分数的意义和性质

合集下载

分数的意义和性质培优

分数的意义和性质培优

分数的意义和性质培优分数是数学中的一个重要概念,具有广泛的应用和深远的意义。

在数学教学中,分数培优能够培养学生的抽象思维能力、计算能力和解决问题的能力。

下面将从不同角度介绍分数的意义和性质,以及分数培优的方法和效果。

一、分数的意义和性质1.分数的意义:分数是用来表示不完整的部分或比例的数,由分子和分母两部分组成,分子表示部分的数量,分母表示整体的等分数目。

分数可以表示非整数的实际量,如时间、长度、重量等。

2.分数的性质:(1)分数的大小关系:对于两个分母相同的真分数,分子越大,分数越大;对于两个分子相同的真分数,分母越大,分数越小;对于分母相同,分子都为正整数的假分数,分子越大,分数越大。

(2)分数的运算性质:分数的加减乘除运算都遵循特定的规则,如分数相加减的分母要相同,可以通过通分来实现;分数相乘时,分母相乘,分子相乘,结果约分;分数相除时,分子乘以除数的倒数。

(3)约分和通分:约分是指将分数的分子和分母同时除以一个公因数得到最简分数,通分是指分母不同的分数,通过求最小公倍数,使分母相同。

二、分数培优的方法1.创设情境:通过情境创设,将分数引入实际生活中,如食物的分配、运动员的成绩等,让学生感受到分数的应用和意义。

2.使用教具:使用教具如分数带、分数方块等,让学生通过操作物体来理解分数的大小关系和计算方法。

4.解决实际问题:通过解决实际问题,让学生运用分数的知识解决问题,培养学生的解决问题的能力。

三、分数培优的效果1.提高抽象思维能力:分数的概念和计算都是抽象的,培优可以让学生锻炼抽象思维的能力,从整体与部分,部分与整体的关系中抽象出分数的概念。

2.培养计算能力:分数的加减乘除运算需要灵活运用各种规则,通过培优能够提高学生计算的准确性和速度。

3.培养解决问题的能力:分数的应用广泛,培优可以让学生培养解决实际问题的能力,如比较大小、计算比例、分配物品等。

4.增加数学兴趣:通过培优的方式,学生能够更好地理解分数的意义和应用,从而增加对数学的兴趣和学习的动力。

分数的意义和性质

分数的意义和性质

分数的意义和性质【分数的产生和意义】1、单位“1”:一个物体、一个计量单位和一些物体都可以看作一个整体,可以用自然数1来表示,通常把它叫做单位“1”。

2、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

【分数与除法的关系:】除法中的被除数相当于分数中的分子,除数相当于分母,除号相当于分数线。

由于除数不能为0,所以分数中分母不能为0。

“求一个数A是(占)另一个数B的几分之几”的问题的解题办法:用一个数A除以另一个数B。

(A÷B=)。

【分数的分类:】(真分数和假分数)1、真分数的意义:分子比分母小的分数叫做真分数。

真分数的特征:真分数﹤1。

2、假分数的意义:分子比分母大或等于分母的分数叫做假分数。

假分数的特征:假分数≦1。

假分数化成整数或带分数(1)假分数的分子等于分母或分子是分母的倍数时可以化成整数。

(2)假分数分子是分母的倍数时可以化成带分数带分数的意义:由整数(不包括0)和真分数合成的数叫做带分数。

带分数的读法:先读整数部分,再读分数部分,中间加“又”字。

假分数化成整数或带分数的方法:用分子除以分母。

当分子是分母倍数时,能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,余数是分数部分的分子,分母不变。

【分数的基本性质:】1、分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。

这叫做分数的基本性质。

2、利用分数的基本性质可以比较分数的大小、约分和通分。

还要注意:分母不变,分子扩大n倍,分数也跟着扩大n倍,分子缩小n倍,分数也跟着缩小n倍;如果是分子不变,分母扩大n倍,分数缩小n倍,分母缩小n倍,分数扩大n倍。

3、分数基本性质的运用:可以把不同分母的分数化成同分母分数,也可以把一个分数化成指定分母的分数。

【约分:】1、公因数和最大公因数的意义:几个数公有的因数,叫做这几个数的公因数;其中最大的一个,叫做它们的最大公因数。

分数的意义和性质

分数的意义和性质

分数的意义和性质一、分数的意义两个正整数p 、q 相除,可以用分数(fraction )p q表示,即p ÷q=p q,其中p 为分子,q 为分母。

p q读作q 分之p 。

特别地,当q=1时,p q=p 。

二、分数的分类分子比分母小的分数叫做真分数(proper fraction )。

分子大于或者等于分母的分数叫做假分数(improper fraction )。

一个正整数与一个真分数相加所成的数叫做带分数(mixed numbers )。

假分数转化成带分数:分母不变,分子除以分母所得整数为带分数左边的整数部分,余数作分子。

例如:将5221化为带分数,52÷21=2……10,则5221=10221。

假分数的分子除以分母之后,刚好除尽没有余数,那么这时假分数就转换成了整数。

例如:287=4,99=1。

带分数转化成假分数:分母不变,用整数部分与分母的乘积再加原分子的和作为分子。

例如:10221=221⨯21+10=5221。

三、分数的基本性质一张涂色的纸,涂色部分占这张纸的34。

小明、小杰、小丽分别用这样的纸折成不同等分的图案,你能发现什么结论呢?在这些大小相同、不同等分的纸中,涂色部 分分别占纸的几分之几?这些分数有什么 关系?通过观察我们发现,这些分数的大小是相等的,即36912481216===。

