分数应用题的分类
分数应用题的六种类型整理
精选课件
1
1、看清分率(几分之几或百分之几)。 2、找准单位“1”的量。 3、确定单位“1”是已知还是未知?
4、列算式。
单位“1”的量×分率=分率对应量 (分率对应量÷分率=单位“1”的量)
精选课件
2
下面各题中应把哪个量看作单位“1”?
(1)男生人数是全班人数的
3 5
。 全班人数
(2)苹果重量比桔子多
5 7
的重量。桔子的重量
(3)已修的长度占这条路的
4 7
。这条路的长度
(4)一种电视机打九折出售。 原价
精选课件
3
第一类 求一个数是另一个数的几(百) 分之几(除法计算)
1、甲是乙的几分之几。 甲÷乙
2、乙是甲的几分之几。 乙÷甲
用字母表示:
求A是B的几(百)分之几。A÷B
精选课件
4
例1 果园里有梨树50棵,桃树30棵 1、梨树是桃树的几分之几? 50÷30 2、桃树是梨树的几分之几? 30÷50 3、桃树是梨树与桃树的和的几分之几?
30÷(50+30)
精选课件
5
第二类 求一个数比另一个数多(少)几(百) 分之几(除法计算)
1、求一个数比另一个数多百分之几。
①(一个数-另一个数)÷另一个数 ②(大数-小数)÷小数
用字母表示:
已知 A的n是B,求A. m
①除法
B n m
②解方程 设 A为 x n xB m
精选课件
13
例1 果园里有桃树30棵,
桃树是梨树的
3 5
1、求梨树多少棵?
算式为:(
30÷
3 5
)
2、桃树和梨树一共多少棵?
分数应用题的分类-整理版
分数应用题的分类根据分数应用题的特点,可以把分数应用题分成三大类:一、求一个数是另一个数的几分之几(或百分之几、),1:求一个数是另一个数的几分之几?例:六年级<1>有男生30人,女生24人,女生是男生的几分之几?2:求一个数比另一个数多几分之几(或百分之几)。
3:求一个数比另一个数少几分之几(或百分之几)此类题型特点:分率未知,求分率,用除法计算。
二:求一个数的几分之几(或百分之几、)是多少。
1、求一个数的几分之几(或百分之几、)是多少。
例、小明看一本60页的故事书,第一天看了这本书的32,第一天看的多少页?特点:单位“1”的量已知,用乘法计算。
解题方法:单位“1”的量×所求数量的对应分率 = 所求数量方法是: 单位“1”的量×(1+几分之几)=(1+几分之几)对应量3、求比一个数少几分之几的数是多少。
例、某校六年级有女生120人,男生比女生少51,男生有多少人? 特点:单位“1”的量已知,用乘法计算。
“少”是减法方法是: 单位“1”的量×(1-几分之几)=(1-几分之几)对应量三、已知一个数的几分之几是多少,求这个数。
1: 已知一个数的几分之几是多少,求这个数。
例、六年级<1>班有女生24人,相当于男生人数的51,男生有多少人? 特点:单位“1”的量未知,用除法计算。
解题方法:已知数量÷已知数量的对应分率 = 单位“1”的量2、已知比一个数多几分之几的数是多少,求这个数。
例、六年级<1>有男生30人,比女生多51,女生有多少人? 特点:单位“1”的量未知,用除法计算,“多”是加法。
解题方法:已知数量÷(1+已知数量的对应分率) = 单位“1”的量3、已知比一个数少几分之几的数是多少,求这个数。
例、六年级<1>有女生24人,比男生人数少51,男生有多少人? 特点:单位“1”的量未知,用除法计算,“少”是减法。
六年级数学上册总复习分数应用题六种类型
六年级数学上册总复习分数应用题六种类型一、分数的相等与同分母计算分数的相等可以通过化简分数进行判断,而同分母计算则需要统一分母后进行加减运算。
下面是一些应用题的例子:例题1:小明有5/6的水果,他分给小红1/4,小明自己剩下多少水果?解析:小明分给小红的水果是5/6 * 1/4 = 5/24,小明自己剩下的水果是5/6 - 5/24 = 15/24 = 5/8。
例题2:小华有7/8的糖果,他分给小李3/4,小华自己剩下多少糖果?解析:小华分给小李的糖果是7/8 * 3/4 = 21/32,小华自己剩下的糖果是7/8 - 21/32 = 11/32。
二、分数的大小比较分数的大小比较可以通过将分数转化为相同分母后,比较分子的大小进行判断。
下面是一些应用题的例子:例题1:比较3/4和2/3的大小。
解析:将分数转化为相同分母,得到3/4和2/3,分母相同,比较分子大小,3>2,因此3/4>2/3。
例题2:比较5/6和7/8的大小。
解析:将分数转化为相同分母,得到10/12和7/8,分母相同,比较分子大小,10>7,因此5/6>7/8。
三、分数的加减运算分数的加减运算需要先统一分母,然后按照分子之和(或差)除以相同分母的规则进行计算。
下面是一些应用题的例子:例题1:计算3/4 + 5/6。
解析:将两个分数的分母统一为12,得到9/12和10/12,然后相加得到19/12。
例题2:计算2/3 - 1/4。
解析:将两个分数的分母统一为12,得到8/12和3/12,然后相减得到5/12。
四、分数的乘除运算分数的乘除运算通过分子相乘或相除,以及分母相乘或相除来进行。
下面是一些应用题的例子:例题1:计算2/3 × 3/4。
解析:分子相乘得到6,分母相乘得到12,因此2/3 * 3/4 = 6/12 =1/2。
