初中数学-《整式乘法与因式分解》测试题(有答案)

合集下载

七年级数学下册《整式乘法与因式分解》练习题及答案

七年级数学下册《整式乘法与因式分解》练习题及答案

七年级数学下册《整式乘法与因式分解》练习题及答案一、单选题1.计算a2(﹣a)3的结果是()A.a6B.﹣a5C.﹣a6D.a﹣62.下列各式,计算结果为a3的是()A.a2+a B.a4﹣a C.a•a2D.a6÷a23.﹣x3y﹣1•(﹣2x﹣1y)2=()A.﹣2xy B.2xy C.﹣2x2y D.2xy24.若x2﹣kx﹣12=(x+a)(x+b),则a+b的值不可能是()A.﹣11B.4C.8D.115.若(x+2)与(x﹣m)的乘积中不含x的一次项,则m的值为()A.﹣2B.0C.2D.46.下列运算正确的是()A.a3+a3=a6B.(a3)2=a6C.(ab)2=ab2D.2a5•3a5=5a57.若x2+ax+16是完全平方式,则|a﹣2|的值是()A.6B.6或10C.2D.2或68.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)9.下列各式中,从左到右变形是因式分解的是()A.(x+3y)(x﹣3y)=x2﹣9y2B.9﹣x2=(3+x)(3﹣x)C.x2+6x+4=(x+2)2+2x D.x2﹣8=(x+4)(x﹣4)10.小明是一位密码编译爱好者,在他的密码手册中有这样一条信息:a﹣1,x﹣y,2,a2+1,x,a+1分别对应下列六个字:西,爱,我,数,学,定.现将2x(a2﹣1)﹣2y(a2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱定西B.爱定西C.我爱学D.定西数学二、填空题11.分解因式:﹣m2n+6mn﹣9n=.12.全球新冠病毒仍在蔓延,新型冠状病毒直径约为80﹣120纳米,某种β属的新型冠状病毒直径为0.000000102米,将数据0.000000102用科学记数法表示为.13.计算:(18a3﹣9a2﹣3a)÷3a=.14.已知x2﹣6x+k是一个完全平方式,则k的值是.15.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n (n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,(a+b)n展开式的系数和为.三、解答题16.已知3m=a,3n=b,分别求:(1)3m+n.(2)32m+3n.(3)32m+33n的值.17.计算:(1)﹣32+(4﹣π)0++|2﹣5|;(2)(3a+b)(a﹣b)+2ab.18.先化简,再求值:[(﹣x3y4)3+(﹣xy2)2•3xy2]÷(﹣xy2)3,其中x=﹣2,y=.19.分解因式:(1)2x2y+4xy2+2y3;(2)9a2(x﹣y)+4b2(y﹣x).20.如图1,有A型、B型、C型三种不同形状的纸板,A型是边长为a的正方形,B型是边长为b的正方形,C型是长为b,宽为a的长方形.现用A型纸板一张,B型纸板一张,C型纸板两张拼成如图2的大正方形.(1)观察图2,请你用两种方法表示出图2的总面积.方法1:;方法2:;请利用图2的面积表示方法,写出一个关于a,b的等式:.(2)已知图2的总面积为49,一张A型纸板和一张B型纸板的面积之和为25,求ab的值.(3)用一张A型纸板和一张B型纸板,拼成图3所示的图形,若a+b=8,ab=15,求图3中阴影部分的面积.21.阅读与思考在因式分解中,有些多项式看似不能分解,如果添加某项,可以达到因式分解的效果,此类因式分解的方法称之为“添项法”.例如:a4+4=a4+4+4a2﹣4a2=(a4+4a2+4)﹣4a2=(a2+2)2﹣(2a)2=(a2+2a+2)(a2﹣2a+2).参照上述方法,我们可以对a3+b3因式分解,下面是因式分解的部分解答过程.a3+b3=a3+a2b﹣a2b+b3=(a3+a2b)﹣(a2b﹣b3)=(a+b)•a2﹣(a+b)•b(a﹣b)=…任务:(1)请根据以上阅读材料补充完整对a3+b3因式分解的过程.(2)已知a+b=2,ab=﹣4,求a3+b3的值.参考答案与解析一、单选题1.解:原式=a2•(﹣a)3=﹣a5,故选B.2.