由分数34的分子、分母分别同乘以2、3、4可得分数68、912、1216;由分数1216、912、68的分子、分母分别除以4、3、2都可得分数34。

由上可得:分数的分子和分母都乘以或都除以同一个不为零的数,所得的分数与原分数的大小相等。

即a a k a nb b kb n⨯÷==⨯÷ (b ≠0,k ≠0,n ≠0)。

分子和分母互素的分数,叫做最简分数。

把一个分数的分子与分母的公因数约去的过程,称为约分(cancelling )。

将异分母的分数分别化成与原分数大小相等的同分母的分数,这个过程叫做通分。

分数的意义和性质

分数的意义和性质

分数的意义和性质分数是数学中的一个重要概念,它用于表示两个量的比值。

在日常生活和数学中,分数具有许多重要的意义和性质。

首先,分数表示部分与整体之间的关系。

当一个整体被分成若干个相等的部分时,每个部分就可以表示为一个分数。

例如,如果一个披萨被分成8块,每块就可以表示为1/8、分数可以帮助我们理解整体的构成和不同部分之间的关系。

其次,分数可以表示实数范围之间的关系。

实数是数轴上的点,分数可以用来表示两个实数之间的大小关系。

例如,1/2表示一个实数比1小一半,而3/4表示一个实数比3小四分之三、分数可以帮助我们比较和排序不同的实数。

此外,分数还可以表示百分比和比率。

百分比是将一个数表示为另一个数的百分之几,可以用分数来表示。

比率表示两个量之间的比值,可以使用分数来表示比率。

分数在解决百分比和比率问题时非常有用。

除此之外,分数具有以下性质:1.分数是有理数。

有理数是可以表示为两个整数的比值的数,而分数正好满足这一定义。

因为分数可以表示为两个整数的比值,所以它是有理数。

2.分数可以用于加减乘除运算。

对于分数的加减乘除运算,我们需要先将分母相同或者找到它们的最小公倍数,然后可以对分子进行相应的运算。

例如,对于1/3+1/4,我们可以找到它们的最小公倍数12,然后将分数转化为4/12和3/12,最后相加得7/123.分数可以化简。

当分子和分母有公因数时,分数可以化简为最简分数。

最简分数是指分子和分母没有公因数的分数。

例如,对于4/8,我们可以将其化简为1/2,因为4和8有最大公因数4总之,分数在数学中具有重要的意义和性质。

它可以表示部分与整体的关系,实数范围之间的关系,百分比和比率。

此外,分数还具有有理数的特性,可以进行加减乘除运算,可以化简为最简分数,并且可以转化为小数。

了解分数的意义和性质有助于我们更好地理解和应用数学知识。

分数的意义和性质

分数的意义和性质

分数在社会领域的 应用:政策制定、 决策分析与预测
分数在未来的教育价值与意义
分数作为评估学生 学习成果的重要指 标
分数在升学和就业 中的影响
分数在个性化教育 中的价值
分数在教育改革中 的意义和作用
汇报人:
分数的文化内涵与象征意义
文化内涵:分数在数学、科学、艺术等领域中都有广泛的应用,它不仅是一种数学符号,还代表着人类对 知识、智慧和美的追求。
象征意义:分数在文化中也有着深刻的象征意义。例如,在文学作品中,分数往往代表着成功、荣誉和成 就;在音乐中,分数则代表着节奏、旋律和和谐。
历史背景:分数的起源可以追溯到古代,它的发展历程与人类文明的发展密切相关。在不同的历史时期, 分数都有着不同的应用和意义。
假分数的定义:分子大于或等 于分母的分数
真分数与假分数的区别:分子 与分母的大小关系
真分数与假分数的应用:在数 学、生活等领域中的实际应用
整数、分数和小数的关系
整数:没有小数点或分数部分的数, 如1、2、3等。
小数:表示小数点后有数字的数, 如0.5、0.8等。
添加标题
添加标题
添加标题
添加标题
分数:表示部分与整体关系的数, 如1/2、2/3等。
分数的约分与通分是分数性质的重要应用,对于理解分数的概 念和运算具有重要意义。
分数的加减法运算
同分母分数的 加减法运算: 分母不变,分
子相加减。
异分母分数的 加减法运算: 先通分,再按 照同分母分数 的加减法运算
进行。
分数加减法的 运算规则:分 子分母分别相 加减,结果化
简。
分数加减法运 算的注意事项: 注意符号、通 分和化简等细
分数在未来的发展趋势
分数在数据分析中的应用将 更加重要

分数的意义和基本性质

分数的意义和基本性质

分数的意义和基本性质一.教学衔接二.教学内容知识点一、分数的意义(一)小数的意义把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几……可以用小数来表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…….(小数部分的最高计数单位“十分之一”和整数部分的最低计数单位“一”之间的进率也是十)(二)分数的意义1、分数的意义:把单位1平均分成若干份表示这样的一份或几份的数,叫做分数。