例题2:计算5/6 ÷ 2/5。
解析:分子相除得到25,分母相除得到12,因此5/6 ÷2/5 = 25/12。
分数除法应用题分类
分数除法应用题一、同步知识梳理1、求一个数的几分之几是多少 .用一个数×几分之几,也就是 :单位“1”的量 ×分率=分率对应量2、求一个数是另一个数的几分之几.用一个数÷另一个数,也就是:对应量÷单位“1”的量=对应分率3、已知一个数的几分之几是多少,求这个数.用一个数÷几分之几,也就是:对应量÷对应分率=单位“1”的量二、同步题型分析题型1:稍复杂的分数除法应用题例1、(1)希望小学四年级的人数比三年级多,四年级是三年级的几分之几?(2)希望小学四年级有学生 286 人,是三年级,三年级有多少人?(3)希望小学四年级有学生286人,比三年级多,三年级有学生多少人?例2、(1)一种节能灯,现在每盏的成本比原来降低了。
现在每盏的成本是原来的几分之几?(2)一种节能灯,现在每盏的成本是 4.6元,是原来的。
原来每盏的成本是多少元?(3)一种节能灯,现在每盏的成本是 4.6元,比原来降低了。
原来每盏的成本是多少元?例3、冰融化成水后体积减少,现有10立方分米的水,结成冰后体积是多少?分析:“冰融化成水后体积减少”是说“水比冰体积减少”,所以冰是单位“1”。
练习:1、某果园今年植树棵树比去年多,今年植树 220 棵,去年植树多少棵?2、商店运进苹果 280 箱,比运进的梨多。
运进的莉有多少箱?3、某机械厂现在生产一种零件成本是28元,比过去降低了,过去生产这种零件成本是多少元?三、课堂达标检测(一)填空1、根据算式补充条件。
小明看一本故事书,已经看了60页, ,未看的有多少页?60÷ 。
60× 。
60×(1+)。
60×(1-)。
60÷(1+)。
60÷(1-)。
2、27吨的是()吨,()千克的是20千克,()千克比16千克多,25千克比()千克少。
比80千克少是()千克。
80千克比()千克少。
分数计算应用题分类
分数计算应用题分类1. 加减乘除应用题这类应用题需要进行基本的加减乘除运算。
通常从实际问题中提炼出算数运算的问题,要求学生运用所学的计算方法解决。
例如:问题:小明有3个苹果,小红给了他2个苹果,最后小明一共有多少个苹果?解答:3 + 2 = 5,所以小明最后有5个苹果。
2. 比例应用题比例应用题涉及到比例的计算和使用。
通常从实际情境中提出比例关系,要求学生根据给定的比例进行计算或推导。
例如:问题:小明每天用1个小时做作业,大约用2个小时做其他事情,他一天总共花了多少个小时?解答:作业时间和其他时间的比例为1:2,所以总共花费的时间为3个小时。
3. 百分比应用题百分比应用题需要计算和应用百分比概念。
通常从实际情境中提出百分比的问题,要求学生计算或应用百分比进行解决。
例如:问题:手机原价是1000元,现在打5折优惠,打折后的价格是多少?解答:5折即50%,打折后的价格为1000元 × 50% = 500元。
4. 数据统计应用题数据统计应用题需要进行数值和统计数据的计算与分析。
通常从给定的数据中提取关键信息,要求学生进行计算和分析。
例如:问题:班级里有30名学生,男生有20人,女生有多少人?解答:30 - 20 = 10,所以女生有10人。
5. 几何应用题几何应用题需要运用几何概念和性质进行计算。
通常通过图形和形状提出问题,要求学生进行计算和推导。
例如:问题:一个矩形的长是2cm,宽是3cm,面积是多少平方厘米?解答:面积 = 长 ×宽 = 2cm × 3cm = 6平方厘米。
以上是常见的分数计算应用题分类,通过不同类型的应用题,可以帮助学生巩固和应用所学的分数计算知识。
分数应用题的六种类型整理
②已知比一个数少几分之几的数是多少,求这个数。
用字母表示:
已知A,A比B少 n ,求B。
m
①除法
②解方程
A 1 n m
设 B为 x
1 n x A
m
分数应用题的六种类型整理
例
果园里有桃树30棵,桃树比梨树少
2 5
梨树多少棵?
30÷(1-
2 5
)
这是一类 怎样的分数应用题?解答这类 应用题要注意什么问题 ?
分数应用题的六种类型整理
(1)池塘里有12只鸭和4只鹅,
鹅的只数是鸭的几分之几?
单位“1”
鸭:
鹅:
4只
12只
求一个数是另一个数的几分之几(或
几倍)是多少,用除法计算。
4÷12=
1 3
1 答:鹅的只数是鸭的 。 3 分数应用题的六种类型整理
(2)池塘里有12只鸭,鹅的只数是鸭
的
1 3
。池塘里有多少只鹅单?位“1”
分数应用题的六种类型整理
我们一起来小结: 解答分数应用题要准确判断题目中的
( 单位“)1”,根据单位“1”已知还是 未知,单位“1”已知选择( 乘法)、单 位“1”未知选择( 除法),同时要处 理好( 数量间的对应关系)。
找单位“1”的方法有( )
分数应用题的六种类型整理
①电视机厂今年生产电视机36000台,相当于去年产量的1/4, 去年生产多少台?
②电视机厂今年生产电视机36000台,比去年少生产1/4,去 年生产多少台?
③电视机厂今年生产电视机36000台,比去年多生产1/4,去 年生产多少台?
④电视机厂今年生产电视机36000台,去年产量是今年的1/4, 去年生产多少台?
