水塔水流量估计2009
注册给排水考试案例题统计

给水工程案例统计1.水量计算:2006.1.1(最高日用水量的各项组成计算)2007.2.1(复用水量,典型参照)2008.1.1 (新建工厂用水不是24小时,在与其他用水项目合并计算平均流量时,仍按24小时计算,并注意最大时用水时段是否叠加)2008.2.2(kh,kd的基本概念)2009.1.1 2010.1.1 2010.2.1 (网后水塔流量计算典型)2011.1.1 2011.1.4(取水泵站设计流量典型)2011.2.1(复用水量)2012.1.2 2012.1.32012.1.4(比流量与节点流量概念典型)2012.2.1 2012.2.2 2013.1.1(综合用水量概念)2013.1.3(转输、事故、消防流量概念)计算依据:(1)弄清设计规模、水厂设计水量、取水泵站原水输水管道设计流量的概念,见3M1P20,清水输水管道,高位水池输水管道设计流量见P29。
(2)复用率=复用水量/(复用水量+新鲜水量)(3)水头损失与水量关系式3MP37、38。
(4)最高日最高时由水泵与水塔联合供水。
(5)用水量=水厂实际供水量,新建一工厂供水量等,供水量为水厂设计规模等。
2.储水池根据用水变化曲线计算2006.2.1 2007.1.1 2008.1.12008.2.3 2009.2.1(典型)2010.2.2 2013.1.2计算依据:第一种方法连续大于用水或连续小于用水累计法,第二种面积累积法见2009.2.1。
3. 枝状管网水力计算:(计算较烦,)2006.1.2 2006.2.2 2007.1.3(典型)2007.2.2(典型)2007.2.4(虹吸管设计,较偏)2009.1.2(典型)2011.1.22011.2.22011.2.4 2012.2.3 2013.2.1 2013.2.2计算依据:利用该处标高+自由水头+水头损失=某点标高+水压关系式,找出最不利点的水压标高,用h=alq2计算要求的其中某一项。
案例6 估计水塔水流量

f ( t )dt 335329 (加仑) f ( t )dt 336480 (加仑)
25.5 1.5
相差只约1%
[0,24]区间内检验
第一次充水 前总用水量 第一次充水后, 第二次充水前 总用水量 第一次充水 期间用水量 第二次充水 期间用水量
V1= 606125-514872=91253(加仑)
充水时间约为2.1189小时
3. 由Vi—ti关系产生水流量 fi—ti的关系
注:亦可以由Vi—ti关系拟合 V(t),再求微商得到 f(t)
关于水流量 fi
Vi 1 Vi f i f (t i ) t i 1 t i V i V i 1 与 f i f (t i ) t i t i 1
水体积的误差为0.5% 用样条逼近的用水量其误差可用抽样计算得5.1%
一天 总量 误差
2 2 2 2 SV [ SV0 SV8.9678 SV p SV10.9542 SV20.8392
1
2 2 2 2 SV p SV 22.9581 SV23.88 SV[ 23.88 , 24 ] ]1 2
水泵工作的时间为32284秒(8.9678 小时); 水泵结束时间为39435秒(10.9542小时); 充水时间约为1.9864小时
水泵工作的时间为75021秒(20.8392 小时),水 位26.97英尺 第 二 次 充 水 水泵结束时间为82649秒(22.9581小时), 补充水位35.50英尺
水流量值(表3)
时
(小时)
间
水 流 量
(加仑/小时)
时
(小时)
间
水流量
(加仑/小时)
时
估计水塔的水流量

估计水塔的水流量美国某州的各用水管理机构要求各社区提供以每小时多少加仑计的用水率以及每天所用的总水量.许多社区没有测量流入或流出当地水塔的水量的装置,他们只能代之以每小时测量水塔中的水位,其精度不超过5%,更重要的是,当水塔中的水位下降最低水位L 时水泵就启动向水塔输水直到最高水位H,但也不能测量水泵的供水量.因此,当水泵正在输水时不容易建立水塔中水位和水泵工作时用水量之间的关系.水泵每两天输水一次或两次,每次约二小时.试估计任何时刻(包括水泵正在输水的017921 时间内)从水塔流出的流量f(t),并估计一天的总用水量.附表给出了某各小镇一天中真实的数据.附表给出了从第一次测量开始的以秒为单位的时刻.以及该时刻的高度单位为百分之一英尺的水位测量值.例如,3316 秒后,水塔中水位达到31.10 英尺.水塔是一个高为40 英尺,直径为57 英尺的正圆柱.通常当水塔水位降至约27.00 英尺的水泵开始工作,当水位升到35.50 英尺时水泵停止工作.问题分析与数据处理由问题的要求,关键在于确定用水率函数,即单位时间内用水体积,记为f(t),又称水流速度.如果能够通过测量数据,产生若干个时刻的用水率,也就是f(t)在若干个点的函数值,则f(t)的计算问题就可以转化为插值或拟合问题一,问题假设1)水塔中水流量是时间的连续光滑函数,与水泵工作与否无关,并忽略水位高度对水流速度的影响.2)水泵工作与否完全取决于水塔内水位的高度,且每次加水的工作时间为2小时.3)水塔为标准圆柱体.4)水泵第一次供水时间为[32284, 39435],第二次供水时间段为[75021,85948].5)为了方便计算我们把表格中的秒转化成小时.6)我们规定以下符号:h:水塔中水位的高度,是时间的函数,单位为英尺;v:水塔中水的体积,是时间的函数,单位为加仑; t:时间,单位为小时;f:模型估计的水塔水流量,是时间的函数,单位为加仑/小时p:水泵工作时的充水水流量,也是时间的函数,单位为加仑/小时。
水塔流量估计的数学建模

