(完整版)天津大学最优化历年试题

合集下载

天津大学最优化历年试题(精品资料).doc

天津大学最优化历年试题(精品资料).doc

【最新整理,下载后即可编辑】2003—2008《工程与科学计算》历届试题类型 1. 直解法例 1. 用列主元素Gauss 消去解下列线性方程组(结果保留5位小数)⎪⎩⎪⎨⎧=++=++=++0000.11000.12100.13310.18338.00000.10000.10000.16867.09000.08100.07290.0321321321x x x x x x x x x例2. 设线性方程组b Ax =,其中 11231112341113451A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦求)(A Cond ∞,并分析线性方程组是否病态 ? 2.迭代法例1. 设线性方程组b Ax =为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----221221122321x x x ααα , 0≠α写出求解线性方程组的Jacobi 迭代格式,并确定当α取何值时Jacobi 迭代格式收敛.例2. 写出求解线性方程组b Ax =的Seidel 迭代格式,并判断所写格式的收敛性,其中b Ax =为⎪⎩⎪⎨⎧=++-=+=-522826233213231x x xx x x x3.插值例 1. 已知,12144,11121,10100===(1)试用二次插值多项式计算115的近似值(数据保留至小数点后第5位)(2)估计所得结果的截断误差(数据保留至小数点后第5位) 例 2. 由下列插值条件4. Runge —Kutta 格式例 写出标准Kutta Runge -方法解初值问题⎩⎨⎧==+-=1)0(,1)0(sin 2'2'''y y xy xy y 的计算格式5. 代数精度例 1. 数值求积公式形如)1()0()1()0()()(321010f A f A f A f A x S dx x xf '+'++=≈⎰试确定其中参数,,,,4321A A A A 使其代数精度尽量高, 并确定代数精度.例 2. 验证数值求积公式20120()(1(1)(1f x dx A f A f A f ≈+++⎰是Gauss 型求积公式.6.Romberg 方法例 对积分⎰+1021dx x ,用Romberg 方法计算积分的近似值,误差不超过510-并将结果填入下表(结果保留至小数点后第五位).7(1)设)(x ϕ为],[b a 上关于权函数)(x ρ的n 次正交多项式,以)(x ϕ的零点为节点建立Lagrange 插值基函数)}({x l i , 证明:⎰⎰==ba ba i i ni dx x l x dx x l x ,,2,1,)]()[()()(2 ρρ证明: 设n 次正交多项式()x ϕ的零点为12,,n x x x ,则以这n 个零点为节点建立的Lagrange 插值基函数{()},1,2,i l x i n =是n-1次多项式,[]2()i l x 是2n-2次多项式. 故当()f x 取()i l x 和[]2()i l x 时Gauss 型求积公式1()()()nb k k ak x f x dx A f x ρ=≈∑⎰等号成立, 即 1()()()nb i k i k iak x l x dx A l x A ρ===∑⎰221()()()nbi k i k ia k x l x dx A l x A ρ===∑⎰则有 ⎰⎰==b abai i ni dx x l x dx x l x ,,2,1,)]()[()()(2 ρρ(2)对线性方程组b Ax =,若A 是n 阶非奇异阵,0≠b ,*x 是b Ax =的精确解,x 是b Ax =的近似解。

最优化试题及答案

最优化试题及答案

mi 1 m *m j * g j (x*) 0最优化理论、方法及应用试题一、(30 分)1、针对二次函数f(x) 1x T Qx b T x c,其中Q是正定矩阵,试写出最速下降算法的详细步骤,并简要说明其优缺点?答:求解目标函数的梯度为g(x) Qx b,g k g(x k) Qx k b,搜索方向:从X k出发,沿g k作直线搜索以确定x k 1。

Stepl:选定X。

,计算f o,g oStep2:做一维搜索,f k i min f X k tg k , x k 1 X k tg k.Step3 :判别,若满足精度要求,则停止;否则,置 k=k+1,转步2优缺点:最速下降法在初始点收敛快,收敛速度慢。

算法简单,在最优点附近有锯齿现象,2、有约束优化问题min f (x)g i(x) 0,i 1,2,L ,ms.th j (x) 0,j 1,2,L ,l最优解的必要条件是什么?答:假设x*是极小值点。