解:A、a2与a不是同类项,不能合并,故本选项错误;B、a4与a不是同类项,不能合并,故本选项错误;C、a•a2=a3,故本选项正确;D、a6÷a2=a4≠a3,故本选项错误.故选:C.3.解:﹣x3y﹣1•(﹣2x﹣1y)2=﹣x3y﹣1•4x﹣2y2=﹣2xy.故选:A.4.解:根据题意知a+b=﹣k、ab=﹣12若a=1、b=﹣12,则a+b=﹣11;若a=﹣1、b=12,则a+b=11;若a=﹣3、b=4,则a+b=1;若a=3、b=﹣4,则a+b=﹣1;若a=2、b=﹣6,则a+b=﹣4;若a=﹣2、b=6,则a+b=4.故选:C.5.解:(x+2)(x﹣m)=x2﹣mx+2x﹣2m=x2+(﹣m+2)x﹣2m∵不含x的一次项∴﹣m+2=0解得:m=2故选:C.6.解:A、a3+a3=2a3,故A不符合题意;B、(a3)2=a6,故B符合题意;C、(ab)2=a2b2,故C不符合题意;D、2a5•3a5=6a10,故D不符合题意;故选:B.7.解:∵(x±4)2=x2±8x+16∴a=±8当a=8时|a﹣2|=|6|=6当a=﹣8时|a﹣2|=|﹣10|=10故选:B.8.解:大正方形的面积﹣小正方形的面积=a2﹣b2矩形的面积=(a+b)(a﹣b)故(a+b)(a﹣b)=a2﹣b2故选:A.9.解:A.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于因式分解,故本选项符合题意;C.等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;D.,故本选项不符合题意;故选:B.10.解:2x(a2﹣1)﹣2y(a2﹣1)=2(a2﹣1)(x﹣y)=2(a﹣1)(a+1)(x﹣y)=2(x﹣y)(a+1)(a﹣1)结果呈现的密码信息可能是:我爱定西故选:A.二、填空题11.解:原式=﹣n(m2﹣6m+9)=﹣n(m﹣3)2.故答案为:﹣n(m﹣3)2.12.解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣713.解:(18a3﹣9a2﹣3a)÷3a=18a3÷3a﹣9a2÷3a﹣3a÷3a=6a2﹣3a﹣1.故答案为:6a2﹣3a﹣1.14.解:x2﹣6x+k=x2﹣2×3x+k∴k=32=9.故答案为:9.15.解:(a+b)0=1,系数为1,20=1(a+b)1=a+b,系数和为2,21=2(a+b)2=a2+2ab+b2,系数和为4,22=4(a+b)3=a3+3a2b+3ab2+b3,系数和为8,23=8...(a+b)n展开式的系数和为:2n故答案为:2n.三、解答题16.解:(1)由题可得,3m+n=3m•3n=ab;(2)由题可得,32m+3n=32m•33n=(3m)2•(3n)3=a2b3;(3)由题可得,32m+33n=(3m)2+(3n)3=a2+b3.17.解:(1)原式=﹣9+1+8+3=3;(2)原式=3a2﹣3ab+ab﹣b2+2ab=3a2﹣b2.18.解:原式=(﹣x9y12+x3y6)÷(﹣x3y6)=x6y6﹣当x=﹣2,y=时,原式=1﹣=.19.解:(1)2x2y+4xy2+2y3=2y(x2+2xy+y2)=2y(x+y)2;(2)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).20.解:(1)用两种方法表示出图2的总面积为(a+b)2和a2+2ab+b2关于a,b的等式(a+b)2=a2+2ab+b2故答案为:(a+b)2,a2+2ab+b2,(a+b)2=a2+2ab+b2;(2)由题意得,(a+b)2=a2+2ab+b2=49,a2+b2=25∴ab====12;(3)由题意得图3中阴影部分的面积为:+a2﹣==∴当a+b=8,ab=15时图3中阴影部分的面积为:==.21.解:(1)a3+b3=a3+a2b﹣a2b+b3=(a3+a2b)﹣(a2b﹣b3)=a2(a+b)﹣b(a2﹣b2)=a2(a+b)﹣b(a+b)(a﹣b)=(a+b)(a2﹣ab+b2);(2)∵a+b=2,ab=﹣4∴(a+b)2=4∴a2+b2+2ab=4∴a2+b2=12∴a3+b3=(a+b)(a2﹣ab+b2)=2×[12﹣(﹣4)]=2×16=32.。

