生物化学常用名词解释
生物化学 名词解释
糖代谢1、糖酵解:葡萄糖经一系列酶促反应步骤转变成丙酮酸的过程。
2、发酵:细菌和酵母等微生物在无氧条件下,酶促降解糖分子产生能量的过程。
3、巴斯德效应:巴斯德发现的有氧氧化抑制糖的无氧酵解的作用。
是有氧氧化产生了较多的A TP抑制了糖酵解的一些酶所致,有利于能源物质的经济利用。
4、底物水平磷酸化:物质在生物氧化过程中,常生成一些含有高能键的化合物,而这些化合物可直接偶联ATP或GTP的合成,这种产生ATP等高能分子的方式称为底物水平磷酸化。
5、糖原分解:从糖原解聚生成葡萄糖的细胞内分解过程,由糖原磷酸化酶等催化完成。
6、糖原合成:体内由葡萄糖合成糖原的过程。
7、磷酸解作用:通过在分子内引入一个无机磷酸,形成磷酸脂键而使原来键断裂的方式。
实际上引入了一个磷酰基。
8、糖异生作用:由简单的非糖前体转变为糖的过程。
糖异生不是糖酵解的简单逆转。
虽然由丙酮酸开始的糖异生利用了糖酵解中的七步进似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应。
9、丙酮酸脱氢酶系:又称丙酮酸脱氢酶系,是一种催化丙酮酸脱羧反应的多酶复合体,由三种酶(丙酮酸脱氢酶、二氢硫辛酸转乙酰基酶、二氢硫辛酸脱氢酶)和六种辅助因子(焦磷酸硫胺素、硫辛酸、FAD、NAD、CoA和Mg离子)组成,在它们的协同作用下,使丙酮酸转变为乙酰CoA 和CO2。
10、柠檬酸循环:体内物质糖类、脂肪或氨基酸有氧氧化的主要过程。
通过生成的乙酰辅酶A与草酰乙酸缩合生成柠檬酸(三羧酸)开始,再通过一系列氧化步骤产生CO2、NADH及FADH2,最后仍生成草酰乙酸,进行再循环,从而为细胞提供了降解乙酰基而提供产生能量的基础。
由克雷布斯(Krebs)最先提出。
11、回补反应:补充生成某些成分以利于重要代谢通路的进行。
如三羧酸循环中通过多种方式生成草酰乙酸,以利于乙酰辅酶A进入三羧酸循环降解。
12、乙醛酸循环:异柠檬酸裂解酶的催化下,异柠檬酸被直接分解为乙醛酸,乙醛酸又在乙酰辅酶A参与下,由苹果酸合成酶催化生成苹果酸,苹果酸再氧化脱氢生成草酰乙酸的过程。
生物化学名词解释
1.分子伴侣:是细胞内一类可以识别肽链的非天然构象,促进各功能域和整体蛋白质正确折叠的保守蛋白质。
2.等电点:对某一蛋白质(氨基酸)来说,在某一PH,它所带的正电荷与负电荷恰好相等,即净电荷为零。
这一PH称为该蛋白质(氨基酸)的等电点。
3.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠的较为紧密,各行使其功能,称为结构域。
4.核酶:具有催化活性的RNA。
5.增色效应:核酸(DNA和RNA)分子解链变性或断链,其紫外吸收值(一般在260nm处测量)增加的现象。
6.底物水平磷酸化:物质在生物氧化过程中,常生成一些含有高能键的化合物,而这些化合物可直接偶联ATP或GTP的合成,这种产生ATP等高能分子的方式称为底物水平磷酸化。
7.氧化磷酸化:在真核细胞的线粒体或细菌中,物质在体内氧化时释放的能量供给ADP与无机磷合成ATP的偶联反应。
8.脂肪动员:储存在脂肪细胞中的脂肪被脂肪酶逐步水解为游离脂肪酸及甘油,并释放入血以供其它组织氧化利用的过程。
9.一碳单位:一碳单位就是指具有一个碳原子的基团。
指某些氨基酸分解代谢过程中产生含有一个碳原子的基团,包括甲基、亚甲基、甲烯基、甲炔基、甲酰基及亚氨甲基等。
10.ATP合酶:结合于线粒体内膜、叶绿体类囊体膜和细菌质膜上由多亚基组成的复合物。
在氧化磷酸化和光合磷酸化过程可催化ATP的合成。
11.端粒酶:是一种含有RNA链的逆转录酶。
它以所含RNA为模板来合成DNA端粒结构。
12.Tm值:是DNA熔解温度,指把DNA的双螺旋结构降解一半时的温度。
不同序列的DNA,Tm值不同。
DNA中G-C含量越高,Tm值越高,成正比关系。
13.Klenow片段:E.coli DNA聚合酶Ⅰ经胰蛋白酶或枯草杆菌蛋白酶部分水解生成的C末端605个氨基酸残基片段。
该片段保留了DNA聚合酶I的5ˊ-3ˊ聚合酶和3ˊ-5ˊ外切酶活性,但缺少完整酶的5ˊ-3ˊ外切酶活性。
生物化学 名词解释
五、问答题
1.生物样品的含氮量能表示其蛋白质含量,为什么?试验中是如何计算的。
答:
由于蛋白质是体内的主要含氮物,且平均含氮量为16%,因此测定生物样品的含氮量就可以按照下列公式推算出蛋白质的大致含量:
蛋白质沉淀:
在一定条件下,蛋白疏水侧链暴露在外,肽链融会相互缠绕继而聚集,因而从溶液中析出。
变性的蛋白质易于沉淀,沉淀的蛋白质不一定变性
蛋白质的凝固作用:
蛋白质经强酸、强碱作用发生变性后,若将PH调至等电点,则变性蛋白质立即结成絮状的不溶解物,此絮状物仍可溶解于强酸强碱中。如再加热则絮状物可变成比较坚固的凝块,此凝块不易再溶于强酸和强碱中,这种现象称为蛋白质的凝固作用。
分子筛又称凝胶过滤,是层析的一种,层析柱内填满带有小孔的颗粒,一般由葡聚糖制成。蛋白质溶液加于顶部,任其往下渗漏,小分子蛋白质进入孔内,因而在柱中滞留时间较长,大分子蛋白质不能进入孔内而径直流出,因而不同大小的蛋白质得以分离。超速离心利用的是蛋白质在离心场中沉降系数不同而达到分离的目的。
7.举例说明蛋白质一级结构、空间结构与功能之间的关系。
在许多蛋白质分子中,可发现二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。三级结构:
整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。结构域是三级结构层次上的局部折叠区。(主要化学键是次级键:
疏水键、盐键、氢键和Van der Waals力等结构域:
(四)理化性质:
1.两性解离及等电点:
蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团,在一定的溶液pH条件下都可解离成带负电荷或正电荷的基团。蛋白质是两性电解质,其解离程度取决于所处溶液的酸碱度。蛋白质的等电点(pI):
生物化学部分名词解释
生物化学部分名词解释生物化学是一门研究生物体内化学成分和化学过程的学科,通过对生物体内分子结构、化学反应和能量转化等方面的研究,揭示生命现象的化学基础。
本文将对一些生物化学中常见的名词进行解释,帮助读者更好地理解这一学科。
1. 蛋白质(Protein)蛋白质是由氨基酸组成的多肽链,是生物体内最基本的有机大分子。
它在细胞组织、骨骼、肌肉和酶等方面起着重要的结构和功能作用。
蛋白质的组成和结构决定了其功能和性质。
2. 核酸(Nucleic Acid)核酸是生物体内携带和传递遗传信息的大分子,包括DNA(脱氧核酸)和RNA(核糖核酸)两种类型。
DNA是构成基因的主要材料,携带了生物个体的遗传信息。
RNA则在基因表达和蛋白质合成过程中起作用。
3. 酶(Enzyme)酶是一类能够催化生物体内化学反应的蛋白质,其作用方式是降低反应的活化能,加快反应速率。
酶在生物体内参与了各种代谢过程,如消化、呼吸和免疫等,是维持生命活动的重要催化剂。
4. 代谢(Metabolism)代谢是生物体内化学反应的总体称谓,包括物质的合成和分解过程。
代谢是维持生命活动和细胞生长发育所必需的,能够提供细胞所需的能量和营养物质。
5. 糖(Carbohydrate)糖是生物体内最常见的一种有机化合物,主要功能是提供能量和构建细胞壁等。
糖可以分为单糖、双糖和多糖,其中葡萄糖是细胞代谢的主要能源。
6. 脂质(Lipid)脂质是一类在非极性溶剂中溶解、在极性溶剂中难溶解的有机化合物,包括脂肪和脂类。
脂质在生物体内起到能量储存、细胞膜结构和信号调节等功能。
7. 细胞膜(Cell Membrane)细胞膜是包围细胞的一层薄膜,由磷脂双层和蛋白质构成。
细胞膜起到了物质进出细胞的控制和细胞内外环境的分隔调节作用,是维持细胞内稳态的重要结构。
8. 酸碱平衡(Acid-Base Balance)酸碱平衡是指维持体液中正常酸碱度的稳定状态。
生物体内许多生命活动需要在特定的酸碱条件下进行,而酸碱平衡的失调会对生物体产生严重的影响。
生物化学名词解释
氨基酸的等电点(isoelectric point, pI):在某一PH溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH,成为氨基酸的等电点。
肽:是氨基酸通过肽键连结的化合物。
肽单元(peptide unit):参与肽键的6个原子Cα1,C,N,O,H,Cα2,位于同一平面,此同一平面的6个原子构成了肽单元。
模体:模体是蛋白质分子中具有特定空间构像和特定功能的结构成分。
结构域(domain):分子量较大的蛋白质常可折迭成多个结构较为紧密且稳定的区域,并各行其功能,成为结构域。
蛋白质的一级结构:在蛋白质分子中,从N-端到C-端的氨基酸排列顺序成为蛋白质的一级结构。
蛋白质的二级结构:是指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构像。
蛋白质的三级结构:是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。
超二级结构:由2个或2个以上具有二级结构的肽段在空间上互相接近,形成一个具有规则的二级结构组合,称为超二级结构。
蛋白质的四级结构:蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。
蛋白质的变性:在某些物理和化学因素作用下,其特定的空间结构被破坏,从而导致其理化性质的改变和生物学活性的丧失。
蛋白质的复性:若蛋白质的变性程度较轻,去除变性因素后,有些蛋白质仍可以恢复或部分恢复其原有的构像和功能,称为复性。
分子伴侣:是蛋白质合成过程中形成空间结构的控制因子,广泛存在于从细菌到人的细胞中。
分子伴侣在新生肽链的折迭、加工和穿膜进入细胞器的转位过程中起关键作用。
蛋白质组学:是在整体水平上研究细胞内所有蛋白质的组成及其动态变化规律的新兴学科。
分子病:由蛋白质一级结构发生变异而引起的疾病。
协同效应:蛋白质的一个亚基与其配体结合后,能影响蛋白质中另一个亚基与配体的结合能力。
生物化学名词解释
生物化学名词解释1.结构域:指一些较大的蛋白质分子,其三级结构中具有的两个或多个在空间上可明显区别的局部区域。
2.模体:指由多肽链中相邻的几个二级结构单元在空间上相互接近形成的有规律的二级结构集合。
3.等电点:指在溶液中,氨基酸或蛋白质电离成为电中性的兼性粒子时的溶液PH。
4.蛋白质变性:指在某些理化因素作用下,蛋白质特定的空间结构被破坏,从而导致其理化性质、生物活性丧失的现象。
5.反密码环:tRNA上含有反密码子,可以与mRNA的密码子通过碱基互补配对相互识别的部位。
6.Km值:米氏常数,数值上等于酶促反应速率为最大反应速率一半时的底物浓度。
7.必需基团:酶分子整体构象中对于酶发挥活性所必须的集团。
8.酶的活性中心:酶分子中的必需集团在空间结构上彼此靠近,集中形成的一个特定空间结构区域,可以与底物特异性结合并催化底物转化为产物。
9.酶的竞争性抑制:指抑制剂与酶的底物结构相似,抑制剂可以与底物竞争结合酶的活性中心,从而阻碍酶和底物结合形成的中间产物。
10.变构酶:指受别构效应调节的酶,含有别构位点。
别构位点在结合别构效应物以后酶的构象发生变化,从而影响活性中心的构象,最后影响酶的活性。
11.酶的化学修饰:酶蛋白上的一些基团在特定酶的催化下与某种化学基团发生共价结合而被修饰或酶蛋白身上某些特定的化学基团脱落进而引起酶活性改变的现象。
12.同工酶:指催化相同的反应但结构和理化性质等不同的酶。
