固体物理论文2

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体PN结

PN结是采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称PN结。

一:了解PN结前先来了解几个内容:

1.N型半导体

掺入少量杂质磷元素(或锑元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,磷原子外层的五个外层电子的其中四个与周围的半导体原子形成共价键,多出的一个电子几乎不受束缚,较为容易地成为自由电子。于是,N型半导体就成为了含电子浓度较高的半导体,其导电性主要是因为自由电子导电。

2.P型半导体

掺入少量杂质硼元素(或铟元素)的硅晶体(或锗晶体)中,由于半导体原子(如硅原子)被杂质原子取代,硼原子外层的三个外层电子与周围的半导体原子形成共价键的时候,会产生一个“空穴”,这个空穴可能吸引束缚电子来“填充”,使得硼原子成为带负电的离子。这样,这类半导体由于含有较高浓度的“空穴”(“相当于”正电荷),成为能够导电的物质。

3.电子与空穴的移动

(1)漂移运动

上面叙述的两种半导体在外加电场的情况下,会作定向运动。这种运动成为电子与空穴(统称“载流子”)的“漂移运动”,并产生“漂移电流”。

根据静电学,电子将作与外加电场相反方向的运动,并产生电流(根据传统定义,电流的方向与电子运动方向相反,即和外加电场方向相同);而空穴的运动方向与外加电场相同,由于其可被看作是“正电荷”,将产生与电场方向相同的电流。

两种载流子的浓度越大,所产生的漂移电流越大。

(2)扩散运动

由于某些外部条件而使半导体内部的载流子存在浓度梯度的时候,将产生扩散运动,即载流子由浓度高的位置向浓度低的位置运动,最终达到动态平衡状态。

二、PN结的形成

采用一些特殊的工艺可以将上述的P型半导体和N型半导体紧密地结合在一起。在二者的接触面的位置形成一个PN结。

P型、N型半导体由于分别含有较高浓度的“空穴”和自由电子,存在浓度梯度,所以二者之间将产生扩散运动。即:

自由电子由N型半导体向P型半导体的方向扩散

空穴由P型半导体向N型半导体的方向扩散

载流子经过扩散的过程后,扩散的自由电子和空穴相互结合,使得原有的N型半导体的自由电子浓度减少,同时原有P型半导体的空穴浓度也减少。在两种半导体中间位置形成一个由N型半导体指向P型半导体的电场,成为“内电场”。在内电场形成以后,载流子的扩散运动和漂移运动互相制约,最后达到动态平衡。

三、PN结的单向导电性

PN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。

如果外加电压使:

PN结P区的电位高于N区的电位称为加正向电压,简称正偏;

PN结P区的电位低于N区的电位称为加反向电压,简称反偏。

(1) PN结加正向电压时的导电情况

外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。

(2) PN结加反向电压时的导电情况

外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。

在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。

PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流;PN 结加反向电压时,呈现高电阻,具有很小的反向漂移电流。由此可以得出结论:PN结具有单向导电性。

四、PN结的电容效应

PN结具有一定的电容效应,它由两方面的因素决定。一是势垒电容CB ,二是扩散电容CD 。

(1) 势垒电容CB

势垒电容是由空间电荷区的离子薄层形成的。当外加电压使PN结上压降发生变化时,离子薄层的厚度也相应地随之改变,这相当PN结中存储的电荷量也随之变化,犹如电容的充放电。

(2) 扩散电容CD

扩散电容是由多子扩散后,在PN结的另一侧面积累而形成的。因PN 结正偏时,由N区扩散到P区的电子,与外电源提供的空穴相复合,形成正向电流。刚扩散过来的电子就堆积在 P 区内紧靠PN结的附近,形成一定的多子浓度梯度分布曲线。反之,由P区扩散到N区的空穴,在N区内也形成类似的浓度梯度分布曲线。

当外加正向电压不同时,扩散电流即外电路电流的大小也就不同。所以PN结两侧堆积的多子的浓度梯度分布也不同,这就相当电容的充放电过程。势垒电容和扩散电容均是非线性电容。

五、PN结的击穿特性

当反向电压增大到一定值时,PN结的反向电流将随反向电压的增加而急剧增加,这种现象称为PN结的击穿,反向电流急剧增加时所对应的电压称为反向击穿电压,PN结的反向击穿有雪崩击穿和齐纳击穿两种。

1、雪崩击穿

阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电子—空穴对,新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急剧增加,象雪崩一样。雪崩击穿发生在掺杂浓度较低的PN结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。

2、齐纳击穿

当PN结两边掺杂浓度很高时,阻挡层很薄,不易产生碰撞电离,但当加不大的反向电压时,阻挡层中的电场很强,足以把中性原子中的价电子直接从共价键中拉出来,产生新的自由电子—空穴对,这个过程称为场致激发。

一般击穿电压在6V以下是齐纳击穿,在6V以上是雪崩击穿。

3、击穿电压的温度特性

温度升高后,晶格振动加剧,致使载流子运动的平均自由路程缩短,碰撞前动能减小,必须加大反向电压才能发生雪崩击穿具有正的温度系数,但温度升高,共价键中的价电子能量状态高,从而齐纳击穿电压随温度升高而降低,具有负的温度系数。6V左右两种击穿将会同时发生,击穿电压的温度系数趋于零。

4、稳压二极管

相关文档
最新文档