初中数学-《整式乘法与因式分解》(有答案)-(苏科版)

初中数学-《整式乘法与因式分解》(有答案)-(苏科版)

初中数学-《整式乘法与因式分解》一、填空题1.分解多项式16ab2﹣48a2b时,提出的公因式是.2.当x=90.28时,8.37x+5.63x﹣4x=.3.若m、n互为相反数,则5m+5n﹣5=.二、选择题4.下列式子由左到右的变形中,属于因式分解的是()A.(x+2y)2=x2+4xy+4y2B.x2﹣2y+4=(x﹣1)2+3C.3x2﹣2x﹣1=(3x+1)(x﹣1)D.m(a+b+c)=ma+mb+mc 5.多项式﹣5mx3+25mx2﹣10mx各项的公因式是()A.5mx2B.﹣5mx3C.mx D.﹣5mx6.代数式3x2﹣4x+6的值为9,则x2﹣+6的值为()A.7 B.18 C.12 D.97.(﹣8)2009+(﹣8)2008能被下列数整除的是()A.3 B.5 C.7 D.9三、解答题8.把下列各式分解因式:(1)18a3bc﹣45a2b2c2;(2)﹣20a﹣15ab;(3)18x n+1﹣24x n;(4)(m+n)(x﹣y)﹣(m+n)(x+y);(5)15(a+b)2+3y(b+a);(6)2a(b﹣c)+3(c﹣b).9.计算:(1)39×37﹣13×91;(2)29×20.09+72×20.09+13×20.O9﹣20.O9×14.10.已知,xy=3,求2x4y3﹣x3y4的值.11.求x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a)的值,其中a=3,x=2,y=4.12.把5(a﹣b)3﹣10(b﹣a)2分解因式.13.下列分解因式是否正确?如果不正确,请给出正确结果.(1)﹣x2﹣y2=(x+y)(x﹣y);(2)9﹣25a2=(3+25a)(3+25b);(3)﹣4a2+9b2=(﹣2a+3b)(﹣2a﹣3b).14.把下列各式分解因式:(1)36﹣x2;(2)a2﹣;(3)﹣+y2;(4)25(a+b)2﹣4(a﹣b)2;(5)(x+2)2﹣9;(6)(x+a)2﹣(y+b)2.15.在边长为16.4cm的正方形纸片的四角各剪去一边长为1.8cm的正方形,求余下的纸片的面积.16.已知x2﹣y2=﹣1,x+y=,求x﹣y的值.17.已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.《第9章整式乘法与因式分解》参考答案与试题解析一、填空题1.分解多项式16ab2﹣48a2b时,提出的公因式是16ab.【考点】因式分解﹣提公因式法.【分析】首先找出公因式进而提取得出即可.【解答】解:16ab2﹣48a2b=16ab(b﹣3a).故答案为:16ab.【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.2.当x=90.28时,8.37x+5.63x﹣4x=902.8.【考点】因式分解﹣提公因式法.【分析】首先将原式分解因式,进而代入原式求出即可.【解答】解:∵x=90.28时,∴8.37x+5.63x﹣4x=(8.37+5.63﹣4)x=10x=10×90.28=902.8.故答案为:902.8.【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.3.若m、n互为相反数,则5m+5n﹣5=﹣5.【考点】有理数的加减混合运算;相反数.【专题】计算题.【分析】若m、n互为相反数,则m+n=0,那么代数式5m+5n﹣5即可解答.【解答】解:由题意得:5m+5n﹣5=5(m+n)﹣5=5×0﹣5=﹣5.故答案为:﹣5【点评】本题主要考查相反数的性质,相反数的和为0.二、选择题4.下列式子由左到右的变形中,属于因式分解的是()A.(x+2y)2=x2+4xy+4y2B.x2﹣2y+4=(x﹣1)2+3C.3x2﹣2x﹣1=(3x+1)(x﹣1)D.m(a+b+c)=ma+mb+mc【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把多项式转化成几个整式积的形式,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、是整式乘法,故D错误;故选:C.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.5.多项式﹣5mx3+25mx2﹣10mx各项的公因式是()A.5mx2B.