13.氧化磷酸化:指代谢物氧化脱下的氢经线粒体呼吸链传给氧生成水,同时释放能量使ADP磷酸化生成ATP的过程。
14.底物水平磷酸化:指代谢物因脱氢、脱水等作用使分子内能量重新分布,形成高能键传给ADP生成ATP的过程。
15.糖的有氧氧化:葡萄糖在有氧条件下彻底氧化分解生成CO2和H2O同时释放大量能量并合成ATP的过程。
16.糖异生:由非糖物质生成葡萄糖或糖原的过程。
17.磷酸戊糖途径:葡萄糖在细胞质中生成核糖-5-磷酸及NADPH+H+,前者再进一步变成甘油醛-3-磷酸和果糖-6-磷酸的反应过程。
生物化学名词解释
绪论1.生物化学(biochemistry):从分子水平来研究生物体(包括人类、动物、植物和微生物内基本物质的化学组成、结构,以及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能关系的一门科学,是一门生物学与化学相结合的基础学科。
2.新陈代谢(metabolism):生物体与外界环境进行有规律的物质交换,称为新陈代谢。
通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。
3.分子生物学(molecular biology):分子生物学是现代生物学的带头学科,它主要研究遗传的分子基础(分子遗传学),生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。
4.药学生物化学:是研究与药学科学相关的生物化学理论、原理与技术,及其在药物研究、药品生产、药物质量控制与药品临床中应用的基础学科。
第一章糖的化学1.糖基化工程:通过人为的操作(包括增加、删除或调整)蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。
2.单糖(monosaccharide):凡不能被水解成更小分子的糖称为单糖。
单糖是糖类中最简单的一种,是组成糖类物质的基本结构单位。
3.多糖(polysaccharide):由许多单糖分子缩合而成的长链结构,分子量都很大,在水中不能成真溶液,有的成胶体溶液,有的不溶于水,均无甜味,也无还原性。
4.寡糖(oligosaccharide):是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。
5.结合糖(glycoconjugate):也称糖复合物或复合糖,是指糖和蛋白质、脂质等非糖物质结合的复合分子。
6.同聚多糖(homopolysaccharide):也称为均一多糖,由一种单糖缩合而成,如淀粉、糖原、纤维素、戊糖胶、木糖胶、阿拉伯糖胶、几丁质等。
7.杂多糖(heteropolysaccharide):也称为不均一多糖,由不同类型的单糖缩合而成,如肝素、透明质酸和许多来源于植物中的多糖如波叶大黄多糖、当归多糖、茶叶多糖等。
生物化学名词解释大全
生物化学名词解释大全1. 生物化学(Biochemistry):研究生物体内化学成分、结构和功能之间的关系的学科。
2. 多肽(Polypeptide):由多个氨基酸残基通过肽键连接而成的聚合物,是蛋白质的组成部分。
3. 氨基酸(Amino Acid):生物体内构成蛋白质的基本单位,包含一个氨基(NH2)和一个羧基(COOH),以及一个特定的侧链。
4. 聚合酶链式反应(Polymerase Chain Reaction,PCR):一种体外复制DNA的技术,通过反复循环的酶催化,使得目标DNA序列在简单的反应体系中大量扩增。
5. 糖(Sugar):生物体内分子中含有羟基的有机化合物,是能源的重要来源,也是构成核酸和多糖的基本单元。
6. 代谢(Metabolism):生物体内发生的化学反应的总和,包括物质合成与分解、能量转化以及调节和控制这些反应的调节机制。
7. 酶(Enzyme):催化生物化学反应的蛋白质分子,可以促进反应速率,但本身在反应中不被消耗。
8. 核酸(Nucleic Acid):生物体内储存和传导遗传信息的分子,包括DNA和RNA,由核苷酸链组成。
9. 基因(Gene):DNA分子上的特定区域,编码了一种特定蛋白质的信息,是遗传信息的基本单位。
10. 代谢途径(Metabolic Pathway):由一系列相互作用的酶催化的反应组成的序列,用于维持生物体内能量和物质的平衡。
11. 脂质(Lipid):一类不溶于水的化合物,在生物体内发挥结构和能量储存的重要作用,常见的脂质包括脂肪酸、甘油和胆固醇等。
12. 细胞呼吸(Cellular Respiration):通过氧化分解有机物质以释放能量的过程,通常包括糖的氧化并产生二氧化碳和水。
13. 光合作用(Photosynthesis):将光能转化为化学能的过程,植物和一些微生物通过光合作用将二氧化碳和水转化为有机物质和氧气。
14. 激素(Hormone):由内分泌腺分泌并通过血液传递到细胞中起作用的化学物质,调节和控制生物体内的各种生理过程。
生物化学名词解释
生化名词解释生物化学:是研究生命现象的本质即研究生物体的化学组成及这些化学物质在生物体内所发生的化学变化以及这些化学变化与生物的生命活动之间的关系,当前定义为研究生物分子特别是生物大分子之间的相互作用,相互影响以表现生命活动现象原理的科学。
分子伴侣:又叫伴娘蛋白,是细胞中一类帮助新生肽链折叠成正确的构象,但其自身并作为终产物的组成成分的蛋白分子。
结构域:在蛋白质三级结构内的独立折叠单元。
结构域通常都是几个超二级结构单元的组合,不同结构域之间以共价键相连。
别构效应:又叫变构效应,是指配基与寡聚蛋白分子中的一个亚基结合后改变了其构象,并导致相邻其他亚基构象和功能的改变,最终使蛋白质生物活性改变的现象。
协同作用:变构效应的一种特殊类型,是亚基之间的一种相互作用。
