(扭转角)计算方法和扭转刚度计算方法。
教学学时:6学时。
教学提纲:3.1 扭转的概念和实例工程实际中,有很多构件,如车床的光杆、搅拌机轴、汽车传动轴等,都是受扭构件。
还有一些轴类零件,如电动机主轴、水轮机主轴、机床传动轴等,除扭转变形外还有弯曲变形,属于组合变形。
例如,汽车方向盘下的转向轴,攻螺纹用丝锥的锥杆(图3-1)等,其受力特点是:在杆件两端作用大小相等、方向相反、且作用面垂直于杆件轴线的力偶。
在这样一对力偶的作用下,杆件的变形特点是:杆件的任意两个横截面围绕其轴线作相对转动,杆件的这种变形形式称为扭转。
扭转时杆件两个横截面相对转动的角度,称为扭转角,一般用φ表示(图3-2)。
以扭转变形为主的杆件通常称为轴。
截面形状为圆形的轴称为圆轴,圆轴在工程上是常见的一种受扭转的杆件。
材料力学第三章知识点总结
直升机的旋转轴
电机每秒输入功:外力偶作功完成:
×
=P W
M W
e
⋅
=
形状、大小、间距不变,各圆周线只是绕轴线转动了一个角度。
倾斜了同一个角度,小方格变成了平行四边形。
τdα
τ
l
ϕ
做薄壁圆筒的扭转试验可得
l
是材料的一个弹性常数,称为剪切弹性模量,G的量纲各向同性材料,三个弹性常数之间的关系:
ρργγtg ≈x
d d d ′=x d d ϕρ⋅=O 1O 2ABCD 为研究对象
D’
微段扭转变形d dx Rd dx DD tg ϕγγ==≈'d ϕ/ d x -扭转角沿x 轴的变化率
扭转变形计算式
O d A ρTρ⋅
(实心截面)
1、横截面上角点处,切应力为零;
2、横截面边缘各点处,切应力
3、切应力沿横截面周边形成与
4、横截面周边长边中点处,切应力最大。
有关,见教材P93 之表3.2。
第三章 扭转
例
传动轴,已知转速 n=300r/min,主动轮A输入功 率PA=45kW,三个从动轮输出功率分别为PB=10kW, PC=15kW,PD=20kW。试绘轴的扭矩图.
解: (1)计算外力偶矩
由公式 M 9549P / n e
(2)计算扭矩
(3) 扭矩图
MB
MC
MD
MA
B
C
D
A
T3 M A 1432N m
M e Nm
PkW 103 60 PkW 9549 nrpm 2πnrpm
§3.2 外力偶矩的计算 扭矩和扭矩图
2.扭矩和扭矩图 用截面法研究横 截面上的内力
T = Me T:截面上的扭矩
§3.2 外力偶矩的计算 扭矩和扭矩图
扭矩正负规定
右手螺旋法则
右手大拇指指向横截面外法线方向为正,反之为负
2、应力分析 取微单元体abcd
A、存在剪(切)应力 有剪切变形,单元体的两 恻必然有剪应力。
a d
B、不存在正应力 扭转过程中,圆筒的周边 线形状、大小、相邻周边线的距 离都不变, →无线应变 无轴相或周相变形 →无正应力
b c
a
b
d
c
C、剪(切)应力大小
(1)由于沿圆周线方向各点的
变形相同,同一圆周线上各点
max
注意:计算 max 应综合考虑T和WP。
5
Tmax [ ] WP
极惯性矩和抗扭截面系数的计算 实心圆轴
D Ip , 32
4
Ip d A
2 A
3
空心圆轴
其中:
D 4 (1 ) Ip (1 ), WP 16 32
材料力学第三章扭转
材料力学
中南大学土木工程学院
三、扭 矩
x 扭矩的矢量表示
Me
Me
Me
T
定义:扭转内力偶矩, 1、定义:扭转内力偶矩,用T表示 大小: 2、大小:可用截面法取局部平衡求出 扭矩大小= 截面一侧所有外扭转力偶矩之代数和 T =ΣMe 正负号: 3、正负号:扭矩矢与截面外法线一致为正 (图中T为正,必须按“设正法”画扭矩) 为正,必须按“设正法”画扭矩) 单位: 4、单位:N·m 或 kN·m
τ =τ′
切应力互等定理
在单元体相互垂直的两个平面上, 在单元体相互垂直的两个平面上,切应力必然成对出 且数值相等,两者都垂直于两平面的交线, 现,且数值相等,两者都垂直于两平面的交线,其方 向则共同指向或共同背离该交线。 向则共同指向或共同背离该交线。
材料力学
中南大学土木工程学院
单元体的四个侧面上只有切应力而无正应 纯剪切应力状态。 力作用,这种应力状态称为纯剪切应力状态 力作用,这种应力状态称为纯剪切应力状态。
O
定义内径与 外径的比值
d α= D
D d
πD πD 4 Ip = (1 − α 4 ) 32
I p π(D 4 − d 4 ) πD 3 Wp = = = (1 − α 4 ) D 16 D 16 2
特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。 特别注意:抗扭截面系数不满足叠加法的计算,括号里的仍是四次方。