必要条件是f,g,h函数连续可微,而且极小值点的所有起作用约束的梯度h(x*)(i 1,2丄,1)和g j(x*)( j 1,2,L ,m)线性无关,则* * * *存在1 , 2丄,I, 1, 2丄,m,使得lf(x*) i* h i(x*)i 1j*g j(x*) 0,j 1,2,L* * * * *1 ,2 ,L , l , 1 , 2 ,L ,*0, j 03、什么是起作用约束?什么是可行方向?什么是下降方向?什么是可行下降方向?针对上述有约束优化问题,如果应用可行方向法,其可行的下降方向怎样确定?答:起作用约束:若g j(x0) 0,这时点x0处于该约束条件形成的可行域边界上,它对x0的摄动起到某种限制作用可行方向:x0是可行点,某方向 p,若存在实数0 0,使得它对任意2、应用共轭梯度方法求解无约束优化问题 min X 28X |,初始点为X 0 1 1 丁 。

答:假设误差范围是0.001。

天津大学《最优化方法》复习试题(含答案)

天津大学《最优化方法》复习试题(含答案)

word 完美格式天津大学《最优化方法》复习题(含答案)第一章 概述(包括凸规划 )判断与填空题argmanx f (x ) arg minn [ f (x )].max f(x):x D R nmin f(x):x D R n .设 f :D R n R. 若x R n ,对于一切 x R n 恒有 f(x ) f ( x) ,则称 x 为设 f :D R n R. 若 x D ,存 在 x 的某邻 域 N (x ) ,使得 对一 切优解 .给定一个最优化问题,那么它的最优值是一个定值 . √非空集合 D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . √非空集合 D R n 为凸集当且仅当 D 中任意有限个点的凸组合仍属于 D . √任意两个凸集的并集为凸集 .函数 f : D R n R 为凸集 D 上的凸函数当且仅当 f 为 D 上的凹函数 . √ 设 f : D R n R 为凸集 D 上的可微凸函数,x D . 则对 x D ,有f (x) f(x ) f (x )T (x x ).若c(x)是凹函数,则 D {x R n c(x) 0} 是凸集。

√则对 k 0,1,2, ,恒有 f(x k 1) f(x k )1 2345678 9 101112最优化问题m x i Dnf (x) 的全局最优解x N (x )恒有 f(x ) f (x),则称 x 为最优化问题m x i Dnf (x) 的严格局部最设 x k 为由求解m x i Dnf(x) 的算法 A 产生的迭代序列,假设算法 A 为下降算法,13 算法迭代时的终止准则(写出三种):___________________________________14 凸规划的全体极小点组成的集合是凸集。

√15 函数f :D R n R在点x k沿着迭代方向d k R n {0} 进行精确一维线搜索的步长k ,则其搜索公式为.16 函数f :D R n R在点x k沿着迭代方向d k R n {0} 进行精确一维线搜索的步长k,则f (x k k d k)T d k0 .17 设d k R n {0} 为点x k D R n处关于区域D 的一个下降方向,则对于0,(0, )使得x k d k D.简述题1 写出Wolfe-Powell 非精确一维线性搜索的公式。

天津大学《最优化方法》复习题

天津大学《最优化方法》复习题

天津大学《最优化方法》复习题(含答案)第一章 概述(包括凸规划)一、 判断与填空题1)].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(m in :)(m ax n n R D x x f R D x x f ⊆∈-=⊆∈ ⨯3 设.:R R D f n →⊆ 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解、 ⨯4 设.:R R D f n →⊆ 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f Dx ∈的严格局部最优解、 ⨯5 给定一个最优化问题,那么它的最优值就是一个定值、 √6 非空集合n R D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D 、 √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D 、 √ 8 任意两个凸集的并集为凸集、 ⨯9 函数R R D f n →⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数、 √10 设R R D f n →⊆:为凸集D 上的可微凸函数,D x ∈*、 则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T ⨯11 若)(x c 就是凹函数,则}0)( {≥∈=x c R x D n 就是凸集。

√12 设{}k x 为由求解)(min x f Dx ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{}Λ,2,1,0∈∀k ,恒有 )()(1k k x f x f ≤+ 、13 算法迭代时的终止准则(写出三种):_____________________________________。

14 凸规划的全体极小点组成的集合就是凸集。

最优化方法试卷及答案5套.docx

最优化方法试卷及答案5套.docx

《最优化方法》1一、填空题:1. _______________________________________________________ 最优化问题的数学模型一般为:_____________________________________________ ,其中___________ 称为目标函数,___________ 称为约束函数,可行域D可以表示为_______________________________ ,若 ________________________________ ,称/为问题的局部最优解,若为问题的全局最优解。