小学数学分数应用题类型题大全及例题解析
小学数学分数应用题类型题大全及例题解析研究必备:小学分数应用题大全及例题解析一、基础理论分数应用题是小学数学教学中的重点和难点。
它大体可以分成两种类型:一种是基本数量关系与整数应用题基本相同,只是把整数应用题中的已知数换成分数,解答方法与整数应用题基本相同;另一种是根据分数乘除法的意义而产生的具有独特解法的分数应用题。
分数应用题主要讨论的是以下三者之间的关系:分率、标准量和比较量。
二、分数应用题的分类1、求一个数的几分之几是多少。
这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,解这类应用题用乘法。
即反映的是整体与部分之间关系的应用题,基本的数量关系是:整体量×分率=分率的对应的部分量;或已知一个看作单位“1”的数,另一个数占它的几分之几,求另一个数,即反映的是甲乙两数之间关系的应用题,基本的数量关系是:标准量×分率=分率的对应的比较量。
2、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基本的数量关系是:比较量÷标准量=分率。
以上是小学分数应用题的基础理论和分类,学生们可以结合例题进行练和掌握。
已知一个数的几分之几是多少,需要求这个数。
解决这类问题需要使用除法。
基本的数量关系是:分率对应的比较量除以分率等于标准量。
1)已知一个数的几分之几是多少,需要求这个数:分率对应的比较量除以几(分率)等于标准量。
2)已知一个数比另一个数多几分之几,需要求这个数:分率对应的比较量除以(几)等于多多少。
3)已知一个数比另一个数多几分之几,需要求这个数:分率对应的比较量除以(1+几)等于标准量。
4)已知一个数比另一个数少几分之几,需要求这个数:分率对应的比较量除以几等于少多少。
5)已知一个数比另一个数少几分之几,需要求这个数:分率对应的比较量除以(1-几)等于标准量。
在解决分数应用题时,正确审题非常重要。
需要能准确分清比较量和标准量,并判断标准量是已知还是未知。
分数的三种基本应用题数量关系及解题关键
分数的三种基本应用题数量关系及解题关键分数乘、除法应用题,既含有整数乘、除法应用题的数量关系,又具有新的数量关系,通常分为三种情况,或者叫做分数的三种基本应用题:1、求一个数是另一个数的几分之几或百分之几的除法应用题。
(1)简单的求分率或百分率的应用题基本数量关系:对应量÷单位“1”的量=对应分率(百分率)或部分量÷标准量 =对应分率(百分率)在实际生活中,经常需要比较两个数量的倍数关系,当它们的倍数等于1或大于1的时候,通常称为“几倍”;当它们的倍数小于1的时候,通常称为“几分之几”。
学习整数应用题的时候,只知道一个数是另一个数几倍。
如:白兔16只,黑兔4只,白兔只数是黑兔的16÷4=4(倍)。
到了学习分数以后,黑兔的只数也可以与白兔去比较,即黑兔的只数是白兔的4÷16=。
当学习了百分数以后,数是另一个数的几倍或几分之几,就统一为一个数是另一个数的百分之几了。
即:4÷16=25%这类问题的数量关系跟整数里求两个数的倍数是一致的,要求掌握谁与谁相比较。
如,甲是乙的几分之几,是用甲与乙相比较,那么乙是标准的量,甲是比较的量。
并且知道用标准的量作除数。
百分数在实际应用上,还有一些特殊性。
求一个数是另一个数的百分之几,也叫做两个数的百分比或百分率。
例如,产品合格率,种子发芽率,工人出勤率,存款的利息率,向国家交税的纳税率等。
所求的这些“率”,都是用百分数表示的,所以,在这些百分率的公式里,添上乘以100%,表示求得的结果必须用百分数表示。
求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等a率=a的数量÷总量×100%如,小麦出粉率=×100%在百分数里,经常会遇到除不尽的情况,除了指定精确度的以外,一般除到小数第四位,即万分位,然后四舍五入取三位小数,化成百分数后,百分号前面的数保留一位小数。
(2)稍复杂的求一个数比另一个数多(或少)百分之几实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
分数应用题类型总结
小学数学学习材料金戈铁骑整理制作分数应用题类型总结第一类、一个数的几分之几。
已知单位“1”,用乘法。
“是”“比”“占”后面是单位1,已知单位“1”,用乘法。
“是比占”相当于“=”“的”相当于“×”例1: 已知甲数是乙数的53,乙数是25,求甲数是多少?甲数 = 乙数 ×53 即25×53=15 1.(1)某校有男生240人,女生是男生的 65,女生有多少人?第二类、一个数的几分之几。
未知单位“1”,用除法。
“是”“比”“占”后面是单位1,未知单位“1”,用除法。
“是比占”相当于“=”“的”相当于“×” 例: 甲数是乙数的53,甲数是15,求乙是多少?甲 = 乙 × 53 即:15÷53=25 1、果园里有桃树120棵,桃树的棵数是梨树的41,果园里有桃树多少棵?第三类、两步乘除此类型的题是第一第二类题目综合运用,一般要经过两步才能得到答案。
1、A 、小明有图书48本,小芳的图书是小明的65,小利的图书是小芳的43,小利有图书多少本?分析:这种类型的题目要倒着分析,从问题开始分析。
思路:a 看问题求小利有图书多少本;b 小利的图书是小芳的3/4;从ab 看,如果知道小芳的图书本数,即可求出小利有多少本图书,小芳的图书是单位‘1’,小利图书=小芳图书×1/4,从题目看,小芳的图书本数没有直接给出,现在还不能求出小利的图书本数,接着看题目。
C 小芳的图书是小明的5/6;如果知道小明的图书本数即可求出小芳的图书本数,小明的图书是单位‘1’,小芳图书=小明图书×5/6,随之可求出小利的图书本数;d 最后,彩蛋来了,“小明有图书48本”有了这个条件,根据c 可求出小芳的图书本数,根据b 可求出小利图书本数。