指寡聚蛋白的某一个亚基与配基结合时可以改变其他亚基构象,进而改变蛋白质生物活性的现象,分为正协同作用和负协同作用。
回文序列:双链DNA中的一段倒置重复序列,当该序列的双链被打开后,可形成局部“+”字形结构。
同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身分子结构、理化性质和免疫学性质不同的一组酶。
竞争性抑制:抑制剂与酶的天然底物结构相似,可与底物竞争酶的活性中心,从而降低酶的结合效率,抑制酶的活性,这种抑制作用称竞争性抑制作用。
非竞争性抑制:抑制剂与酶活性中心以外的必需基团结合,但不影响酶与底物的结合,酶与底物的结合也不影响酶与抑制剂的结合,但形成的酶-底物-抑制剂复合物不能进一步释放出产物,致使酶活性丧失的抑制作用。
酶的专一性:一种酶只能作用与一类化合物或一定的化学键,催化一定类型的化学反应,并生成一定的产物的现象。
Km:酶反应速度达到最大反应速度一半时底物的浓度,是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。
变构酶:或称别构酶,是代谢过程中的关键酶,它的催化活性受其三维结构中的构象变化所调节。
比活力:是指每毫克酶蛋白所具有的活力单位数。
生物化学 名词解释
名词解释1.联合脱氨基作用:由两种(或以上)酶的联合催化作用使氨基酸的α-氨基脱下,并产生游离氨的过程。
2.酶活力单位:根据某种酶在最适条件下,单位时间内酶作用的底物的减少量或产物的生成量。
3.酶的活性中心:酶分子上必需基团比较集中并构成一定空间构象、与酶的活性直接相关的结构区域。
4.底物水平磷酸化:代谢物因脱氢后,分子内能量重新分布,使无机磷酸酯化先形成一个高能中间代谢物,促使ADP变成ATP的反应。
5.竞争性抑制作用:抑制剂与活性中心结合后,底物就不能再与酶活性中心结合;反之,如果酶的结合部位已被底物占据,则抑制剂也不能和酶结合。
6.非竞争性抑制作用:酶可以同时与底物及抑制剂结合,两者没有竞争作用。
7.反竞争性抑制作用:酶只有与底物结合后,才能与抑制剂结合。
8.变构作用:蛋白质与效应物的结合引起整个蛋白质分子构象发生改变的现象。
9.转氨作用:一个α-氨基酸的α-氨基借助转氨酶的催化作用转移到一个α-酮酸的过程。
10.氨基酸的等电点:当氨基酸处于某一pH值时,氨基酸所带正电荷和负电荷相等,即净电荷为零,此时的pH值称为氨基酸的等电点,用pI表示。
11.蛋白质的等离子点:在不含任何盐的纯水中进行蛋白质等电点测定时,所得的等电点。
12.氧化磷酸化:代谢物脱氢经呼吸链传给氧化合成水的过程中,释放的能量使ADP磷酸化为ATP的反应过程。
13.三羧酸循环(TCA):在有氧条件下,丙酮酸氧化脱羧产生的乙酰辅酶A彻底氧化成CO2和H2O。
14.脂肪酸的β-氧化:脂肪酸通过酶催化α-碳原子间的断裂、β-碳原子上的氧化,相继切下二碳单位而降解的方式。
15.必需氨基酸:指人自己不能合成,需要从食物中获得的氨基酸16.Tm值(融解温度):当A260达到最大值一半时,所对应的温度称为溶解温度。
17.激活剂:使酶原激活的物质。
18.米氏常数:酶促反应速率达到最大反应速率一半时的底物浓度。
19.酶的酸碱催化:通过瞬时地向反应物提供质子或从反应物接受质子以稳定过渡态、加速反应的一类催化机制。
生物化学名词解释
糖类:1、糖:是多羟基的醛或酮及其缩聚物和某些衍生物以及可以水解产生这些化合物的物质的总称。
2、单糖:是最简单的糖,不能再被水解为更小的单位。
3、寡糖:也称低聚糖,是由2-10个分子单糖缩合而成,水解后产生单糖。
4、多糖:是由多个单糖分子缩合而成。
多糖中由相同的单糖基组成的称同多糖,不相同的单糖基组成的称杂多糖。
5、糖异生:糖异生是指从非糖物质合成葡萄糖的过程。
动物可以将丙酮酸、甘油、乳酸及某些氨基酸等非糖物质转化成糖。
6、糖原:糖原是动物体内葡萄糖的储存形式。
7、糖酵解:酶将葡萄糖降解成丙酮酸并伴随着生成ATP的过程,又称EMP途径,缺氧时在细胞胞浆中进行。
脂质:1、脂质:脂类是脂肪酸(C4以上的)和醇[包括甘油醇、鞘氨醇(成称神经醇)、高级一元醇和固醇]等所组成的酯类及其衍生物。
2、单脂:为脂酸与醇(甘油醇、高级一元醇)所组成的酯类。
3、复脂:脂酸与醇(甘油醇,鞘氨醇)所生成的酯,同时含有其他非脂性物质,如糖、磷、酸及氮碱。
4、磷脂:含磷酸与氮碱的脂类,分甘油醇磷脂和鞘氨醇磷脂两类。
鞘氨醇磷脂不含甘油醇而含鞘氨醇。
5、糖脂:含糖分子的脂类,由鞘氨醇或甘油醇与脂酸和糖所组成,如脑苷脂和神经节苷脂。
6、水解:脂肪在酸碱及脂肪酶作用下酯键断裂,产生甘油与脂酸;7、皂化:碱水解脂肪产生的脂酸盐称皂,因此碱水解脂肪的作用称皂化作用;8、皂化值:皂化1g脂肪所需的KOH的质量(mg)。
与脂酸的分子量成反比(为什么?1g中的mol数不同)。
作用:可用来推算油脂的平均分子量。
9、氢化:不饱和脂肪在催化剂影响下,不饱和双键可加入氢而成饱和脂,这个作用称为氢化。
10、卤化:溴碘同样可加入不饱和脂肪的双键上,产生饱和的卤化脂,这种作用称为卤化。
11、碘价(值):100g脂质样品所能吸收的碘的质量(g)。
作用:可推知脂酸的不饱和程度。
可用来测定油脂中脂肪酸的不饱和度。
12、氧化:不饱和脂肪酸与分子氧作用,产生脂酸过氧化物。
生物化学名词解释
名词解释1. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。
2.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。
构型的转变伴随着共价键的断裂和重新形成。
3.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。
一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。