2.设f(x)= 2斤+2“2-兀|+5花,则其梯度为__________ ^x = (l,2)r?6/ = (l,0)r,则f(x)在壬处沿方向d的一阶方向导数为___________ ,几何意义为_____________________________________ ,二阶方向导数为____________________ ,几何意义为_____________________________3.设严格凸二次规划形式为:min /(%) = 2兀]2 + 2x; - 2兀]-x2s.t. 2%! 4- x2 < 1> 0x2 > 0则其对偶规划为_______________________________________________min%(d ) = f (x k +ad k )的最优步长为务=—叫)F.d kT Gd k2. (10分)证明凸规划min/(x ),x G D (其中子(兀)为严格凸函数,D 是凸集)的最优解是唯一的3. (13分)考虑不等式约束问题min /(x )s.t. c i (x ) < 0, Z G / = {1,2,…,加}其中/(x ),6 (兀)a e /)具有连续的偏导数,设X 是约束问题的可行点,若在元处 d 满足巧(计<0,VC,(元)(可则d 是元处的可行下降方向。

天津大学最优化历年试题

天津大学最优化历年试题

2003—2008《工程与科学计算》历届试题类型 1. 直解法例 1. 用列主元素Gauss 消去解下列线性方程组(结果保留5位小数)⎪⎩⎪⎨⎧=++=++=++0000.11000.12100.13310.18338.00000.10000.10000.16867.09000.08100.07290.0321321321x x x x x x x x x例2. 设线性方程组b Ax =,其中 11231112341113451A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦求)(A Cond ∞,并分析线性方程组是否病态 ? 2.迭代法例1. 设线性方程组b Ax =为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----221221122321x x x ααα , 0≠α写出求解线性方程组的Jacobi 迭代格式,并确定当α取何值时Jacobi 迭代格式收敛. 例 2. 写出求解线性方程组b Ax =的Seidel 迭代格式,并判断所写格式的收敛性,其中b Ax =为⎪⎩⎪⎨⎧=++-=+=-522826233213231x x xx x x x3.插值例 1. 已知,12144,11121,10100===(1)试用二次插值多项式计算115的近似值(数据保留至小数点后第5位) (2)估计所得结果的截断误差(数据保留至小数点后第5位) 例 2. 由下列插值条件4. Runge —Kutta 格式例 写出标准Kutta Runge -方法解初值问题⎩⎨⎧==+-=1)0(,1)0(sin 2'2'''y y x y xy y 的计算格式5. 代数精度例 1. 数值求积公式形如)1()0()1()0()()(321010f A f A f A f A x S dx x xf '+'++=≈⎰试确定其中参数,,,,4321A A A A 使其代数精度尽量高, 并确定代数精度. 例 2. 验证数值求积公式20120()(1(1)(1f x dx A f A f A f ≈++⎰是Gauss 型求积公式.6.Romberg 方法 例 对积分⎰+1021dx x ,用Romberg 方法计算积分的近似值,误差不超过510-并将结果填7.证明(1)设)(x ϕ为],[b a 上关于权函数)(x ρ的n 次正交多项式,以)(x ϕ的零点为节点建立Lagrange 插值基函数)}({x l i ,证明:⎰⎰==b abai i ni dx x l x dx x l x ,,2,1,)]()[()()(2Λρρ证明: 设n 次正交多项式()x ϕ的零点为12,,n x x x L ,则以这n 个零点为节点建立的Lagrange 插值基函数{()},1,2,i l x i n =L 是n-1次多项式,[]2()i l x 是2n-2次多项式. 故当()f x 取()i l x 和[]2()i l x 时Gauss 型求积公式1()()()nb k k ak x f x dx A f x ρ=≈∑⎰等号成立, 即1()()()nb i k i k iak x l x dx A l x A ρ===∑⎰221()()()nb i k i k iak x l x dx A l x A ρ===∑⎰则有 ⎰⎰==b abai i ni dx x l x dx x l x ,,2,1,)]()[()()(2Λρρ(2)对线性方程组b Ax =,若A 是n 阶非奇异阵,0≠b ,*x 是b Ax =的精确解,x 是b Ax =的近似解。