2、单位“1”与自然数1的区别自然数的单位是1,任何自然数都是由1组成的。

在自然数中,1表示一个物体;单位“1”表示一个整体。

过关精炼1. 用分数表示各图形的阴影部分.2.把单位“1”平均分成5份,表示这样的1份的数是( )。

把单位“1”平均分成5份,表示这样的3份的数是( )。

3.74的分母是( ),表示把单位“1”平均分成( )份;分子是( ),表示有这样的( )份。

4.65的分母是( ),表示把单位“1”平均分成( )份;分子是( ),表示有这样的( )份。

(三)分数单位的意义:把单位“1”平均分成若干份,表示其中一份的数叫分数单位。

一个分数的分母越大,分数单位越小,分母越小,分数单位越大。

最大的分数单位是1/2.(如32的分数单位是31,32里面有2个31;85的分数单位是81,85里面有5个81) 如:的分数单位是____, 的分数单位是____,的分数单位是____。

过关精炼127读做( ),它的分数单位是( ),有( )个这样的单位。

( )( )( )( )5217读做( ),它的分数单位是( ),有( )个这样的单位。

731的分数单位是( ),再减去( )个这样的分数单位,这个分数就变为0. (四)分数与除法的关系:分数表示除法算式的商(被除数÷除数=除数被除数) 分数可以用整数除法的商表示:用除数(不能是0)作分母,被除数作分子。

分数的意义和性质

分数的意义和性质
, ÷5=2, ÷7=2。
学生会根据假分数化成整数的方法及除法与分数间的关系准确的填空。
从而归纳出整数化假分数的方法:把整数公成假分数,用指定的分母作分母,用分母和整数的乘积作分子。
学生讨论第(3)题,仍然是先复习假分数化成带分数的方法, , , 。
带分数的组成,如: 是1与 的和, 是2与 的和, 是4与 的和。
6.两个分数的大小相等,它们的分子和分母必然分别相同吗?
根据分数的基本性质我们可以知道,分数的大小相等,它们的分子和分母不一定相同。
如:
7.比较 和,而分子较小,因此用找公分子,化成同分子分数比较大小比较简便。
根据分子相同,分母大的分数反而小的规律,可以判定 < ,所以 < 。
2.通过直观演示 的化简过程,认识什么叫约分?什么叫最简分数?
像这样 化简为 , 化简为 , 也就化简为 ,把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
像 这样分子、分母是互质数的分数,叫做最简分数。
3.掌握约分的书写格式及约分的方法。
约分的书写格式与学过的计算的不同在于,约分时要把分子、分母的公约数记在脑子里,把用公约数去除分子所得的商写在分子的上面,把用公约数去除分母所得的商写在分母下面,并把原来的分子、分母划去。
解:分数单位是 的最简真分数有 、 、 、 。 真分数是分子比分母小的分数,它比1小。
最简分数是分子、他母互质的分数。
5.9÷10的商用分数表示是( )。 解:9÷10= ,括号里填 。
除法与分数的关系是: 被除数÷除数=
6. =4÷( )= = 解: =4÷(5)= =
答:平均每小时组装 辆自行车。
②王红从A地出发到相距40千米的B地去,已知王红每小时行17千米,从A地到B地需要多少小时?(包含除应用题)

分数的意义和性质整理和复习

分数的意义和性质整理和复习

分数的意义和性质整理和复习分数是一个常见的数学概念,它用来表示两个数之间的比值关系。

在日常生活和工作中,分数有着广泛的应用。

下面我们来整理和复习分数的意义和性质。

一、分数的意义1.比值关系:分数表示两个数的比值关系,如1/2表示分子为1,分母为2,表示一个整体被平均分成两份,每份占据整体的1/22.部分与整体:分数表示一个整体被平均分成若干份,分母表示整体被分成的份数,分子表示其中的分数部分。

