专题(一次函数与反比例函数综合)

合集下载

课时10 一次函数和反比例函数综合专题1

课时10 一次函数和反比例函数综合专题1

二 、典例讲解
2.如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(-2,0)、B(6,0)、 D(0,3),反比例函数的图象经过点C. (1)求点C坐标和反比例函数的解析式; (2)将等腰梯形ABCD向上平移m个单位后,使点B恰好落在双曲线上,求m的值
二 、典例讲解
解:作AE⊥y轴于E,
三 、课堂小练
2、函数图像的点和坐标轴围成的图形面积的计算方法,
一般来说要么分割成几个图形的和,要么补形成特殊的几
何图形再计算面积。
五、学案巩固和提高
请同学们认真完成练习学案上合专题1
一、专题简析
一次函数、反比例函数图象及其性质.
能利用这些函数分析和解决简单实际问题. 能利用图象数形结合地分析简单的函数关系.
一、专题简析
解:(1)因为OA=OB=OD=1,点A在x负半轴,点B在y轴正 半轴,点D在x正半轴,所以A点的坐标为(-1,0),B点的坐 标为(0,1),D点的坐标为(1,0);
1.如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图 象相交于A(2,1)、B(-1,-2)两点,与x轴交于点C. (1)分别求反比例函数和一次函数的解析式 (2)连接OA,求△AOC的面积.
三 、课堂小练
四、小结提高
1、一次函数图像与反比例函数图像的交点含义:联立两
个函数解析式建立方程组,方程组的解就是交点的坐标。

中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案

中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系xOy 中,一次函数1y ax b (a ,b 为常数,且0a ≠)与反比例函数2m y x=(m 为常数,且0m ≠)的图象交于点()2,1A -和()1,B n .(1)求反比例函数与一次函数的解析式.(2)连接OA 、OB ,求△AOB 的面积.(3)直接写出当12y y <时,自变量x 的取值范围.2.定义:在平面直角坐标系中,如果一个点的纵坐标等于它的横坐标的三倍,则称该点为“纵三倍点”.例如()()()1,3,2,6,2,32--都是“纵三倍点”. (1)下列函数图象上只有一个“纵三倍点”的是______;(填序号)△21y x =-+;△21y x=;△21y x x =++. (2)已知抛物线2y x mx n =++(,m n 均为常数)与直线4y x =+只有一个交点,且该交点是“纵三倍点”,求抛物线的解析式;(3)若抛物线232y ax bx (,a b 是常数,0a >)的图象上有且只有一个“纵三倍点”,令226w b b a =-+,是否存在一个常数t ,使得当1t b t ≤≤+时,w 的最小值恰好等于t ,若存在,求出t 的值;若不存在,请说明理由.3.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ⊥轴于点B ,且24OB AB ==.(1)求反比例函数的解析式; (2)点C 在这个反比例函数图象上,连接AC 并延长交x 轴于点D ,且45ADO ∠=︒,求点C 的坐标. 4.如图,在平面直角坐标系中,一次函数3yx 的图象与反比例函数(0)k y x x=>的图象交于点(,4)A a ,求此反比例函数的表达式.5.如图,一次函数()10y mx n m =+≠的图象与反比例函数()20k y k x=≠的图象交于(),1A a -,()1,3B -两点,且一次函数的图象交x 轴于点C ,交y 轴于点D .(1)求一次函数和反比例函数的解析式;(2)在第四象限的反比例图象上有一点P ,使得4=△△OCP OBD S S ,请求出点P 的坐标;(3)对于反比例函数()20k y k x=≠,当3y ≤时,直接写出x 的取值范围. 6.如图,已知反比例函数11k y x =的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.7.如图,在平面直角坐标系中,一次函数1y k x b =+(10k ≠)的图象与反比例函数2k y x=(20k ≠)的图象相交于()3,4A ,()4,B m -两点.(1)求一次函数和反比例函数的解析式,并直接写出一次函数的值大于反比例函数的值时x 的取值范围;(2)若点D 在x 轴上,位于原点右侧,且OA OD =,求:ABO ABD S S △△.8.如图,一次函数5y x =-+的图象与函数(0,0)n y n x x=>>的图象交于点(4,)A a 和点B .(1)求n 的值;(2)若0x >,根据图象直接写出当5n x x-+>时x 的取值范围; (3)点P 在线段AB 上,过点P 作x 轴的垂线,交函数n y x =的图象于点Q ,若POQ △的面积为1,求点P 的坐标.9.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()2,3A 和(),1B a -,设直线AB 交x 轴于点C .(1)求反比例函数和一次函数的表达式;(2)若点P 是反比例函数图象上的一点,且POC △是以OC 为底边的等腰三角形,求P 点的坐标. 10.如图,在平面直角坐标系xOy 中,一次函数1152y x =+和22y x =-的图象相交于点A ,反比例函数3k y x =的图象经过点A .(1)则反比例函数的表达式为________;(2)当13y y <时,x 的取值范围为________.(3)求AOB 的面积.11.如图,已知反比例函数k y x=的图象与一次函数y mx =图象的一个交点为()4,,A m AB x ⊥轴,且AOB 的面积为4.(1)求k 和m 的值;(2)若两函数图象的另一交点为C ,直接写出点C 的坐标__________.12.已知 ()()4428A B --,,,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式;(2)求AOC 的面积;(3)结合图象直接写出不等式m kx b x +>的解集. 13.如图,直线32y x =与双曲线(0)k y k x=≠交于A ,B 两点,点A 的坐标为(,3)m -,点C 是双曲线第一象限分支上的一点,连结BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值,并直接写出点B 的坐标;(2)点G 是y 轴上的动点,连结GB ,GC ,求GB GC +的最小值和点G 坐标;(3)P 是坐标轴上的点,Q 是平面内一点,是否存在点P ,Q ,使得四边形ABPQ 是矩形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.14.如图,直线3y x b =+与x 轴交于点()1,0A -,与反比例函数()0ky x x=>的图象相交于点()1,B m .(1)求反比例函数的表达式;(2)C 是反比例函数()0k y x x=>的图象上的一点,连接AC ,若45CAO ∠=︒,求直线BC 的函数表达式. 15.如图,一次函数1=y ax b +的图象过点()40A -,,与y 轴交于点B ,与反比例函数(2>0)k y x x =的图象交于点C .D 为AB 的中点,过点D 作x 轴的平行线,交反比例函数的图象于点E ,连接OE .(1)当=3OB ,=6DE 时,求k 的值;(2)若635OB OE ==,,求一次函数的解析式和点C 的坐标.参考答案: 1.(1)2y x=- =1y x -- (2)1.5(3)20x -<<或1x >2.(1)△△(2)238y x x =-+(3)1t =3.(1)8y x= (2)()4,2C4.反比例函数的表达式为4y x =. 5.(1)一次函数的解析式为12y x =-+;(2)点P 的坐标为3,44⎛⎫- ⎪⎝⎭(3)1x ≤-或0x >6.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.7.(1)一次函数的关系式为1y x =+;40x -<<或3x >(2)1:68.(1)4(2)14x <<(3)(2,3)P 或(3,2)9.(1)6y x = 122y x =+(2)()2,3P --10.(1)38y x =-(2)8x <-或20x -<<(3)1511.(1)18,2k m ==(2)()4,2--12.(1)16y x = 24y x =+(2)8(3)40x -<<或2x >13.(1)623k B =,,(2)217(3)存在,点P 的坐标为1302⎛⎫ ⎪⎝⎭, 或1303⎛⎫⎪⎝⎭,14.(1)反比例函数的表达式为6y x =;(2)直线BC 的函数表达式为39y x =-+.15.(1)6k =(2)162y x =+,点C 的坐标为()29,。

反比例函数与一次函数的综合应用

反比例函数与一次函数的综合应用

反比例函数与一次函数的综合应用反比例函数和一次函数是数学中最常用的函数之一,它们常被用于实际工作中,可以用来模拟、分析和解决实际问题。

本文旨在探讨反比例函数和一次函数在实践中的运用。

详细探讨了反比例函数和一次函数的定义、特点、性质及其综合应用。

反比例函数的定义反比例函数是一种可以求解反比例关系的函数,它是以x和y两个变量组成的一对变量。

反比例函数也可以表示为y与x的倒数的乘积,也就是y=k/x,其中k为常数。

这种变量使得反比例函数有其独特的特征,使得反比例函数与其他函数不同。

反比例函数的特点反比例函数具有以下几个明显的特点:(1)反比例函数的图像为抛物线;(2)反比例函数的导数为负数;(3)反比例函数的函数值与变量值的乘积不变,即yx=k;(4)以反比例函数表示的关系为反比例关系。

一次函数的定义一次函数是一种最为普遍的函数,它由x和y两个变量组成。

一次函数的表达式可以以y=ax+b的形式来表示,其中a为常数,b为常数。

一次函数的特点一次函数具有以下几个明显的特点:(1)一次函数的图像为直线;(2)一次函数的导数为一恒定的常数;(3)一次函数的函数值与变量值的差值不变,即y-b=a(x-0);(4)以一次函数表示的关系为线性关系。

反比例函数与一次函数的综合应用反比例函数和一次函数能够结合起来运用,用于模拟、分析和解决实际问题。

具体应用如下:1.于具有反比例关系的实际现象,可以用反比例函数建立模型,以研究关系性。

例如,用反比例函数可以研究不同工资水平与物价的变化关系;2.于涉及递减的实际现象,可以用一次函数建立模型,以研究关系性。

例如,用一次函数可以研究不同时间段内物价的变化关系;3.于反比例函数和一次函数具有相似关系的实际现象,可以将它们结合起来建立模型,以研究关系性。

例如,用反比例函数和一次函数可以很好地研究不同金额投资与年利润的变化关系。

结论以上,本文概述了反比例函数和一次函数的定义、特点以及综合应用情况,并且将它们在实践中的运用进行总结,提出了综合应用的建议。

一次函数与反比例函数综合应用

一次函数与反比例函数综合应用

能源工程
一次函数可以用来分析发电厂的 能量转换效率。
渐近线在x轴和y轴上形成一个无穷远点。
一次函数和反比例函数的图像
一次函数图像
一次函数的图像是一条直线,可以通过斜率和截距 来确定。
反比例函数图像
反比例函数的图像是一条双曲线,其中心在坐标轴 原点。
一次函数和反比例函数的应用举例
一次函数应用
一次函数可以用来表示线性增长的现象,如人口增长和销售额增长。
一次函数与反比例函数综 合应用
在本次演讲中,我们将探讨一次函数和反比例函数的定义、特点以及它们在 实际生活中的综合应用。让我们一起来发现数学的魅力吧!
一次函数的定义和特点
一次函数是指具有形式为y = ax + b的函数,其中a和b是常数。它的图像是一条直线,具有斜率和 截距。一次函数的特点包括:
1 线性关系
运动学
一次函数可以用来描述物体的 位移和速度之间的关系。
力学
反比例函数可以用来描述弹簧 的力和变形之间的关系。
电路分析
一次函数可以用来分析电路中 的电流和电压。
一次函数和反比例函数在工程学中的应用
结构工程
一次函数可以用来分析桥梁的荷 载和变形。
环境工程
反比例函数可以用来描述污水处 理厂的进水速率和出水浓度。
反比例函数应用
反比例函数可以用来表示反比关系,如速度和时间的关系。
一次函数和反比例函数在经济学中的应用
1
成本分析
一次函数可以用来分析成本曲线和利润最大化。
2
供求关系
反比例函数可以用来描述供求关系,如价格与需求的关系。
3
经济增长
一次函数可以用来预测经济增长率和发展趋势。
一次函数和反比例函数在物理学中的应用