最优化考试题2.doc

最优化考试题2.doc

最优化方法定义可行方案:如果一个方案能达到预定目的,则该方案就叫可行方案。

最优方案:可行方案中最好的方案叫最有方案,它能达到最优化效果。

最优化M题:如何从可行方案中找出最优方案就叫最优化M题。

最优化方法:求解最优化闷题的数学方法叫最优化方法。

最优化方法解决实际问题的一般步骤:1提出最优化问题,叙述目标是什么?约束条件是什么?求什么变量?即确定变量,列出目标函数及约束表达式,建立最优化问题的数学模型。

2分析模型,选择合适的求解方法。

3编制计算机程序,上机求最优解。

对算法的收敛性,通用性,简便性,效率及误差等作出评价。

系统:由相互联系的若干部分构成的具有一定功能的整体。

系统的基本特征:1系统巾若干部分组成,每一部分具有其特定的功能。

2系统屮的各个要素之间相互制约,联系和作用。

3系统是具有一定功能的整体,系统的总功能不等于各个部分功能的简单迭加,系统的功能大于各部分的功能之和。

4系统存在于一定的环境之中,系统与环境之间存在相互作川,系统与环境的划分是相对的,对于一个系统是环境,而对于另一个系统而言可能是其中的一部分。

系统分析法:1确定所研宄系统的范M及其所处的环境。

2确定系统的组成部分,结构,功能,目的,各部分的功能和闪部规律。

3明确系统各个部分之间的联系,及整个系统与环境之间的联系。

4在上述分析的基础上,确记问题的决策变量及评价方案优劣的指标。

决策变量:决定方案优劣的变量。

数学模型:用字母,数字,各种符号,图像,逻辑框图描述实际系统的特征和内在联系的模型。

数学模型的组成:1常数,指在所研究的问题中保持相对固定或变化不大的呈。

2参数由具体系统的内外部条件确定的量。

3变量,指在模型中待确定的量。

4函数关系描述模型中常数,参数,变量之间相互关系的方程式或不等式。

独立变量:彼此独立的变量。

相关变量:其值可由独立变量确定的量。

工程优化问题:最优准则包括系统性能准则和经济准则。

系统性能准则是指使系统的某些性能指标达到最大或最小。

天津大学最优化方法复习题.docx

天津大学最优化方法复习题.docx

《最优化方法》复习题笫一章概述(包括凸规划)一、判断与填空题1arg max /(x) = arg m in7xeR n xeR n2max {/(x): x G D e /?" }= 一min {/(x): x e Z) o /?H} x3设f : D u RJ R.若疋wR”,对于一切xwR”恒有/(x*)</(x),W 弥 X 为最优化问题min /(兀)的全局最优解.xXG D4设f : D匚R" — R.若x* ,存在F的某邻域/.(/),使得对一切兀e 恒有/(%*)< f(x),则称T为最优化问题min fM的严格局部最XE D优解.X5给定一个最优化问题,那么它的最优值是一个定值.V6非空集合D c /?"为凸集当且仅当D中任意两点连线段上任一点属于D. V7非空集合D匸/?"为凸集当且仅当D中任意有限个点的凸组合仍属丁D. V 8任意两个凸集的并集为凸集.x9 函数f : D j R" T/?为凸集D上的凸函数当且仅当一/为D上的凹函数.V10设f : D u RJ R为凸集D上的可微凸函数,eD .则对Vx G D ,有fM -/(%*)< V/(x*)' (x -x*). x11若c(兀)是凹函数,则D = [x^R n\ c(x) > 0}是凸集。

V12设{*}为由求解min/(Q的算法A产牛的迭代序列,假设算法A为下降算法,xeD则对Pk e {0,1, 2,…},恒有____ /(x,+1) < /(X,) _____________ .13算法迭代吋的终止准则(写出三种): _____________________________ o 14凸规划的全休极小点组成的集合是凸集。

V15函数f:D^R n TR在点戏沿着迭代方向d* eR n \{0}进行耕确一维线搜索的步长则其搜索公式为 ______________________________________________ .16函数f:D^R n T/?在点/沿着迭代方向d* eR n \{0}进行精确一维线搜索的步长匕,则Vf(x k +a k cl k)T d k = ______ 0 _____________ .17设d k eR n\{0}为点x k eD^R n处关于区域D的一个下降方向,则对于V 厉〉0, 3cre(0, a)使得+ad k e D. x二、简述题1写出Wolfe-Powell非精确一维线性搜索的公式。

最优化理论试题及答案

最优化理论试题及答案

最优化理论试题及答案一、单项选择题1. 以下哪个函数是凸函数?A. f(x) = x^2B. f(x) = -x^2C. f(x) = x^3D. f(x) = e^x答案:A2. 线性规划问题的基本解是:A. 基本可行解B. 可行解C. 基本解D. 基本最优解答案:A3. 单纯形法中,如果目标函数的最优值是无界的,则对应的解是:A. 无解B. 可行解C. 基本可行解D. 基本最优解答案:A4. 在拉格朗日乘数法中,拉格朗日函数是:A. 目标函数和约束条件的乘积B. 目标函数和约束条件的和C. 目标函数和约束条件的差D. 目标函数和约束条件的商答案:B5. 以下哪个算法用于解决非线性规划问题?A. 单纯形法B. 内点法C. 匈牙利法D. 动态规划答案:B二、多项选择题1. 以下哪些条件是凸优化问题的必要条件?A. 目标函数是凸函数B. 所有约束条件是凸集C. 目标函数是凹函数D. 所有约束条件是凹集答案:A, B2. 在线性规划中,以下哪些是可行域的性质?A. 非空B. 凸集C. 闭集D. 有界答案:A, B, C3. 以下哪些方法可以用于解决整数规划问题?A. 分支定界法B. 割平面法C. 单纯形法D. 动态规划答案:A, B, D4. 以下哪些是拉格朗日乘数法的用途?A. 寻找局部最优解B. 寻找全局最优解C. 确定约束条件的活跃性D. 确定目标函数的梯度答案:A, C5. 以下哪些是动态规划的基本要素?A. 状态B. 决策C. 阶段D. 策略答案:A, B, C三、填空题1. 一个函数f(x)是凸函数,当且仅当对于任意的x1, x2和任意的λ∈[0,1],有f(λx1 + (1-λ)x2) ≤ λf(x1) + (1-λ)f(x2)。