构象改变不会改变分子的光学活性。
4.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。
5.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。
6.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。
7.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。
8.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。
9.层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。
10. 碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在(或)和(或)之间进行,这种碱基配对的规律就称为碱基配对规律。
11. 反密码子:在tRNA 链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA 链上的密码子。
反密码子与密码子的方向相反。
12. 顺反子:基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。
13. 核酸的变性、复性:当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。
在适宜的温度下,分散开的两条DNA 链可以完全重新结合成和原来一样的双股螺旋。
生物化学名词解释
蛋白质1.等电点(pI):当氨基酸溶液在某一定pH值时,使某特定氨基酸分子上所带正负电荷相等,成为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH值即为该氨基酸的等电点(isoelectric point,pI)。
2.肽键和肽链:肽是由一个氨基酸的羧基和另一个氨基酸的氨基脱水缩合而形成的化合物,氨基酸之间脱水缩合后形成的共价键成为肽键。
3.肽平面及二面角:两相邻酰胺平面之间,能以共同的Cα为定点而旋转,绕Cα-N 键旋转的角度称φ角,绕C-Cα键旋转的角度称ψ角。
φ和ψ称作二面角,亦称构象角。
4.一级结构:多肽链中氨基酸的排列顺序,包括二硫键的位置称为蛋白质的一级结构(primary structure)。
这是蛋白质最基本的结构,它内寓着决定蛋白质高级结构和生物功能的信息。
5.二级结构:蛋白质的二级结构(secondary structure)指肽链主链不同区段通过自身的相互作用,形成氢键,沿某一主轴盘旋折叠而形成的局部空间结构,是蛋白质结构的构象单元.主要有以下类型:(1) α-螺旋(α-helix)(2) β-折叠(β-pleated sheet)(3) β-转角(β-turn)(4) 无规则卷曲(nonregular coil)6.三级结构:多肽键在二级结构的基础上,通过侧链基团的相互作用进一步卷曲折叠,借助次级键维系使α-螺旋、β-折叠片、β-转角等二级结构相互配置而形成特定的构象。
7.四级结构:四级结构是指由相同或不同的称作亚基(subunit)的亚单位按照一定排布方式聚合而成的蛋白质结构,维持四级结构稳定的作用力是疏水键、离子键、氢键、范得华力。
亚基本身都具有球状三级结构,一般只包含一条多肽链,也有的由二条或二条以上由二硫键连接的肽链组成。
8.超二级结构:蛋白质中相邻的二级结构单位(即单个α-螺旋或β-折叠或β-转角)组合在一起,形成有规则的、在空间上能辩认的二级结构组合体称为蛋白质的超二级结构9.结构域:在二级结构的基础上,多肽进一步卷曲折叠成几个相对独立、近似球形的三维实体,再由两个或两个以上这样的三维实体缔合成三级结构,这种相对独立的三维实体称为结构域。
生物化学必考名词解释
1.磷酸二酯键:核酸分子中核苷酸残基之间的磷酸酯键。
2.磷酸单酯键:单核苷酸分子中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键。
3.核酸一级结构:核苷酸残基在核酸分子中的排列顺序。
4.DNA二级结构:两条DNA单链通过碱基互补配对的原则所形成的双螺旋结构。
8.增色效应:当核酸分子加热变性时,其在260nm处的紫外吸收会急剧增加的现象。
10.分子杂交:当两条不同源的DNA(或RNA)链或DNA链与RNA链之间存在互补顺序时,在一定条件下可以发生互补配对形成双螺旋分子,这种分子称为杂交分子。
形成杂交分子的过程称为分子杂交。
11.Tm值:当核酸分子加热变性时,其在260nm处的紫外吸收急剧增加,当紫外吸收变化达到最大变化的半数值时,此时所对应的温度称为熔解温度或变性温度,用Tm值表示。
1.构型和构象:构型是指在大分子化合物的立体异构体中,取代原子或基团在空间的取向。
构象是指当单键旋转时,分子中的原子或基团形成不同的空间排列,不同的空间排列称为不同的构象。
4.超二级结构:指二级结构单元β折叠股和α-螺旋股相互聚集形成有规律的更高一级的、但又低于三级结构的结构,被称为超二级结构。
二级结构指多肽链主链在一级结构的基础上进一步的盘旋或折叠,从而形成有规律的构象,如α-螺旋、β-折叠、β-转角、无规则卷曲等,这些结构又称为主链构象的结构单元。
维系二级结构的作用力是氢键。
二级结构不涉及氨基酸残基的侧链构象。
5.蛋白质的变性和复性:在各种物理和化学因素影响下,蛋白质构象发生变化,导致其物理和化学性质发生变化,生物学功能更新换代的过程称为变性。
在一定条件下,变性的蛋白质恢复原来构象、性质和生物学功能的过程称为复性。
11.别构效应:又称变构效应,当某些寡聚蛋白与别构效应剂发生作用时,可通过蛋白质构象的变化改变蛋白的活性,这种改变可以是活性的增加或减少。