材料力学 中南大学土木工程学院
分布如图所示。 横截面上各点处的切应力τ 分布如图所示 取微面积dA,则横截面上的分布 的合成其主矢为零, 力系τ dA的合成其主矢为零,主矩就 是扭矩T。
δ
r0
O
τ
∫
材料力学第3章-扭转
第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。
2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。
又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。
规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。
3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。
(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。
γτG = G 为比例常数,称为材料的切变模量。
弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。
dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。
则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。
化机基础(力学)_第三章轴扭转
【5.3】一轴以300转/分的转速传递331kW的功率,如 [ ]=40MPa,[ ]=0.5°/m,G=80GPa,求轴的直径。
解:
(1)计算扭矩:
P 331 M e 9550 9550 10537 N m n 300
T M e 10537 m N
(2)设计轴径 T T 由强度条件: max W 3 [ ] t d 16
轴扭转时,横截面上的扭矩T引起切应力 ,故横截面 上各点只有切应力,与该点所在半径垂直,方向与截 面扭矩转向保持一致。
第三节 纯剪切
一、切应力互等定理
围绕横截面上某点取一微小六面体,称为单元体。 y
’
dy x dx z
由平衡条件:
M 0
dy dz dx
'dx dz dy
二、扭矩和扭矩图
1. 研究AB轴各横截面上的内力 me me
1
A me
1 T1-1 1 x 1 T1-1
B
求AB段内的任 一横截面上的内 力:用截面法计 算内力。
m 0
T11 me 0
me
T11 me
注:
1. 内力名称——扭矩T 2. 扭矩正负号规定,利用右手螺旋法则,当拇指背离截 面时,T为正;反之,为负。 不论取截面的哪一侧研究,所得结果的正负号一致。 T1-1 mB mA 1 T1-1
轴:工程上将以扭转变形为主的构件称为轴
第二节
扭转时力偶和内力的计算
一、外力偶矩的计算
作用于轴上的外力偶矩一般不是直接给出的,而是给出 轴的转速n和传递的功率P。
n1 27.5kW 7.5kW A n B
C
n=960r/min
第三章圆轴扭转练习题
第三章 圆轴扭转练习题一.单项选择题1、等截面圆轴上装有四个皮带轮, 如何安排合理,有四种答案( ) A 、 将C 轮与D 轮对调 B 、 将B 轮与D 轮对调 C 、 将B 轮与A 轮对调D 、 将B 轮与D 轮对调,然后再将B 轮与C 轮对调2、空心圆轴受扭转力偶作用,横截面上的扭矩为Tn ,下列四种(横截面上)沿径向的应力分布图中哪个是正确的。
( )3、公式pT I ρρτ=对图示四种截面杆受扭时,适用的截面正确的是 ( )4、一内、外直径分布为d 、D 的空心圆轴,其抗扭截面系数正确的是( )A 、331616t D d W ππ=-; B 、333232t D d W ππ=-C 、()4416t W DdDπ=- ; D 、443232t D d W ππ=-5、实心圆轴①和空心圆轴②,它们的横截面面积均相同,受相同扭矩作用,则其最大切应力正确的是( )A 、max 2max1ττ> B 、 max 2max1ττ< C 、 max 2max1ττ= D 无法比较6 受扭圆轴,当横截面上的扭矩T 不变,而直径减小一半时,该横截面的最大切应力与原来的最大切应力之比正确的是( )A 、 2倍B 、 4倍C 、 6倍D 、 8倍7、车床传动光杠的安全联轴器由销钉和套筒组成(如图所示),轴的直径为D ,传递的力偶的最大力偶矩为m ,这时销钉每个剪切面上的剪力为 ( )。