2. 线性规划问题的标准形式是:最大化或最小化目标函数z = c^T x,满足约束条件Ax ≤ b和x ≥ 0。

3. 单纯形法的基本思想是通过不断地从一个基本可行解移动到另一个基本可行解,直到找到最优解。

最优化方法试卷及答案5套

最优化方法试卷及答案5套

《最优化方法》1一、填空题:1.最优化问题的数学模型一般为:____________________________,其中___________称为目标函数,___________称为约束函数,可行域D 可以表示为_____________________________,若______________________________,称*x 为问题的局部最优解,若_____________________________________,称*x 为问题的全局最优解。

2.设f(x)= 212121522x x x x x +-+,则其梯度为___________,海色矩阵___________,令,)0,1(,)2,1(T T d x ==则f(x)在x 处沿方向d 的一阶方向导数为___________,几何意义为___________________________________,二阶方向导数为___________________,几何意义为____________________________________________________________。

3.设严格凸二次规划形式为:012..222)(min 2121212221≥≥≤+--+=x x x x t s x x x x x f则其对偶规划为___________________________________________。

4.求解无约束最优化问题:n R x x f ∈),(min ,设k x 是不满足最优性条件的第k 步迭代点,则:用最速下降法求解时,搜索方向k d =___________ 用Newton 法求解时,搜索方向k d =___________ 用共轭梯度法求解时,搜索方向k d =___________________________________________________________________________。

天大历年试题分类

天大历年试题分类

一、线性规划 二、运输问题 三、多目标规划 四、动态规划 五、图论六、网络计划技术 七、决策论 八、存储论 九、排队论 十、对策论 十一、模拟技术一、线性规划(一)选择填空题 (二)线性规划建模 (三)互补松弛应用 (四)灵敏度分析 (五)证明题(一)选择填空题型):(1)初表的出基变量为 ,进基变量为 。

[]=-1*)2(B最优基逆(3)填完终表。

=*)4(X 最优解=*)5(y 对偶问题最优解(6)若原问题增加一个新的非负变量,则对偶问题的最优目标值将(变大、不变、变小) 。

(2007)解:1.(1)出基变量为x 4;进基变量为x 3。

(2)*12105101305101112B -⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦。

(3)(4) *(4511)T X =(5) *14(0)55Y = (6) 变小1.用图解法解线性规划时,以下几种情况中不可能出现的是( )。

A .可行域(约束集合)有界,无有限最优解(或称无解界)B .可行域(约束集合)无界,有唯一最优解C .可行域(约束集合)是空集,无可行解D .可行域(约束集合)有界,有多重最优解 (2006)解:1. A2.根据线性规划的互补松弛定理,安排生产的产品机会成本一定( )利润。

A . 小于 B . 等于 C . 大于 D . 大于等于 (2006)解:2. B1.用大M 法求解Max 型线形规划时,人工变量在目标函数中的系数均为____________,若最优解的_______________中含有人工变量,则原问题无解。

(2005)解:1、-M 基变量1. 设线性规划问题}{0max ≥=bx Ax cx 有最优解*x 和影子价格*y ,则线性规划问题}{02max ≥=bx Ax cx 的最优解= ,影子价格= 。

(2004)解:1. x* 2y*3. 某工程公司拟从1、2、3、4四个项目中选择若干项目。

若令4101⋯⋯=⎩⎨⎧=,,个项目未选中,第个项目被选中,第i i i x i请用i x 的线性表达式表示下列要求:(1)若项目2被选中,则项目4不能被选中: (2)只有项目1被选中,项目3才能被选中: 。