协同效应是别构效应的一种特殊类型,是亚基之间的一种相互作用。
它指寡聚蛋白的某一个亚基与配基结合时可改变蛋白质其他亚基的构象,进而改变蛋白质生物活性的过程。
生物化学名词解释完整版
生物化学名词解释完整版生物化学是研究生命活动中化学过程的分支学科,涉及了生命中各种分子的合成、代谢以及转运等方面。
本文将对生物化学中常用的名词进行详细解释。
1. 氨基酸氨基酸是生命体内的基本构建块之一,是合成蛋白质的单体分子。
氨基酸由氨基和羧基组成,一般含有一种特殊的侧链,侧链的不同决定了氨基酸的种类。
常用的氨基酸包括20种标准氨基酸和一些非标准氨基酸。
2. DNADNA是指脱氧核糖核酸,是生命体内遗传信息的存储分子。
DNA由四种核苷酸基组成,分别是adenine、guanine、cytosine、thymine。
DNA分子以螺旋结构存在,通过分子内的氢键结合成双螺旋的结构,通过不同的核苷酸组合形成不同的基因序列。
3. RNARNA是指核糖核酸,是DNA的衍生物,通过基因转录合成。
RNA分为mRNA、tRNA、rRNA等不同类型,具有传递遗传信息以及合成蛋白质等多种生物学功能。
4. 蛋白质蛋白质是由氨基酸聚合而成的大分子,是生物体内的重要构成部分,具有多种生物学功能,例如催化反应、传递信号、支持细胞结构等。
由于蛋白质分子三维结构的复杂性以及多种氨基酸侧链的存在,使得蛋白质具有高度的特异性和生物活性。
5. 酶酶是一种蛋白质,具有催化生物体内化学反应的作用,促进化学反应发生。
酶的活性受到多种因素的影响,如温度、pH、离子等。
6. 代谢代谢是指生物体内物质的合成、分解以及转化等生化过程。
代谢需要能量的参与,通常通过ATP这种能量分子来提供能量。
7. ATPATP是指三磷酸腺苷,是生物体内重要的能量分子。
ATP通过水解反应释放能量,并将ADP和Pi重新合成成ATP的形式,使能量得以循环使用。
8. 光合作用光合作用是指植物和一些微生物通过利用太阳能将二氧化碳和水转化为有机物质的过程。
该过程需要色素分子叶绿素等的参与。
9. 呼吸作用呼吸作用是指通过代谢有机物质来获取ATP能量的过程,该过程需要氧气参与。
包括有氧呼吸和无氧呼吸两种形式。
生物化学名词解释
生物化学名词解释1. 蛋白质:生物体内最重要的大分子之一,由氨基酸序列构成。
蛋白质具有多种生物学功能,如催化、结构支撑、运输等。
2.核酸:构成生命体系中一类非常重要的大分子,由核苷酸组成。
核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA带有遗传信息,RNA参与蛋白质合成。
3.酶:一种催化剂,加速生化反应。
酶可以分解分子,促进分子结合,或改变其化学结构。
4.代谢:生物体的一系列内部化学反应,通过消耗能量以及其他物质来维持生物体的生命活动。
5.细胞膜:生命体系中一个重要的组成部分,在细胞周围形成一个类似“皮肤”的物理屏障。
细胞膜通过选择性渗透控制物质在细胞内外之间的转移,从而维持细胞功能。
6.基因:遗传信息的基本单位,储存个体遗传信息,并控制细胞蛋白质的合成。
一个基因是由一段DNA序列编码的。
7.信号转导:一种细胞内转导机制,通过细胞内或细胞外的信号分子,传递一些特定的信息以及信号,最终影响不同生命活动。
8.代谢通路:一系列的生化反应,以特定的顺序和方式进行,从而将小分子代谢产物转化为化合物的过程。
9.生物分子:构成生命体系中的主要分子,包括蛋白质、核酸、碳水化合物和脂类等。
它们提供能量、储存能量、维持生命活动以及维持生物体的结构。
10.生物催化:生命体系中一种特定的催化过程,通过酶促进生化反应。
生物催化可以在较温和的条件下进行,从而节省能量和资源。
11.糖代谢:一系列生物化学反应,将葡萄糖和其他糖类分解为能够提供能量的产物,并在代谢通路中继续进行。
12.氧化还原反应:一个常见的生化反应类型,涉及原子或离子之间的电子转移。
在这种类型的反应中,被氧化物失去电子,而被还原物获得电子。
13.葡萄糖:一种重要的单糖,通过糖代谢的过程来提供能量。
葡萄糖是糖类的代表,也被广泛应用于生物工程和食品工业。
14.ATP:三磷酸腺苷,细胞内最常见的高能化合物之一,承担能量传递的重要功能。
15.脂质:一类极为重要的生物分子,参与许多生命活动。
生物化学名词解释
1、单糖:不能被水解成更小分子的糖类称为单糖。
2、寡糖:是由2~20个单糖通过糖苷键连接而成的糖类物质。
3、多糖:水解时产生20个以上单糖的糖类。
4、同多糖:水解只产生一种单糖或单糖的衍生物成为同多糖。
5、杂多糖:水解时产生一种以上的单糖或单塘衍生物。
6、几何异构:也称顺反异构,这是由于分子中存在双键或环的存在或其他原因限制原子间的自由旋转引起的异构现象。
7、旋光异构:是由于分子存在手性碳原子造成的,最常见的是分子内存在不对称碳原子。
8、不对称碳原子:是指与四个不同的原子或原子基团共价连接并因而失去对称性的四面体碳,也称手性碳原子、不对称中心或手性中心。
9、异头碳原子:单糖由直链变为环状结构时,羰基碳原子成为新的手性中心,导致C1差向异构化,产生两个非对映体,在环状结构中半缩醛碳原子称为异头碳原子。
10糖苷:环状单糖的半缩醛(或半缩酮)羟基与另外一化合物缩合形成的缩醛称为糖苷。
11、变旋:许多单糖在新配置的溶液中会发生旋光度的改变,这种现象称为变旋。
12、糖胺聚糖:属于杂多糖,为不分支的长链聚合物,由己糖醛酸和己糖胺重复二糖单位构成。
13、差向异构体:分子之间仅有一个手性碳原子的构型不同的非对映异构体称为差向异构体。
14.酸值:中和1g油脂中的游离脂肪酸所需的KOH mg数。
15.碘值:100g油脂卤化时吸收碘的克数。
16.乙酰值:中和从1g乙酰化产物中释放的乙酸所需的KOH mg数。