综合题:一次函数二次函数反比例函数中考综合题复习

综合题:一次函数二次函数反比例函数中考综合题复习

第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。

2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。

直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解

中考数学专题复习《一次函数与反比例函数的综合》经典题型讲解【经典母题】如图Z6-1是一个光学仪器上用的曲面横截面示意图,图中的曲线是一段反比例函数的图象,端点A的纵坐标为80,另一端点B的坐标为B(80,10).求这段图象的函数表达式和自变量的取值范围.【解析】利用待定系数法设出反比例函数的表达式后,代入点B的坐标即可求得反比例函数的表达式.解:设反比例函数的表达式为y=k x ,∵一个端点B的坐标为(80,10),∴k=80×10=800,∴反比例函数的表达式为y=800x.∵端点A的纵坐标为80,∴80=800x,x=10,∴点A的横坐标为10,∴自变量的取值范围为10≤x≤80.【思想方法】求反比例函数的表达式宜用待定系数法,设y=kx,把已知一点代入函数表达式求出k的值即可.【中考变形】1.已知正比例函数y=ax与反比例函数y=bx的图象有一个公共点A(1,2).(1)求这两个函数的表达式;图Z6-1(2)在图Z6-2中画出草图,根据图象写出正比例函数值大于反比例函数值时x 的取值范围.图Z6-2中考变形1答图解:(1)把A (1,2)代入y =ax ,得2=a , 即y =2x ;把A (1,2)代入y =b x ,得b =2,即y =2x ; (2)画草图如答图所示.由图象可知,当x >1或-1<x <0时,正比例函数值大于反比例函数值. 2.如图Z6-3,已知一次函数y =k 1x +b 与反比例函数y =k 2x 的图象交于第一象限内P ⎝ ⎛⎭⎪⎫12,8,Q (4,m )两点,与x 轴交于A 点.(1)分别求出这两个函数的表达式; (2)写出点P 关于原点的对称点P ′的坐标; (3)求∠P ′AO 的正弦值.图Z6-3【解析】①将P 点坐标代入反比例函数关系式,即可求出反比例函数表达式;将Q 点代入反比例函数关系式,即可求出m 的值;将P ,Q 两个点的坐标分别代入一次函数关系式,即可求出一次函数的表达式.②根据平面直角坐标系中,两点关于原点对称,则横、纵坐标互为相反数,可以直接写出点P ′的坐标;③过点P ′作P ′D ⊥x 轴,垂足为D ,可构造出′AD ,又∵点A 在一次函数的图象上,∴可求出点A 坐标,得到OA 长度,利用P ′ 点坐标,可以求出P ′D ,P ′A ,即可得到∠P ′AO 的正弦值. 解:(1)∵点P 在反比例函数的图象上,∴把点P ⎝ ⎛⎭⎪⎫12,8代入y =k 2x ,得k 2=4,∴反比例函数的表达式为y =4x ,∴Q 点坐标为(4,1).把P ⎝ ⎛⎭⎪⎫12,8,Q (4,1)分别代入y =k 1x +b 中,得⎩⎨⎧8=12k 1+b ,1=4k 1+b ,解得⎩⎪⎨⎪⎧k 1=-2,b =9.∴一次函数的表达式为y =-2x +9; (2)P ′⎝ ⎛⎭⎪⎫-12,-8;(3)如答图,过点P ′作P ′D ⊥x 轴,垂足为D . ∵P ′⎝ ⎛⎭⎪⎫-12,-8,中考变形2答图∴OD =12,P ′D =8.∵点A 在y =-2x +9的图象上,∴点A 坐标为⎝ ⎛⎭⎪⎫92,0,即OA =92,∴DA =5,∴P ′A =P ′D 2+DA 2=89. ∴sin ∠P ′AD =P ′D P ′A =889=88989.∴sin ∠P ′AO =88989.3.[2017·成都]如图Z6-4,在平面直角坐标系xOy 中,已知正比例函数y =12x与反比例函数y =kx 的图象交于A (a ,-2),B 两点. (1)求反比例函数表达式和点B 的坐标;(2)P 是第一象限内反比例函数图象上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连结PO ,若△POC 的面积为3,求点P 的坐标.图Z6-4 中考变形3答图解:(1)∵点A (a ,-2)在正比例函数y =12x 图象上, ∴-2=12a ,∴a =-4, ∴点A 坐标为(-4,-2).又∵点A 在反比例函数y =kx 的图象上, ∴k =xy =-4×(-2)=8, ∴反比例函数的表达式为y =8x .∵A ,B 既在正比例函数图象上,又在反比例函数图象上, ∴A ,B 两点关于原点O 中心对称, ∴点B 的坐标为(4,2);(2)如答图,设点P 坐标为⎝ ⎛⎭⎪⎫a ,8a (a >0),∵PC ∥y 轴,点C 在直线y =12x 上,∴点C 的坐标为⎝ ⎛⎭⎪⎫a ,12a ,∴PC =⎪⎪⎪⎪⎪⎪12a -8a =⎪⎪⎪⎪⎪⎪a 2-162a , ∴S △POC =12PC ·a =12⎪⎪⎪⎪⎪⎪a 2-162a ·a =⎪⎪⎪⎪⎪⎪a 2-164=3, 当a 2-164=3时,解得a =28=27, ∴P ⎝⎛⎭⎪⎫27,477. 当a 2-164=-3时,解得a =2,∴P (2,4).综上所述,符合条件的点P 的坐标为⎝⎛⎭⎪⎫27,477,(2,4). 4.如图Z6-5,一次函数y =kx +b 与反比例函数y =mx 的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的表达式; (2)求一次函数的表达式;(3)P 是x 轴上的一个动点,试确定点P 并求出它的坐标,使得P A +PB 最小.图Z6-5解:(1)∵点A (1,4)在函数y =mx 上, ∴m =xy =4,∴反比例函数的表达式为y =4x ; (2)把B (4,n )代入y =4x ,4=xy =4n ,得n =1, ∴B (4,1),∵直线y =kx +b 经过A ,B , ∴⎩⎪⎨⎪⎧4=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧k =-1,b =5, ∴一次函数的表达式为y =-x +5; (3)点B 关于x 轴的对称点为B ′(4,-1), 设直线AB ′的表达式为y =ax +q , ∴⎩⎪⎨⎪⎧4=a +q ,-1=4a +q ,解得⎩⎪⎨⎪⎧a =-53,q =173,∴直线AB ′的表达式为y =-53x +173, 令y =0,解得x =175,∴当点P 的坐标为⎝ ⎛⎭⎪⎫175,0时,P A +PB 最小.5.[2017·广安]如图Z6-6,一次函数y =kx +b 的图象与反比例函数y =mx 的图象在第一象限交于点A (4,2),与y 轴的负半轴交于点B ,图Z6-6且OB =6.(1)求函数y =mx 和y =kx +b 的表达式.(2)已知直线AB 与x 轴相交于点C .在第一象限内,求反比例函数y =mx 的图象上一点P ,使得S △POC =9.解:(1)∵点A (4,2)在反比例函数y =mx 的图象上, ∴m =4×2=8,∴反比例函数的表达式为y =8x . ∵点B 在y 轴的负半轴上,且OB =6, ∴点B 的坐标为(0,-6),把点A (4,2)和点B (0,-6)代入y =kx +b 中, 得⎩⎪⎨⎪⎧4k +b =2,b =-6,解得⎩⎪⎨⎪⎧k =2,b =-6. ∴一次函数的表达式为y =2x -6; (2)设点P 的坐标为⎝ ⎛⎭⎪⎫n ,8n (n >0).在直线y =2x -6上,当y =0时,x =3, ∴点C 的坐标为(3,0),即OC =3, ∴S △POC =12×3×8n =9,解得n =43. ∴点P 的坐标为⎝ ⎛⎭⎪⎫43,6.6.[2017·黄冈]如图Z6-7,一次函数y =-2x +1与反比例函数y =kx 的图象有两个交点A (-1,m )和B ,过点A 作AE ⊥x 轴,垂足为E ;过点B 作BD ⊥y 轴,垂足为D ,且点D 的坐标为(0,-2),连结DE . (1)求k 的值;(2)求四边形AEDB 的面积.图Z6-7 中考变形6答图解:(1)将点A (-1,m )代入一次函数y =-2x +1, 得-2×(-1)+1=m ,解得m =3.∴A 点的坐标为(-1,3).将A (-1,3)代入y =kx ,得k =(-1)×3=-3;(2)如答图,设直线AB 与y 轴相交于点M ,则点M 的坐标为(0,1), ∵D (0,-2),则点B 的纵坐标为-2,代入反比例函数,得DB =32, ∴MD =3.又∵A (-1,3),AE ∥y 轴, ∴E (-1,0),AE =3. ∴AE ∥MD ,AE =MD .∴四边形AEDM 为平行四边形. ∴S 四边形AEDB =S ▱AEDM +S △MDB =3×1+12×32×3=214.7.[2016·金华]如图Z6-8,直线y =33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx (k >0)的图象交于点C ,D ,过点A 作x 轴的垂线交该反比例函数图象于点E . (1)求点A 的坐标;(2)若AE =AC ,①求k 的值;②试判断点E 与点D 是否关于原点O 成中心对称?并说明理由.图Z6-8中考变形7答图解:(1)当y =0时,得0=33x -3,解得x =3. ∴点A 的坐标为(3,0);(2)①如答图,过点C 作CF ⊥x 轴于点F .设AE =AC =t ,点E 的坐标是(3,t ),则反比例函数y =k x 可表示为y =3tx . ∵直线y =33x -3交y 轴于点B , ∴B (0,-3).在Rt △AOB 中,tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t ,∴点C 的坐标是⎝⎛⎭⎪⎫3+32t ,12t .∴⎝⎛⎭⎪⎫3+32t ×12t =3t ,解得t 1=0(舍去),t 2=2 3. ∴k =3t =6 3.②点E 的坐标为()3,23,设点D 的坐标是⎝ ⎛⎭⎪⎫x ,33x -3,∴x ⎝ ⎛⎭⎪⎫33x -3=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是()-3,-23, ∴点E 与点D 关于原点O 成中心对称. 【中考预测】如图Z6-9,一次函数y =kx +b (k ,b 为常数,k ≠0)的图象与x 轴,y 轴分别交于A ,B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C ,CD ⊥x 轴,垂足为D ,若OB =2OA =3OD =6. (1)求一次函数与反比例函数的表达式; (2)求两函数图象的另一个交点的坐标;(3)直接写出不等式kx +b ≤nx 的解集.图Z6-9解:(1)∵OB =2OA =3OD =6, ∴OB =6,OA =3,OD =2, ∵CD ⊥DA ,∴DC ∥OB , ∴OB DC =AO AD ,∴6DC =35, ∴DC =10,∴C (-2,10),B (0,6),A (3,0), 代入一次函数y =kx +b , 得⎩⎪⎨⎪⎧b =6,3k +b =0,解得⎩⎪⎨⎪⎧k =-2,b =6, ∴一次函数的表达式为y =-2x +6. ∵反比例函数y =nx 经过点C (-2,10), ∴n =-20,∴反比例函数的表达式为y =-20x ;(2)由⎩⎨⎧y =-2x +6,y =-20x ,解得⎩⎪⎨⎪⎧x =-2,y =10或⎩⎪⎨⎪⎧x =5,y =-4, ∴另一个交点坐标为(5,-4);(3)由图象可知kx +b ≤nx 的解集为-2≤x <0或x ≥5.。

2022年中考数学复习《一次函数与反比例函数综合》(2)

2022年中考数学复习《一次函数与反比例函数综合》(2)

专题51 一次函数与反比例函数综合(2)【典例分析】例1、一次函数y 1=k 1x +b 和反比例函数y 2=k 2x (k 1⋅k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A. −2<x <0或x >1B. −2<x <1C. x <−2或x >1D. x <−2或0<x <1【答案】D【解析】解:如图所示:若y 1>y 2,则x 的取值范围是:x <−2或0<x <1.故选:D .直接利用两函数图象的交点横坐标得出y 1>y 2时,x 的取值范围.此题主要考查了反比例函数与一次函数的交点,正确利用函数图象分析是解题关键.例2、点A(a,b)是一次函数y =−x +3与反比例函数y =2x 的交点,则1a +1b 的值________.【答案】32【解析】【分析】本题考查反比例函数与由此函数的交点坐标,解题的关键是学会利用方程组求两个函数的交点坐标,属于基础题.由{y =2x y =−x +3解得{x =1y =2或{x =2y =1,可得A(1,2)或(2,1),由此即可解决问题. 【解答】解:由{y =2x y =−x +3解得{x =1y =2或{x =2y =1, ∴A(1,2)或(2,1),∴1a +1b =32,故答案为:32.例3、如图,正比例函数y 1=−3x 的图象与反比例函数y 2=k x 的图象交于A 、B 两点.点C 在x 轴负半轴上,AC =AO ,△ACO 的面积为12.(1)求k 的值;(2)根据图象,当y 1>y 2时,写出x 的取值范围.【答案】解:(1)如图,过点A 作AD ⊥OC ,∵AC =AO ,∴CD =DO ,∴S △ADO =S △ACD =6,∴k =−12;(2)联立得:{y =−12x y =−3x, 解得:{x =2y =−6或{x =−2y =6,即A(−2,6),B(2,−6), 根据图象得:当y 1>y 2时,x 的范围为x <−2或0<x <2.【解析】本题考查了反比例函数与正比例函数的交点问题,考查了反比函数系数k 的几何意义,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键,属于中档题.(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【好题演练】一、选择题(k>0)有以下四个结论:1.对于函数y=3x+kx①这是y关于x的反比例函数;②当x>0时,y的值随着x的增大而减小;③函数图象与x轴有且只有一个交点;④函数图象关于点(0,3)成中心对称.其中正确的是().A. ①②B. ③④C. ①②③D. ②③④(k>0)的图象交于A,B两点,2.如图,一次函数y=2x与反比例函数y=kx点P在以C(−2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ,则k的值为()长的最大值为32A. 4932B. 2518C. 3225D. 98(m≠0)的图象相交于点A(2,3),3.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y=mxB(−6,−1),则不等式kx+b>m的解集为()xA. x<−6B. −6<x<0或x>2C. x>2D. x<−6或0<x<2(k≠0)图象上的两点,延长线段AB4.如图,点A、B是反比例函数y=kx交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A. −12B. −10C. −9D. −65.如图,正比例函数y1=mx,一次函数y2=ax+b和反比例函数y3=k的图象在同一直角坐标系中,x若y3>y1>y2,则自变量x的取值范围是()A. x<−1B. −0.5<x<0或x>1C. 0<x<1D. x<−1或0<x<1二、填空题6.如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A、B两点,x<0的解集是其横坐标分别为1和5,则关于x的不等式k1x+b−k2x______.7.如图,正比例函数y1=k1x的图象与反比例函数y2=k2x(x>0)的图象相交于点A(√3,2√3),点B是反比例函数图象上一点,它的横坐标是3,连接OB,AB,则△AOB的面积是______.8.如图,一次函数y1=kx+b的图象与反比例函数y2=4x的图象交于A(1,m),B(4,n)两点.则不等式kx+b−4x≥0的解集为______.9.如图,直线y=x+2与反比例函数y=kx的图象在第一象限交于点P,若OP=√10,则k的值为______.10.如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x 和y=9x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是______.三、解答题11.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A﹙−2,−5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.(1)求反比例函数y=m和一次函数y=kx+b的表达式;x(2)连接OA,OC.求△AOC的面积.(3)当kx+b>m时,请写出自变量x的取值范围.x(a为常数)的图象经过点B(−4,2).12.已知反比例函数y=a+4x(1)求a的值;(2)如图,过点B作直线AB与函数y=a+4的图象交于点A,与x轴交于点C,且AB=3BC,过点Ax作直线AF⊥AB,交x轴于点F,求线段AF的长.(x>0)的图象交于A、13.如图,在平面直角坐标系中,一次函数y=−x+m的图象与反比例函数y=kxB两点,已知A(2,4).(1)求一次函数和反比例函数的解析式;(2)求B点的坐标;(3)连接AO、BO,求△AOB的面积.14.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例(k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x函数y=kx,点B的轴于点H,点O是线段CH的中点,AC=4√5,cos∠ACH=√55坐标为(4,n).(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.15.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别(n为常数,且n≠0)的图象在第交于A、B两点,且与反比例函数y=nx二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤n的解集.x。

中考数学 专题19 一次函数与反比例函数综合题型(解析版)

中考数学 专题19 一次函数与反比例函数综合题型(解析版)