最优化考试题及答案

最优化考试题及答案

最优化考试题及答案一、单项选择题(每题2分,共10题,满分20分)1. 最优化问题中,目标函数表示的是:A. 需要最小化或最大化的量B. 约束条件C. 决策变量D. 算法步骤答案:A2. 在线性规划问题中,以下哪项不是基本解?A. 基本可行解B. 非基本可行解C. 基本解D. 退化解答案:B3. 单纯形法中,如果目标函数的某一项系数为负,则该项对应的变量:A. 必须取非负值B. 必须取正值C. 可以取任意值D. 必须取零答案:D4. 以下哪个算法不是用于解决整数规划问题?A. 分支定界法B. 动态规划C. 单纯形法D. 割平面法答案:C5. 在非线性规划中,以下哪个条件是局部最优解的必要条件?A. 目标函数的梯度为零B. 目标函数的Hessian矩阵正定C. 目标函数的Hessian矩阵负定D. 目标函数的Hessian矩阵半正定答案:A6. 以下哪个算法是用于解决动态规划问题的?A. 梯度下降法B. 牛顿法C. 贝尔曼方程D. 遗传算法答案:C7. 在多目标优化问题中,以下哪个概念用于描述解的优劣?A. 可行解B. 帕累托最优解C. 基本解D. 退化解答案:B8. 以下哪个算法是用于解决大规模最优化问题的?A. 梯度下降法B. 牛顿法C. 共轭梯度法D. 内点法答案:D9. 在约束优化问题中,拉格朗日乘数法用于:A. 寻找最优解B. 寻找可行解C. 寻找鞍点D. 寻找局部最小值答案:A10. 以下哪个算法是用于解决组合优化问题的?A. 模拟退火算法B. 遗传算法C. 粒子群优化算法D. 所有上述算法答案:D二、多项选择题(每题3分,共5题,满分15分)1. 在最优化问题中,以下哪些是常见的目标函数?A. 最小化成本B. 最大化利润C. 最小化时间D. 最大化面积答案:ABCD2. 以下哪些是线性规划问题的特点?A. 目标函数是线性的B. 约束条件是线性的C. 目标函数是二次的D. 约束条件是非线性的答案:AB3. 在非线性规划问题中,以下哪些是全局最优解的必要条件?A. 目标函数的梯度为零B. 目标函数的Hessian矩阵正定C. 目标函数的Hessian矩阵负定D. 目标函数的Hessian矩阵半正定答案:AB4. 以下哪些算法是用于解决多目标优化问题的?A. 权重法B. 帕累托前沿法C. 目标规划法D. 动态规划法答案:ABC5. 以下哪些是组合优化问题的特点?A. 决策变量是离散的B. 目标函数是线性的C. 约束条件是非线性的D. 问题规模通常很大答案:ACD三、简答题(每题5分,共2题,满分10分)1. 请简述拉格朗日乘数法在最优化问题中的应用。

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案)天津大学《最优化方法》复习题(含答案)第一章 概述(包括凸规划)一、 判断与填空题1 )].([arg)(arg min maxx f x f n nR x Rx -=∈∈ √2 {}{}.:)(m in :)(m ax nnR D x x f R D x x f ⊆∈-=⊆∈ ⨯ 3 设.:R R D f n →⊆ 若nR x∈*,对于一切nR x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(minx f Dx ∈的全局最优解. ⨯4 设.:R RD f n→⊆ 若Dx∈*,存在*x 的某邻域)(*x Nε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(minx f Dx ∈的严格局部最优解. ⨯5 给定一个最优化问题,那么它的最优值是一个定值. √6 非空集合nR D ⊆为凸集当且仅当D 中任意两点连线段上任一点属于D . √7 非空集合nR D ⊆为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √8 任意两个凸集的并集为凸集. ⨯ 9 函数RR D f n→⊆:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √10 设RRD f n→⊆:为凸集D 上的可微凸函数,Dx ∈*.则对D x ∈∀,有).()()()(***-∇≤-x x x f x f x f T⨯ 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n是凸集。

√12 设{}kx 为由求解)(minx f Dx ∈的算法A 产生的迭代序列,假设算法A 为下降算法,则对{}Λ,2,1,0∈∀k ,恒有)()(1kk x f x f ≤+ .13 算法迭代时的终止准则(写出三种):_____________________________________。

14 凸规划的全体极小点组成的集合是凸集。

最优化方法试卷与答案5套

最优化方法试卷与答案5套

《最优化方法》1一、填空题:1.最优化问题的数学模型一般为:____________________________,其中___________称为目标函数,___________称为约束函数,可行域D 可以表示为_____________________________,若______________________________,称*x 为问题的局部最优解,若_____________________________________,称*x 为问题的全局最优解。