水塔流量估计的数学建模1. 引言水塔是现代城市供水系统中至关重要的组成部分,其作用是通过储存水源来保障城市居民日常用水,并且在有紧急情况时提供应急用水。
为了更好地保障全社会的用水需求,并降低供水系统建设和运营成本,对水塔的流量进行准确的估计和预测具有重要意义。
本文将探讨如何利用数学建模的方法对水塔流量进行估计和预测。
2. 水塔流量的影响因素水塔流量的大小受到多种因素的影响,主要包括以下几个方面:2.1 水塔容积水塔的容积越大,其流量也就越大。
因此,在进行水塔流量估计时,首先需要考虑其容积。
2.2 外部水压水塔的流量受到外部水压的影响。
如果外部水压较大,则水塔的流量也将较大。
2.3 水泵功率水泵功率的大小直接影响到水塔的流量大小。
水泵功率越大,水塔的流量也就越大。
2.4 关阀状态水塔流量还受到管道关阀状态的影响。
如果关阀状态较大,则水塔流量也将减小。
3. 水塔流量的数学建模方法水塔流量的数学建模方法主要包括以下几个步骤:3.1 收集数据收集水塔流量的相关数据,并对其进行初步的整理和分析。
3.2 设计建模方程根据已收集到的数据,设计合适的建模方程。
建模方程需要考虑到水塔容积、外部水压、水泵功率、关阀状态等多种因素。
3.3 参数估计利用已有的数据对建模方程中的参数进行估计。
参数估计是非常重要的一步,其准确性直接影响到模型的准确性和可靠性。
3.4 模型检验和优化使用已有的数据来对所建立的模型进行检验和优化。
检验过程中需要对模型的精度、准确性、鲁棒性等进行评估,如果出现问题,需要进行适当的调整。
4. 案例分析为了说明水塔流量估计的数学建模方法,我们以某市几座水塔为例进行分析。
4.1 收集数据在该市的几座水塔中,我们选取了其中一座水塔进行了数据的收集,主要包括该水塔的容积、水泵功率、外部水压等基本信息。
4.2 设计建模方程根据收集到的数据,我们设计了一个基础的建模方程,其中各项参数分别为:Q为流量,V为水塔容积,P为外部水压,H为水泵的扬程,K为关阀系数。
水塔水流量的估计

水塔水流量的估计一.实验问题某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量。
但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量。
通常水泵每天供水一次,每次约2h。
水塔是一个高为12.2m,直径为17.4m的正圆柱。
按照设计,水塔水位降至约8.2m时,水泵自动启动,水位升到约10.8m时水泵停止工作。
表1是某一天的水位测量纪录(符号“//”表示水泵启动),试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。
表1 水位测量纪录二.问题分析根据以上数据的形式和以往经验,适合采用线性拟合的方式进行数据处理。
对第1、2、3未供水时段可直接进行用五次多项式进行拟合。
对第1、2供水时段分别在两端各取两个点用前后时刻的流速拟合得到。
结果可以用分段函数表示分为5段,分别是第一未供水时段,第一供水时段,第二未供水时段,第二供水时段,第三未供水时段。
得出流速之后再乘以水塔横截面积即得任何时刻与水塔流出水流量的关系,即流速与时间的关系。
对流速进行分段积分并求和,即得一天的总水流量。
三.程序的设计与求解方法1.数据的单位转换水塔的横截面积为A=(17.4)^2*pi/4=237.0661(平方米)。
2.拟合水位——时间函数(1)对第1未供水时段的数据进行拟合。
t=[0 0.92 1.84 2.90 3.87 4.98 5.90 7.00 7.93 8.97 10.95 12.03 12.95 13.88 14.98 15.90 16.83 17.93 19.04 19.96 20.84 23.88 24.99 25.91]h=[ 9.68 9.48 9.31 9.13 8.98 8.81 8.69 8.52 8.39 8.22 10.82 10.50 10.21 9.94 9.65 9.41 9.18 8.92 8.66 8.43 8.22 10.59 10.35 10.18] f1=polyfit(t(1:10),h(1:10),5); tm1=0:0.1:9.0; y1=polyval(f1,tm1); plot(tm1,y1)01234567898.28.48.68.899.29.49.69.8(2)对第2未供水时段的数据进行拟合。
第5章_水塔用水量的估计

x
插值要求在每一个观测点处满足yi=f(xi)
2013-6-27 河北大学
Hebei University
5.1 引例
机床加工
X=0 3
5
7 9
11 12 13 14 15 1.8 1.2 1 1.6
4 Y=0 1.2 1.7 2 2.1 2 2 0 0
2013-6-27
5
河北大学
10
15
Hebei University
被插值节点 插值节点
xi处的插 值结果
2013-6-27
河北大学
Hebei University
5.2 插值基本原理
例:在1-12的11小时内,每隔1小时测量一次温度, 测得的温度依次为:5,8,9,15,25,29,31, 30,22,25,27,24。试估计1/10小时的温度值 hours=1:12 temps=[5 8 9 15 25 29 31 30 22 25 27 24]; h=1:.1:12; t=interp1(hours,temps,h); plot(hours,temps,’+’,h,t); title(‘线性插值下的温度曲线’) xlabel(‘Hour’), ylabel(‘Degrees Celsius’)
x=-5:10/2:5; y=1./(1+x.^2); x1=-5:0.1:5; y1=Langrage(x,y,x1); plot(x1,y1,'b--','linewidth',2) hold on x=-5:10/4:5; y=1./(1+x.^2); y2=Langrage(x,y,x1); plot(x1,y2,'r-','linewidth',2) x=-5:10/6:5; y=1./(1+x.^2); y3=Langrage(x,y,x1); plot(x1,y3,'k:','linewidth',2)
[VIP专享]实验六 水塔用水量的估计
![[VIP专享]实验六 水塔用水量的估计](https://img.taocdn.com/s3/m/86e1438455270722182ef77d.png)
n=5; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y2=lagr1(x0,y0,x); hold on,plot(x,y2,'b:'),gtext('n=4'),pause, hold off
n=7; x0=-5:10/(n-1):5; y0=1./(1+x0.^2); y3=lagr1(x0,y0,x);hold on,
2006年经省农业厅,南平市政府19批41准年,毛南泽平东农在校《与改建造阳我农们业的工学程习学》校一合文署中办,学把,这强句强原联指合治,学实态行度一的套话班古子为,今两用个,校从区哲的学管的理高体度制做,了从新而的使分学析校,的深办化学了规对模实,事办求学是实的力理都解有,长并足为的其发提历展出史,了的逐一经步个验发经教展典训成的告为注诉有释我着,们广指:泛出什发:么展“时空‘候间实坚和事持良’实好就事发是求展客是前观,景存党的在和闽着国北的家唯一的一切事一事业所物就集,会文第‘顺理一是利、个’发农问就展工题是;商,客什实贸实观么事为事事时求一求物候是体是的背是,地内离一面看部实个向待联事老全我系求话国们,是题招的即,,生学规党实和校律和事就。性国求业职,家是的业‘的一,教求事一语办育’业、,学明就就实出规显是会事自模不我遭求东最同们遇是汉大于去挫地班、高研折看固师等究。待所资教”同学著力育。时校《量和毛,、汉最中泽只学书雄学东有生河厚教对坚和间、育中持学献办,国实校王学不社事当传质同会求前》量点、是工。和就中,作书办在国党以中学于革和及称声职命人存赞誉业的民在刘高教分的的德的育析事问“综所无业题修合有不才学性工贯能好国作穿顺古家和着利,级任实前实重何事进事点事求,求中情是一是专都的旦。和必精背”省须神离其级靠。实意文自因事思明己而求是学完他是根校成才就据。。能必实而找然事这到遭求些中到索成国挫真绩革折理的命甚。取的至得规倒是律退得,。益制实于定事学出求校适是党合是政中马领国克导国思的情主坚的义强路世领线界导方观,针的得政根益策本于,要全指求体导,党中是员国马干革克部命思和走主教向义职胜的工利精的,髓辛实。勤事工求作是和是共中同国努革力命的实结践果经,验但的最高主度要总的结一和条概是括得,益中于国学革校命始和终建坚设持的实经事验求表是明的,原实则事,求可是以是说胜,利坚之持本实,事只求要是坚原持则实是事我求们是学,校我各们项党事就业会健永康远、立稳于定不和败谐之发地展。的重要保证。
水塔水流量估计问题