专题19 一次函数与反比例函数综合题型1. (2019·四川自贡中考)如图,在平面直角坐标系中,一次函数b kx y +=1(0≠k )的图象与反比例函数)0(2≠=m xmy 的图象相交于第一、三象限内的A (3,5),B (a ,-3)两点,与x 轴交于点C . (1)求该反比例函数和一次函数的解析式;(2找一点P 使PB -PC 最大,求PB -PC 的最大值及点P 的坐标; (3)直接写出当21y y >时,x 的取值范围.【答案】见解析.【解析】解:(1)把A (3,5)代入2my x=,15=m , ∴反比例函数的解析式为15y x=. 把B (a ,-3)代入15y x=, 得a =-5, ∴B (-5,-3)把A (3,5),B (-5,-3)代入b kx y +=1得:⎩⎨⎧-=+-=+3553b k b k ,解得⎩⎨⎧==21b k ∴一次函数的解析式为y =x +2.(2)依题意得,直线AB 与y 轴交点即为P 点, 在y =x +2中,令x =0,则y =2;令y =0,则x =-2, ∴点P 的坐标为(0,2),点C 的坐标为(-2,0),此时PB ,PC ,∴PB -PC 的最大值为.(3)当y 1>y 2时,x 的取值范围是-5<x <0或x >3. 2.(2019·广东广州中考)已知2221()a P a b a b a b=-≠±-+, (1)化简P ;(2)若点(a ,b )在一次函数2-=x y 的图象上,求P 的值. 【答案】见解析. 【解析】解:(1)2221a P ab a b =--+ =22222a a b a b a b ---- =22a b a b +- =1a b- (2)点(a ,b )在一次函数2-=x y 的图象上, ∴b =a,即a -b, ∴P =1a b -3. (2019·广东广州中考)如图,在平面直角坐标系xOy 中,菱形ABCD 的对角线AC 与BD 交于点P (-1,2),AB ⊥x 轴于点E ,正比例函数y =mx 的图像与反比例函数3n y x-=的图像相交于A ,P 两点。

反比例函数与一次函数综合 中考数学专项训练(含解析)

反比例函数与一次函数综合 中考数学专项训练(含解析)

反比例函数与一次函数综合一、单选题.....反比例函数()10y mx=的图象与一次函数2y x b =-+的图象交于A 、B 两点,其中),当12y y >时,的取值范围是().1x <B 12x <<.2x >D .01x <<或2>A .18-B .4.如图,双曲线my x=与直线的纵坐标为1-.根据图象信息可得关于A .1x =C .11x =-,21x =6.如图,一次函数2y x =-+与反比例函数(),1B n -,不等式2kx x-+>的解集为(A .1x <-或0x <<C .13x -<<7.直线2y x =+与双曲线A .78.如图,已知一次函数A .33二、填空题9.考察函数4y x=-10.如图,已知一次函数11.如图,直线2y x =与双曲线单位后,直线与双曲线交于点12.已知直线y x =与反比例函数C 为反比例函数图象第一象限上任意一点,连接点C 的坐标为.13.如图,直线3y x =-+与坐标轴分别相交于x14.如图,曲线l 是由函数y 到的,过点()42,42A -,B 面积是46,则k 的值为15.如图,一次函数y 点,则不等式1kx b x+-16.如图,点A 在双曲线y 0b >)上,A 与B 关于x 轴对称,直线有以下结论:①(),3A b b ②当三、解答题(1)请求出一次函数和反比例函数解析式:(2)连接OC,OD,求出(1)求反比例函数的关系式与(2)根据图象直接写出不等式(3)若动点P在x轴上,求PA(1)求反比例函数和一次函数的解析式;的面积;(2)求ABO(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,连接点C的坐标.参考答案:3.A【分析】本题考查一次函数与反比例函数的交点问题,直角三角形的性质,设点4,3a a ⎛⎫- ⎪⎝⎭,求出OA ,根据点角形的性质得到OC OA =程,解方程即可求解,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的令23y x =-中0x =,代入∴()0,3B -,∴3OB =,令23y x =-中0y =,得:由图象可知,反比例函数上,第二象限内的一支符合题意,即第四象限内,与直线交点及交点上方的图象符合题意,联立两函数解析式:41y x y ⎧=-⎪⎨⎪=-⎩解得:41x y =⎧⎨=-⎩即4x ≥,当0y =时,1042x =+,解得,8x =-,∴()80C -,,则D的坐标为2,22a a⎛⎫⎪ ⎪⎝⎭,直线2y x=向右平移3个单位后,直线与双曲线交于点∴B的坐标为23,22a a⎛⎫+⎪ ⎪⎝⎭.将0y =代入直线3y x =-+得解得3x =,②当2b =时,点A 的坐标为:∴23243k =⨯=,故②正确;③∵()3,Ab b ,A 与B 关于()3,B b b -∵28y x =+,∴令0x =,则8y =;令∴()()4,0,0,8A B -DOC AOB AOD BOC S S S S =-- 18.(1)反比例函数解析式为【点睛】本题考查了用待定系数法求反比例函数的关系式、题、利用图象求不等式的解集、轴对称性质、勾股定理,解题关键是熟练利用待定系数法求∠=∠=∠=ABO BOE AEO90。

2023年中考数学专题练习:反比例函数与一次函数的综合

2023年中考数学专题练习:反比例函数与一次函数的综合

2023年中考数学专题练习--反比例函数与一次函数的综合1.如图, A B 、 两点的坐标分别为 ()()2,0,0,3- ,将线段 AB 绕点 B 逆时针旋转90°得到线段BC ,过点 C 作 CD OB ⊥ ,垂足为 D ,反比例函数 ky x=的图象经过点 C .(1)直接写出点 C 的坐标,并求反比例函数的解析式;(2)点 P 在反比例函数 ky x=的图象上,当 PCD 的面积为3时,求点 P 的坐标. 2.如图,四边形ABCD 是矩形,点A 在第四象限y 1=﹣ 2x 的图象上,点B 在第一象限y 2= kx 的图象上,AB 交x 轴于点E ,点C 与点D 在y 轴上,AD = 32 ,S 矩形OCBE = 32S 矩形ODAE .(1)求点B 的坐标.(2)若点P 在x 轴上,S △BPE =3,求直线BP 的解析式.3.如图,直线y=2x+4与反比例函数y=kx的图象相交于A (﹣3,a )和B 两点(1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值;(3)直接写出不等式65x - >x 的解集. 4.如图,直线y=3x 与双曲线y= kx(k≠0,且x >0)交于点A ,点A 的横坐标是1.(1)求点A 的坐标及双曲线的解析式;(2)点B 是双曲线上一点,且点B 的纵坐标是1,连接OB ,AB ,求△AOB 的面积.5.如图,点A (m ,6)、B (n ,1)在反比例函数图象上,AD△x 轴于点D ,BC△x 轴于点C ,DC=5.(1)求m 、n 的值并写出该反比例函数的解析式. (2)点E 在线段CD 上,S △ABE =10,求点E 的坐标.6.如图,在矩形OABC 中,OA=3,OC=2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数kyx=(k >0)的图象与BC 边交于点E .(1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EFA 的面积最大,最大面积是多少?7.如图6,正比例函数 2y x = 的图象与反比例函数 ky x=的图象交于A 、B 两点,过点A 作AC △x 轴于点C ,连接BC ,若△ABC 面积为2.(1)求k 的值;(2)在x 轴上是否存在点D ,使△ABD 为直角三角形?若存在,求出点D 的坐标;若不存在,请说明理由.8.如图,在平面直角坐标系中,直线EF 交x ,y 轴子点F ,E ,交反比例函数 ky x=(x >0)图象于点C ,D ,OE=OF= 52,以CD 为边作矩形ABCD ,顶点A 与B 恰好落在y 轴与x 轴上.(1)若矩形ABCD 是正方形,求CD 的长。

2024年中考数学压轴题型(广东专用)专题07一次函数与反比例函数综合问题(教师版)

2024年中考数学压轴题型(广东专用)专题07一次函数与反比例函数综合问题(教师版)

专题07一次函数与反比例函数综合问题通用的解题思路:1.三角形面积的解题步骤:类型一:三角形有其中一边与坐标轴平行(垂直)的,以这边为底边,以该边所对的顶点的坐标的绝对值为高•底边平行于V轴,则以所对顶点的横坐标的绝对值为高,反之则以纵坐标的绝对值为高.类型二:三角形没有其中一边与坐标轴平行(垂直)的,可以用公式水平宽X铅垂高求解.2.利用图象法解不等式解集的解题步骤:①求交点:联立方程求出方程组的解;②分区间:将一次函数和反比例函数两个交点以及y轴左右两侧分层4个区间;③比大小:图象谁在上方谁就大;④:写出对应区间自变量的取值范围.3.两线段和差的最值问题利用将军饮马模型:做对称,连定点,求交点.1.(2024广东东莞•一模)如图,一次函数y=+3的图象与'轴交于点,与反比例函数日的图象在第一象限内交于点瓦点B的横坐标为1,连接。

8,过点B作BClx轴于点C.⑴求一次函数和反比例函数的解析式;.....................................~4〜.......................⑵设点。

是x轴上一点,使得S^BCD=~S^AOB,求点Q的坐标.【答案】(1)必=2x+3,J=-x⑵点。

的坐标为(-1,0)或(3,0)【分析】本题主要考查了待定系数法确定函数的解析式,一次函数图象的性质,一次函数图象上点的坐标的特征,反比例函数的性质,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长度是解题的关键.(1)把点代入一次函数了=心+3中,解得m=2,进而可得点B的坐标为(1,5),再利用待定系数法解答即可;(2)根据坐标求得S△朝=可知S%co=:S△皿=5,再根据S^cd=?CD・BC,得CD=2,即可求解.【详解】(1)解:把点{―代入一次函数:Y=m+3中,,一3___——m+3=0,解得m=2,园一次函数的解析式为"2x+3.把点B的横坐标工二1代入y=2x+3中,得"5,国点B的坐标为(1,5),国点B为一次函数和反比例函数图象的交点,园把点8(1,5)代入反比例函数y=|中,得S5,园反比例函数的解析式为:y=-;(2)园jo],8(1,5),BClx轴,0OA=-,BC=5,C(l,0),S5aaob=-AO-BC=-x-x5=—,△如2224[?]Q=—V-^x—=5U*BCD3°AA(9B34,0S ABCn=-CD BC=-CD=5,园CD=2,M(l,0),回点。