3.精确度:分数可以表示大于整数、小于整数和介于两个整数之间的数,增加了计量的精确度。

二、分数的性质1.分子和分母都是整数:分数的分子和分母都是整数,分子表示分数中有多少份,分母表示被分成了几等份。

分子和分母都是整数是分数的基本性质。

2.分子是整数,分母是正整数:分子是整数,分母是正整数是分数的约定性质。

分母是正整数是因为被分成几份不能是0或负数。

3.基本性质:分数的基本性质包括分数的相等性、比较性、大小性及其相反数性质。

4.分数的相等性:分数A/B和分数C/D相等(A、B、C、D为整数,B 和D不为零,A/B=C/D)的条件是AD=BC。

5.分数的比较性:对于任意两个正分数A/B和C/D(A、B、C、D为整数,B和D不为零),有A/B>C/D当且仅当AD>BC。

6.分数的大小性:正整数的分数越大,分母越小,分数就越小;反之,正整数的分数越小,分母越大,分数就越大。

7.分数的相反数:正分数A/B和负分数-A/B的大小关系是-A/B>A/B。

三、分数的简化和增补1.分数的简化:把一个分数化为最简形式,即分子和分母没有公约数,这时的分数就是最简分数。

例如,8/12可以简化为2/32.分数的增补:根据相等性原理,可以在分子和分母同时乘以同一个非零整数,得到与原分数值相等的另一个分数。

这个过程叫做增补分数。

例如,1/2和2/4是相等的分数,2/4是1/2的增补分数。

四、分数的运算1.分数的加法:两个分数相加时,首先要找到它们的最小公倍数作为分母,然后分别乘以相应的倍数,将两个分数转化为相同整体的等份,然后将分子相加。

分数的意义和性质

分数的意义和性质

分数的意义和性质
分数的性质:
1.分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。

读作几分之几。

2.分数可以表述成一个除法算式:如二分之一等于1除以2。

其中,1分子等于被除数,-分数线等于除号,2分母等于除数,而0.5分数值则等于商。

3.分数还可以表述为一个比,例如;二分之一等于1:2,其中1分子等于前项,—分数线等于比号,2分母等于后项,而0.5分数值则等于比值。

4.当分子与分母同时乘或除以相同的数(0除外),分数值不会变化。

因此,每一个分数都有无限个与其相等的分数。

利用此性质,可进行约分与通分。

5.一个分数不是有限小数,就是无限循环小数,像π等这样的无限不循环小数,是不可能用分数代替的。

分数的意义:
1、分数的意义是:一个物体,一个图形,一个计量单位,都可看作单位“1”。

把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。

在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。

2、分数原是指整体的一部分,或更一般地,任何数量相等的部分。

表现形式为一个整数a和一个整数b的比(a为b倍数的假分
数是否属于分数存在争议)。

3、分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。

把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。

分子在上,分母在下。

4、当分母为100的特殊情况时,可以写成百分数的形式,如1%。

分数的意义和性质及分数加减法-知识点

分数的意义和性质及分数加减法-知识点

千里之行,始于足下。

分数的意义和性质及分数加减法-知识点一、分数的意义和性质分数是用来表示一个数量与其总量之间比值的数。

分数由两个部分组成,分子表示数量,分母表示总量。

在分数中,分子和分母都是整数。

1. 分数的意义分数表示的是一个部分与整体之间的比例关系。

分子表示部分的数量,分母表示整体的总量。

例如,1/4表示一个部分占整体的四分之一。

2. 分数的性质(1)真分数:分子小于分母的分数,称为真分数。

真分数的值小于1,例如1/2、3/4等。

(2)假分数:分子大于等于分母的分数,称为假分数。

假分数的值大于等于1,例如5/4、7/3等。

(3)带分数:由整数部分和真分数部分组成的数,称为带分数。

带分数的值大于等于1,例如1 1/2、2 3/4等。

(4)分数化简:将一个分数化简为最简形式,即分子与分母没有公因数。

例如,2/4可以化简为1/2。

(5)分数的大小比较:两个分数的大小可以通过比较它们的大小关系进行判断。

如果两个分数的分子相同,那么分母越大的分数越小;如果两个分数的第1页/共2页锲而不舍,金石可镂。

分母相同,那么分子越大的分数越大;否则,可以通过交叉相乘的方法进行比较。

二、分数加减法1. 分数加法分数加法是指将两个分数相加得到一个新的分数。

要进行分数加法,首先需要确定两个分数的分母相同,然后将它们的分子相加即可。

例如,1/2 + 1/3 = 3/6 + 2/6 = 5/6。

2. 分数减法分数减法是指将一个分数减去另一个分数得到一个新的分数。

要进行分数减法,首先需要确定两个分数的分母相同,然后将它们的分子相减即可。

例如,2/3 - 1/4 = 8/12 - 3/12 = 5/12。

3. 分数加减法的扩展如果两个分数的分母不同,无法直接进行加减法运算。

这时需要通过分母的最小公倍数(LCM)来确定一个相同的分母,然后将分子进行合并。

例如,1/2 + 1/3 = 3/6 + 2/6 = 5/6。

4. 分数加减法的化简进行分数加减法运算后,得到的结果可能不是最简形式,需要将其化简为最简形式。

五年级数学第六讲分数的意义和性质

五年级数学第六讲分数的意义和性质

五年级数学第六讲分数的意义和性质【分数的意义:】一个物体或是几个物体组成的一个整体都可以用自然数1来表示,我们通常把它叫做单位“1”。

2 •把单位“ 1平均分成若干份,表示这样的一份或几份的数叫做分数。

例如3/7 表示把单位“ 1平均分成7份,取其中的3份。

3. 5/8M按分数的意义,表示:把1M平均分成8份,取其中的5份。

按分数与除法的关系,表示:把5M平均分成8份,取其中的1份。

4•把单位“ 1平均分成若干份,表示其中一份的数叫分数单位。

练习一、填空1. 把单位“ 1”平均分成a份,表示这样的b份的分数是(),分数单位是)°2. 分数单位是1/7的分数你能写几个?3. 把( )平均分成( ),表示这样的( )或( )的数,叫做分数。

4. 2/7是把单位“ 1平均分成()份,表示这样( )份的数。

5. 把5M长的绳子平均分成2份,这里单位“1是(),每份是5M的( )6 7/11的分数单位是( ),有()个这样的分数单位,再添上( )个这样的分数单位就是自然数1二、判断1、把单位“1”分成几份,表示这样一份或几份的数叫做分数()2、把单位“ 1”平均分成若干份,表示其中一份或几份的数,叫做分数单位()3、1和单位“ 1”相等()4、把单位“ 1平均分成8份,取其中的5份,就是八分之五()【分数与除法】分数和除法的关系是:分数的分子相当于除法中的被除数,分数的分数线相当于除法中的除号,分数的分母相当于除法中的除数,分数的分数值相当于除法中的商。