A 、4m/D ; B 、2m/D ; C 、m/2D ; D 、m/D 。
二、填空题1、当轴传递的功率一定时,轴的转速愈小,则轴受到的外力偶矩愈______,当外力偶矩一定时,传递的功率愈大,则轴的转速愈______。
2、扭转的变形特点是杆件的任意两截面绕轴线产生_____________,但杆的轴线位置和形状保持不变。
3、剪切的受力特点,是作用于构件某一截面两侧的外力大小相等、方向相反、作用线相互________且相距________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论: 若材料抗剪切能力差,构件沿横截面发生破坏(塑性材料);
若材料抗拉(压)能力差,构件沿45斜截面发生破坏(脆性材料)
材料的抗拉、抗压、抗剪能力比较
[ t ]
[ c ]
[ c ]
[ ]
[ t ]
[ ]
塑性材料
脆性材料
1、低碳钢试件:沿横截面断开。 材料抗剪切能力差,构件沿横截面因切应力发生破坏; 2、铸铁试件:沿与轴线约成45的螺旋线断开。
圆轴扭转时横截面上的应力
2、物理关系( Hooke 定律 )
d ( r ) G ( r ) Gr dx 3、静力关系( 切应力对轴的合力矩即截面上的扭矩 )
T A dA r r
dA
d G A r 2 dA dx
令
(ρ)
R
ρ
O
T
I P A r dA
转力偶矩相等,则两轴的扭矩也相等,
设为 T . 已知: max 1 max 2
max 1
T Wt 1
max 2
T Wt 2
l (b)
3 3 4 T T π d π D ( 1 ) 1 2 Wt 1 Wt 2 Wt 1 Wt 2 16 16 3 3 4 d D ( 1 ) 1 2 因此 16 16 D2 3 1 解得 4 1.194 d1 1 0 .8
平面假设:变形前的横截面,变形后仍为平面,且形状 、 大小以及间距不变,半径仍为直线,即横截面刚性地绕轴 线作相对转动。
圆轴扭转时横截面上的应力
2)应变、应力分布规律:
①圆周线的间距未改变 无纵向线应变 (横截面无正应力) ②圆周线的形状、大小不变,绕轴线作了相对转动 横截面上切应力垂直于半径 ③各纵向线均倾斜同一微小角度
y
1、切应力互等定理
在相互垂直的两个面上,切 应力总是成对出现,并且大小相 等,方向同时指向或同时背离两 个面的交线。
τ
dx
'
τ
x
单元体在其两对互相 垂直的平面上只有切应力 而无正应力的状态称为纯 剪切应力状态。
dy z
a
d
b
'
c
关于切应力的若干重要性质
2、剪切虎克定律
由图所示的几何关系得到
max
T
I p 2 πr 3 d r
D 2 d 2
π 4 D d 4 32
πD 4 4 1 32
d D
max
π D4 d 4 πD 3 Wt 1 4 D/2 16D 16 Ip
圆轴横截面的几何性质
注意:对于空心圆截面
O
π 4 4 Ip D d 32
T
x
T m
2、扭矩的符号规定:按右手螺旋法则判断。
右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若 其矢量方向与截面的外法线方向相同,则扭矩规定为正值,反之为
负值。
+
T
—
求扭矩的基本方法——截面法
例1 求如图所示传动轴1-1截面和2-2截面的扭矩,并画扭矩图。
解:用截面法求扭矩
=1.8kNm 1 1 =3kNm 2 2 =1.2kNm
Me
Me
r l
Me (在数值上等于 T )成正比.
l
薄壁圆筒的扭转试验发现,当外力偶 Me 在某一范围内时,与
从 T 与 之间的线性关系,可推出 与 间的线性关系.
T 2πr 2
G
G –剪切弹性模量
关于切应力的若干重要性质
对各向同性材料,三个弹性常数的关系
圆轴扭转破坏实验(了解)
通过扭转实验发现:
(1) 低碳钢试件系横截面剪断; (2) 铸铁试件则沿着与轴线成45º 的螺旋线断裂; 研究类似铸铁试件扭转破坏的原因,需考虑斜截面 上的应力。
圆轴扭转时斜截面上的应力
e ´
n
b
x
设:ef 边的面积为 dA 则 ´ f t eb 边的面积为dAcos
例题5 图示等直杆,已知直径d=40mm,a=400mm,材料的剪切弹性
两轴材料、长度均相同,故两轴的重量比等于两轴的横截面
面积之比
π 2 2 2 2 ( D d ) 2 2 D ( 1 ) A2 4 2 2 2 1 . 194 ( 1 0 . 8 ) 0.512 2 π 2 A1 d 1 d1 4
在最大切应力相等的情况下空心圆轴比实心圆轴轻,即节省材料.