看明白了吗?从问题开始分析,根据条件一步步得到答案,像柯南找破案一样,很酷吧。
自己尝试做一下吧B 、小利有图书45本,小芳的图书是小明的65,小利的图书是小芳的43,小明有图书多少本?2、A 、果园里有桃树80棵,梨树的棵树是桃树的169,又是苹果树的3215,果园里有多少棵苹果树?B 、果园里有桃树45棵,桃树的棵数是梨树的169,苹果树的棵数是梨树的2017,果园里有多少棵苹果树?第四类、比单位“1”多或者少,已知单位“1”.甲比乙多几分之几,已知乙,求甲。
《分数混合运算》应用题培优专题
分数混合运算(应用题专题)一、分数应用题主要讨论的是以下三者之间的关系:分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
标准量:解答分数应用题时,通常把题目中作为单位“ 1”的那个数,称为标准量。
比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
二、题型分类1、求一个数的几分之几是多少。
这类问题特点是已知一个看作单位“ 1”的数,求它的几分之几是多少,解这类应用题用乘 法。
即反映的是整体与部分之间关系的应用题,基本的数量关系是:标准量×分率=分率的对应的比较量。
(1)求一个数的几分之几是多少: 标准量×(分率) =是多少 几几(3)求比一个数多几分之几是多少: 标准量×( 1 +几几)(分率) =是多少几 几(5)求比一个数少几分之几是多少: 标准量×( 1 - 几几)(分率) =是多少 2、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量, 比较它们之间的倍数关系, 解这类应用题用除法。
基本的数 量关系是:比较量÷标准量=分率。
(1)求一个数是另一个数的几分之几 : 比较量÷标准量=分率(几分之几) 。
(2)求一个数比另一个数多几分之几: 相差量÷标准量=分率(多几分之几)。
(3)求一个数比另一个数少几分之几: 相差量÷标准量=分率(少几分之几)。
3、已知一个数的几分之几是多少,求这个数。
(4)求比一个数少几分之几少多少: 标准量× (分率) =少多少(2)求比一个数多几分之几多多少: 标准量× (分率) =多多少几 几这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量,解这类应用题用除法。
基本的数量关系是:分率对应的比较量÷分率=标准量。
(1)已知一个数的几分之几是多少,求这个数 : 是多少(分率对应的比较量)÷几几(分率)=标准量。
分数应用题知识解析
分数应用题剖析基础理论(一)分数应用题的构建1、分数应用题是小学数学教学中的重点和难点。
它大体可以分成两种:(1)基本数量关系与整数应用题基本相同,只是把整数应用题中的已知数换成分数,解答方法与整数应用题基本相同。
(2)根据分数乘除法的意义而产生的具有独特解法的分数应用题,这就是我们通常说的分数应用题。
2、分数应用题主要讨论的是以下三者之间的关系:(1)分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
(2)标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(3)比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(二)分数应用题的分类1、求一个数的几分之几是多少。
这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,解这类应用题用乘法。
即反映的是整体与部分之间关系的应用题,基本的数量关系是:整体量×分率=分率的对应的部分量;或已知一个看作单位“1”的数,另一个数占它的几分之几,求另一个数,即反映的是甲乙两数之间关系的应用题,基本的数量关系是:标准量×分率=分率的对应的比较量。
2、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基本的数量关系是:比较量÷标准量=分率。
(1)求一个数是另一个数的几分之几:比较量÷标准量=分率(几分之几)。
(2)求一个数比另一个数多几分之几:相差量÷标准量=分率(多几分之几)。
(3)求一个数比另一个数少几分之几:相差量÷标准量=分率(少几分之几)。
3、已知一个数的几分之几是多少,求这个数。
这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量,解这类应用题用除法。
基本的数量关系是:分率对应的比较量÷分率=标准量。
【解题步骤】一、正确的找单位“1”是解决分数应用题的前提。
分数应用题三大类训练[1]
第一讲分数应用题分数应用题是小学应用题的重难点之一。
解答分数应用题时,关键是判断哪个数量是标准量(即单位“l”),然后找出比较量的对应分率。
对于较复杂的分数、百分数应用题,可通过画线段图来揭示数量与分率的对应关系。
分数应用题大致可分为三种类型:一、求一个数是另一个数的几分之几的应用题这类应用题和整数应用题中求一个数是另一个数的几倍一样,都是比较两个数的倍数关系,都是用一个数除以另一个数,不同的是分数应用题所除的商是分率。
解答这类应用题时,应从“所求问题”入手.弄清是以什么数量为标准量,什么数量与标准量相比较就是比较量,其数量关系是:比较量÷标准量=分率。
或一个数÷另一个数=分率(即一个数是另一个数的几分之几),这类应用题还可以延伸为一个数比另一个数多(少)几分之几。
这时标准量仍为另一个数,而比较量则为一个数比另一个数多(少)的部分。
二、求一个数的几分之几的应用题求一个数的几分之几这种类型应用题是根据题目所给的标准量和比较量的对应分率求出比较量,解答这类应用题的关键:一是要确定题目中哪一个是标准量(标准量一般在题目的已知条件中),二是要根据题目所要求解答的问题,找出它所占标准量的对应分率,然后用标准量乘以分率,就可以求出它的比较量。