17.皂化值:皂化1g油脂所需的KOH mg数。
18.脂质:一类低溶于水而高溶于非极性溶剂、脂肪酸和醇所形成的酯类及其衍生物、能被生物体利用的物质。
19、必需氨基酸:机体不能自行合成而必须从外界食物摄取的氨基酸。
20、盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象。
21、盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。
22、蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。
生物化学名词解释
蛋白质化学等电点(isoelectric point, pI):当氨基酸在溶液中净电荷为零得pH。
在等电点时,氨基酸主要以两性离子形式存在肽键(peptide bond):由一个氨基酸得α-羧基与另一个氨基酸得α-氨基脱水缩合而形成得化学键。
肽:由二个或两个以上氨基酸通过肽键相连而形成得化合物。
蛋白质得一级结构:指多肽链中氨基酸得排列顺序与键合方式。
二级结构:蛋白质分子中某一段肽链得局部空间结构,即该段肽链主链骨架原子得相对空间位置,并不涉及氨基酸残基侧链得构象。
肽单元:参与组成肽键得6个原子位于同一平面,又叫酰胺平面或肽键平面。
它就是蛋白质构象得基本结构单位。
α-螺旋( α -helix ) :就是蛋白质中最常见得一种二级结构,多肽链主链围绕中心轴形成右手螺旋β-折叠:若干条肽链或一条肽链得若干肽段平行排列,相邻肽链之间靠氢键维持。
超二级结构(supersecondary struture):蛋白质分子中,由若干相邻得二级结构单元组合在一起,形成有规则得、在空间上能辨认得二级结构组合体结构域(domain):在超二级结构基础上组装成得相对独立得三维实体。
折叠得较为紧密,各行使其功能。
蛋白质得变性:在某些物理与化学因素作用下,蛋白质分子特定空间构象被破坏,导致其理化性质改变与生物活性得丧失。
复性:若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有得构象与功能。
酶化学全酶:对结合酶而言,酶蛋白与辅助因子结合之后所形成得复合物,称为全酶,只有全酶才有催化活性,将酶蛋白与辅助因子分开后均无催化作用。
全酶= 酶蛋白+ 辅助因子酶原:某些酶在细胞内合成或初分泌时没有活性,这些没有活性得酶得前身称为酶原酸碱催化:通过瞬时地向反应物提供质子或从反应物接收质子以稳定过渡态、达到降低反应活化能、加速反应得一种催化机制。
共价催化:通过与底物形成反应活性很高得共价过渡物降低反应活化能,从而提高反应速度得过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学常用名词解释
构象:指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排斥。
一级结构:蛋白质分子中氨基酸残基的排列顺序。
二级结构:两条多核苷酸链以相同的旋转绕同一个公共轴形成右手双螺旋结构。
三级结构:多肽链现在某些区域相邻氨基酸形成有规则的二级结构,然后以相邻的二级结构片段集装成超二级结构,进而折叠绕曲成结构域,由两个或两个以的结构域组装成三级结构。
超二级结构:指若干相邻的二级结构中的构象单元彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。
结构域:是球状蛋白质的折叠单位。
多肽链在超二级结构基础上进一步绕曲折叠成紧密的近似球状的结构。
在空间上彼此分隔,各自具有部分生物功能的结构。
肽:一个氨基酸的α-羧基和另一个氨基酸的α-氨基脱水而合成的化合物。
肽键:氨基酸之间脱水后形成的键
蛋白质:是由许多不同的α-氨基酸按一定的序列通过酰胺键缩合而成的,具有较稳定的构象并具有一定生物功能的生物大分子。
等电点:调节氨基酸(或蛋白质)溶液的PH值,使其分子上的羧基和氨基的解离度完全相等,即所带静电荷为零,在电场中既不向阴
极移动不向阳极移动,此时氨基酸(或蛋白质)所处的溶液PH称为氨基酸(或蛋白质)的等电点PI。
氨基酸残基:在多肽链中的氨基酸,由于其部分基团参与了肽键的形成,剩余的结构部分则称氨基酸残基。
必需氨基酸:指人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。
非必需氨基酸:可在动物体内合成作为营养源不需要从外部补充的氨基酸。
必需基团:有些基团若经化学修饰使其改变,则酶的活性丧失,这些基团即称为必须基团。
分子病:指某种蛋白质分子一级结构的氨基酸排列顺序与正常有所不同的遗传病。
分子杂交:在退火条件下,不同来源的DNA互补区形成双链,或DNA 单链和RNA链的互补区形成DNA-RNA杂合双链的过程。
活性部位:酶分子中直接和底物结合,并和酶催化作用直接有关的部位。
Tm(熔解温度):DNA热变性时,紫外吸收的增加量达最大增量一半时的温度。
增色效应:指核酸变性后,260你nm的紫外吸收值明显增加。
酶的别构效应:当底物或者底物以外的物质和别构酶分子上的相应部位非共价地结合后,通过分子构象的变化影响酶的催化活性的这种效应。
辅基:指那些与酶蛋白结合比较紧的,用透析法不易除去的小分子物质。
辅酶:指那些与酶蛋白结合比较松的,用透析法可以出去的小分子有机物。
全酶:酶蛋白和辅因子单独存在时,均无催化活力。
只有二者结合成完整的分子时,才具有活力。
此完整的酶分子称为全酶。
(全酶=酶蛋白+辅因子)
调节酶:指对代谢途径的反应速度起调节作用的酶。
同工酶:具有不同的分子形式但去催化相同的化学反应的酶。
抗体酶:既是抗体又具有催化功能的蛋白质。
别构酶: 是一种活性受到结合在活性部位以外部位的其他分子调节的酶。
酶活力:酶加速其所催化的化学反应速度的能力。