用分数表示下列除法的商:(1) 3吃=()(2) 2为=()(3) 7七=()(4) 5勻2 = ( )( 5) 31 弋=( )(6) m i^n = ( ) n^08- 15= ( ) /( )3/7 =() + ()6•把一个整体平均分成若干份,求每份是多少,用除法。

总数旳数二每份数。

7•求一个数量是另一个数量的几分之几,用除法。

一个数量切一个数量二几分之几(几倍)。

第4讲分数的意义和性质(学生版)(知识梳理典例分析举一反三巩固提升)人教版

第4讲分数的意义和性质(学生版)(知识梳理典例分析举一反三巩固提升)人教版

第4讲分数的意义和性质分数的意义和性质分数的意义分数的意义分数的产生分数与除法单位“1”分数单位求一个数是另一个数的几分之几分数的种类真分数假分数带分数或整数化成通分分数的基本性质约分最简分数约分及其方法分数和小数的互化比较分数的大小通分及其方法知识点一:分数的意义1.分数的意义:把一个整体平均分成若干份,这样的一份或者几份都可以用分数来表示。

2.单位“1”的含义:一个物体、一个计量单位和一些物体等都可以看作一个整体。

这个整体可以用自然数1来表示,通常把它叫做单位“1”。

3.把单位“1”平均分成若干份,表示其中一份的数叫分数单位。

4. ,。

5.求一个数是另一个数的几分之几,用除法计算。

6.商是分数,表示的是两个数的倍比关系,后面不写单位。

知识点二:真分数和假分数1.分子比分母小的分数叫做真分数。

真分数小于 1 。

2.分子比分母大或者分子和分母相等的分数叫做假分数。

假分数大于 1 或者等于1 。

3.如果能整除,那么商就是所要化成的整数。

4.如果不能整除,那么商就是带分数的整数部分,余数是带分数的分数部分的分子,分母不变。

知识点三:分数的基本性质分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

知识点四:约分1.几个数公有的因数,叫作这几个数的公因数;其中最大的一个,叫作这几个数的最大公因数。

2.在铺地砖问题中,要使地面铺满且使用的地砖是整块时,就是求长和宽的公因数;要求地砖的边长最大是多少,就是求长和宽的最大公因数。

3.约分的方法:①用分子和分母共有的质因数依次去除;②直接用分子和分母的最大公因数去除。

知识点五:通分1.几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

2.利用公倍数和最小公倍数可以解决生活中的很多问题,如铺地砖问题、学生排队问题、同一天到达问题等等。

3.同分母分数比较大小的方法:分母相同的两个分数,分子大的分数大。

4.同分子分数比较大小的方法:分子相同的两个分数,分母小的分数反而大。

分数的意义是什么及其性质

分数的意义是什么及其性质

分数的意义是什么及其性质分数的意义是什么及其性质分数表整体的一部分,或更一般地,任何数量相等的部分。

当在日常英语中说话时,分数描述了一定大小的部分,例如半数,八分之五,四分之三。

下面是店铺给大家整理的分数的意义简介,希望能帮到大家!分数的意义(1)分数的意义。

把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

(2)单位“1”的'含义。

单位“1”不仅可以表示一个东西、一个计量单位、一条直线,也可以表示由一些物体组成的整体。

如:一袋米、一个工厂、一车间工人等。

(3)分数单位的意义。

把单位“1”平均分成若干份,表示这样的1份的数,叫做分数单位。

分数的基本性质1.分数的基本性质:分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。

2.运用分数的基本性质,可以把一个分数化成分母不同而大小相等的分数。

分数的注意事项①分母一定不能为0,因为分母相当于除数。

否则等式无法成立,分子可以等于0,因为分子相当于被除数。

相当于0除以任何一个数,不论分母是多少,答案都是0。

②分数中的分子或分母经过约分后不能出现无理数(如2的平方根),否则就不是分数。

③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。

(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数) 分数化小数最简分数化小数是先看分母的素因数有哪些,如果只有2和5,那么就能化成有限小数,如果不是,就不能化成有限小数。

不是最简分数的一定要约分方可判断。

有以下方法:分母是特殊数字的(如2、4、8、10、100、1000等)1、分母是2、4、8等,利用分数的基本性质,分母和分子同时乘以5、25、125等数,分母就转成10、100、1000的数,直接换成小数。

分数的意义和性质(教学材料)

分数的意义和性质(教学材料)