标准量×对应分率=比较量三、已知一个数的几分之几是多少,求这个数的应用题解答这类应用题的关键,同样应通过对分率的分析,要认真判断题目中是以什么数量为标准量(单位“1”),正确找出表示已知数量与所求问题之间的对应关系的分率,用比较量除以分率,就可以求出标准量,当标准量(单位“1”)未知时,设它为x,就将问题转化为求x的几分之几是多少,求出x的值。
如果这种分析方法比较熟悉以后,可以不必通过列方程,而直接引出算出式,解答其数量关系式是:比较量÷对应分率=标准量分数应用题又是小学应用题的巅峰,它可以汇集小学所有应用题关系,在数量关系方面错综复杂,为了更好地把握其结构和解答方法,我们将分数应用题分类更详细些。
复杂分数应用题类型
复杂分数应用题类型一、求一个数是另一个数的几分之几(或百分之几)的应用题1. 题目示例- 果园里有苹果树80棵,梨树100棵,苹果树的棵数是梨树的几分之几?- 解析:求苹果树的棵数是梨树的几分之几,就是用苹果树的棵数除以梨树的棵数。
即80÷100=(80)/(100)=(4)/(5)。
2. 变化形式- 某班有男生25人,女生20人,女生人数是男生人数的百分之几?- 解析:用女生人数除以男生人数再乘以100%,20÷25×100% =0.8×100%=80%。
二、求一个数的几分之几(或百分之几)是多少的应用题1. 题目示例- 一本故事书有200页,小明第一天看了全书的(1)/(4),小明第一天看了多少页?- 解析:求一个数的几分之几是多少,用这个数乘以分数。
这里就是200×(1)/(4)=50(页)。
2. 变化形式- 一种商品原价80元,现在降价20%,现在的价格是多少元?- 解析:先求出降价后的价格是原价的百分之几,1 - 20%=80%,然后用原价乘以这个百分数,80×80% = 80×0.8 = 64(元)。
三、已知一个数的几分之几(或百分之几)是多少,求这个数的应用题1. 题目示例- 小红看一本故事书,已经看了45页,占全书的(3)/(5),这本故事书一共有多少页?- 解析:已知一个数的几分之几是多少,求这个数,用除法。
这里全书的页数为45÷(3)/(5)=45×(5)/(3)=75(页)。
2. 变化形式- 某工厂有男职工120人,男职工人数占全厂职工人数的60%,全厂职工有多少人?- 解析:全厂职工人数为120÷60%=120÷0.6 = 200(人)。
四、工程问题(把工作总量看作单位“1”的分数应用题)1. 题目示例- 一项工程,甲队单独做10天完成,乙队单独做15天完成,两队合作多少天可以完成?- 解析:甲队单独做10天完成,则甲队每天的工作效率是(1)/(10);乙队单独做15天完成,则乙队每天的工作效率是(1)/(15)。
小学奥数与应用题——分数应用题
小学奥数与应用题——分数应用题小学奥数与应用题——分数应用题分数应用题一般有三种类型:1.求一个数a的几分之几是多少,即a乘以n除以m等于b;2.求一个数a是另一个数的b几分之几,即a除以b等于n除以m;3.已知一个数的几分之几是多少,求这个数,即b除以n 等于a除以m。
这三种分数应用题之间有联系,解题时要搞清楚它们之间的关系。
在解答分数应用题时,关键要通过分析数量关系,把每一道题中的某个量看作单位“1”,找出解题的数量关系式,再根据分数与除法的关系或一个数乘以分数的意义列式解答。
分数应用题在工农业生产和实际生活中应用十分广泛。
虽然这类应用题的变化很多,但只要认真去探索、去思考,也不难发现其中的解题规律。
1.基本类型在解答基本的分数应用题时,要抓住题目中的关键句进行分析。
首先明确单位“1”,如果单位“1”已知,用乘法计算;如果单位“1”未知,要先求出单位“1”,用除法或列方程计算;其次在列式时要考虑具体数量和分率之间的对应关系。
例如,在求一个中剩余多少油的问题中,如果已知一桶油的容量是4升,第一次用去11分之3,第二次用去34分之11,那么我们要先求出这桶油一共多少升,再求出还剩下多少升。
根据题意可以知道,一桶油的容量是4升,可以求出这桶油的总数是:4÷3/11=14(升)然后,我们可以先求出还剩这桶油的几分之几,即:1-11/34-5/12=5(升)答案是还剩下5升。
再例如,某工厂计划生产一批零件,第一次完成计划的1/4,第二次完成计划的13/27,第三次完成计划的超过计划的1/9,那么我们要求出计划生产零件的总数。
将“计划生产的零件个数”当作“1”,根据题意,我们首先要求出450个零件占计划任务的几分之内。
实际上“450个零件”可以分为两部分:一是完成剩下的任务1-13/27,二是超过部分“1/9”。
那么450个零件的对应分率就是:1-13/27+1/9=28/274计划生产零件的总数x可以用列方程的方法来解答:x/1=28/274x=1400答案是计划生产零件1400个。
分数应用题解题方法详解
分数应用题解题方法解答分数乘法应用题时,可以借助于线段图来分析数量关系。
在画线段图时,先画单位“1”的量。
一、分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)二、分数应用题的分类。
(三类)1、求一个数的几分之几是多少。
(解这类应用题用乘法)这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,它反映的是整体与部分之间关系的应用题,基本的数量关系是:单位“1”的量×分率=分率对应的量。
2、已知一个数的几分之几是多少,求这个数。
(解这类应用题用除法)这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量。
基本的数量关系是:分率对应的量÷分率=单位“1”的量。