2023年中考数学专题练习--反比例函数与一次函数的综合

2023年中考数学专题练习--反比例函数与一次函数的综合

2023年中考数学专题练习--反比例函数与一次函数的综合1.如图,在平面直角坐标系 xoy 中,平行四边形 ABCD 的顶点A 、D 在x 轴上,顶点B 在y 轴上,顶点C 在反比例函数 ()0ny n x=≠ 的图象上,直线 ()0AB y kx b k =+≠: 与反比例函数的图象交于点 ()3M m -, ,已知平行四边形 ABCD 的面积为6.(1)求反比例函数的表达式及m ; (2)若 4AD = ,求直线 AB 的表达式.2.如图,四边形ABCD 为正方形,点A 的坐标为(0,1),点B 的坐标为(0,﹣2),反比例函数y=kx的图象经过点C ,一次函数y=ax+b 的图象经过A 、C 两点.(1)AB= ,点C 的坐标为 ,反比例函数的解析式为 ,一次函数的解析式为 .(2)若点P 是y 轴正半轴上一点,△AMP 的面积恰好等于正方形ABCD 的面积,求P 点的坐标.3.如图,一次函数y=kx+b 的图象与反比例函y=mx的图象交于点A ﹙﹣2,﹣5﹚C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1)求反比例函数y=mx和一次函数y=kx+b 的表达式; (2)连接OA ,OC .求△AOC 的面积. (3)直接写kx+b ﹣mx>0的解集. 4.已知一次函数y 1=k 1x+b 与反比例函数y 2=2k x相交于点A 、B ,与y 轴交于点C ,与x 轴交于点D ,过点A 作AE△x 轴于点E ,点O 为DE 中点,连接CE ,已知S △ADE =4,tan△DCO= 12.(1)求y 1和y 2的解析式;(2)将△ACE 绕着点E 顺时针旋转90°得△A'C'E ,连接AA'、BA',求△AA'B 的面积.5.如图所示,在直角坐标系中,点A 是反比例函数y 1=kx的图象上一点,AB△x 轴的正半轴于B 点,C 是OB 的中点;一次函数y 2=ax+b 的图象经过A 、C 两点,并交y 轴于点D (0,﹣2),若S △AOD =4.(1)写出点C 的坐标;(2)求反比例函数和一次函数的解析式;(3)当y 1<y 2时,求x 的取值范围.6.如图,已知一次函数y=k 1x+b 的图象分别与x 轴、y 轴的正半轴交于A ,B 两点,且与反比例函数y=2k x交于C ,E 两点,点C 在第二象限,过点C 作CD△x 轴于点D ,OA=OB=4,OD=2.(1)求反比例函数和一次函数的解析式. (2)求△OCE 的面积.7.如图,一次函数y=x+m 的图象与反比例函数y=kx的图象交于A ,B 两点,且与x 轴交于点C ,点A 的坐标为(2,1).(1)求m 及k 的值;(2)求点C 的坐标,并结合图象写出不等式组0<x+m≤kx的解集. 8.如图,在平面直角坐标系xOy 中,反比例函数(0)m y x x =>的图象经过点342A ⎛⎫⎪⎝⎭,,点B 在y 轴的负半轴上,AB 交x 轴于点C ,C 为线段AB 的中点.(1)m = ,点C 的坐标为 ;(2)若点D 为线段AB 上的一个动点,过点D 作//DE y 轴,交反比例函数图象于点E ,求ODE 面积的最大值.9.如图,一次函数 ()0y kx b k =+≠ 的图象与 x 轴交于点 3,02A ⎛⎫⎪⎝⎭,与反比例函数 ()0ay a x=≠ 的图象在第一象限交于点 ()4,B m ,过点 B 作 BC x ⊥ 轴上点 C , ACD 的面积为 154 .(1)求反比例函数 ay x= 的解析式; (2)求证:BCD 是等腰三角形.10.如图,在平面直角坐标系xOy 中,一次函数y=ax+b (a ,b 是常数,且a≠0)的图象与反比例函数 ky x=(k 是常数,且k≠0)的图象交于一、三象限内的A ,B 两点,与x 轴交于点C ,点A 的坐标为(2,m ),点B 的坐标为(n ,﹣2),tan△BOC= 25.(1)求点B的坐标及反比例函数和一次函数的表达式;(2)将直线AB沿y轴向下平移6个单位长度后,分别与双曲线交于E,F两点,连结OE,OF,求△EOF的面积.11.如图,一次函数y=ax+b与反比例函数y= kx的图象交于A(﹣2,1),B(1,n)两点.(1)求出a、b、k的值;(2)求△ABO的面积;(3)请写出ax+b<kx的解集.12.如图,一次函数y=kx+b的图象与反比例函数y=﹣8x的图象交于A、B两点,A的横坐标和点B的纵坐标都是﹣2.求:(1)一次函数的表达式;(2)△AOB的面积;(3)根据图象,当x在什么范围内时,一次函数的值大于反比例函数的值?13.如图,反比例函数kyx=经过点()1,2A;(1)求反比例函数的解析式;(2)点C在y轴的正半轴上,点D在x轴的正半轴上,直线CD经过点A,直线CD交反比例函数图象于另一点B,若OC OD=,求点B的坐标.14.如图,一次函数y=kx+b的图象与反比例函数y= mx的图象相交于A、B两点.利用图中条件(1)求反比例函数与一次函数的关系式;(2)根据图象写出使该一次函数的值大于该反比例函数的值的x的取值范围;(3)求出△AOB的面积.15.如图,一次函数的图象与y轴交于C(0,4),且与反比例函数y= kx(x>0)的图象在第一象限内交于A(3,a),B(1,b)两点,(1)求△AOC的面积;(2)若222a ab b -+ =2,求反比例函数和一次函数的解析式.16.如图所示,反比例函数y=kx(k≠0)的图象与一次函数y=ax+b 的图象交于M (2,m ),N (﹣1,﹣4)两点.(1)求反比例函数和一次函数的关系式.(2)根据图象写出使反比例函数值大于一次函数的值的x 的取值范围.17.如图,在平面直角坐标系 xOy 中,已知四边形DOBC 是矩形,且D (0,4),B (6,0).若反比例函数 1k y x=( x >0)的图象经过线段OC 的中点A (3,2),交DC 于点E ,交BC 于点F .设直线EF 的解析式为 2y k x b =+ .(1)求反比例函数和直线EF 的解析式; (2)求△OEF 的面积;(3)请结合图象直接写出不等式 12k k x b x+->0的解集. 18.如图,已知函数 (00)ky k x x=>>, 的图象与一次函数 5(0)y mx m =+< 的图象相交不同的点A 、B ,过点A 作AD△ x 轴于点D ,连接AO ,其中点A 的横坐标为 0x ,△AOD 的面积为2.(1)求 k 的值及 0x =4时 m 的值;(2)记 []x 表示为不超过 x 的最大整数,例如: []1.41=, []22= ,设 .t OD DC = ,若 3524m -<<- ,求 2m t ⎡⎤⋅⎣⎦ 值 19.如图,一次函数 1y k x b =+ 的图象与反比例函数 2k y x=的图象相交于 A 、 B 两点,其中点 A 的坐标为 ()14-, ,点 B 的坐标为 ()4n , .(1)根据图象,直接写出满足 21k k x b x+> 的 x 的取值范围; (2)求这两个函数的表达式;(3)点 P 在线段 AB 上,且 12AOP BOP S S ∆∆=::,求点 P 的坐标. 20.如图,一次函数y=kx+b 的图象分别与反比例函数y=ax的图象在第一象限交于点A (4,3),与y 轴的负半轴交于点B ,且OA=OB .(1)求函数y=kx+b 和y=ax的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.答案解析部分1.【答案】(1)解:过点C 作CE△x 轴于点E ,如图所示:∵四边形ABCD 为平行四边形, ∴AD BC , ∵△BOA=△CED=90°, ∴BO CE ,∴四边形BOEC 为平行四边形, ∵△CED=90°,∴四边形BCEO 为矩形,∵矩形BCEO 与平行四边形ABCD 同底等高, ∴矩形BCEO 的面积等于平行四边形ABCD 的面积, ∴k=6,∴反比例函数的表达式为 6y x=; 把x=-3代入 6y x = 得: 623y ==-- ,即 2m =- ; (2)解:∵平行四边形ABCD 的面积为6,AD=4, ∴6342OB == ,即点B 的坐标为 30 2⎛⎫ ⎪⎝⎭, ,设直线AB 的关系式为: 'y k x b =+ ,把 302B ⎛⎫ ⎪⎝⎭, , ()32M --,代入得: 323'2b k b ⎧=⎪⎨⎪-+=-⎩ ,解得: 7'632k b ⎧=⎪⎪⎨⎪=⎪⎩ , ∴直线AB 的关系式为: 7362y x =+ . 2.【答案】(1)3;(3,﹣2);y=﹣ 6x;y=﹣x+1(2)解:∵由题意得, 61y x y x ⎧=-⎪⎨⎪=-+⎩ ,解得 23x y =-⎧⎨=⎩ 或 32x y =⎧⎨=-⎩ , ∴M (﹣2,3) 设P (0,y ), ∵S 正方形ABCD =9, ∴12 AP×2=9,即 12|y ﹣1|=9,解得y=19或y=17, ∴P (0,19)或(0,17)3.【答案】(1)解:∵反比例函数y=mx的图象经过点A ﹙﹣2,﹣5﹚, ∴m=(﹣2)×(﹣5)=10. ∴反比例函数的表达式为y=10x. ∵点C ﹙5,n ﹚在反比例函数的图象上, ∴n=105=2. ∴C 的坐标为﹙5,2﹚.∵一次函数的图象经过点A ,C ,将这两个点的坐标代入y=kx+b ,得5225k bk b -=-+⎧⎨=+⎩ 解得 13k b =⎧⎨=-⎩, ∴所求一次函数的表达式为y=x ﹣3(2)解:∵一次函数y=x ﹣3的图象交y 轴于点B , ∴B 点坐标为﹙0,﹣3﹚. ∴OB=3.∵A 点的横坐标为﹣2,C 点的横坐标为5,…(7分) ∴S △AOC =S △AOB +S △BOC =12 OB•|﹣2)+ 12 OB×5= 12 OB (2+5)= 212(3)解:x 的范围是:﹣2<x <0或x >54.【答案】(1)解:∵O 是DE 的中点,CO△AE ,∴CO 是△ADE 的中位线, ∴AE=2CO , 设CO=m , ∴AE=2m , ∵tan△DCO= 12, ∴12DO CO = , ∴DO= 12m ,∴DE=m , ∵S △ADE =4, ∴12DE•AE=4, ∴m 2=4, ∴m=2,∴C (0,2),A (1,4), 将点A (1,4)代入y 2= 2k x, ∴k 2=4,将A (1,4)和C (0,2)代入y 1=k 1x+b ,∴124b k b =⎧⎨+=⎩ , ∴解得 122k b =⎧⎨=⎩, ∴y 1=2x+2,y 2=4x(2)解:过点B 作BF△x 轴于点F ,联立 224y x y x =+⎧⎪⎨=⎪⎩,解得:x=﹣2或x=1, ∴B (﹣2,﹣2),∴BF=2,令y=0代入y 1=2x+2, ∴D (﹣1,0),由题意可知:A′E=AE=4, ∴A′D=OD+OE+AE=6, ∴△AA'B 的面积为:12 A′D•BF+ 12A′D•AE=18,5.【答案】(1)解:设点C 的坐标为(m ,0),∵C 是OB 的中点, ∴OC=BC .在△COD 和△CBA 中, 90DCO ACB OC BC DOC ABC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△COD△△CBA (ASA ), ∴OD=BA . ∵点D (0,﹣2),∴点A 的坐标为(2m ,2). ∴S △AOD =S △ABC +S △DOC =2S △DOC =2× 12OC•OD=2m=4, ∴m=2,∴点C 的坐标为(2,0) (2)解:∵m=2, ∴点A 的坐标为(4,2). ∵点A 在反比例函数y 1= kx的图象上, ∴k=4×2=8,∴反比例函数的解析式为y 1=8x; 将C (2,0)、D (0,﹣2)代入y 2=ax+b 中,022a bb =+⎧⎨-=⎩ ,解得: 12a b =⎧⎨=-⎩ , ∴一次函数的解析式为y=x ﹣2(3)解:联立两函数解析式成方程组,82y x y x ⎧=⎪⎨⎪=-⎩ ,解得: 24x y =-⎧⎨=-⎩ 或 42x y =⎧⎨=⎩ , ∴两函数图象的另一个交点为(﹣2,﹣4).观察函数图象可知:当﹣2<x <0 或x >4时,一次函数图象在反比例函数图象上方, ∴当y 1<y 2时,x 的取值范围为﹣2<x <0 或x >4.6.【答案】(1)解:∵OB=OA=4,∴B 的坐标是(0,4),A 的坐标是(4,0),根据题意得 1440b k b =⎧⎨+=⎩ , 解得 114k b =-⎧⎨=⎩ ,则一次函数的解析式是y=﹣x+4.当x=﹣2时,y=2+4=6, 则C 的坐标是(﹣2,6). ∵C 在y=2k x上, ∴k2=﹣12.则反比例函数的解析式是y=﹣12x(2)解:根据题意得 412y x y x =-+⎧⎪⎨=-⎪⎩,解得: 28x y =-⎧⎨=⎩ 或62x y =⎧⎨=-⎩ , 则E 的坐标是(6,﹣2). ∴S △OCE =S △OAC +S △OAE =12 ×4×6+ 12×4×2=16 7.【答案】(1)解:由题意可得:点A (2,1)在函数y=x+m 的图象上,∴2+m=1即m=﹣1,∵A (2,1)在反比例函数 ky x= 的图象上, ∴12k= , ∴k=2(2)解:∵一次函数解析式为y=x ﹣1,令y=0,得x=1, ∴点C 的坐标是(1,0), 由图象可知不等式组0<x+m≤kx的解集为1<x≤2 8.【答案】(1)m=6;(2,0)(2)解:设直线AB 对应的函数表达式为y kx b =+.将342A ⎛⎫ ⎪⎝⎭,,(20)C ,代入得34220k b k b ⎧+=⎪⎨⎪+=⎩,解得3432k b ⎧=⎪⎪⎨⎪=-⎪⎩. 所以直线AB 对应的函数表达式为3342y x =-. 因为点D 在线段AB 上,可设33(04)42D a a a ⎛⎫-<≤ ⎪⎝⎭,, 因为//DE y 轴,交反比例函数图象于点E .所以6E a a ⎛⎫ ⎪⎝⎭,.所以221633333273(1)2428488ODESa a a a a a ⎛⎫=⋅⋅-+=-++=--+ ⎪⎝⎭. 所以当a=1时,ODE 面积的最大值为278.9.【答案】(1)解:∵点 3,02A ⎛⎫⎪⎝⎭,点 ()4,B m ∴点 C 坐标为 ()4,0 ∴35422AC =-= ∴11524ACDSAC OD =⋅⋅= ∴1515224OD ⨯⋅= ∴3OD =∴点 D 坐标为 ()0,3-把 ()0,3D - , 3,02A ⎛⎫⎪⎝⎭ 代入 y kx b =+ 得: 3302b k b =-⎧⎪⎨+=⎪⎩ 解得 23k b =⎧⎨=-⎩∴直线的解析式为 23y x =-把点 ()4,B m 代入 23y x =- 得 2435m =⨯-= ∴()4,5B ∴4520a =⨯=则反比例函数的解析式为 20y x=(2)解:∵()4,5B , ()4,0C , ()0,3D - ∴5BC = , 4OC = , 3OD = 在 Rt COD 中, 225CD OD OC =+= ∴BC CD =∴BCD 是等腰三角形.10.【答案】(1)解:过B 作BM△x 轴于M ,∵B (n ,﹣2),tan△BOC=25 , ∴BM=2,tan△BOC=2OM = 25,∴OM=5,即B的坐标是(﹣5,﹣2),把B的坐标代入y= kx得:k=10,即反比例函数的解析式是y= 10x,把A(2,m)代入得:m=5,即A的坐标是(2,5),把A、B的坐标代入y=ax+b得:5225k bk b=+⎧⎨-=-+⎩,解得:k=1,b=3,即一次函数的解析式是y=x+3(2)解:∵将直线AB沿y轴向下平移6个单位长度后的解析式为y=x﹣3,解:310y xyx=-⎧⎪⎨=⎪⎩,∴52xy=-⎧⎨=-⎩或25xy=⎧⎨=⎩,∴E(﹣5,﹣2),F(2,5),∴△EOF的面积= 12×3×2+12⨯3×5=212.11.【答案】(1)解:将A(﹣2,1)代入y= kx,得k=﹣2,又由题意知B(1,n)在y= kx的图象上,所以n=﹣2,即B(1,﹣2,又A、B两点都在y=ax+b的图象上,则212a ba b-+=⎧⎨+=⎩,解得a=﹣1,b=﹣1,综上所述a=﹣1,b=﹣1,k=﹣2(2)解:设直线AB交X轴于C点,则S△AOB=S△AOC+S△BOC= 3 2(3)解:由图象可知当﹣2<x<0或x>1时,ax+b<kx.12.【答案】(1)解:反比例函数y=﹣8x的图象交于A、B两点,且A的横坐标和点B的纵坐标都是﹣2,∴A点的纵坐标为和B点的横坐标都为4,∴A(﹣2,4),B(4,﹣2),∵一次函数y=kx+b的图象过A、B两点,∴把A、B两点坐标代入可得2442k bk b-+=⎧⎨+=-⎩,解得12kb=-⎧⎨=⎩,∴一次函数表达式为y=﹣x+2(2)解:如图,设一次函数与y 轴交于点C ,则C 点坐标为(0,2), ∴OC=2,∴S △AOB =S △AOC +S △BOC =12 OC•2+ 12OC•4=6(3)解:结合图象可知一次函数的图象在反比例函数图象的上方时,对应的x 的取值范围为x <﹣2和0<x <4,∴一次函数的值大于反比例函数的值时对应的x 的取值范围为x <﹣2和0<x <4.13.【答案】(1)解:将点 ()1,2A 代入反比例函数解析式中,得21k=解得:k=2∴反比例函数的解析式为 2y x=; (2)解:设直线CD 的解析式为y=ax +b , 将x=0代入可得y=b ∴点C 的坐标为(0,b ), ∵OC OD =∴点D 的坐标为(b ,0)将点A 和点D 的坐标代入y=ax +b 中,得20k bbk b =+⎧⎨=+⎩解得: 13k b =-⎧⎨=⎩∴直线CD 的解析式为y=-x +3联立 23y xy x ⎧=⎪⎨⎪=-+⎩ 解得: 12x y =⎧⎨=⎩ 或 21x y =⎧⎨=⎩,其中(1,2)为点A 的坐标 ∴点B 的坐标为(2,1)14.【答案】(1)解:由图可知,点A (﹣2,1),点B (1,n ),∵一次函数y=kx+b 的图象与反比例函数y=mx的图象相交于A 、B 两点, ∴12m=- ,得m=﹣2, ∴21n -= ,得n=﹣2, ∴212k b k b -+=⎧⎨+=-⎩ 解得, 11k b =-⎧⎨=-⎩即反比例函数的解析式为 2y x-=,一次函数的解析式为y=﹣x ﹣1 (2)解:根据函数图象,一次函数的值大于该反比例函数的值的x 的取值范围是x <﹣2或0<x <1 (3)解:∵直线y=﹣x ﹣1与x 轴的交点坐标为(﹣1,0), ∴121122AOBS-⨯--⨯=+= 112+ = 32 15.【答案】(1)解:作AD△y 轴于D ,∵A (3,a ), ∴AD=3,∵一次函数的图象与y 轴交于C (0,4), ∴OC=4,∴S△AOC= 12OC•AD=12×4×3=6(2)解:∵A(3,a),B(1,b)两点在反比例函数y= kx(x>0)的图象上,∴3a=b,222a ab b-+=2,∴a2﹣2ab+b2=4,∴a2﹣2a•3a+(3a)2=4,整理得,a2=1,∵a>0,∴a=1,∴A(3,1),∴k=3×1=3,设直线的解析式为y=mx+n,∴431nm n=⎧⎨+=⎩,解得14mn=-⎧⎨=⎩,∴反比例函数和一次函数的解析式分别为y= 3x和y=﹣x+4.16.【答案】(1)解:∵点N(﹣1,﹣4)在反比例函数y= kx(k≠0)的图象上,∴k=(﹣1)×(﹣4)=4,∴反比例函数的关系式为y= 4x;∵点M(2,m)在反比例函数y= 4x的图象上,∴m= 42=2,∴点M(2,2).将M(2,2)、N(﹣1,﹣4)代入y=ax+b中,得: 224a b a b =+⎧⎨-=-+⎩ ,解得: 22a b =⎧⎨=-⎩ ,∴一次函数的关系式为y=2x ﹣2(2)解:根据函数图象的上下位置关系可得:当x <﹣1或0<x <2时,反比例函数值大于一次函数值 17.【答案】(1)解:∵四边形DOBC 是矩形,且D (0,4),B (6,0), ∴C 点坐标为(6,4),∵点A 为线段OC 的中点,∴A 点坐标为(3,2),∴k 1=3×2=6,∴反比例函数解析式为 6y x = ;把x=6代入 6y x = 得x=1,则F 点的坐标为(6,1);把y=4代入 6y x =得x=32,则E 点坐标为( 32 ,4),把F (6,1)、E ( 32 ,4)代入y=k 2x+b 得,2261342k b k b +=⎧⎪⎨+=⎪⎩. 解得:2235k b ⎧=-⎪⎨⎪=⎩.∴直线EF 的解析式为y= 23- x+5;(2)解:△OEF 的面积=S 矩形BCDO -S △ODE -S △OBF -S △CEF =4×6-12×4×32-12×6×1-12×(6-32)×(4-1).=454.(3)解:不等式 120k k x b x +-> 的解集为 32 <x <6.18.【答案】(1)解:设A (x 0,y 0),则OD=x 0,AD=y 0,∴S △AOD = 12 OD•AD= 12 x 0y 0=2,∴k=x 0y 0=4;当x 0=4时,y 0=1,∴A (4,1),代入y=mx+5中得4m+5=1,m=-1(2)解:∵45y x y mx ⎧⎪⎨⎪+⎩== ,∴4x =mx+5,整理得,mx 2+5x-4=0,∵A 的横坐标为x 0,∴mx 02+5x 0=4,当y=0时,mx+5=0,x=- 5m ,∵OC=- 5m ,OD=x 0,∴m 2•t=m 2•(OD•DC ),=m 2•x 0(- 5m -x 0),=m (-5x 0-mx 02),=-4m ,∵- 32 <m <- 54 ,∴5<-4m <6,∴[m 2•t]=519.【答案】(1)解:观察图象可知当 1x <- 或 04x << ,k 1x+b> 2k x(2)解:把 ()14A -, 代入 2k y x = ,得 24k =- , ∴4y x =- ,∵点 ()4B n , 在 4y x =- 上,∴1n =- ,∴()41B -, ,把 ()14A -, , ()41B -, 代入 11y k x b =+ 得 11441k b k b -+=⎧⎨+=-⎩ ,解得 113k b =-⎧⎨=⎩ ,∴3y x =-+(3)解:设 AB 与 y 轴交于点 C , ∵点 C 在直线 3y x =-+ 上,∴()03C , , ()()113147.522AOB A B S OC x x ∆=⋅+=⨯⨯+= , 又 12AOD BOP S S ∆∆=:: ,∴17.5 2.53AOP S ∆=⨯= , 5BOP S ∆= , 又 131 1.52AOC S ∆=⨯⨯= ,∴点 P 在第一象限,∴ 2.5 1.51COP S ∆=-= ,又 3OC = ,∴1312P x ⨯⨯= ,解得 23P x = ,把 23P x = 代入 3y x =-+ ,得 73P y = , ∴2733P ⎛⎫⎪⎝⎭, .20.【答案】(1)解:把点A (4,3)代入函数y= ax 得:a=3×4=12,∴y= 12x . OA= 2234+=5,∵OA=OB ,∴OB=5,∴点B 的坐标为(0,﹣5),把B (0,﹣5),A (4,3)代入y=kx+b 得: 543b k b =-⎧⎨+=⎩解得: 25k b =⎧⎨=-⎩∴y=2x ﹣5(2)解:∵点M 在一次函数y=2x ﹣5上,∴设点M 的坐标为(x ,2x ﹣5), ∵MB=MC , 2222(255)(255)x x x x +-+=+--解得:x=2.5,∴点M 的坐标为(2.5,0).。