水塔水流量估计问题一.问题描述某居民区有一供居民用水的园柱形水塔,一般可以通过测量其水位来估计水的流量,但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量.通常水泵每天供水一两次,每次约两小时.水塔是一个高12.2米,直径17.4米的正园柱.按照设计,水塔水位降至约8.2米时,水泵自动启动,水位升到约10.8米时水泵停止工作.表1 是某一天的水位测量记录,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量.表1 水位测量记录(符号//表示水泵启动)二.流量估计的解题思路1.拟合水位~时间函数测量记录看,一天有两个供水时段(以下称第1供水时段和第2供水时段),和3个水泵不工作时段(以下称第1时段t=0到t=8.97,第2次时段t=10.95到t=20.84和第3时段t=23以后)。
对第1、2时段的测量数据直接分别作多项式拟合,得到水位函数.为使拟合曲线比较光滑,多项式次数不要太高,一般在3~6.由于第3时段只有3个测量记录,无法对这一时段的水位作出较好的拟合。
2.确定流量~时间函数对于第1、2时段只需将水位函数求导数即可,对于两个供水时段的流量,则用供水时段前后(水泵不工作时段)的流量拟合得到,并且将拟合得到的第2供水时段流量外推,将第3时段流量包含在第2供水时段内. 3.一天总用水量的估计总用水量等于两个水泵不工作时段和两个供水时段用水量之和,它们都可以由流量对时间的积分得到。
三.算法设计与编程1、拟合第1时段的水位,并导出流量设t ,h 为已输入的时刻和水位测量记录(水泵启动的4个时刻不输入),第1时段各时刻的流量可如下得:1) c1=polyfit (t (1:10),h (1:10),3);%用3次多项式拟合第1时段水位,c1输出3次多项式的系数2)a1=polyder (c1);% a1输出多项式(系数为c1)导数的系数3)tp1=0:0.1:9;x1=-polyval (a1,tp1);% x1输出多项式(系数为a1)在tp1点的函数值(取负后边为正值),即tp1时刻的流量4)流量函数为:1079.227173.22356.0)(2-+-=t t t f2、拟合第2时段的水位,并导出流量设t ,h 为已输入的时刻和水位测量记录(水泵启动的4个 时刻不输入),第2时段各时刻的流量可如下得: 1) c2=polyfit(t(10.9:21),h(10.9:21),3);%用3次多项式拟合第2时段水位,c2输出3次多项式的系数2) a2=polyder(c2);% a2输出多项式(系数为c2)导数的系数3)tp2=10.9:0.1:21;x2=-polyval(a2,tp2); % x2输出多项式(系数为a2)在tp2点的函数值(取负后边为正值),即tp2时刻的流量4)流量函数为:1994.349045.152173.10284.0)(23+-+-=t t t t f3、拟合供水时段的流量在第1供水时段(t=9~11)之前(即第1时段)和之后(即第2时段)各取几点,其流量已经得到,用它们拟合第1供水时段的流量.为使流量函数在t=9和t=11连续,我们简单地只取4个点,拟合3次多项式(即曲线必过这4个点),实现如下:xx1=-polyval(a1,[8 9]);%取第1时段在t=8,9的流量xx2=-polyval(a2,[11 12]);%取第2时段在t=11,12的流量xx12=[xx1 xx2];c12=polyfit([8 9 11 12],xx12,3);%拟合3次多项式tp12=9:0.1:11;x12=polyval(c12,tp12);% x12输出第1供水时段各时刻的流量拟合的流量函数为:在第2供水时段之前取t=20,20.8两点的流水量,在该时刻之后(第3时段)仅有3个水位记录,我们用差分得到流量,然后用这4个数值拟合第2供水时段的流量如下:dt3=diff(t(22:24));%最后3个时刻的两两之差dh3=diff(h(22:24));%最后3个水位的两两之差dht3=-dh3./dt3;%t(22)和t(23)的流量t3=[20 20.8 t(22) t(23)];1.10785049.3368448.341731.1)(23+-+-=ttttfxx3=[-polyval(a2,t3(1:2)),dht3];%取t3各时刻的流量c3=polyfit(t3,xx3,3);%拟合3次多项式tp3=20.8:0.1:24;x3=polyval(c3,tp3);% x3输出第2供水时段(外推至t=24)各时刻的流量拟合的流量函数为:4、一天总用水量的估计第1、2时段和第1、2供水时段流量的积分之和,就是一天总用水量.虽然诸时段的流量已表为多项式函数,积分可以解析地算出,这里仍用数值积分计算如下:y1=0.1*trapz(x1);%第1时段用水量(仍按高度计),0.1为积分步长y2=0.1*trapz(x2);%第2时段用水量y12=0.1*trapz(x12);%第1供水时段用水量y3=0.1*trapz(x3);%第2供水时段用水量8.44966844.6158430.274181.0)(23-+-=ttttfy=(y1+y2+y12+y3)*237.8*0.01; %一天总用水量 (L m 1033)计算结果:y1=146.1815, y2=266.4409, y12=48.5004, y3=74.8064,y=1274.45、流量及总用水量的检验计算出的各时刻的流量可用水位记录的数值微分来检验.用水量y1可用第1时段水位测量记录中下降高度968-822=146来检验,类似地,y2用1082-822=260检验.供水时段流量的一种检验方法如下:供水时段的用水量加上水位上升值260是该时段泵入的水量,除以时段长度得到水泵的功率(单位时间泵入的水量),而两个供水时段水泵的功率应大致相等.第1、2时段水泵的功率可计算如下:p1=(y12+260)/2; %第1供水时段水泵的功率(水量仍以高度计) tp4=20.8:0.1:23;xp2=polyval (c3,tp4); % xp2输出第2供水时段各时刻的流量 p2=(0.1*trapz(xp2)+260)/2.2;%第2供水时段水泵的功率(水量仍以高度计) 计算结果:p1=154.2502 ,p2=142.3670四.计算结果(3,4)流量函数为:(56)流量函数为:画图(n1,n2)y1 y2 y12 y3 y p1 p2 (3,4) 146.1815 266.4409 48.5004 74.8064 1274.4 154.2502 142.3670 (5,6) 146.5150 265.5417 46.1317 72.6057 1262.2 153.0659 141.4479⎪⎪⎩⎪⎪⎨⎧≤≤-+-<≤+-+-<≤+-+-<≤-+-=24218.44966844.6158430.274181.021111.10785049.3368448.341731.11191994.349045.151.21730284.091079.227173.22356.0)(2323232tttttttttttttttt f⎪⎪⎩⎪⎪⎨⎧≤≤-+<≤++-<≤+++-<≤-++-=24214.3551490.560022.3526-3382.021114974.362112.7045-11.80653930.01198447.20.8873-0.10780.0065-0.00020.000098296.235.71081.5878-0.22240120.0)(23232345234tttttttttttttttttttt fn=(3,4)n=(5,6)。
估计水塔的水流量