抑制剂:凡使酶的必须基团或其活性部位中的基团的化学性质改变而降低酶活力甚至酶完全丧失活性的物质。
维生素:是维持机体正常生命活动不可缺少的一类小分子有机化合物。
呼吸链:代谢物上氢原子被脱氢酶激活脱落后,经一系列的传递体,最后传递给被激活的氧分子,而生成水的全部体系称呼吸链。
此体系通常也称电子传递体系或电子传递链。
磷氧比(P/O):每消耗1mol氧所消耗的无机磷酸的mol数。
氨基酸代谢库:外源性氨基酸和内源性氨基酸共同构成了机体的氨基
酸代谢库。
高能化合物:在生化反应中,某些化合物含自由能特多者,即随水解反应或基团转移反应可放出大量自由能的称高能化合物。
高能磷酸化合物:机体内存在着各种磷酸化合物,它们所含的自由能多少不等,含自由能特多的磷酸化合物称为高能磷酸化合物。
生物氧化:有机物在是生物体内氧化分解成CO2和水并释放能量的过程。
实际上是需氧细胞呼吸作用中的一系列氧化-还原反应,所以也称呼吸作用。
β-氧化:动物在进行脂肪酸降解时,是逐步将碳原子成对地从脂肪酸链上切下,而不是一个一个地拆除,即β位碳原子首先氧化。
新陈代谢:是生物与外界环境进行物质交换与能量交换的全过程,包括生物体内所发生的一切合成和分解作用。
底物水平磷酸化:底物被氧化的过程中,形成了某些高能磷酸化合物的中间产物,通过酶的作用可使ADP生成ATP。
电子传递体系磷酸化:当电子从NADH或FADH2经过电子传递体系(呼吸链)传递给氧形成水时,同时伴有ADP磷酸化为ATP,这一过称电子传递体系磷酸化。
磷酸甘油穿梭:该穿梭机制主要在脑及骨骼肌中,它是借助于α-磷酸甘油与磷酸二羟丙酮之间的氧化还原当量,使线粒体外来自NADH的还原当量进入线粒体的呼吸链氧化。
氧化磷酸化作用:伴随放能的氧化作用而进行的磷酸化称为氧化磷酸作用。
糖酵解作用:葡萄糖在人体组织中,经无氧分解生产乳酸的过程,和酵母菌使葡萄糖生醇发酵的过程基本相同,故称糖酵解作用。
糖异生作用:非糖的前体物质转变为葡萄糖和糖原的过程。
糖酵解作用:葡萄糖在人体组织中,经无氧分解生成乳酸的过程,和酵母菌使葡萄糖生醇发酵的过程基本相同,故称为糖酵解作用。
转氨基作用:一种α-氨基酸的氨基可以转移到α-酮酸上,从而生成相应的一份子α-酮酸和一分子α-氨基酸,这种作用称转氨基作用,也称氨基移换作用。
别构调节作用:由别构酶(变构酶)调节。
调节物语酶分子中的调节中心(别构中心)结合后,诱导出酶分子的某种构象,改变催化活性,调节反应速度及代谢过程。
共价修饰调节作用:共价调节酶通过其他酶对其肽链上的某些基团进行工价修饰,使酶处于活性与无活性的互变状态,从而调节酶的活性,这种调节方式称为共价修饰调节作用。
级联放大作用:连锁代谢反应中多个酶的化学修饰配合进行,当其中的一个酶被激活后,连锁反应中的其他酶被激活,导致原始信号逐级放大,催化效率逐渐放大。
三羧酸循环:乙酰辅酶A的乙酰基部分通过一种循环,在有氧条件下被彻底氧化为CO2和H2O。
这种循环称三羧酸循环,也称柠檬酸循环。
乙醛酸循环(三羧酸循环支路):微生物能够利用乙酸作为唯一的碳源,并能利用它建造自己的机体,有苹果酸合成酶与异柠檬酸裂解
酶两种特异的酶参与反应。
因以乙醛酸为中间代谢物,故称乙醛酸循环。
鸟氨酸循环:指氨与二氧化碳通过鸟氨酸、瓜氨酸、精氨酸生产尿素的过程。
DNA半保留复制:复制时,DNA的两条链分开,然后用碱基配对方式按照单链DNA的核苷酸顺序合成新链,以组成新的DNA分子,新的两个DNA分子与原来DNA分子的碱基顺序完全一样,即每个DNA分子的一条链来自亲代DNA、另一条链是新合成的,这种复制方式称为半保留复制。
DNA的半不连续复制:新的DNA的一条链按5`→3`方向(与复制叉的方向一致)连续合成,称为前导链。
另一条链的合成则是不连续的,即先按5`→3`方向(与复制叉移动方向相反)合成若干短片段(冈崎片段),再通过酶的作用将这些片段连在一起构成第二条子链,称为后随链。
转录:是遗传信息从DNA到RNA的转移。
即酶促合成除T变成U 外与基因编码碱基序列相同的RNA链。
反转录:以RNA为模板合成DNA的过程,是DNA生物而合成的一种特殊方式。
翻译:mRNA所编码的遗传信息在核糖体上翻译成蛋白质多肽氨基酸的排列顺序,这种过程正像从一种语言翻译成另一种语言时的情形相类似,因此人们把以mRNA为模板合成蛋白质的过程成为翻译。
基因重组:指在生物体进行有性生殖的过程中,控制不同性状的基因
重新组合。
代谢调节:是研究生物体内生命物质相互制约、彼此协调与其控制规律的科学。
它的主要内容是解释各类调节的分子基础,并阐明调节过程与机能相联关系的机制。
PCR技术:聚合酶链式反应,是一种体外模拟自然DNA复制过程的核酸扩增技术,即无细胞份子克隆技术。
冈崎片段:冈崎等在研究大肠杆菌DNA复制过程中,发现DNA复制中短时间内先合成较短的DNA片段,接着出现较大的分子。
一般把这DNA片段称为冈崎片段。
信号肽:常指新合成多肽链中用于指导蛋白质的跨膜转移(定位)的N-末端的氨基酸序列(有时不一定在N-端)。
活性肽:具有活性的多肽。
SD序列:在起始密码上游约10个核苷酸处(即-10区)通常有一段富含嘌呤的序列,这一序列最初由Shine-Dalgaino首先发现的,因此人们把这一序列称为SD序列。
遗传密码:实际上是指mRNA中的核苷酸排列序列与蛋白质中的氨基酸排列序列的关系。
第二套密码系统:tRNA分子中贮存的遗传密码。
操纵子:指启动基因、操纵基因和一系列紧密连锁的结构基团的总称。
单顺反子:真核基因转录产物为单顺反子,即一个基因编码一条多肽链或RNA链,每个基因转录有各自的调节元件。
多顺反子:常见于原核生物意指一个mRNA分子编码多个多肽链。
这些多肽链对应的DNA片断则位于同一转录单位内,享用同一对起点和终点。
多聚核糖体:指合成蛋白质时,多个甚至几十个核糖体串联附着在一条mRNA分子上,形成的似念珠状结构,。