一次函数与反比例函数综合题型

一次函数与反比例函数综合题型

一次函数与反比例函数综合题型:专题1 1、.(2010 济宁)如图,正比例函数12y x =的图象与反比例函数k y x =(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.24.(2011 聊城)如图,已知一次函数y =kx +b 的图象交反比例函数42(0)my x x-=>的图象于点A 、B ,交x 轴于点C .(1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且BC AB = 13,求m 的值和一次函数的解析式.xA(第1题)3、.(2010年枣庄市)如图,一次函数y =a x +b 的图象与反比例函数y = kx的图象交于A 、B 两点,与x轴交于点C ,与y 轴交于点D ,已知OA =10,点B 的坐标为(m ,-2),t a n ∠AOC = 13.(1)求反比例函数的解析式; (2)求一次函数的解析式;(3)在y 轴上存在一点P ,使△PDC 与△CDO 相似,求P 点的坐标.4、(2011•临沂)如图,一次函数y=kx+b 与反比例函数y=的图象相较于A (2,3),B (﹣3,n )两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b >的解集;(3)过点B 作BC⊥x 轴,垂足为C ,求S △ABC .5、2010年烟台市18、如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A 在反比例函数y=的图像上,则菱形的面积为____________。

6、(2011•泰安)如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.7. (德州市2010年)●探究 (1) 在图1中,已知线段AB ,CD ,其中点分别为E ,F .①若A (-1,0), B (3,0),则E 点坐标为__________;②若C (-2,2), D (-2,-1),则F 点坐标为__________;(2)在图2中,已知线段AB 的端点坐标为A (a ,b ) ,B (c ,d ), 求出图中AB 中点D 的坐标(用含a ,b ,c ,d 的 代数式表示),并给出求解过程. ●归纳 无论线段AB 处于直角坐标系中的哪个位置, 当其端点坐标为A (a ,b ),B (c ,d ), AB 中点为D (x ,y ) 时, x =_________,y =___________.(不必证明) ●运用 在图2中,一次函数2-=x y 与反比例函数xy 3=的图象交点为A ,B .①求出交点A ,B 的坐标;②若以A ,O ,B ,P 为顶点的四边形是平行四边形, 请利用上面的结论求出顶点P 的坐标.xy y =x3 y =x -2A B O第22题图3第22题图2一次函数与反比例函数综合题型:专题1 答案:1、(2010 济宁.)解:(1) 设A 点的坐标为(a ,b ),则kb a=.∴ab k =. ∵112ab =,∴112k =.∴2k =. ∴反比例函数的解析式为2y x=. ···················································· 3分(2) 由212y xy x ⎧=⎪⎪⎨⎪=⎪⎩ 得2,1.x y =⎧⎨=⎩ ∴A 为(2,1). ······································ 4分 设A 点关于x 轴的对称点为C ,则C 点的坐标为(2,1-). 令直线BC 的解析式为y mx n =+.∵B 为(1,2)∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴BC 的解析式为35y x =-+. ························································· 6分 当0y =时,53x =.∴P 点为(53,0). ·········································· 7分2、(2011 聊城24.) 解:(1)因为反比例函数42(0)my x x-=>的图象在第四象限, 所以420m -<,解得2m >. (2)因为点A(2,4-)在函数42my x-=图象上, 所以4242m--=,解得6m =. 过点A 、B 分别作AM ⊥OC 于点M ,BN ⊥OC 于点N , 所以∠BNC=∠AMC=90°. 又因为∠BCN=∠ACM ,所以△BCN ∽△ACM ,所以BN BCAM AC=. 因为14BC AB =,所-以14BC AC =,即14BN AM =. 因为AM=4,所以BN=1. 所以点B 的纵坐标是1-. 因为点B 在反比例函数8y x=-的图象上,所以当1y =-时,8x =. 所以点B 的坐标是(8.1-).因为一次函数y kx b =+的图象过点A(2,4-)、B(8,1-).∴2481k b k b +=-⎧⎨+=-⎩,解得125k b ⎧=-⎪⎨⎪=-⎩所以一次函数的解析式是152y x =--. 3、(2010年枣庄市)(1)过点A 作AE ⊥x 轴,垂足为E .221tan 3310101 3.AOE OE AE OA OE AE AE OE ∠=∴==+=∴==,.,, ∴点A 的坐标为(3,1).………………………2分A 点在双曲线上,13k∴=,3k =.∴双曲线的解析式为3y x=. ………………………………………………………3分(2)点(2)B m -,在双曲线3y x=上,3322m m ∴-==-,.∴点B 的坐标为322⎛⎫-- ⎪⎝⎭,. ………………………………………………………4分231332 1.2a b a a b b +=⎧⎧=⎪⎪∴∴⎨⎨-+=-⎪⎪=-⎩⎩,, ∴一次函数的解析式 为213y x =-. …………………………………………………7分(3)C D ,两点在直线213y x =-上,C D ∴,的坐标分别是30(01)2C D ⎛⎫- ⎪⎝⎭,,,. ∴312OC OD ==,,DC =. ………………………………………8分过点C 作CP AB ⊥,垂足为点C .PDC CDO △∽△,213.4PD DC DC PD DC OD OD ∴===, 又139144OP DP OD =-=-=, P ∴点坐标为904⎛⎫⎪⎝⎭,.……………………………………………………10分4、(2011•临沂)考点:反比例函数与一次函数的交点问题。

专题三 函数综合问题(一次函数+反比例函数)-中考二轮专题复习(原卷版)(全国适用)

专题三 函数综合问题(一次函数+反比例函数)-中考二轮专题复习(原卷版)(全国适用)