分数的意义和性质(教学材料)分数的意义和性质分数是数学中常见的数值表示方式之一。

它由两个整数构成,分别称为分子和分母,用分子除以分母可以得到一个实数。

分数在日常生活中有着广泛的应用,尤其在购物、食物配方、计量等方面。

分数的意义分数可以表示一个物体或数量的一部分。

当我们遇到无法整除的情况时,比如将一个苹果平均分给两个人,就需要用到分数。

此时,分数能够准确地表示每个人所分到的苹果的数量,帮助我们进行公平的分配。

另外,分数还可以表示比例关系。

例如,45%可以表示为分数$\frac{45}{100}$。

这样,我们可以更好地理解百分比与分数之间的关系。

分数的性质分数具有以下性质:1. 等值性:分子和分母可以乘以同一个非零数得到一个与原分数等值的分数。

例如,$\frac{1}{2}$和$\frac{2}{4}$表示的是同一个数,只是表达方式不同。

等值性:分子和分母可以乘以同一个非零数得到一个与原分数等值的分数。

例如,$\frac{1}{2}$和$\frac{2}{4}$表示的是同一个数,只是表达方式不同。

2. 比较性:分数大小可以通过比较其分子和分母的大小来确定。

分子大,分数就大;分母大,分数就小。

比较性:分数大小可以通过比较其分子和分母的大小来确定。

分子大,分数就大;分母大,分数就小。

3. 加减性:分数可以进行加减运算。

当两个分数的分母相同时,将分子相加(减)即可得到结果。

加减性:分数可以进行加减运算。

当两个分数的分母相同时,将分子相加(减)即可得到结果。

4. 乘除性:分数可以进行乘除运算。

两个分数相乘时,将分子相乘,分母相乘;两个分数相除时,将第一个分数的分子乘以第二个分数的分母,第一个分数的分母乘以第二个分数的分子。

乘除性:分数可以进行乘除运算。

两个分数相乘时,将分子相乘,分母相乘;两个分数相除时,将第一个分数的分子乘以第二个分数的分母,第一个分数的分母乘以第二个分数的分子。

结论分数作为一种数值表达方式,有着重要的意义和实际应用。

分数的意义和性质

分数的意义和性质

第一课时分数的产生与意义(一)分数的意义分数的产生、分数的意义1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

2、单位“1”的含义:一个物体、一个计量单位或是一些物体等都可以看作一个整体,这个整体可以用自然数“1”来表示,通常把它叫做单位“1”,也叫整体“1”。

3、分数的意义:把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

4、把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。

5、一个分数的分母是几,它的分数单位就是几分之一;分子是几,它就有几个这样的分数单位。

练习:12、16朵花,平均分成2份,每份是这堆花的() ()平均分成4份,3份是这堆花的() ()平均分成8份,7份是这堆花的() ()3、在括号里填上适当的分数表示阴影部分。

()()()()4、看图写数。

5、涂一涂。

(1)涂上红色。

(2)涂上你+喜欢的颜色。

6、把20颗糖的5份给小康,把( )看单位“1”,平均分成( )份。

小康分这样的( )份,是( )颗糖。

7、读出下面的分数,说说它们的具体含义。

(1)我国水资源人均占有量约为世界人均水平的41。

(2)地球表面大约有10071被海洋覆盖。

8、爸爸买来了一个西瓜,小明吃了这个西瓜的51,小红吃了剩下西瓜的41,小明和小红谁吃得多,试试用图来说明你的理由。

2、“求一个数是另一个数的几分之几”和“求一个数是另一个数的几倍”,计算方法相同,都可以用除法计算,即一个数÷另一个数 = 一个数是另一个数的几分之几(或几倍)。

注意:占、是、为时,用前面的量除以后面的量。

练习:第三课时真分数和假分数1、真分数的意义;分子比分母小的分数叫做真分数。

2、真分数的特征:真分数小于1。

3、假分数的意义:分子比分母大或分子和分母相等的分数叫做假分数。

4、假分数的特征:假分数大于1或等于1。

5、带分数的意义:由整数(不包括0)和真分数合成的数叫做带分数。

(完整版)分数的意义和性质易错

(完整版)分数的意义和性质易错

分数的意义和性质一、分数的意义1、我们可以把1个物体看作一个整体,也可以把许多物体看成一个整体. 将一个物体或是许多物体看成一个整体,通常我们把它叫做单位“1"。

2、把单位“1"平均分成若干份,表示这样1份或者几份的数,叫做分数。

其中,表示一份的数叫做它的分数单位.如:74的分数单位是 71注意:一定要平均分,分母表示平均分的份数,分子表示取的份数。

如果只取1份,也就是它的分数单位。

3、分数与除法的关系被除数相当于分数的分子,除数相当于分数的分母。

被除数÷除数=除数被除数(除数≠0)如 果用a 表示被除数,b 表示除数,分数与除法的关系可以表示为:a ÷b=ba(b ≠0)4、真分数和假分数 ①分子比分母小的分数叫做真分数;分子比分母大或者分子分母相等的分数叫做假分数;由整数和真分数组合成的叫做带分数. ②真分数都小于1,假分数可能等于1或者大于1,带分数都大于1;假分数都比真分数大。

二、分数的基本性质1、分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

我们可以利用分数的基本性质对分数进行约分和通分。

2、约分:把一个分数化成同它相等,且分子分母都比原来小的分数的过程,叫做约分. 分子分母是互质数的分数叫做最简分数。

(具体情况可参看互质数部分的) 约分方法:用分子分母的公因数(或最大公因数)分别去除分子和分母,直到分子分母是互质数为止。

3、通分:把几个分母不相同的分数,分别化成和原来分数相等并且分母相同的分数的过程,叫做通分。

如果两个分数的分母是互质数,就用两个分母的乘积作为公分母进行通分;如果两个分数的分母是倍数关系,就用较大的那个分母作为公分母; 一般情况下通分时,应该用两个分母的最小公倍数作为公分母进行通分。