估计水塔的水流量1、问题提出:某地区用水管理机构需要对居民的用水速度(单位时间的用水量)和日总用水量进行估计。
现有一居民区,其自来水是由一个圆柱形水塔提供,水塔高12.2m,塔的直径为17.4m。
水塔是由水泵根据水塔中的水位自动加水,一般水泵每天工作两次,按照设计,当水塔中的水位降至最低水位,约8.2m时,水泵自动启动加水;当水位升高到最高水位,约10.8m时,水泵停止工作。
表1给出的是某一天的测量数据,测量了28个时刻的数据,但由于水泵正向水塔供水,有三个时刻无法测到水位(表中用—表示),试建立数学模型,来估计居民的用水速度和日用水量。
表1 水塔中水位原始数据2、问题分析:日用水量用水速度每个时刻水塔中水的体积3、模型假设:影响水从水塔中流出的流量的唯一因素是公众对水的传统要求;水塔中的水位、气候条件、温度变化等不影响水流量的大小;水泵充水速度水塔的水流量与水泵状态独立;恒定,且远大于水塔的水流速度;水流量曲线是一条连续光滑的曲线;表1数据是准确的;4、模型的建立与求解:(1)、水塔中水的体积其中, ,(r 为底面半径,d 为水面高度)(2)在Matlab 命令窗口直接运行(不包括未知三点)>>t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,10.954,12.032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22.958,23.880,24.986,25.908];>>v=[2301.1,2254,2213.3,2169.8,2135.8,2095.9,2065.4,2027.1,1994.6,1954.6,2572.9,2496.8,2427.8,2362.7,2295.4,2237.3,2182.9,2121.3,2059.7,2005.3,1954.6,2572.9,2518.4,2462.0,2420.7]; >> scatter(t,v)得到水塔中水体积的散点图 0510********19002000210022002300240025002600(3)在Matlab 中编写脚本文件(不包括未知三点)采用数值微分的一阶微商的两点公式(末位处近似为sd(n)=sd(n-1))t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,10.954,12.032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22.958,23.880,24.986,25.908];v=[2301.1,2254,2213.3,2169.8,2135.8,2095.9,2065.4,2027.1,1994.6,1954.6,2572.9,2496.8,2427.8,2362.7,2295.4,2237.3,2182.9,2121.3,2059.7,2005d r V 2π=.3,1954.6,2572.9,2518.4,2462.0,2420.7];for i=1:9sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(10)=sd(9);for i=11:20sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(21)=sd(20);for i=22:24sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(25)=sd(24);scatter(t,sd)hold onplot(t,sd)得到水塔中水流速度的散点图及光滑图0510********(4)预测水塔中的未知流速[1]在Matlab中运行脚本文件(不包括未知三点):采用数值微分的一阶微商的两点公式(末位处近似为sd(n)=sd(n-1))t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,10.954,12. 032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22 .958,23.880,24.986,25.908];v=[2301.1,2254,2213.3,2169.8,2135.8,2095.9,2065.4,2027.1,1994.6,1954. 6,2572.9,2496.8,2427.8,2362.7,2295.4,2237.3,2182.9,2121.3,2059.7,2005 .3,1954.6,2572.9,2518.4,2462.0,2420.7];for i=1:9sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(10)=sd(9);for i=11:20sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(21)=sd(20);for i=22:24sd(i)=abs((v(i+1)-v(i))/(t(i+1)-t(i)));endsd(25)=sd(24);sd得到速度(不包括未知三点)sd =Columns 1 through 951.1401 44.1432 39.3309 36.8764 36.0434 33.0803 34.6293 35.2495 38.4986Columns 10 through 1838.4986 70.5937 74.8373 70.6840 60.7949 63.0836 58.9382 55.7466 55.6962Columns 19 through 2559.0022 57.6136 57.6136 59.1106 50.9946 44.7939 44.7939 [2]采用拉格朗日插值法估计未知三点的速度:在Matlab命令窗口直接运行>> x0=[7.928,8.967];>> y0=[38.4968,38.4968];>> lglr3(x0,y0,9.981)ans =38.4968>> x0=[8.967,9.981];>> y0=[38.4968,38.4968];>> lglr3(x0,y0,10.925)ans =38.4968>> x0=[19.959,20.839];>> y0=[57.6136,57.6136];>> lglr3(x0,y0,22.015)ans =57.6136[3]在Matalb中运行脚本文件t=[0,0.921,1.843,2.949,3.871,4.978,5.900,7.006,7.928,8.967,9.981,10.9 25,10.954,12.032,12.954,13.875,14.982,15.903,16.826,17.931,19.037,19.959,20.839,22.015,22.958,23.880,24.986,25.908];sd=[51.1401,44.1432,39.3309,36.8764,36.0434,33.0803,34.6293,35.2495,3 8.4986,38.4968,38.4968,38.4986,70.5937,74.8373,70.6840,60.7949,63.083 6,58.9382,55.7466,55.6962,59.0022,57.6136,57.6136,57.6136,59.1106,50. 9946,44.7939,44.7939];scatter(t,sd)hold onplot(t,sd)得到水塔中水流速度的散点图及光滑图(new)757065605550454035300510********(4)a、通过曲线拟合,拟合出上述函数(f1)b、通过数值积分(梯形,辛普森)求出用水量(f2)5、模型检验:应该另外测试一批数据检验模型(f1,f2)6、模型分析:(1) 4.(3)中末位处近似为sd(n)=sd(n-1)可以改进,比如先采用数值微分求1----(n-1)的速度,再采用拉格朗日插值法求末位n的速度;(2)拉格朗日插值可以改用其他更为精确的插值法(3)数值微分法可以采用其他的更为精确的方法(而不是一阶微商的两点公式)(4) 4.(4)中的两部暂时不会(5)模型假设处可能有一些瑕疵7、附录:。
水塔流量估计_数学建模论文___《数学模型与数学软件综合训练》论文__MATLAB源程序