2.设f(x)= 212121522x x x x x +-+,则其梯度为___________,海色矩阵___________,令,)0,1(,)2,1(T T d x ==则f(x)在x 处沿方向d 的一阶方向导数为___________,几何意义为___________________________________,二阶方向导数为___________________,几何意义为____________________________________________________________。

3.设严格凸二次规划形式为:012..222)(min 2121212221≥≥≤+--+=x x x x t s x x x x x f则其对偶规划为___________________________________________。

4.求解无约束最优化问题:n R x x f ∈),(min ,设k x 是不满足最优性条件的第k 步迭代点,则:用最速下降法求解时,搜索方向k d =___________ 用Newton 法求解时,搜索方向k d =___________ 用共轭梯度法求解时,搜索方向k d =___________________________________________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2003—2008《工程与科学计算》历届试题类型1. 直解法例 1. 用列主元素Gauss 消去解下列线性方程组(结果保留5位小数)⎪⎩⎪⎨⎧=++=++=++0000.11000.12100.13310.18338.00000.10000.10000.16867.09000.08100.07290.0321321321x x x x x x x x x例2. 设线性方程组b Ax =,其中 11231112341113451A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦求)(A Cond ∞,并分析线性方程组是否病态 ? 2.迭代法例1. 设线性方程组b Ax =为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----221221122321x x x ααα , 0≠α写出求解线性方程组的Jacobi 迭代格式,并确定当α取何值时Jacobi 迭代格式收敛. 例 2. 写出求解线性方程组b Ax =的Seidel 迭代格式,并判断所写格式的收敛性,其中b Ax =为⎪⎩⎪⎨⎧=++-=+=-522826233213231x x xx x x x3.插值例 1. 已知,12144,11121,10100===(1)试用二次插值多项式计算115的近似值(数据保留至小数点后第5位) (2)估计所得结果的截断误差(数据保留至小数点后第5位) 例 2. 由下列插值条件4. Runge —Kutta 格式例 写出标准Kutta Runge -方法解初值问题⎩⎨⎧==+-=1)0(,1)0(sin 2'2'''y y x y xy y 的计算格式5. 代数精度例 1. 数值求积公式形如)1()0()1()0()()(321010f A f A f A f A x S dx x xf '+'++=≈⎰试确定其中参数,,,,4321A A A A 使其代数精度尽量高, 并确定代数精度. 例 2. 验证数值求积公式20120()(1(1)(1f x dx A f A f A f ≈++⎰是Gauss 型求积公式.6.Romberg 方法 例 对积分⎰+1021dx x ,用Romberg 方法计算积分的近似值,误差不超过510-并将结果填7.证明(1)设)(x ϕ为],[b a 上关于权函数)(x ρ的n 次正交多项式,以)(x ϕ的零点为节点建立Lagrange 插值基函数)}({x l i ,证明:⎰⎰==b abai i ni dx x l x dx x l x ,,2,1,)]()[()()(2 ρρ证明: 设n 次正交多项式()x ϕ的零点为12,,n x x x ,则以这n 个零点为节点建立的Lagrange 插值基函数{()},1,2,i l x i n =是n-1次多项式,[]2()i l x 是2n-2次多项式. 故当()f x 取()i l x 和[]2()i l x 时Gauss 型求积公式1()()()nb k k ak x f x dx A f x ρ=≈∑⎰等号成立, 即1()()()nb i k i k iak x l x dx A l x A ρ===∑⎰221()()()nb i k i k iak x l x dx A l x A ρ===∑⎰则有 ⎰⎰==b abai i ni dx x l x dx x l x ,,2,1,)]()[()()(2 ρρ(2)对线性方程组b Ax =,若A 是n 阶非奇异阵,0≠b ,*x 是b Ax =的精确解,x 是b Ax =的近似解。