或T Σ Me右
规定外力偶矩的正负为: 以右手的四指表示外力偶矩的转 向,则大拇指的方向离开横截面为正;指向横截面为负。
扭矩图的快速画法
2 3.5 1 0.5
• 在外力偶矩作用处的截面 上,扭矩发生突变,突变 量等于外力偶矩的数值。 利用这一突变特性,可较 快地画出扭矩图。
A
a
B
a
C
a 0.5 +
2
d T GI P dx
d T dx GI P
圆轴扭转时横截面上的应力
T r (r ) IP
max
T T r max T IP IP / R Wt
IP Wt R
O R
max
I P —截面的极惯性矩,单位:m4, mm4
Wt —抗扭截面系数,
单位:m3, mm3
材料抗拉能力差,构件沿45斜截面因拉应力而破坏。
圆轴扭转破坏原因
铸铁的所谓扭转破坏,其实质上是沿-45º方向拉
伸引起的断裂。
也因此,在纯剪切应力状态下直接引起断裂的最大拉 应力
m ax 总是等于横截面上相应的应力,所以在铸铁圆杆
的抗扭强度的计算中也就以横截面上的 作为依据。
§3.4
圆轴扭转时的变形及刚度条件
第3章
扭转
扭转的概念和实例
传动轴
受力特点:杆两端作用着大小相等、方向相反的外力偶,且外力 偶作用面垂直于杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
扭转的概念和实例
受扭转变形杆件通常为轴类零件,其横截面大都是圆形
的。 本章研究杆件发生除扭转变形外,其它变形可忽略的
情况,并且以圆截面(实心圆截面或空心圆截面)杆为主要 研究对象。此外,所研究的问题限于杆在线弹性范围内工 作的情况。
横截面上应力的推断:
(1)横截面上只有切应力,而没有正应力。
(2)切应力沿环的切线方向。
§3.2
薄壁圆筒的扭转
3、切应力的计算公式:
(1)根据对称性可知,切应力沿圆周均匀分布; (2)可认为切应力沿壁厚均匀分布。 τ
T dA.r0 r0 td r0 t 2
2 2 A 0
[ ]
3)确定外荷载: Tmax≤ Wt [ ]
D 3 实心, 16 Wt 3 D (1 4 ) 空心. 16
例题3 图示阶梯圆轴,AB段的直径d1=120mm,BC 段的直径 d2=100mm.扭转力偶矩为MA = 22 kN· m, MB = 36 kN· m ,MC =14 kN· m. 已知材料的许用切应力[] = 80MPa,试校核该轴的强度.
一、扭转变形
圆轴扭转的变形用两端面 的相对转角来表示。 扭矩不变的等直轴
l
R
max T R G G IP
Tl GI p
( rad )
GIp 称作抗扭刚度
圆轴扭转时的刚度计算
单位长度扭转角
二、刚度条件:
T [ ] GI P
T 180 [ ] GI P
§3.1
内力的计算——扭矩与扭矩图
二、扭转杆件的内力
圆轴受扭时其横截面上的内力偶矩称为扭矩( Torsion torque), 用符号T 表示。 m m 1、扭矩的确定(截面法)
取左段为研究对象:
m m
x
0, T m 0
m T
T m
取右段为研究对象:
x
x
m
0, m T 0
14 kN· m
因此,该轴满足强度要求.
例题4 实心圆轴1和空心圆轴2(图a、b)材料,扭转力偶矩M
和长度l 均相等,最大切应力也相等.若空心圆轴的内外径之比
= 0.8 ,试求空心圆截面的外径和实心圆截面直径之比及两轴
的重量比. 分析:设实心圆截面直径为d1,空心 圆截面的内、外径分别为 d2、 D2 ; 又扭 d l (a) d2 D2
π 3 Wt D d3 16
D d
圆轴扭转时的强度计算
1、强度条件:
max [ ]
变截面圆轴: max
T W t
max
等截面圆轴: max 2、强度条件应用:
Tmax Wt
Tmax 1)校核强度: max Wt
≤
2)设计截面尺寸: Wt ≥ Tmax
§3.1
内力的计算——扭矩与扭矩图
一、外力偶矩的计算
直接计算
§3.1
内力的计算——扭矩与扭矩图
按功率和转速计算
Me2 Me1
n
Me3
PkW M e N m 9 549 nr / min
Me—作用在轴上的力偶矩( N ·m ) n—轴的转速( r/min ) P—轴传递的功率(kW)
圆轴扭转时斜截面上的应力
sin 2 ; cos2
分析:
1 ) max , min :
450 , max ; 450 , min ; 2 ) max :