专题三函数的综合问题专题三函数综合问题(一次函数+反比例函数)一、以一次函数为背景的综合问题例题(2021·黑龙江·哈尔滨市第十七中学校二模)如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣34x+3分别交x轴,y轴于点A,B.∠OBA的外角平分线交x轴于点D.(1)求点D的坐标;(2)点P是线段BD上的一点(不与B,D重合),过点P作PC⊥BD交x轴于点C.设点P 的横坐标为t,△BCD的面积为S,求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,PC的延长线交y轴于点E,BC的延长线交DE于点F,连AP,若sin∠BAP 10OF的长.练习题1.(2021·吉林双阳·二模)如图,在平面直角坐标系中,两条直线分别为y=2x,y=kx,且点A在直线y=2x上,点B在直线y=kx上,AB∥x轴,AD⊥x轴,BC⊥x轴垂足分别为D 和C,若四边形ABCD为正方形时,则k=()A .14B .12C .23D .22.(2021·山东槐荫·二模)如图,点B ,C 分别在直线y =2x 和直线y =kx 上,A 、D 是x 轴上两点,若四边形ABCD 是长方形,且AB :AD =1:3,则k 的值是( )A .23B .25C .27D .293.(2021·山东广饶·二模)如图,在平面直角坐标系xOy 中,菱形OABC 满足点O 在原点,点A 坐标为(2,0),∠AOC =60°,直线y =﹣3x +b 与菱形OABC 有交点,则b 的取值范围是___.4.(2021·湖北阳新·模拟预测)如图,直线AB 的解析式为y =﹣x +b 分别与x ,y 轴交于A ,B 两点,点A 的坐标为(3,0),过点B 的直线交x 轴负半轴于点C ,且31OB OC =::,在x 轴上方存在点D ,使以点A ,B ,D 为顶点的三角形与△ABC 全等,则点D 的坐标为_____.5.(2021·广东深圳·三模)定义:如图1,已知锐角∠AOB 内有定点P ,过点P 任意作一条直线MN ,分别交射线OA ,OB 于点M ,N .若P 是线段MN 的中点时,则称直线MN 是∠AOB 的中点直线.如图2,射线OQ 的表达式为y =2x (x >0),射线OQ 与x 轴正半轴的夹角为∠α,P (3,1),若MN 为∠α的中点直线,则直线MN 的表达式为__________________.6.(2021·山东·济宁学院附属中学一模)如图,在平面直角坐标系xOy 中,ABCO Y 的顶点A ,B 的坐标分别是(6,0)A ,(0,4)B .直线l 经过坐标原点,并与AB 相交于点D .(1)直接写出C 点的坐标______.(2)若DOA BOC ∠=∠,试确定点D 的坐标及直线l 的解析式.(3)在(2)的条件下,动点P 在直线l 上运动,以点P 为圆心,PB 的长为半径的P e 随点P 运动,当P e 与ABCO Y 的边相切时,求出P e 的半径.7.(2022·辽宁·东北育才实验学校模拟预测)如图,已知直线l 1:y =2833x +与直线l 2:y =﹣2x +16相交于点C ,l 1、l 2分别交x 轴于A 、B 两点.矩形DEFG 的顶点D 、E 分别在直线l 1、l 2上,顶点F 、G 都在x 轴上,且点G 与点B 重合.(1)求△ABC 的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原地出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为t (0≤t ≤12)秒,矩形DEFG 与△ABC 重叠部分的面积为S ,直接写出S 关于t 的函数关系式,并写出相应的t 的取值范围.8.(2021·浙江·诸暨市暨阳初级中学一模)如图,直线483y x =−+分别与x 轴,y 轴相交于点A ,点B ,作矩形ABCD ,其中点C ,点D 在第一象限,且满足AB ∶BC =2∶1.连接BD . (1)求点A ,点B 的坐标.(2)若点E 是线段AB (与端点A 不重合)上的一个动点,过E 作EF ∥AD ,交BD 于点F ,作直线AF .①过点B 作BG ⊥AF ,垂足为G ,当BE =BG 时,求线段AE 的长度.②若点P 是线段AD 上的一个动点,连结PF ,将△DFP 沿PF 所在直线翻折,使得点D 的对应点D ¢落在线段BD 或线段AB 上.直接写出线段AE 长的取值范围.9.(2021·辽宁沈阳·中考真题)如图,平面直角坐标系中,O 是坐标原点,直线15(0)y kx k =+≠经过点()3,6C ,与x 轴交于点A ,与y 轴交于点B .线段CD 平行于x 轴,交直线34y x =于点D ,连接OC ,AD .(1)填空:k = __________.点A 的坐标是(__________,__________); (2)求证:四边形OADC 是平行四边形;(3)动点P 从点O 出发,沿对角线OD 以每秒1个单位长度的速度向点D 运动,直到点D 为止;动点Q 同时从点D 出发,沿对角线OD 以每秒1个单位长度的速度向点O 运动,直到点O 为止.设两个点的运动时间均为t 秒. ①当1t =时,CPQ V 的面积是__________.②当点P ,Q 运动至四边形CPAQ 为矩形时,请直接写出此时t 的值.10.(2021·黑龙江·哈尔滨市虹桥初级中学校模拟预测)直线y kx k =+与x 轴交于A ,与y 轴交于C 点,直线BC 的解析式为1y x k k=−+,与x 轴交于B .(1)如图1,求点A 的横坐标;(2)如图2,D 为BC 延长线上一点,过D 作x 轴垂线于点E ,连接CE ,若CD CA =,设ACE V 的面积为S ,求S 与k 的函数关系式;(3)如图3,在(2)的条件下,连接OD 交AC 于点F ,将CDF V 沿CF 翻折得到△FCG ,直线FG 交CE 于点K ,若345ACE CDO ∠−∠=︒,求点K 的坐标.二、反比例函数的综合问题例题(2021·广东·珠海市紫荆中学三模)如图1,在平面直角坐标系xOy 中,线段AB 在x 轴的正半轴上移动,且AB =1,过点A 、B 作y 轴的平行线分别交函数y 1=1x (x >0)与y 2=3x(x >0)的图象于C 、E 和D 、F ,设点A 的横坐标为m (m >0).(1)D 点坐标 ;F 点坐标 ;连接OD 、OF ,则△ODF 面积为 ;(用含m 的代数式表示)(2)连接CD 、EF ,判断四边形CDFE 能否是平行四边形,并说明理由;(3)如图2,经过点B 和点G (0,6)的直线交直线AC 于点H ,若点H 的纵坐标为正整数,请求出整数m 的值. 练习题1.(2021·河北·高阳县教育局教研室模拟预测)如图是反比例函数3y x =和7y x=−在x 轴上方的图象,x 轴的平行线AB 分别与这两个函数图象相交于点A ,B ,点P 在x 轴上.则点P 从左到右的运动过程中,△APB 的面积是( )A .10B .4C .5D .从小变大再变小2.(2021·山东滨州·一模)如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB =45,反比例函数y =48x在第一象限内的图象经过点A ,与BC 交于点F ,则点F 的坐标为( )A .611,6120)B .61+1,6120)C .6146120− D .61﹣946120− 3.(2021·山东济南·二模)如图,在平面直角坐标系中,菱形ABCD 的对称中心恰好是原点O ,已知点B 坐标是32,2⎛⎫− ⎪⎝⎭,双曲线y =6x经过点A ,则菱形ABCD 的面积是( )A .2B .18C 252D .254.(2021·广东深圳·三模)如图,在反比例函数y =4x (x >0)的图象上有动点A ,连接OA ,y =k x (x >0)的图象经过OA 的中点B ,过点B 作BC ∥x 轴交函数y =4x 的图象于点C ,过点C 作CE ∥y 轴交函数y =kx的图象于点D ,交x 轴点E ,连接AC ,OC ,BD ,OC 与BD 交于点F .下列结论:①k =1;②S △BOC =32;③S △CDF =316S △AOC ;④若BD =AO ,则∠AOC =2∠COE .其中正确的是( )A .①③④B .②③④C .①②④D .①②③④5.(2021·江苏扬州·一模)如图,正方形的顶点A ,C 分别在y 轴和x 轴上,边BC 的中点F 在y 轴上,若反比例函数12y x=的图象恰好经过CD 的中点E ,则OA 的长为______.6.(2021·福建·厦门五缘实验学校二模)如图,在平面直角坐标系中,反比例函数y kx=(k >0)的图象与半径为5的⊙O 交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是______.7.(2021·江苏常州·二模)如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数y =kx(k >0,x >0)的图象上,CD 在x 轴上,点B 在y 轴上,已知CD =2.(1)点A 是否在该反比例函数的图象上?请说明理由; (2)若该反比例函数图象与DE 交于点Q ,求点Q 的横坐标. 8.(2021·山东菏泽·三模)如图,反比例函数()0ky k x=≠的图像过等边BOC V 的顶点B ,2OC =,点A 在反比例函数的图象上,连接AC ,AO .(1)求反比例函数()0ky k x=≠的表达式; (2)若四边形ACBO 的面积是33A 的坐标.9.(2021·吉林·三模)如图,在平面直角坐标系中,矩形ABCO 的顶点A 、C 分别在x 轴和y 轴的正半轴上,顶点B 的坐标为(4,2),双曲线ky x=(x >0)的图象交BC 于点D ,若BD =32.求反比例函数的解析式及点F 的坐标.10.(2022·广东江门·一模)反比例函数y 1=1k x(k 1>0)和y 2=22(0)k k x >在第一象限的图象如图所示,过原点的两条射线分别交两个反比例图象于A ,D 和B ,C(1)求证:AB ∥CD ;(2)若k 1=2,S △OAB =2,S 四边形ABCD =3,求反比例函数y 2=2k x(k 2>0)的解析式. 11.(2021·湖北恩施·模拟预测)如图,在平面直角坐标系中,点A ,D 分别是x 轴、y 轴上的一动点,以AD 为边向外作矩形ABCD ,对角线BD ∥x 轴,反比例函数(0)ky k x=>图象经过矩形对角线交点E .(1)如图1,若点A 、D 坐标分别是(6,0),(0,2),求BD 的长;(2)如图2,保持点D 坐标(0,2)不变,点A 向右移移动,当点C 刚好在反比函数图象上时,求点A 坐标及k 的值.12.(2021·广东·汕头市潮南实验学校一模)如图,在平面直角坐标系中,点O 为坐标系原点,矩形OABC 的边OA ,OC 分别在x 轴和y 轴上,其中4cos 5OBC ∠=,3OC =.已知反比例函数(0)ky x x=>的图象经过BC 边上的中点D ,交AB 于点E .(1)求k 的值;(2)猜想OCD ∆的面积与OBE ∆的面积之间的关系,请说明理由.(3)若点(,)P x y 在该反比例函数的图象上运动(不与点D 重合),过点P 作PR y ⊥轴于点R ,作PQ BC ⊥所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围.13.(2021·重庆北碚·模拟预测)有这样一个问题:探究函数y =bx ax ++2的图象与性质,小童根据学习函数的经验,对函数的图象与性质进行例研究,已知当x =2时,y =7,0x =时,y =﹣3.下面是小童探究的过程,请补充完整:(1)该函数的解析式为,m=,n=.根据图中描出的点,画出函数图象.x…﹣4﹣3﹣20234…y…m 3413﹣37n113…;①该函数图象是中心对称图形,它的对称中心是原点.②该函数既无最大值也无最小值.③在自变量的取值范围内,y随x的增大而减小.(3)请结合(1)中函数图象,直接写出关于x的不等式2220x axx b+−−≥+的解集.(保留1位小数,误差不超过0.2)14.(2021·广东·二模)如图1,点P是反比例函数y=kx(k>0)在第一象限的点,P A⊥y轴于点A,PB⊥x轴于点B,反比例函数y=6x的图象分别交线段AP、BP于C、D,连接CD,点G是线段CD上一点.(1)若点P (6,3),求△PCD 的面积;(2)在(1)的条件下,当PG 平分∠CPD 时,求点G 的坐标;(3)如图2,若点G 是OP 与CD 的交点,点M 是线段OP 上的点,连接MC 、MD .当∠CMD =90°时,求证:MG =12CD .15.(2021·广东珠海·一模)如图,在平面直角坐标系中,O 为坐标原点,点B 在x 轴正半轴上,四边形OACB 为平行四边形,3cos AOB?(0)k y k x=>的图象在第一象限内过点A ,且经过BC 边的中点F ,连接AF ,OF .(1)当3OA = (2)在(1)的条件下,求点F 的坐标; (3)证明:ΔΔOAF AFC ∽.三、一次函数与反比例函数的综合问题例题(2021·江苏·苏州市吴中区碧波中学一模)如图,过直线12y kx =+上一点P 作PD x ⊥轴于点D ,线段PD 交函数(0)my x x=>的图象于点C ,点C 为线段PD 的中点,点C 关于直线y x =的对称点C '的坐标为()1,3.(1)直接写出点C 的坐标(____,______),求k 、m 的值:(2)求直线12y kx =+函数(0)m y x x =>图象的交点坐标;(3)直接写出不等式1(0)2m kx x x >+>的解集. 练习题1.(2021·四川成都·一模)如图,在同一平面直角坐标系中,反比例函数y =kx 与一次函数y =kx ﹣k (k 为常数,且k ≠0)的图象可能是( )A .B .C .D .2.(2021·湖北荆门·中考真题)在同一直角坐标系中,函数y kx k =−与(0)||ky k x =≠的大致图象是( )A.①②B.②③C.②④D.③④3.(2022·湖北武汉·模拟预测)如图,直线y=x+8分别交x、y轴于A、B两点,交双曲线kyx =,若CD=3(AC+BD),则k的值为()A.﹣6B.﹣7C.﹣8D.﹣94.(2021·广东·深圳市罗湖区翠园初级中学二模)将反比例函数y=4x的图象绕坐标原点O逆时针旋转30°,得到如图的新曲线A(﹣3,3,B 332,32)的直线相交于点C、D,则△OCD的面积为()A .3B .8C .3D 3325.(2018·山东青岛·中考模拟)如图,反比例函数y =kx (x <0)与一次函数y =x +4的图象交于A 、B 两点的横坐标分别为-3,-1.则关于x 的不等式kx <x +4(x <0)的解集为( )A .x <-3B .-3<x <-1C .-1<x <0D .x <-3或-1<x <06.(2021·山东临沂·一模)在平面直角坐标系xOy 中,已知一次函数0y ax b a +≠=()与反比例函数ky x=的图象交于点1A m (,)和()2,1B −−,点A 关于x 轴的对称点为点C .(1)求这两个函数的表达式. (2)直接写出关于x 的不等式kax b x+≤的解.(3)过点B 作y 轴的垂线与直线AC 交于点D ,经过点C 的直线与直线BD 交于点E ,且3045CED ︒≤∠≤︒,直接写出点E 的横坐标t 的取值范围.7.(2021·山东青岛·一模)如图,直线y 1=k 1x +b 与双曲线y 2=2k x在第一象限内交于A 、B 两点,已知A (1,m ),B (2,1).(1)分别求出直线和双曲线的解析式;(2)设点P 是线段AB 上的一个动点,过点P 作PD ⊥x 轴于点D ,E 是y 轴上一点,当△PED 的面积最大时,请直接写出此时P 点的坐标为 . 8.(2021·广东清远·二模)如图,一次函数y 1=k 1x +4与反比例函数22k y x=的图象交于点A (2,m )和B (-6,-2),与y 轴交于点C .(1)求一次函数与反比例函数的表达式;(2)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线OP 与线段AD 交于点E ,当S 四边形ODAC :S △ODE =4:1时,求点P 的坐标;(3)点M 是y 轴上的一个动点,当△MBC 为直角三角形时,直接写出点M 的坐标.9.(2021·湖南·株洲市芦淞区教育教学研究指导中心模拟预测)如图1,点(08)(2)A B a ,、,在直线2y x b =−+上,反比例函数(ky x x=>0)的图象经过点B .(1)求反比例函数解析式;(2)将线段AB 向右平移m 个单位长度(m >0),得到对应线段CD ,连接AC 、BD . ①如图2,当m =3时,过D 作DF ⊥x 轴于点F ,交反比例函数图象于点E ,求E 点坐标; ②在线段AB 运动过程中,连接BC ,若△BCD 是以BC 为腰的等腰三角形,求所有满足条件的m 的值.10.(2021·四川·叙州区双龙镇初级中学校模拟预测)如图1,在平面直角坐标系中,直线l 1:y =kx +b (k ≠0)与双曲线()0my m x=≠交于点A (a ,4a )(a >0)和点B (﹣4,n ),连接OA ,OB ,其中17OA =(1)求双曲线和直线l 1的表达式; (2)求△AOB 的面积;(3)如图2,将直线l 1:y =kx +b 沿着y 轴向下平移得到直线l 2,且直线l 2与双曲线在第三象限内的交点为C ,若△ABC 的面积为20,求直线l 2与y 轴的交点坐标.11.(2021·山东潍坊·二模)如图,在平面直角坐标系xOy 中,函数(0)ky x x=>的图象与直线2y x =−交于点(4,)A m .(1)求k ,m 的值;(2)已知点(P n ,)(0)n n >,过点P 作平行于x 轴的直线,交直线2y x =−于点M ,过点P 作平行于y 轴的直线,交函数ky x=(0)x >的图象于点N . ①当2n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM …,结合函数的图象,直接写出n 的取值范围. 12.(2021·四川南充·一模)如图,直线y =kx +b 与x 轴交于点A ,与y 轴交于点B ,与双曲线y =ax(x <0)交于C (﹣8,1),D (﹣m ,m 2)两点.(1)求直线和双曲线的解析式;(2)比较AC 和BD 的大小,直接填空:AC BD ;(3)写出直线对应函数值大于双曲线对应函数值自变量x 的取值范围,直接填空: . 13.(2021·山东临沂·一模)如图,反比例函数ky x=(0k ≠,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3BD .(1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C ,D 两点距离之和d =MC +MD 最小,求点M 的坐标. 14.(2021·广东·东莞市南开实验学校一模)如图,一次函数y=k 1x +1的图象与反比例函数22(0)k y k x=> 点的图象相交于A 、B 两点,点C 在x 轴正半轴上,点D (1,-2 ),连接OA 、OD 、DC 、AC ,四边形OACD 为菱形.(1)求一次函数与反比例函数的解析式;(2)根据图象,直接写出反比例函数值大于一次函数值时,x 的取值范围; (3)设点P 是直线AB 上一动点,且S △OAP =12S 菱形OACD ,求点P 的坐标.15.(2021·山东济南·三模)已知点A (0,4),将点A 先向右平移1个单位长度,再向上平移2个单位长度,对应点B 恰好落在反比例函数(0)ky k x=>的图象上.过点B 的直线l 的表达式为y =mx +n ,与反比例函数图象的另一个交点为点C ,分别交x 轴、y 轴于点D 、点E .(1)求反比例函数表达式;(2)若线段BC =2CD ,求△BOD 的面积;(3)在(2)的条件下,点P 为反比例函数图象上B 、C 之间的一点(不与B 、C 重合),PM⊥x 轴交直线l 于点M ,PN ⊥y 轴交直线l 于点N ,请分析EM •DN 是否为定值,并说明理由.16.(2021·广东阳江·一模)如图,一次函数y =kx +b (k ≠0)与反比例函数(0,0)m y m x x=≠>交于A (4,12),B (1,2),AC ⊥x 轴于点C ,BD ⊥y 轴于点D .(1)根据图象直接回答:在第一象限内,当x 取何值时,一次函数值大于反比例函数值;(2)求一次函数的解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△BDP ∽△ACP ,求点P 的坐标.17.(2021·广东佛山·二模)如图,一次函数y =k 1x +b 与反比例函数y =2k x图象交于点B (﹣1,6)、点A ,且点A 的纵坐标为3.(1)填空:k 1= ,b = ;k 2= ;(2)结合图形,直接写出k 1x +b >2k x时x 的取值范围; (3)在梯形ODCA 中,AC ∥OD ,且下底DO 在x 轴上,CD ⊥x 轴于点D ,CD 和反比例函数的图象交于点M ,当梯形ODCA 的面积为12时,求此时点M 坐标.18.(2021·广东梅州·一模)已知一次函数y =kx +b 与反比例函数y =m x的图象交于A (﹣3,2)、B (1,n )两点.(1)求一次函数和反比例函数的表达式;(2)△AOB 的面积为 ;(3)直接写出不等式kx +b >m x的解 ; (4)点P 在x 的负半轴上,当△P AO 为等腰三角形时,直接写出点P 的坐标.19.(2021·江苏南通·中考真题)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”. (1)分别判断函数22,y x y x x =+=−的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0),y x y x b x=>=−+的图象的“等值点”分别为点A ,B ,过点B 作BC x ⊥轴,垂足为C .当ABC V 的面积为3时,求b 的值;(3)若函数22()y x x m =−≥的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当12,W W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.。