三、分数与小数的互化把分数化成小数:根据分数与除法的关系,用分子除以分母,就可以化成小数,除不尽的按要求保留几位小数(注意用≈)。

小学五年奥数-分数的意义和性质

小学五年奥数-分数的意义和性质

分数的意义和性质【知能大展台】1.分数的意义把单位“1”平均分成若干份,表示这样的一份或几份的数,叫分数。

表示其中一份的数是这个分数的分数单位。

2.分数与除法的关系两个整数相除,它们的商可以用分数表示。

即:A÷B=A/B(B≠0)3.分数的基本性质分数的分子和分母同时乘以或者除以相同的数(零除外),分数的大小不变。

【试金石】例1:把6米长的铁丝平均分成5段,每段占6米的几分之几?占1米的几分之几?每段长多少米?【分析】把6米长的铁丝看作单位“1”,平均分成5段,求每段占全长的几分之几时,只要看把全长平均分成几段,不受总长的影响,把全长平均分成5段,每段就占全长的1/5。

6米长的1/5就是6/5米,也就相当于1米的6/5。

【解答】答:1/5;6/5;6/5米【智力加油站】【针对性训练】把5米长的铁丝平均截成7段,每段是全长的几分之几?每段长多少米?【试金石】例2:分母是91的最简真分数一共有多少个?【分析】分母是91的最简真分数一共有90个,即1/91,2/91,3/91,…….,其分子是1~90的自然数。

由于要求是最简真分数,那么分子中凡是91的质因数的倍数都应去掉。

而91=7×3,在1~90的自然数中,7的倍数有13-1=12(个),13的倍数有7-1=6(个),这样分子可取的数一共是90-(12+6)=72(个)。

【解答】91=7×3(91-1)-[(13-1)+(7-1)]=72(个)答:分母是91的最简真分数一共有72个。

【智力加油站】【针对性训练】分母是51的最简真分数一共有多少个?【试金石】例3分数73/136的分子和分母都减去同一个整数,所得的分数约分后是2/9,求减去的数。

【分析】一个分数的分子和分母同时减去一个相同的数后,分子与分母的差不变。

原分数的分子与分母的差是136-73=63,得到新分数的分子与分母的差也是63,而新分数约分后变成2/9,9-2=7,因此可知约去的数是63÷7=9。

北师大版数学五年级上册《分数的意义和性质》知识点

北师大版数学五年级上册《分数的意义和性质》知识点

一、分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相当于分母。

被除数÷除数 = 除数被除数 用字母表示:a÷b= ba (b≠0)。

4、分数未带单位表示两个量之间的倍数关系;分数带有单位表示一个具体的数量。

二、真分数和假分数1、真分数和假分数:① 分子比分母小的分数叫做真分数,真分数小于1。

② 分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。

③ 由整数部分和分数部分组成的分数叫做带分数。

2、假分数与带分数的互化:① 把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变。

② 把带分数化成假分数,用整数部分乘分母加上分子作分子,分母不变。

三、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

四、约分1、最大公因数:几个数公有的因数叫做它们的公因数,其中最大的一个叫做最大公因数。

2、两个数的公因数和它们最大公因数之间的关系:所有的公因数都是最大公因数的因数,最大公因数是它们的倍数。

3、互质数:公因数只有1的两个数叫做互质数。

4、两个数互质的特殊判断方法:① 1和任何大于1的自然数互质。

② 2和任何奇数都是互质数。

③ 相邻的两个自然数是互质数。

④ 相邻的两个奇数互质。

⑤ 不相同的两个质数互质。

⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

5、求最大公因数的方法:① 倍数关系: 最大公因数就是较小数。

② 互质关系: 最大公因数就是1。

6、最简分数:分子和分母只有公因数1的分数叫做最简分数。

7、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

五、通分1、最小公倍数:几个数公有的倍数叫做它们的公倍数,其中最小的一个叫最小公倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数的意义和性质 Revised as of 23 November 2020
五年级数学下册《分数的意义和性质》知识点 第一课时 分数的产生与意义
(一)分数的意义
分数的产生、分数的意义
1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

2、单位“1”的含义:一个物体、一个计量单位或是一些物体等都可以看作一个整体,这个整体可以用自然数“1”来表示,通常把它叫做单位“1”,也叫整体“1”。

3、分数的意义:把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

4、把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。

5、一个分数的分母是几,它的分数单位就是几分之一;分子是几,它就有几个这样的分数单位。

练习:
1、6
5是把单位“1”平均分成( )份,表示这样的( )份,它的分数单位是( )。

2、16朵花,平均分成2份,每份是这堆花的()()
平均分成4份,3份是这堆花的()()
平均分成8份,7份是这堆花的
()()
3、在括号里填上适当的分数表示阴影部分。