《数学模型与数学软件综合训练》论文训练题目:水塔流量估计学生学号:07500119 姓名:周才祥计通院信息与计算科学专业指导教师:黄灿云(理学院)2010年春季学期前 言在生产实践和科学研究中,常常遇到这样的问题:由实验或测量得到的一批离散样点,需要确定满足特定要求的曲线或曲面(即变量之间的函数关系或预测样点之外的数据)。
如果要求曲线(面)通过所给的所有数据点(即确定一个初等函数通过已知各数据,一般用多项式或分段多项式),这就是数据插值。
在数据较少的情况下,这样做能够取得好的效果。
但是,如果数据较多,那么插值函数是一个次数很高的函数,比较复杂。
如果不要求曲线(面)通过所有的数据点,而是要求它反映对象整体的变化趋势,可得到更简单实用的近似函数,这就是数据拟合。
函数插值和曲线拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者在数学方法上是完全不同的。
针对水塔数据分析,利用数学软件MA TLAB 进行数据拟合。
曲线拟合问题是指:已知平面上n 个点(i x ,i y ),i =0,1,…,n ,i x 互不相同,寻求函数y =)(x f ,使)(x f 在某种准则下与所有数据点最为接近,即曲线拟合得最好。
线性最小二乘法是解决曲线拟合最常用的方法,其基本思路是,令 )(x f =)(11x r a +)(22x r a +…+)(x r a m m其中)(x r k 是事先选定的一组函数,系数k a (k =0,1,…,m ,m <n )待定。
寻求k a ,使得残差平方和Q =∑=-ni i x f 12i )y )((达到最小。
这里的建模原理实质上与实验七中的回归分析是一致的。
摘要数学建模方法是处理科学理论的一种经典方法,也是解决各类实际问题的常用方法。
文章采用曲线拟合的方法,并利用数学软件MATLA B对水塔流蚤进行计算计算结果与实际记录基本吻合。
关键词:建模,流量,拟合,MA TLAB目录错误!未找到引用源。
估计水塔的水流量(AMCM91

估计水塔的水流量(AMCM911.实验问题某地的用水管理机构要求各社区提供用水率(以每小时多少加仑计,英制单位下,1加仑=4.54596dm3,美制单位下,1加仑=3.78533dm3)以及每天所用的总用水量,但许多社区并没有测量流入或流出当地水塔的水量的设备,而只能以每小时测量水塔的水位代替,其精度在0.5%以内。
更为重要的是,无论什么时候,只要水塔中的水位下降到某一最低水位L时,水泵就启动向水塔重新充水直至某一最高水位H,但也无法得到水泵的供水量的测量数据。
因此,在水泵正在工作时,不容易建立水塔中水位与水泵工作时用水量之间的关系。
水泵每天向水塔充水一次或两次,每次大约2小时。
试估计在任何时候,甚至包括水泵正在工作的时间内从水塔流出的流量,并估计一天的总用水量。
水塔是一个垂直圆柱体,高为40英尺,直径为57英尺。
下表给出了某个小镇某一天的真实数据。
表:某小镇某天的水塔水位(1m=3.281英尺)2.实验分析2.1 计算中将流量定义为单位时间流出的水的高度乘以水塔横截面积。
2.2 把时间分成5段:第1未供水段、水泵开启第1段、第2未供水段、水泵开启第2段、第3未供水段。
2.3 先直接对第1、2、3未供水段进行5次曲线拟合。
2.4 再对得到的曲线分别求导,取得流速(即单位时间内流出的水的高度)。
2.5 水泵开启第1、2段,分别在两端各取两个点,用时刻流速进行拟合得到这两段的流速。
2.6 流速乘以水塔横截面积就得到任何时刻的水流量。
2.7 对其进行分段积分,求和得到一天的总水流量。
3.程序设计与求解方法3.1 对表中数据进行处理数据的单位转换:46636,49953,53936,57254,60574,64554,68535,71854,75021,85968,89953,932 70];y=[31.75,31.10,30.54,29.94,29.55,28.92,28.50,27.87,27.52,26.97,35.50, 34.45,33.50,32.67,31.56,30.81,30.12,29.27,28.42,27.67,26.97,34.75,33. 89,33.40];t=x/3600; %时间单位为小时h=y/3.281; %水位高度单位为米水塔横截面积为a=pi*(57/2)^2;3.2 对第1段未供水段进行5次拟合x1=t(1:10);y1=h(1:10);f1=polyfit(x1,y1,5);t1=0:0.01:t(10);h1=polyval(f1,t1);plot(x1,y1,'o',t1,h1,'k');xlabel('时间(h)');ylabel('水位(m)');title('第一未供水时段的时间水位图')3.3 对第2段未供水段进行5次拟合x2=t(11:21);y2=h(11:21);f2=polyfit(x2,y2,5);t2=t(11):0.01:t(21);h2=polyval(f2,t2);plot(x2,y2,'o',t2,h2,'r');xlabel('时间(h)');ylabel('水位(m)');title('第二未供水时段的时间水位图 ')3.4 对第3段未供水段进行5次拟合x3=t(22:24);y3=h(22:24);f3=polyfit(x3,y3,5);t3=t(22):0.01:t(24);h3=polyval(f3,t3);plot(x3,y3,'o',t3,h3,'r');xlabel('时间(h)');ylabel('水位(m)');title('第三未供水时段的时间水位图 '3.5 对1、2、3未供水段进行求导,得到流速,再乘以水塔横截面积得流量b1=polyder(f1);%求导b2=polyder(f2);%求导b3=polyder(f3);%求导g1=-polyval(b1,t1)*a;%流速值再乘以水塔横截面积得流量g11=-polyval(b1,x1)*a;g2=-polyval(b2,t2)*a;%流速值再乘以水塔横截面积得流量g22=-polyval(b2,x2)*a;g3=-polyval(b3,t3)*a;%流速值再乘以水塔横截面积得流量g33=-polyval(b3,x3)*a;plot(x1,g11,'*',t1,g1,'c') %第一未供水段时间流量图plot(t2,g2) %第二未供水段时间流量图plot(t3,g3) %第三未供水段时间流量图3.6 求水泵开启第一段的时间流量图,取那段的前后两端各两个点的流速进行拟合,再乘以水塔横截面积得流量。
水塔水流量估计模型与数据插值总结