3、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基本的数量关系是:比较量÷标准量= 对应分率。
三、分数应用题的基本训练。
1、正确审题训练。
正确审题是正确解题的前提。
这里所说的审题,首先是根据题中的分率句,能准确分清比较量和单位“1”的量(看分率是谁的几分之几,谁就是单位“1”的量)。
判断单位“1”的量:知道单位“1”的量(用乘法),未知道单位“1”的量(用除法),为确定解题方法奠定基础;其次会把“比”字句转化成“是”字句;第三是能将省略式的分率句换说成比较详细的句子的能力。
2、画线段图的训练。
线段图有直观、形象等特点。
按题中的数量比例,恰当选用实线或虚线把已知条件和问题表示出来,数形结合,有利于确定解题思路。
3、量、率对应关系训练。
量、率对应关系的训练是解较复杂分数应用题的重要环节。
通过训练,能根据应用题的已知条件发挥联想,找出各种量、率间接对应关系,为正确解题铺平道路。
六年级分数百分数应用题分类总结
六年级分数百分数应用题分类总结六年级分数、百分数应用题分类总结第一类:求一个数的几分之几(百分之几)是多少?(用乘法,包括连乘)1、某食油批发店,上午卖出花生油96箱,下午卖出的是上午的5/12,下午卖出多少箱?2、一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米?3、水果店运来苹果20筐,运来的橘子的筐数是XXX的12%,运来橘子多少筐?4、修一段公路,第一天修300米,第二天比第一天的7/15少60米,第二天修多少米?5、水果店进苹果36箱,进的梨的箱数是XXX的12%(5/8)。
(1)进的梨的箱数是多少?(2)进的梨的箱数比苹果少多少箱?(3)进的梨和苹果共有多少箱?6、小红体重42千克,小方体重38千克,XXX的体重相当于小红和小方体重总和的50%,XXX体重多少千克?7、从XXX汇款需要交1%的汇费,寄2000元需要交多少汇费?8、王格尔塘镇中小学和XXX的男生人数分别占全校学生总数的52%,王格尔塘镇中小学有学生800人,XXX有学生750人,哪一个学校的男生多?多几何人?9、XXX在银行里储蓄了1200元钱,取出一部分捐献给灾区,还剩40%,他捐献了几何元?10、养鸡场用2400个鸡蛋孵小鸡,有5%没有孵出来,孵出来几何只小鸡?11、王格尔塘镇中小学有学生480人,只有10%的学生没有参加意外事故保险,参加保险的学生有多少?12、一个长方形花坛,长是12米,宽是长的60%,这个花坛的面积是几何?13.XXX有480人,只有5%的学生没有参加意外事故保险。
参加保险的学生有多少人?14XXX开展回收废纸活动,共回收废纸87.5吨,用废纸生产再生纸的再生率为80%,这些回收的废纸能生产多少吨再生纸?15.海象的寿命大约是40年,海狮的寿命是海象的3/4,海豹的寿命是海狮的2/3。
海豹的寿命大约是多少年?第二类:(1)求甲数是/占/相当于)已数的几分之几(百分之几)?(用除法:甲数÷已数)1、六(1)班有男生30人,女生20人,男、女生各占全班的几分之几?2、某村计划种树250棵,实践种树200棵,计划种树的棵树是实践的百分之几?第三类:已知甲数的几分之几(或百分之几)是几何,求甲数(用除法大概用方程解)1、工地运来的水泥有24吨,运来的水泥是黄沙的5/6,运来的黄沙有几何吨?2、水果店运来苹果28箱,正好是运来梨的箱数的45%,运来的梨有几何箱?3、一辆客车从甲地开往乙地,已行240千米,占全长的30%,甲乙两地相距几何千米?4、鲜牛肉煮熟后的重量只有原来的5/12,要获得熟牛肉26千克,需求鲜牛肉几何千克?5、王格尔塘下摊村种玉米120公顷,种玉米的面积是种小麦面积的36%,这个村种小麦几何公顷?6、我校有女生160人,正好占男生人数的42%,全校有多少人?7、某电视机厂去年上半年生产电视机48万台,是下半年产量的80%,这个电视机厂去年全年的产量是多少万台?8、一辆汽车从甲地到乙地,行了全程的3/4,行了240千米,还剩多少千米没有行?9、一辆汽车以每小时45千米的速度从甲地到乙地,3小时行了全程的15%,这辆汽车还要行多少千米才能到达乙地?10、XXX有1800元,是XXX的12%,XXX的钱是XXX的8%,XXX有多少元?11、XXX看一本书,第一天看了18页,第二天看了全书的97%,还余45页没有看,这本书共有多少页?12、修一条公路,已经修了全长的4/5,未修的比已修的少28千米,这条公路全长多少千米?13、草地上的灰兔的只数是白兔的60%,白兔比灰兔多10只,白兔有几何只?14、我已经打了2000个字,正好打了全文的40%。
六年级分数的单位1应用题-三大分类
分数应用题的分类(一般我们把它分为:三类)解答分数乘法应用题时,应该借助于线段图来分析数量关系。
在画线段图时,先画单位“1”的量分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量(单位“1”):解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)第一类:1、求一个数是另一个数的几分之几。
这类问题特点是:已知两个数量,比较它们之间的倍数关系,(解这类应用题用除法)。
方法L 一个数+另一个数=几分之几例如:学校的果园里有梨树15棵,苹果树20棵。
梨树的棵数是苹果树的几分之几?梨树的棵数+苹果树的棵数=梨树的棵数是苹果树的几分之几154-20 = 3/4方法2、求一个数比另一个数多几分之几。
相差量子单位上分率(多几分之几)。
例如:学校的果园里有梨树15棵,苹果树20棵。
苹果树的棵数比梨树多几分之几?苹果树比梨树多的棵数♦梨树树的棵数二多几分之几(20—15) 4-15 = 1/3方法3、求一个数比另一个数少几分之几。
相差量+单位1二分率(少几分之几)。
例如:学校的果园里有梨树15棵,苹果树20棵。