( ) ( ) ( ) ( )
4、看图写数。

5、涂一涂。

(1)
6
5涂上绿色,其余的()()涂上红色。

(2

4
1涂上红色,其余的()()涂上你+喜欢的颜色。

6、把20颗糖的5份给小康,把( )看单位“1”,平均分成( )份。

小康分这样的( )份,是( )颗糖。

7、读出下面的分数,说说它们的具体含义。

(1)我国水资源人均占有量约为世界人均水平的
41。

(2)地球表面大约有
100
71被海洋覆盖。

8、爸爸买来了一个西瓜,小明吃了这个西瓜的51,小红吃了剩下西瓜的4
1,小明和小红谁吃得多,试试用图来说明你的理由。

2、“求一个数是另一个数的几分之几”和“求一个数是另一个数的几倍”,计算方法相同,都可以用除法计算,即一个数÷另一个数 = 一个数是另一个数的几分之几(或几倍)。

注意:占、是、为时,用前面的量除以后面的量。

练习:
第三课时真分数和假分数
1、真分数的意义;分子比分母小的分数叫做真分数。

2、真分数的特征:真分数小于1。

3、假分数的意义:分子比分母大或分子和分母相等的分数叫做假分数。

4、假分数的特征:假分数大于1或等于1。

5、带分数的意义:由整数(不包括0)和真分数合成的数叫做带分数。

带分数的读法:先读整数部分,再读分数部分,中间加上一个“又”字。

带分数的写法:先写整数部分,再写分数部分,分数部分的分数与整数的中间对齐。

6、把假分数化成整数或带分数,根据分数与除法的关系,用分子除以分母:
(1)如果能整除,那么商就是所要化成的整数。

(2)如果不能整除,那么商就是带分数的整数部分,余数是带分数的分数部分的分子,分母不变。

练习:
1、读出下面的分数,再把它们分类。

4 556
37
23
11
8
9
13
4
49
50
361
13
5
6
13
6
真分数:
假分数:
带分数:
2、下面说法对吗为什么
(1)真分数一定小于假分数。

()(2)带分数比假分数大。

()
(3)真分数都比1小,假分数都比1大。

()(4)整数都可以化成分母是1的假分数。

()
(5)分母是7的真分数只有6个,分子是7的假分数有7个。

()
(6)33
2
是带分数。

()
(7)小强一口气吃了蛋糕的4
3。

()
(8)如果5
A
是假分数,那么A一定大于5。

()
3、把下列假分数化成带分数或整数。

7 3=8
8=
13
6=
17
9=
9 4=10
5=
10
3=
9
2=
4、把下列带分数化成假分数。

11
2=3
2
3=2
4
5=7
1
4=
81
12=5
3
8
=49
10=5
5
6=
5、把下面每组中的两个数化成分母相同的假分数。

31
3和22
2
5和31
3
4
和14和41
2
6、一个带分数,它的分数部分的分子是3,把它化成假分数后,分子是28,这个带分数可能是多少
10、一个带分数,它的分数部分的分子是3,把它化成假分数后,分子是14,这个带分数是多少
第四课时分数的基本性质
1、分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

2、利用分数的基本性质,可以把分母不同的分数化成分母相同的分数,还可以把一个分数化为指定分母的分数。

(四)约分
第一课时最大公因数
1、几个数共有的因数叫做这几个数的公因数;其中最大的那个公因数叫做这几个数的最大公因数。

2、求两个数的最大公因数的方法:
(1)列举法:先分别找出两个数的因数,再从中找出公因数,最后找出最大的一个;(2)筛选法:先找出两个数中较小的因数,再从中圈出另一个数的因数,最后看圈出另一个数的因数,最后看圈出的因数中哪一个最大。

3、解决地砖的边长及最大边长是多少这类问题,实际上就是求两个数的公因数和最大公因
数。

第二课时约分
1、约分的意义:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

2、约分的方法:
(1)逐次约分法:用分子和分母的公因数(1除外)依次去除分子和分母,除到分子和分母的公因数只有1为止。

(2)一次约分法:用分子和分母的最大公因数去除分子和分母。

3、分子和分母只有公因数1的分数叫做最简分数。

(五)通分
第一课时最小公倍数
1、几个数公有的倍数,叫做这几个数的公倍数。

其中,最小的一个公倍数叫做这几个数的最小公倍数。

2、求两个数的最小公倍数的方法;
(1)列举法:先分别找出两个数各自的倍数,再找出这两个数的公倍数和最小公倍数;
(2)筛选法:先写出两个数中叫大数的倍数,再按照从小到大的顺序圈出叫小数的倍数,圈出的第一个数就是它们的最小公倍数。

第二课时通分1、分母相同、分子不同的两个分数,分子大的分数就大。

2、分子相同分母不同的两个分数,分母小的分数反而较大。

3、通分:把异分母分数化成和原来分数相等的同分母分数。

4、通分的方法:同分时,用原分母的公倍数作公分母,为了计算简便,通常选用原分母的最小公倍数作公分母,然后把每个分数都化成用这个最小公倍数作分母的分数。

(六)分数和小数的互化
1、小数化成分数的方法:小数表示的就是十分之几、百分之几、千分之几…….的数,所以可以直接写成分母是10,100,1000,…….的分数。

原来是几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点作分子,能约分的要约成最简分数。

2、分数化成小数的方法:
(1)分母不是10,100,1000,…的分数化成小数,可以直接去掉分母,看1后面有几个0,就从分子的右边起向左数出几位,点上小数点,位数不够时,用0补足。

(2)分母不是10,100,1000,…的分数化成小数,根据分数与除法的关系,用分子除以分母,除不尽时按“四舍五入”法保留几位小数。

相关文档
最新文档