一次函数与反比例函数综合题

一次函数与反比例函数综合题

一次函数与反比例函数综合题11、如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B•两点,且与反比例函数y=mx(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,•若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求直线AB的解析式.(3)反比例函数的解析式2、如图,已知一次函数y=kx+b的图象与反比例函数y=-8x的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2.求:(1)一次函数的解析式;(2)△AOB的面积.(3)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.3、已知一次函数y kx b =+的图象过点A (3,0)且与坐标轴围成的三角形的面积为6,则这个一次函数的解析式为 。

4、已知k>0,则函数y=kx ,xky -=的图像大致是下图中的5、函数与在同一平面直角坐标系中的图像可能( )。

6、如图,一次函数b kx y +=的图像与反比例函数xmy =的图像相交于A 、B 两点,(1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围7、已知关于x 的一次函数y =mx +3n 和反比例函数y =25m nx+的图象都经过点(1,-2).求:(1)一次函数和反比例函数的解析式; (2)两个函数图象的另一个交点的坐标.8、如图,一次函数y=kx+b 的图象与反比例函数y=mx的图象交于A (-2,1),B (•1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.9、在同一坐标中,函数y=k/x 与y=kx+k (k ≠0)可能的大致图象是( )x x 10xx y =没有交点,那么k 的取值范围是:A 、1k >B 、1k <C 、1k ->D 、1k -<11、已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______.12、已知反比例函数y =xa(a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y =-a x +a 的图象不经过...( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限13、在平面直角坐标系xoy 中,直线y x =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 . 14、如图3,函数y x =与4y x=的图象交于A 、B 两点,过点A 作AC垂直于y 轴,垂足为C ,则ABC △15、在同一平面直角坐标系中,反比例函数8y x=-与一次函数2y x =-+交于A B 、两点,O 为坐标原点,则AOB △的面积为( )A .2B .6C .10D .816、如图,反比例函数xy 2=的图像与一次函数b kx y +=的图像交点A(m,2),点B(-2, n ),一次函数图像与y 轴的交点为C 。

一次函数与反比例函数综合题中考专题

一次函数与反比例函数综合题中考专题

一次函数与反比例函数综合题中考专题1、在图中,点D位于双曲线上,AD垂直于x轴,垂足为A。

点C位于AD上,CB平行于x轴并与曲线相交于点B。

直线AB与y轴相交于点F。

已知AC:AD=1:3,点C的坐标为(2,2)。

1)求该双曲线的解析式;2)求△OFA的面积。

1)由于点D位于双曲线上,且AD垂直于x轴,垂足为A,因此双曲线的中心点为O(0,0)。

又因为AC:AD=1:3,所以点A的坐标为(0,6)。

设双曲线的方程为y=a/x,由于点B位于双曲线上,且CB平行于x轴,因此点B的坐标为(2,2a/2)。

由于直线AB与y轴相交于点F,因此直线AB的方程为x=2/F。

将点A和B代入直线AB的方程,得到F=3.因此,直线AB的方程为x=2/3.将点A和B的坐标代入双曲线的方程,得到2a=18,因此双曲线的方程为y=9/x。

2)由于△OFA为直角三角形,因此△OFA的面积为(1/2)×OF×OA=(1/2)×3×6=9.2、在图中,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B连接AB,BC。

1)求k的值;2)若△BCD的面积为12,求直线CD的解析式;3)判断AB与CD的位置关系,并说明理由。

1)由于点D位于双曲线上,因此6k=1,解得k=1/6.2)由于点C位于双曲线第三象限上,且过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B连接AB,BC,因此点A的坐标为(6,0),点B的坐标为(0,1/6)。

设直线CD的方程为y=ax+b,由于点C的坐标为(x,0),点D的坐标为(0,y),因此直线CD的方程为y=-x/6+2.3)因为直线AB的斜率为-1/6,直线CD的斜率为-1/6,所以AB与CD平行。

又因为点B在直线CD的上方,点A在直线CD的下方,所以AB与CD相交。

3、在图中,已知反比例函数y=k/x的图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,x=k的图像上另一点C(n,1/2)。

一次函数与反比例函数的综合专题练习

一次函数与反比例函数的综合专题练习

一次函数与反比例函数的综合专题练习1. 如图,反比例函数ky x=(k <0)与一次函数y =x +4的图象交于A 、B 两点的横坐标分别为﹣3,﹣1.则关于x 的不等式4kx x<+(x <0)的解集为( )A .x <﹣3B .﹣3<x <﹣1C .﹣1<x <0D .x <﹣3或﹣1<x <02. 如图,直线6y =-分别交x 轴,y 轴于A ,B ,M 是反比例函数ky x=(x >0)的图象上位于直线上方的一点,MC ∥x 轴交AB 于C ,MD ⊥MC 交AB 于D ,AC •BD =k 的值为( )A .﹣3B .﹣4C .﹣5D .﹣63.在平面直角坐标系内,直线AB 垂直于x 轴于点C (点C 在原点的右侧),并分别与直线y =x 和双曲线1y x=相交于点A 、B ,且AC +BC =4,则△OAB 的面积为( )A .或3B +1﹣1C .3D 14.一次函数y =﹣x +1(0≤x ≤10)与反比例函数1y x=(﹣10≤x <0)在同一平面直角坐标系中的图象如图所示,点(x 1,y 1),(x 2,y 2)是图象上两个不同的点,若y 1=y 2,则x 1+x 2的取值范围是( )A .﹣8910≤x ≤1 B .﹣8910≤x ≤899 C .﹣899≤x ≤8910 D .1≤x ≤89105.如图,P 为反比例函数ky x=(k >0)在第一象限内图象上的一点,过点P 分别作x 轴,y 轴的垂线交一次函数y =﹣x ﹣4的图象于点A 、B .若∠AOB =135°,则k 的值是( )学-科网A .2B .4C .6D .86. 如图,已知点A 是一次函数12y x =(x ≥0)图象上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数ky x=(x >0)的图象过点B ,C ,若△OAB 的面积为6,则△ABC 的面积是 .7.如图,直线333--=x y 与x ,y 轴分别交于点A ,B ,与反比例函数xky =的图象在第二象限交于点C ,过点A 作x 轴的垂线交该反比例函数图象于点D .若AD =AC ,则点D 的坐标为 .8.如图,过C (2,1)作AC ∥x 轴,BC ∥y 轴,点A ,B 都在直线y =﹣x +6上,若双曲线ky x=(x >0)与△ABC 总有公共点,则k 的取值范围是 .9.如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数1y x =和9y x=在第一象限的图象于点A ,B ,过点B 作 BD ⊥x 轴于点D ,交1y x=的图象于点C ,连结AC .若△ABC 是等腰三角形,则k 的值是 .10.如图,直线y =kx (k 为常数,k ≠0)与双曲线my x=(m 为常数,m >0)的交点为A 、B ,AC ⊥x 轴于点C ,∠AOC =30°,OA =2.(1)求m 的值;(2)点P 在y 轴上,如果3ABP S k ∆=,求P 点的坐标.11.如图,一次函数y =ax +b 的图象与反比例函数ky x=的图象交于C ,D 两点,与x ,y 轴交于B ,A 两点,且tan ∠ABO =12,OB =4,OE =2. (1)求一次函数的解析式和反比例函数的解析式; (2)求△OCD 的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x 的取值范围.12.有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数1y x k =与ky x=(k ≠0)的图象性质.小明根据学习函数的经验,对函数1y x k =与ky x=,当k >0时的图象性质进行了探究.下面是小明的探究过程: (1)如图所示,设函数1y x k =与ky x=图象的交点为A ,B ,已知A 点的坐标为(﹣k ,﹣1),则B 点的坐标为 ;(2)若点P 为第一象限内双曲线上不同于点B 的任意一点. ①设直线P A 交x 轴于点M ,直线PB 交x 轴于点N .求证:PM =PN . 证明过程如下,设P (m ,k m),直线P A 的解析式为y =ax +b (a ≠0). 则1ka b kma b m -+=-⎧⎪⎨+=⎪⎩,解得:__________a b =⎧⎨=⎩ ∴直线P A 的解析式为 请你把上面的解答过程补充完整,并完成剩余的证明. ②当P 点坐标为(1,k )(k ≠1)时,判断△P AB 的形状,并用k 表示出△P AB 的面积.13.如图,在平面直角坐标系中,Rt △AOB 的斜边OA 在x 轴的正半轴上,∠OBA =90°,且tan ∠AOB =12,OB=反比例函数ky x=的图象经过点B . (1)求反比例函数的表达式;(2)若△AMB 与△AOB 关于直线AB 对称,一次函数y =mx +n 的图象过点M 、A ,求一次函数的表达式.14. 如图,一次函数y =kx +b 与反比例函数ay x=的图象在第一象限交于A 、B 两点,B 点的坐标为(3,2),连接OA 、OB ,过B 作BD ⊥y 轴,垂足为D ,交OA 于C ,若OC =CA . (1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积.15. 如图,一次函数15y k x =+(10k <)的图象与坐标轴交于A ,B 两点,与反比例函数2k y x=(20k >)的图象交于M ,N 两点,过点M 作MC ⊥y 轴于点C ,已知CM =1. (1)求21k k -的值; (2)若14AM AN =,求反比例函数的解析式; (3)在(2)的条件下,设点P 是x 轴(除原点O 外)上一点,将线段CP 绕点P 按顺时针或逆时针旋转90°得到线段PQ ,当点P 滑动时,点Q 能否在反比例函数的图象上?如果能,求出所有的点Q 的坐标;如果不能,请说明理由.。