一
数据插值
给定n个数据点 ( x1 , y1 ), ( x2 , y2 ),, ( xn , yn ),
试求一个较为简单的函 数P ( x ),使得P ( x )满足 yi P ( xi ), i 1,2,, n
称P(x)为插值函数。也即求解一条严格通过各数 据点的曲线,用它来进行分析研究和预测,这种 方法常称为数据插值法。
称为牛顿插值公式,最后一项称为牛顿插值余项, 记为Rn(x),余项前的多式称为插值多项式,记 为Pn(x)。
牛顿插值多项式具有以下特点:
(1)在插值结点处与拉格朗日插值一样,误差 为零; (2)多项式k次项的系数是f(x)的k阶差商; (3)增加插值节点时,只增加最后一项,不必 像拉格朗日插值公式那样需要重新计算系数。 在做牛顿插值时,一般先做出差商表,然后套 用公式。
n 1 1
解为X A1Y .
可以证明,对于n+1个不同结点,必存在唯一的次 数不超过n的满足条件的多项式,这个多项式称为 插值多项式,这种方法称为n次多项式插值(或代 数插值。
为了以后使用方便,先编制一个Lagrange插值函数程序: function p=lagrange(x,y) L=length(x); A=ones(L); for j=2:L A(:,j)=A(:,j-1).*x'; end X=inv(A)*y'; for i=1:L p(i)=X(L-i+1); end
5
4
3
2
1
0
-1
1
1.5
2
2.5
3
3.5
4
4.5
5
从结果可以看到,所插值的4次多项式曲线较好地连接了5个 数据点,从而可以用此多项式曲线作为这5个数据的一个近 似变化。
水塔水流量估计

答卷编号(参赛学校填写):答卷编号(竞赛组委会填写):论文题目: 98年A组别:本科参赛队员信息(必填):参赛学校:承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):估计水塔的流量一、问题重述某居民区有一供居民用水的圆柱形水塔,一般可以通过测量其水位来估计水的流量,但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间无法测量水塔的水位和水泵的供水量.通常水泵每天供水一两次,每次约两小时.水塔是一个高12.2米,直径17.4米的正圆柱.按照设计,水塔水位降至约8.2米时,水泵自动启动,水位升到约10.8米时水泵停止工作.表1 是某一天的水位测量记录,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量.二、模型假设1、假设该水塔为标准的圆柱形。
2、水塔的流量只取决水塔内水位的差值,与其水位的高低无关且该流量应看做连续光滑的变量。
水塔水流量估计(2009)

实验水塔水流量的估计实验目的本次实验的主要目的是让学生会用数学软件进行插值计算并解决一些具体的实际问题。
介绍一些经典的插值方法,包括拉格朗日插值法、埃尔米特插值法、分段插值法、三次样条插值法等等。
实验内容1实验问题美国某州的各用水管理机构要求各社区提供以每小时多少加仑计的用水率以及每天所用的总水量。
许多社区没有测量流入或流出水塔的水量装置,他们只能代之以每小时测量水塔中的水位,其误差不超过5%。
更重要的是,当水塔中的水位下降到最低水位L 时水泵就启动向水塔输水直到最高水位H,期间不能测量水泵的供水量。
因此,当水泵正在输水时不容易建立水塔中水位和用水量之间的关系。
水泵每天输水一次或两次,每次约二小时。
试估计任何时刻(包括水泵正在输水时间)从水塔流出的水流量f(t),并估计一天的总用水量。
已知该水塔是一个高为40英尺(ft),直径为57英尺(ft)的正圆柱,表12.1给出了某个小镇一天水塔水位的真实数据,水位降至约27.00ft水泵开始工作,水位升到35.50ft停止工作。
(注:1英尺(ft)=0.3024米(m))表12-1 某小镇某天水塔水位2 问题分析流量是单位时间内流出水的体积,由于水塔是正圆柱形,横截面积是常数,所以在水泵不工作时段,流量很容易根据水位相对时间的变化率算出。
问题的难点在于如何估计水泵供水时段的流量。
水泵供水时段的流量只能靠供水时段前后的流量经插值或拟合得到。
作为用于插值94或拟合的原始数据,我们希望水泵不工作时段的流量越准确越好。
这些流量大体上可由两种方法计算,一是直接对表12.1中的水量用数值微分算出各时段的流量,用它们拟合其它时刻或连续时间的流量;二是先用表中数据拟合水位—时间函数,求导数即可得到连续时间的流量。
有了任何时刻的流量,就不难计算一天的总用水量。
其实,水泵不工作时段的用水量可以由测量记录直接得到,由表12.1中下降水位乘以水塔的截面积就是这一时段的量这个数值可以用来检验数据插值或拟合的结果。
估计水塔的水流new

估计水塔的水流量New表1 水塔中水位原始数据>> t=[0 0.921 1.843 2.949 3.871 4.978 5.900...7.006 7.928 8.967 9.981 10.925 10.954 12.032...12.954 13.875 14.982 15.903 16.826 17.931 19.037...19.959 20.839 22.015 22.958 23.880 24.986 25.908];>> h=[9.677 9.479 9.308 9.125 8.982 8.814 8.686...8.525 8.388 8.220 0 0 10.820 10.500...10.210 9.936 9.653 9.409 9.180 8.921 8.662...8.433 8.220 0 10.820 10.591 10.354 10.180];>> D=17.4;>> V=pi/4*D^2*hV =1.0e+003 *Columns 1 through 92.3011 2.2540 2.2133 2.1698 2.1358 2.0959 2.0654 2.0271 1.9946Columns 10 through 181.9546 0 02.5729 2.4968 2.4278 2.36272.2954 2.2373Columns 19 through 272.1829 2.1213 2.0597 2.0053 1.9546 0 2.5729 2.5184 2.4620Column 282.4207表2 水塔中水的体积>> t1=t(1:10);>> t2=t(13:23);>> t3=t(25:28);>> V1=V(1:10);>> V2=V(13:23);>> V3=V(25:28);>> v=-[gradient(V1,t1),gradient(V2,t2),gradient(V3,t3)]v =Columns 1 through 951.1204 47.6090 41.5072 38.2242 36.4474 34.6895 33.8858 34.9411 36.9837Columns 10 through 1838.4487 70.5862 72.5251 72.7683 65.3094 61.7918 60.9942 57.2190 55.7095Columns 19 through 2557.2190 58.3251 57.5553 59.0599 54.6395 48.1906 44.8752表3 水塔中水流速度(近似为用水速度)>> t=[t1 t2 t3];>> ti=0:0.01:25.908;>> vi=interp1(t,v,ti,'spline');>> plot(t,v,'+',ti,vi,'g')0510********>> ti=0:0.01:24;>> vi=interp1(t,v,ti,'spline');>> I=trapz(ti,vi)I =1.2560e+003稳定性分析:>> ti=0.2:0.01:24.2;>> vi=interp1(t,v,ti,'spline');>> I=trapz(ti,vi)I =1.2565e+003>> ti=0.4:0.01:24.4;>> vi=interp1(t,v,ti,'spline');>> I=trapz(ti,vi)I =1.2567e+003>> ti=1:0.01:25;>> vi=interp1(t,v,ti,'spline'); >> I=trapz(ti,vi)I =1.2572e+003检验:第一段用水量>> ti=0:0.01:8.967;>> vi=interp1(t,v,ti,'spline'); >> I1=trapz(ti,vi)I1 =345.2792第二段用水量>> ti=10.954:0.01:20.839; >> vi=interp1(t,v,ti,'spline'); >> T2=trapz(ti,vi)T2 =618.3992第三段用水量>> ti=22.958:0.01:25.908; >> vi=interp1(t,v,ti,'spline'); >> I3=trapz(ti,vi)I3 =152.0959水泵第一次充水时用水量>> ti=8.967:0.01:10.954; >> vi=interp1(t,v,ti,'spline'); >> I=trapz(ti,vi)I =107.6730水泵第二次充水时用水量>> ti=20.839:0.01:22.958; >> vi=interp1(t,v,ti,'spline'); >> I=trapz(ti,vi)I =123.9158。
试验三水塔流量问题