梨树的棵数比苹果树少几分之几? 梨树比苹果树少的棵数+苹果树的棵数二少几分之几(20—15) +20= 1 4 答:梨树的棵数比苹果树少1/4 o练习题:求一个数是另一个数的几分之几。
1、六(1)班有男生30人,女生27人,男生人数是女生人数的几分之几?_____________________________________女生人数是男生人数的几分之几?_____________________________________男、女生人数各占全班人数的几分之几?男生人数比女生人数多几分之几? ______________________________________女生人数比男生人数少几分之几?_____________________________________2、五年级植树145颗,六年级植树210颗,五年级是六年级的几分之几?3、五年级植树145颗, 六年级植树210颗,六年级比五年级多几分之几?4、五年级植树145颗, 六年级植树210颗,五年级比六年级少几分之几?5、五年级植树145颗,六年级比五年级少植树20颗,六年级比五年级少几分之几?6、五年级植树145颗,六年级比五年级少植树20颗,五年级比六年级多几分之几?7、一件大衣,平时售价400元,元旦期间,售价300元,元旦期间,这件大衣降价几分之几?8、小华家去年年收入3万元,今年年收入3. 6万元,小华家今年年收入比去年收入增长几分之几?9、一头牛的重量约为一头大象重量的1/10, 一头大象的重量比一头牛的重量重几分之几?一头牛的重量比一头大象的重量轻几分之几?第二类:求一个数的几分之几是多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数应用题的分类根据分数应用题的特点,可以把分数应用题分成三大类:一、求一个数是另一个数的几分之几(或百分之几、),1:求一个数是另一个数的几分之几?例:六年级<1>有男生30人,女生24人,女生是男生的几分之几?方法是: 一个数 ÷另一个数算式: 30÷24 =这里“是”是关键词,也就是“是”字后面的是单位“1”2:求一个数比另一个数多几分之几(或百分之几、几倍)。
例:甲数是5,乙数是4,甲数比已数多几分之几》?方法是:(甲数-乙数) ÷乙数这里的关键词是“比”,比字后边的是单位“1”。
算式:(5-4)÷4 =3:求一个数比另一个数少几分之几(或百分之几、几倍)例:甲数是5,已数是4,已数比甲数少几分之几》?方法是:(甲数-乙数) ÷甲数=这里的关键词是“比”,比字后边的是甲数,所以甲数是单位“1”。
算式: (5-4)÷5 =此类题型特点:分率未知,求分率,用除法计算。
二:求一个数的几分之几(或百分之几、)是多少。
1、求一个数的几分之几(或百分之几、)是多少。
例、小明看一本60页的故事书,第一天看了这本书的32,第一天看的多少页? ( 这里“这本书”是单位“1”,是谁的 32 谁就是单位“1”.) 特点:单位“1”的量已知,用乘法计算。
解题方法:单位“1”的量×所求数量的对应分率 = 所求数量算式: 60×2 =40(页)例、某校六年级有女生120人,男生比女生少51,男生有多少人? 特点:单位“1”的量已知,用乘法计算。
“少”是减法方法是: 单位“1”的量×(1-几分之几)=(1-几分之几)对应量算式:120×(1-51)= 三、已知一个数的几分之几是多少,求这个数。
1: 已知一个数的几分之几是多少,求这个数。
例、六年级<1>班有女生24人,相当于男生人数的51,男生有多少人? ( 这里“相当于”是关键词,所以男生人数是单位“1”.)特点:单位“1”的量未知,用除法计算。
解题方法:已知数量÷已知数量的对应分率 = 单位“1”的量 算式: 24÷51=24×5=120(人) 2、已知比一个数多几分之几的数是多少,求这个数。
例、六年级<1>有男生30人,比女生多51,女生有多少人? ( 这里“比”是关键词,所以女生人数是单位“1”.)特点:单位“1”的量未知,用除法计算,“多”是加法。
解题方法:已知数量÷(1+已知数量的对应分率) = 单位“1”的量算式: 30÷(1+51)= 3、已知比一个数少几分之几的数是多少,求这个数。
例、六年级<1>有女生24人,比男生人数少51,男生有多少人? ( 这里“比”是关键词,所以男生人数是单位“1”.)特点:单位“1”的量未知,用除法计算,“少”是减法。
解题方法:已知数量÷(1-已知数量的对应分率) = 单位“1”的量算式: 24÷(1-51)= 在小升初数学应用题中,可以分为方程的应用题、比的应用题、百分数的应用题、圆的应用题、分数的应用题和其他应用题。
下面是奥数网小编为大家整理的分数应用题的归类和详细解析,大家在分数应用题感觉还有所不够的话,可以参考下!小升初分数应用题归类详解(一)求一个数是另一个数的几分之几(百分之几)的应用题在分数、百分数三类基本应用题和较复杂的应用题中是以“求一个数是另一个数的几分之几(百分之几)”应用题为基础的。
这是因为这类应用题,在实际工作和生活中应用广泛,另一方面通过这类应用题的学习,搞清百分数的基本数量关系,也就有利于其他两类百分数应用题的理解。
“求一个数是另一个数的几分之几(百分之几)”应用题的结构特征是:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。
这里,“一个数”是比较量,“另一个数”是标准量。
因此,这一类问题的实质是已知比较量和标准量,求分率或百分率,也就是求它们的倍数关系。
其解法是:分率(百分率)=比较量÷标准量解这类问题,找准标准量和比较量是关键。
分析方法一般是在弄清已知条件和问题的相依关系的基础上,从问题入手,搞清谁与谁比,以谁做标准,分清比较量与标准量;如果两个量中有一个是未知数,那么,首先应通过已知条件先求出这两个数,才能进行解答。
要使比较量、标准量找得准确,还必须了解这类应用题的关键句式。