2023年中考数学专题——反比例函数与一次函数的综合

2023年中考数学专题——反比例函数与一次函数的综合

2023年中考数学专题——反比例函数与一次函数的综合一、综合题1.如图,已知直线y=3x与双曲线y=kx交于A、B两点,且点A的横坐标为.(1)求k的值;(2)若双曲线y=kx上点C的纵坐标为3,求△AOC的面积;(3)在坐标轴上有一点M,在直线AB上有一点P,在双曲线y=kx上有一点N,若以O、M、P、N为顶点的四边形是有一组对角为60°的菱形,请写出所有满足条件的点P的坐标.2.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= nx(n为常数,且n≠0)的图象在第二象限交于点C.CD△x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤ nx的解集.3.如图,一次函数y mx b=+的图象与反比例函数kyx=的图象交于()3,1A,1(2B-,)n两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.4.如图,函数y1=﹣x+4的图象与函数y2=kx(x>0)的图象交于A(m,1),B(1,n)两点.(1)求k,m,n的值;(2)利用图象写出当x≥1时,y1和y2的大小关系.5.已知一次函数y=kx+b和反比例函数y=mx图象相交于A(-4,2),B(n,-4)两点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx +b - mx<0的解集.6.如图,已知一次函数 ()1110y k x b k =+≠ 与反比例函数 ()2220k y k x=≠ 的图象交于 ()4,1A , (),2B n - 两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出 12y y < 时 x 的取值范围.7.如图,一次函数 y 2x 8=-+ 与函数 ky (x 0)x=> 的图象交于 ()A m,6 , ()B n,2 两点, AC y ⊥ 轴于C , BD x ⊥ 轴于D(1)求k 的值;(2)根据图象直接写出 k2x 80x-+-< 的x 的取值范围;(3)P 是线段AB 上的一点,连接PC ,PD ,若 PCA 和 PDB 面积相等,求点P 坐标.8.如图,在平面直角坐标系中,一次函数y =kx+b (k≠0)与反比例函数y =mx(m≠0)的图象相交于A 、B 两点,过点A 作AD△x 轴于点D ,AO =5,OD =34AD ,B 点的坐标为(﹣6,n )(1)求一次函数和反比例函数的表达式;(2)P 是y 轴上一点,且△AOP 是等腰三角形,请直接写出所有符合条件的P 点坐标.9.如图,A(3,m)是反比例函数y =kx 在第一象限图象上一点,连接OA ,过A 作AB△x 轴,连接OB ,交反比例函数y =kx的图象于点P(2 ,).(1)求m 的值和点B 的坐标; (2)连接AP ,求△OAP 的面积.10.如图,一次函数 4y x =-+ 的图象与反比例函数 ky x=(k 为常数,且 0k ≠ )的图象交于A (1,a )、B 两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.11.如图,正比例函数y1=﹣3x的图象与反比例函数y2= kx的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.12.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y= mx(m≠0)的图象交于第二、四象限A、B两点,过点A作AD△x轴于D,AD=4,sin△AOD= 45,且点B的坐标为(n,-2).(1)求一次函数与反比例函数的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.13.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.14.如图,一次函数y=x+4的图象与反比例函数y=kx(k为常数且k≠o)的图象交于A(-1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP=32S△BOC,求点P的坐标.15.如图在平面直角坐标系中,直线AB与y轴交于点()0,7B,与反比例函数8yx=-在第二象限内的图象相交于点()1,A a-.(1)求直线AB的解析式;(2)将直线AB向下平移9个单位后与反比例函数的图象交于点C和点,E与y轴交于点,D求ACD的面积.16.如图,已知一次函数y= 12x+b的图象与反比例函数kyx=(x<0)的图象交于点A(﹣1,2)和点B,点C在y轴上.(1)当△ABC的周长最小时,求点C的坐标;(2)当12kx bx+<时,请直接写出x的取值范围.17.如图,一次函数y1=kx+b的图象与反比例函数2myx=的图象交于点A(﹣2,﹣5),C(5,n),交y轴于点B,交x轴于点D.(1)求反比例函数2myx=和一次函数y1=kx+b的表达式;(2)连接OA,OC,求△AOC的面积;(3)根据图象,直接写出y1>y2时x的取值范围.18.如图,一次函数y=kx+b(k≠0)和反比例函数y=mx(m≠0)分别交于点A(4,1),B(﹣1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>mx的x的取值范围.19.如图,已知点A在反比例函数y=4x(x>0)的图象上,过点A作AC△x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A 的坐标;(2)若四边形ABOC 的面积是3,求一次函数y=kx+b 的表达式.20.如图,一次函数 y kx b =+ 的图象与反比例函数 my x=的图象相交于 ()1,A a , ()3,B c - 两点直线 y kx b =+ 分别交 x 轴、 y 轴于 C 、 D 两点.(1)直接写出不等式 0mkx b x+-> 的解集; (2)求ma c+ 的值; (3)求 C 点的坐标.答案解析部分1.【答案】(1)解:把x= 代入y x=,得y= 1,∴A(,1),把点)代入kyx=,解得:k=;(2)解:∵把y=3代入函数yx=,得x=3,∴C⎫⎪⎪⎝⎭,设过A,C两点的直线方程为:y kx b=+,把点),⎫⎪⎪⎝⎭,代入得:133b k b⎧=+⎪⎨=+⎪⎩,解得:4kb⎧=⎪⎨=⎪⎩,∴4y=+,设4y=+与x轴交点为D,则D点坐标为,03⎛⎫⎪⎪⎝⎭,∴113123233AOC CODAODS S S=-=⨯-⨯=;(3)解:设P点坐标a⎛⎫⎪⎪⎝⎭,由直线AB解析式可知,直线AB与y轴正半轴夹角为60,∵以O、M、P、N为顶点的四边形是有一组对角为60的菱形,P在直线3y x=上,∴点M只能在y轴上,∴N点的横坐标为a,代入yx=,解得纵坐标为:a,根据OP NP=,即得:,解得:1a=±.故P点坐标为:⎛⎝⎭或1,⎛-⎝⎭.【解析】【分析】(1)先求的A点纵坐标,然后用待定系数法求解即可;(2)先求出C点坐标,再用待定系数法求的直线AC的解析式,然后求得直线AC与x的交点坐标,再根据AOC COD AODS S S=-求解即可;(3)设P点坐标,3a a⎛⎫⎪⎪⎝⎭,根据题意用关于a的式子表示出N的坐标,再根据菱形的性质得OP NP=,求出a的值即可.2.【答案】(1)解:由已知,OA=6,OB=12,OD=4∵CD△x轴∴OB△CD∴△ABO△△ACD∴OA OBAD CD=∴61210CD=∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y= -80x把点A(6,0),B(0,12)代入y=kx+b得:0612k bb=+⎧⎨=⎩解得: 212k b =-⎧⎨=⎩∴一次函数解析式为:y=﹣2x+12 (2)解:当 80x- =﹣2x+12时,解得 x 1=10,x 2=﹣4 当x=10时,y=﹣8 ∴点E 坐标为(10,﹣8)∴S △CDE =S △CDA +S △EDA = 11201081014022⨯⨯+⨯⨯=(3)解:不等式kx+b≤nx,从函数图象上看,表示一次函数图象不低于反比例函数图象 ∴由图象得,x≥10,或﹣4≤x <0【解析】【分析】(1)根据三角形相似,可求出点 C 坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.3.【答案】(1)解:∵反比例函数y kx=的图象经过A (3,1),∴k =3×1=3,∴反比例函数的解析式为y 3x=; (2)解:把B ( 12-,n )代入反比例函数解析式,可得 12- n =3,解得n =﹣6,∴B ( 12- ,﹣6),把A (3,1),B ( 12- ,﹣6)代入一次函数y =mx+b ,可得13162m b m b =+⎧⎪⎨-=-+⎪⎩ ,解得 25m b =⎧⎨=-⎩ ,∴一次函数的解析式为y =2x ﹣5 【解析】【分析】(1)将点A 的坐标代入 反比例函数y kx=即可算出k 的值,从而求出反比例函数的解析式;(2)将 B ( 12-,n )代入反比例函数解析式 即可算出n 的值,从而求出B 点的坐标,将A,B 两点的坐标分别代入一次函数的解析式即可得出关于m,b 的二元一次方程组,求解得出m,b 的值,从而求出一次函数的解析式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学专题打通课 出题人:刘争
专题打通课 一次函数和反比例函数综合
【考点一】一次函数与反比例函数的图象与性质 1、当k >0时,反比例函数k
y x
=
和一次函数2y kx =+的图象大致是( )
2、一次函数y ax b =+与反比例函数a b
y x
-=,其中0ab <,a 、b 为常数,它们在同一坐标系中的图象可以是( )
3、点()11,x y 、()22,x y 、()33,x y 都在反比例函数3
2y x
=的图象上,并且1230x x x <<<,则下列正确的是( )
A. 123y y y <<
B. 213y y y << A
C. 321y y y <<
D. 312y y y << 4、已知两点(11,x y )、(22,x y )在函数5
y x
=-
的图象上,当120x x >>时,___________ 5、一次函数11y k x b =+和反比例函数2
2k y x
=(120k k ≠)的图象如图所示,若12y y >,则x 的取值范围是( )。

A. 或
B. C.

D.

第5题图 第6题图 第7题图 6、如图,反比例函数(0)k
y x x
=
<与一次函数4y x =+的图象交于A ,B 两点的横坐标分别为-3,-1。

则关于x 的不等式
4(0)k
x x x
<+<的解集为( ) A . 3x <- B. 31x -<<- C. 10x -<< D. 3x <-或10x -<< 7、如图,在平面直角坐标系中,点A (0,4),B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为_______________________
【考点二】利用待定系数法求一次函数及反比例函数的解析式
【例1】在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图形与反比例函数y =k
x (k ≠0)
的图象交于第二、四象限内的A ,B 两点,与y 轴交于C 点,过点A 作AH ⊥y 轴,垂足为H ,
OH =3,tan ∠AOH =43
,点B 的坐标为(m ,-2).
(1)求△AHO 的周长;
(2)求该反比例函数和一次函数的解析式.
【变式训练】如图,反比例函数y =k x 与一次函数y =ax +b 的图象交于点A (2,2),B ⎝ ⎛⎭⎪⎫12,n . (1)求这两个函数解析式;
(2)将一次函数y =ax +b 的图象沿y 轴向下平移m 个单位长度,使平移后的图象与反比例函数y =k
x
的图象有且只有一个交点,求m 的值.
【考点三】与面积有关的问题 【例2】如图,反比例函数m
y x
=
的图象与一次函数y kx b =+的图象交于A ,B 两点,点A 的坐标为(2,6),点B 的坐标为(n ,1) (1)求反比例函数与一次函数的表达式。

(2)点E 为y 轴上的一个动点,若5AEB
S
=,求点E 的坐标
【变式训练】
1.如图,一次函数y =kx +b 的图象与反比例函数y =m x (x >0)的图象交于A (2,-1),B ⎝ ⎛⎭⎪⎫12,n 两点,直线y =2与y 轴交于点C . (1)求一次函数与反比例函数的解析式; (2)求△ABC 的面积.
2. 在矩形AOBC 中,OB=6,OA=4,分別以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系。

F
是边BC 上一点,过F 点的反比例函数y =k
x (k>0)的图象与AC 边交于点E 。

(1)请用k 表示点E ,F 的坐标。

(2)若△OEF 的面积为9,求反比例函数的解析式。

3、如图,分别位于反比例函数1y x =, k
y x
=在第一象限图象上的两点A 、B,与原点O 在同一直线上,且
1
3
OA OB = (1)求反比例函数k
y x
=
的表达式; (2)过点A 作x 轴的平行线交k
y x
=
的图象于点C,连接BC,求△ABC 的面积.
【考点四】与最小(大)值有关的问题
【例3】一次函数y =mx +5的图象与反比例函数y =k
x (k ≠0)在第一象限的图象交于A (1,n )
和B (4,1)两点,过点A 作y 轴的垂线,垂足为M . (1)求一次函数和反比例函数的解析式; (2)求△OAM 的面积S ; (3)在y 轴上求一点P ,使PA +PB 最小.
.
【变式训练】
1.如图,直线y =2x +3与y 轴交于A 点,与反比例函数y =k
x (x >0)的图象交于点B ,过点B
作BC ⊥x 轴于点C ,且C 点的坐标为(1,0). (1)求反比例函数的解析式;
(2)点D (a ,1)是反比例函数y =k
x (x >0)图象上的点,在x 轴上是否存在点P ,使得PB +PD 最
小?若存在,求出点P 的坐标;若不存在,请说明理由.
【考点五】与平移有关的问题
【例4】如图,已知函数y =43x 与反比例函数y =k x (x >0)的图象交于点A ,将y =4
3x 的图象
向下平移6个单位长度后与双曲线y =k
x
交于点B ,与x 轴交于点C .
(1)求点C 的坐标; (2)若OA
CB
=2,求反比例函数的解析式.
【变式训练】
1. 如图,在直角坐标系中,直线12y x =-
与反比例函数k
y x
=的图象交于关于原点对称的的A ,B 两点,已知A 点的纵坐标是3。

(1)求反比例函数的表达式。

(2)将直线1
2
y x =-
向上平移后与反比例函数在第二象限内交于点C ,
如果△ABC 的面积为48,求平移后的直线的函数表达式。

相关文档
最新文档