实验三:水塔流量问题【实验目的】1.了解有关数据处理的基本概念和原理。
2.初步了解处理数据插值与拟合的基本方法,如样条插值、分段插值等。
3.学习掌握用MATLAB命令处理数据插值与拟合问题。
【实验内容】某居民区有一供居民用水的圆形水塔,一般可以通过测量其水位来估计水的流量。
但面临的困难是,当水塔水位下降到设定的最低水位时,水泵自动启动向水塔供水,到设定的最高水位时停止供水,这段时间是无法测量水塔的水位和水泵的供水量。
通常水泵每天供水一两次,每次约两小时。
水塔是一个高12.2米、直径17.4米的正圆柱。
按照设计,水塔水位降到约8.2米时,水泵自动启动,水位升到约10.8米时水泵停止工作。
某一天的水位测量记录如下表所示,试估计任何时刻(包括水泵正供水时)从水塔流出的水流量,及一天的总用水量。
水位测量启示录(//表示水泵启动)【实验任务分析】1.问题的分析流量是单位时间流出的水的体积,由于水塔是圆柱形,横截面积是常数,在水泵不工作时段,流量很容易从水位对时间的变化率算出,问题是如何估计水泵供水时段的流量。
水泵供水时段的流量只能靠供水时段前后的流量拟合得到,作为拟合的原始数据,我们希望水泵不工作时段的流量越准确越好。
我们可以考虑先用表中数据拟合水位~时间函数,然后对之求导即可得到各时段的流量。
有了任意时刻的流量,就不难计算一天的总用水量。
其实,水泵不工作时段的用水量可以由测量记录直接得到,如由某一时段水位下降量乘以水塔的截面积(水塔截面积是常数S=(17.4/2)2 =237.8(m2))就得到这一时段的用水量。
这个数值可以还可以用来检验拟合效果。
流量是时间的连续函数,只取决于水位差,与水位本身无关,与水泵是否工作无关。
按照Torricelli定律从小孔流出的液体的速度正比于水面高度的平方根,题目给出水塔的最高和最低水位分别为10.8米和8.2米(设出水口的水位为0),10=1.15,可以忽略水位对流速的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验水塔水流量的估计实验目的本次实验的主要目的是让学生会用数学软件进行插值计算并解决一些具体的实际问题。
介绍一些经典的插值方法,包括拉格朗日插值法、埃尔米特插值法、分段插值法、三次样条插值法等等。
实验内容1实验问题美国某州的各用水管理机构要求各社区提供以每小时多少加仑计的用水率以及每天所用的总水量。
许多社区没有测量流入或流出水塔的水量装置,他们只能代之以每小时测量水塔中的水位,其误差不超过5%。
更重要的是,当水塔中的水位下降到最低水位L 时水泵就启动向水塔输水直到最高水位H,期间不能测量水泵的供水量。
因此,当水泵正在输水时不容易建立水塔中水位和用水量之间的关系。
水泵每天输水一次或两次,每次约二小时。
试估计任何时刻(包括水泵正在输水时间)从水塔流出的水流量f(t),并估计一天的总用水量。
已知该水塔是一个高为40英尺(ft),直径为57英尺(ft)的正圆柱,表12.1给出了某个小镇一天水塔水位的真实数据,水位降至约27.00ft水泵开始工作,水位升到35.50ft停止工作。
(注:1英尺(ft)=0.3024米(m))2 问题分析流量是单位时间内流出水的体积,由于水塔是正圆柱形,横截面积是常数,所以在水泵不工作时段,流量很容易根据水位相对时间的变化率算出。
问题的难点在于如何估计水泵供水时段的流量。
水泵供水时段的流量只能靠供水时段前后的流量经插值或拟合得到。
作为用于插值或拟合的原始数据,我们希望水泵不工作时段的流量越准确越好。
这些流量大体上可由两种方法计算,一是直接对表12.1中的水量用数值微分算出各时段的流量,用它们拟合其它时刻或连续时间的流量;二是先用表中数据拟合水位—时间函数,求导数即可得到连续时间的流量。
有了任何时刻的流量,就不难计算一天的总用水量。
其实,水泵不工作时段的用水量可以由测量记录直接得到,由表12.1中下降水位乘以水塔的截面积就是这一时段的量这个数值可以用来检验数据插值或拟合的结果。
模型建立为了表示方便,我们将问题中所给表12-1中的数据全部化为国际标准单位(表12-5),时间用小时(h),高度用米(m):模型假设(1) 流量只取决于水位差,与水位本身无关,故由物理学中Torricelli 定律:从小孔流出的液体的流速正比于水面高度的平方根。
题目给出水塔的最低和最高水位分别是8.1648m (27×0.3024)和10.7352m (35.50×0.3024 )(设出口的水位为零),因为sqrt(10.7352/8.1648)≈1.1467,约为1,所以可忽略水位对流速的影响。
(2) 将流量看作是时间的连续函数,为计算简单,不妨将流量定义成单位时间流出水的高度,即水位对时间变化率的绝对值(水位是下降的), 水塔截面积为S=(57*0.3048)^2*π/4=237.8(m^2).得到结果后乘以S 即可。
流量估计方法首先依照表12-5所给数据,用MA TLAB 作出时间—水位散点图12.7。
Fig.12.7下面我们来计算水箱流量与时间的关系。
根据表12-5中数据散点图12.7,一种简单的处理方法为先将表12-5中的数据分为三段,然后对每一段的数据做如下处理:设某段数据为)}(),...,(),{(,1,10,0n n y x y x y x ,相邻数据中点的平均流速用下面的公式(流速=(左端点的水位-右端点的水位)/区间长度):)/()()2(111i i i i i i x x y y x x v --=++++, 每段数据首尾点的流速用下面的公式计算:)/()43()(022100x x y y y x v -+-=,)/()43()(221-----+-=n n n n n n x x y y y x v ,用以上公式求得时间与流速之间的数据表12-6如下:由表12-6作出时间-流速散点图如下:Fig.12.8(1) 插值法由表12-6,对水泵不工作时段1,2采取插值方法,可以得到任意时刻的流速,从而可以知道任意时刻的流量.我们分别采取拉格朗日插值法,分段线性插值法及三次样条插值法;对于水泵工作时段1应用前后时期的流速进行插值,由于最后一段水泵不工作时段数据太少,我们将它与水泵工作时段2合并一同进行插值处理(该段简称混合时段)。
我们总共需要对四段数据(第1,2未供水时段,第1供水时段,混合时段)进行插值处理,下面以第1未供水时段数据为例分别用三种方法算出流量函数和用水量(用水高度)。
下面是实现该过程的MA TLAB程序。