按其形式来分,可以有以下三种:1.基本句式:“甲是乙的几分之几(百分之几)”甲是比较量,乙是标准量,几分之几(百分之几)”是分率(百分率)。
即甲与乙比,甲是比较量,乙是标准量。
句式为:“……是……的……”。
类似的提法有:“……占……的……”、“……相当于……的……”、“……完成了……的……”等。
其规律一般是:用“是”、“占”、“相当于”、“完成了”等词连接的两个量,前面那个量是比较量,后面那个量是标准量。
2.引伸句式:“甲比乙多(或少)几分之几(百分之几)”。
这种用“比……多(或少)……”的句式连接的两个量中的比较量发生了变化。
必须弄清这种句式的实际意义,即:“甲-乙比乙多(或少几分之几)或(百分之几)”。
与“……比……(标准量)多……”类似,而涉及实际意义的有:“……比……增加、提高、超额、超过、上升……”等。
与“……比……少…… ”相类似而涉及实际意义的有:“……比……减少、降低、下降、缩小、慢、节省、节约……”等。
其规律一般是:“……比……多(或少)……”的句式中,比字后面那个量是标准量,而比较量则是两个相关联的量之差。
3.省略句式:在分数、百分数应用题中,大部分叙述句中省略了某些成份,这一类应用题更多体现在问句中。
在分析问题时,必须把省略简化了的成份补述出来,以便正确地确定比较量和标准量。
一般来说,“……占……的……”句中的“占”一类的关键词不写出来。
如“完成了几分之几(百分之几)”“增产几分之几(百分之几)”“降低……”等。
以“价格降低了百分之几?”为例,原意是:“降低的部分占原价的百分之几”又如“实际超产百分之几”原意则是:“实际产量比原计划超过百分之几。
”标准量分别是原价格和原计划,而比较量则是降低和超过的部分。
除此之外在审题时还应注意类似“增加到”“增加了”“减少到”“减少了”等概念的区别。
在解法方面,与基本应用题相应的较复杂应用题大致有:1.已知甲乙两数,求甲数比乙数多几分之几(百分之几)。
这种类型题的解法是:甲数÷乙数2.已知甲乙两数,求乙数比甲数少几分之几(百分之几)。
这种类型题的解法是:(甲数-乙数)÷甲数×100%如果按应用题涉及的实际意义来分类,常见的有:A、求实际完成任务量的百分数。
解法是:实际生产数÷计划数×100%B、求超额完成量的百分数。
解法是:(实际生产数-计划数)÷计划数×100%C、求降低价格的百分数。
解法是:(原价格-后来价格)÷原价格100%D、求增长率。
解法是:(后来生产量-原产量)÷原产量100%根据这一类应用题涉及的实际意义、范围及其解法可概括为四个部分。
1.基本型。
已知两个具体数,求它们之间的或它们各自与总量之间倍数关系的应用题(包括求发芽率、浓度、误差、复种指数等),即:(1)已知甲数与乙数,求甲数是乙数的几分之几(百分之几),乙数是甲数的几分之几(百分之几)。
(2)已知甲数和乙数,求甲数占甲乙总数的几分之几(百分之几),乙数占甲乙总数的几分之几(百分之几)。
例1.三年级一班有42名同学。
参加游泳比赛的有18名。
参加游泳比赛的占全班人数的几分之几?分析:“求参加游泳比赛的人数占全班人数的几分之几”,是参加比赛的人数与全班人数比,应以全班人数做标准量。
解:18÷42=18/42=3/7 答:参加游泳比赛的占全班人数的3/7例2.机修车间有男工25人,女工20人,女工占车间总人数的百分之几?分析:“求女工占车间总人数的几分之几”应以车间总人数为标准量。
解:总人数:25+20=45(人) 20÷45≈44.4% 答:女工占车间总人数的44.4%。
例3.玩具厂第一季度计划制造电动玩具600件,实际多做了48件。
完成计划的百分之几?分析:“求完成计划百分之几”,要以计划数做标准量,实际数做比较量。
解法1:(600+48)÷600=648÷600=108%解法2:把计划数看做整体“1”,则实际比计划多做48÷600=8%,共完成计划数的8%+1=108%。
即:4 8÷600+1=8%+1=108% 答:完成计划的108%。
例4.试验组用500粒小麦种子做发芽试验,有490粒种子发了芽。
求发芽率。
分析,“率”就是比率,就是百分比。
求发芽率就是求发芽数占种子总数的百分之几。
以种子总数做标准量。
解:发芽数÷种子总数×100% 即:490÷500×100%=98% 答:发芽率是98%。
同理:求出粉率。
就是求出粉数占粮食总数的百分之几,以粮食总数为标准量。
求出油率。
就是求出油数占原料总数的百分之几,以原料总数为标准量。
求出勤率。
就是求出勤人数占总人数的百分之几,以总人数为标准量。
求成活率。
就是求活了的数占总数的百分之几,以总数为标准量。
求合格率。
就是求合格的数占产品总数的百分之几,以产品总数为标准量。
例5.把12.5千克食盐放入1000千克水中,溶成盐水。
求盐水的浓度。
分析:把食盐放入水中后形成的食盐水,叫做溶液,食盐叫溶质。
溶质与溶液的百分比,叫做浓度。
求浓度就是求溶质占溶液的百分之几,以溶液为标准量。
根据题意溶液是食盐与水重量的和。
解:12.5÷(12.5+1000)×100%≈1.23% 答:盐水的浓度约是1.23%。
例6.从甲城到乙城实际距离是75.18千米,测得结果是75.04千米。
求误差对于测量值的百分比。
分析:误差:是实际长度和测量结果的差。
“求误差对于测量值的百分比”,就是求误差与测量值的百分比。
以测量值为标准量。
解:(75.18-75.04)÷75.04≈0.19% 答:误差对于测量值的百分数约是0.19%。
2.引伸型。
求一个数比另一个数多(或少)几分之几(百分之几)的应用题。
这部分应用题是基本类型的引伸。
一般有:(1)已知甲(大数)、乙(小数)两数,求甲数比乙数多几分之几(百分之几);(2)已知甲(大数)、乙(小数)两数,求乙数比甲数少几分之几(百分之几);这类题的解法规律是先求出两个数的差,以差作为比较量。
但不能误认为甲数比乙数多几分之几(百分之几),乙数就比甲数少几分之几(百分之几)。