记Ax b r -=证明:br CondAxx x ≤-**证明:由于*x 是b Ax =的精确解,则 A x b *=,()r b Ax Ax Ax A x x **=-=-=- 又A 是n 阶非奇异阵,则 1x x A r *--=11x x A r A r *---=≤,且b Ax A x **=≤,则 b x A≥故 *11*x x A r r r A ACondAbAbbx ---≤==(3)初值问题0)0(,=+='y b ax y 有解bx ax x y +=221)(,若nh x n=,n y 是用Euler 格式解得的)(x y 在n x x =处的近似值,证明:n n n ahx y x y 21)(=- . 证明:记 n n n f y x f b ax y x f =+=),(,),(,且0)0(=y ,nh x n = Euler 格式为),(1n n n n y x hf y y +=+ 则有=++=+=-----12211)(n n n n n n hf hf y hf y ynn n n n n bx ahx ax nhb ah hb ah n hb ah hb ah hb b ax h b ax h b ax h hf hf hf y +-=+=+-+++++=++++++=++++=---2122122)1(2221101100)1(2)()()(n n n n n n n n ahx ahx bx ax bx ax y x y 2121221221)()(=-+-+=-.(4)设nn C A ⨯∈为非奇异阵,试证:线性方程组b Ax =的数值解可用Seidel 迭代方法求得.证明:因为A 为非奇异矩阵,故b Ax =与b A Ax A TT =是同解方程组,而A A T 正定,则Seidel 格式收敛,即用Seidel 方法一定能求得b Ax =的解.(5)试导出求解初值问题 b x a y a y y x f y ≤<⎩⎨⎧==',)(),(0 的梯形格式,并证明用梯形格式解初值问题 ⎩⎨⎧==+'1)0(0y y y 所得数值解为nn h h y ⎪⎭⎫⎝⎛+-=22 证明 将 ),(y x f y =' 在 ],[1+n n x x 上积分, 得 .))(,()()(11⎰+=-+n nx x n n dx x y x f x y x y将右端的积分用梯形公式计算其近似值, 并用1,+n n y y 分别代替)(),(1+n n x y x y , 得 )],(),([2111+++++=n n n n n n y x f y x f hy y 将y y x f -=),(代入梯形公式得 )(121++--+=n n h n n y y y y , 则有 )(121n n hn n y y y y --+=--得 022*******y h h y h h y h h y nn n n ⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-=--因为 10=y , 得 nn h h y ⎪⎭⎫⎝⎛+-=22.(6)设[]h x x x x h x x C f +=-=∈0102204,2,,,证明),(),(12)]()(2)([1)(20)4(221021x x f h x f x f x f hx f ∈-+-=''ξξ证明:)(x f 的二次Lagrange 插值多项式及余项形式为),(),)()((!3)(]))(())(()())(())(()())(())(()([)(20210120210221011012010210x x x x x x x x f x x x x x x x x x f x x x x x x x x x f x x x x x x x x x f x f ∈---'''+----+----+----=ξξ其二阶导数为),(,,,]))()([(!3)(]))()([(!4)(2))()((!5)(]))((2)())((2)())((2)([)(20212102101)4(2102)5(120222*********x x x x x x x x f x x x x x x f x x x x x x f x x x x x f x x x x x f x x x x x f x f ∈''---'''+'---+---+--+--+--=''ξξξξξξ注意到h x x x x h +=-=0102,2,有),(,,,0!3)()(!4)(20!5)(]22)(2)(22)([)(202121)4(2)5(2221201x x f h f f h x f h x f h x f x f ∈⋅'''+-+⋅++-+=''ξξξξξξ 即),(),(12)]()(2)([1)(20)4(221021x x f h x f x f x f hx f ∈-+-=''ξξ(7)证明求积公式20585()(1(1)(1999f x dx f f f ≈-+++⎰是稳定的.(8)设初值问题0(,)()y f x y a x by a y '=<≤⎧⎨=⎩ 中的f 区域D 上关于y 满足Lipschitz 条件,证明:格式 11211(3)4(,)22(,)33n n n n n n n h y y K K K f x y K f x h y hK +⎧=++⎪⎪=⎨⎪⎪=++⎩是收敛的.倒数第三题,求A0、A1、A2参数的那道题,前面积分限是0到1,而后面求积公式的第一个求积节点居然小于0!(1/2-根号3/5),在积分限之外。

其中专业理论知识内容包括:保安理论知识、消防业务知识、职业道德、法律常识、保安礼仪、救护知识。

作技能训练内容包括:岗位操作指引、勤务技能、消防技能、军事技能。

二.培训的及要求培训目的1)保安人员培训应以保安理论知识、消防知识、法律常识教学为主,在教学过程中,应要求学员全面熟知保安理论知识及消防专业知识,在工作中的操作与运用,并基本掌握现场保护及处理知识2)职业道德课程的教学应根据不同的岗位元而予以不同的内容,使保安在各自不同的工作岗位上都能养成具有本职业特点的良好职业道德和行为规范)法律常识教学是理论课的主要内容之一,要求所有保安都应熟知国家有关法律、法规,成为懂法、知法、守法的公民,运用法律这一有力武器与违法犯罪分子作斗争。

工作入口门卫守护,定点守卫及区域巡逻为主要内容,在日常管理和发生突发事件时能够运用所学的技能保护公司财产以及自身安全。

2、培训要求1)保安理论培训通过培训使保安熟知保安工作性质、地位、任务、及工作职责权限,同时全面掌握保安专业知识以及在具体工作中应注意的事项及一般情况处置的原则和方法。

相关文档
最新文档