t=[0,0.46,1.38,2.395,3.41,4.425,5.44,6.45,7.465,8.45,8.97];v=[29.89,21.74,18.48,16.22,16.30,15.32,13.04,15.45,13.98,16.35, 19.27];t0=0:0.1:8.97;lglr=lglrcz(t,v,t0); /*注:lglrcz为一函数,程序同lglrcz.m*/ lglrjf=0.1*trapz(lglr)fdxx=interp1(t,v,t0);fdxxjf=0.1*trapz(fdxx)scyt=interp1(t,v,t0,'spline');sancytjf=0.1*trapz(scyt)plot(t,v,'*',t0,lglr,'r',t0,fdxx,'g',t0,scyt,'b')gtext('lglr')gtext('fdxx')gtext('scyt')运行结果为 lglrjf=145.6231fdxxjf=147.1430sancytjf=145.6870图12.9是对第1未供水段数据用三种不同方法得到的插值函数图,图中曲线lglr、fdxx和scyt分别表示用拉格朗日插值法,分段线性插值法及三次样条插值法得到的曲线。
由表12-5知,第1未供水时段的总用水高度为146(=968-822),可见上述三种插值方法计算的结果与实际值(146)相比都比较接近。
考虑到三次样条插值方法具有更加良好的性质,建议采取该方法。
其它三段的处理方法与第1未供水时段的处理方法类似,这里不再详细叙述,只给出数值结果和函数图象,图中曲线标记同Fig.12.9。
Fig.12.10 (第一供水段时间-流速示意图)Fig.12.12(混合时段段时间-流速示意图)下图12.13是用分段线性及三次样条插值方法得到的整个过程的时间-流速函数示意图。
下表是对一天中任取的4个时刻分别用三种方法得到的水塔水流量近似值。
(2) 拟合法1) 拟合水位--时间函数从表12-5中测量记录看,一天有两次供水时段和三次未供水时段,分别对第1,2未供水时段的测量数据直接作多项式拟合,可得到水位函数(注意,根据多项式拟合的特点,此处拟合多项式的次数不宜过高,一般以3-6次为宜)。
对第3未供水时段来说,数据过少不能得到很好的拟和。
设t,h分别为已输入的时刻和水位测量记录(由表12-5提供,水泵启动的4个时刻不输入),这样第1未供水时段各时刻的水位可由如下MA TLAB程序完成:t=[0,0.92,1.84,2.95,3.87,4.98,5.90,7.00,7.93,8.97,10.95,12.03,12.95,13.88,14.98,15.90,16.83,17.93,19.04,19.96,20.84,23.88,24.99,25.66]h=[9.68,9.48,9.31,9.13,8.98,8.81,8.69,8.52,8.39,8.22,10.82,10.50,10.21,9.94,9.65,9.41,9.18,8.92,8.66,8.43,8.22,10.59,10.35,10.18];c1=polyfit(t(1:10),h(1:10),3);tp1=0:0.1:8.9;x1=polyval(c1,tp1);plot(tp1,x1)下图给出的是第1未供水时段的时间-水位拟合函数图形。
Fig.12.14变量x1中存放了以0.1为步长算出的各个时刻的水位高度。
同样地,第2未供水时段时间-水位图可由如下MA TLAB程序完成,读者可自己上机运行查看。
c2=polyfit(t(11:21),h(11:21),3);tp2=10.9:0.1:20.9;x2=-polyval(c2,tp2);plot(tp2,x2)2)确定流量—时间函数对于第1,2未供水时段的流量可直接对水位函数求导,程序如下:c1=polyfit(t(1:10),h(1:10),3);c2=polyfit(t(11:21),h(11:21),3);a1=polyder(c1);a2=polyder(c2);tp1=0:0.01:8.97;tp2=10.95:0.01:20.84;x13=-polyval(a1,tp1);x113=-polyval(a1,[0:0.01:8.97]);wgsysl1=100*trapz(tp1,x113); */该语句计算第1未供水时段的总用水量*/x14=-polyval(a1,[7.93,8.97]); */该语句仅为下面的程序准备数据*/x23=-polyval(a2,tp2);x114=-polyval(a2,[10.95:0.01:20.84]);wgsysl2=100*trapz(tp2,x114); */该语句计算第2未供水时段的总用水量*/x24=-polyval(a2,[10.95,12.03]); */该语句仅为下面的程序准备数据*/x25=-polyval(a2,[19.96,20.84]); */该语句仅为下面的程序准备数据*/subplot(1,2,1)plot(tp1,x13*100) */与Fig.12.13单位保持一致*/subplot(1,2,2)plot(tp2,x23*100) */与Fig.12.13单位保持一致*/程序运行得到第1,2未供水时段的-时间流量图如下,可以看到与Fig.12.13中用插值给出的曲线比较吻合。
Fig.12.15如果用5次多项式拟合则得下面的图形,显然较3次拟合的效果好。
Fig.12.16而第1供水时段的流量则用前后时期的流量进行拟合得到。
为使流量函数在t=9和t=11连续,我们只取4个点,用3次多项式拟合得到第1供水时段的时间-流量图形如下,可以看到与Fig.12.13中的相应部分比较吻合。
dygsdsj=[ 7.93,8.97, 10.95,12.03];dygsdls=[x14, x24];nhjg=polyfit(dygsdsj, dygsdls,3);nhsj=7.93:0.1:12.03;nhlsjg=polyval(nhjg ,nhsj);gssj1=8.97:0.01:10.95;gs1=polyval(nhjg,[8.97:0.01:10.95]);gsysl1=100*trapz(gssj1,gs1); */该语句计算第1供水时段的总用水量*/plot(nhsj, 100*nhlsjg)Fig.12.17在第2供水时段之前取t=19.96,20.84两点的流量,用第三未供水时段的3个记录做差分得到两个流量数据21.62,18.48,然后用这4个数据做3次多项式拟合得到第2供水时段与第3为供水时段的时间-流量图如下,可以看到与Fig.12.13中的相应部分也比较吻合。