﹣5mx3C.mx D.﹣5mx【考点】公因式.【分析】根据公因式是多项式中每项都有的因式,可得答案.【解答】解:﹣5mx3+25mx2﹣10mx各项的公因式是﹣5mx,故选:D.【点评】本题考查了公因式,公因式的系数是各项系数的最大公约数,字母是相同的字母,指数是相同字母的指数最底的指数.6.代数式3x2﹣4x+6的值为9,则x2﹣+6的值为()A.7 B.18 C.12 D.9【考点】代数式求值.【专题】整体思想.【分析】观察题中的两个代数式3x2﹣4x+6和x2﹣+6,可以发现3x2﹣4x=3(x2﹣),因此,可以由“代数式3x2﹣4x+6的值为9”求得x2﹣=1,所以x2﹣+6=7.【解答】解:∵3x2﹣4x+6=9,∴方程两边除以3,得x2﹣+2=3x2﹣=1,所以x2﹣+6=7.故选:A.【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2﹣的值,然后利用“整体代入法”求代数式的值.7.(﹣8)2009+(﹣8)2008能被下列数整除的是()A.3 B.5 C.7 D.9【考点】因式分解的应用.【专题】计算题.【分析】原式变形后,提取公因式即可得到结果.【解答】解:原式=(﹣8)2008×(﹣8+1)=(﹣8)2008×(﹣7)=﹣82008×7,则结果能被7整除.故选C【点评】此题考查了因式分解的应用,将所求式子进行适当的分解是解本题的关键.三、解答题8.把下列各式分解因式:(1)18a3bc﹣45a2b2c2;(2)﹣20a﹣15ab;(3)18x n+1﹣24x n;(4)(m+n)(x﹣y)﹣(m+n)(x+y);(5)15(a+b)2+3y(b+a);(6)2a(b﹣c)+3(c﹣b).【考点】因式分解﹣提公因式法.【分析】(1)直接提取公因式9a2bc进而得出答案;(2)直接提取公因式﹣5a进而得出答案;(3)直接提取公因式6x n进而得出答案;(4)直接提取公因式(m+n)进而得出答案;(5)直接提取公因式3(a+b)进而得出答案;(6)直接提取公因式(b﹣c)进而得出答案.【解答】解:(1)18a3bc﹣45a2b2c2=9a2bc(2a﹣5bc);(2)﹣20a﹣15ab=﹣5a(4+3b);(3)18x n+1﹣24x n=6x n(3x﹣4);(4)(m+n)(x﹣y)﹣(m+n)(x+y)=(m+n)(x﹣y﹣x﹣y)=﹣2y(m+n);(5)15(a+b)2+3y(b+a)=3(a+b)[5(a+b)+y]=3(a+b)(5a+5b+y);(6)2a(b﹣c)+3(c﹣b)=(2a﹣3)(b﹣c).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.9.计算:(1)39×37﹣13×91;(2)29×20.09+72×20.09+13×20.O9﹣20.O9×14.【考点】因式分解﹣提公因式法.【分析】(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.09,进而求出即可.【解答】解:(1)39×37﹣13×91=3×13×37﹣13×91=13×(3×37﹣91)=13×20=260;(2)29×20.09+72×20.09+13×20.O9﹣20.O9×14=20.09×(29+72+13﹣14)=2009.【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.10.已知,xy=3,求2x4y3﹣x3y4的值.【考点】因式分解﹣提公因式法.【专题】计算题.【分析】原式提取公因式变形后,将已知等式代入计算即可求出值.【解答】解:∵2x﹣y=,xy=3,∴原式=(xy)3(2x﹣y)=27×=9.【点评】此题考查了因式分解﹣提公因式法,熟练掌握提公因式法分解因式是解本题的关键.11.求x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a)的值,其中a=3,x=2,y=4.【考点】因式分解﹣提公因式法.【分析】首先提取负号,进而提取公因式法分解因式求出即可.【解答】解:x(a﹣x)(a﹣y)﹣y(x﹣a)(y﹣a)=x(a﹣x)(a﹣y)﹣y(a﹣x)(a﹣y)=(a﹣x)(a﹣y)(x﹣y),∵a=3,x=2,y=4,∴原式=(3﹣2)×(3﹣4)×(2﹣4)=2.【点评】此题主要考查了提取公因式法分解因式以及代数式求值,正确得出公因式是解题关键.12.把5(a﹣b)3﹣10(b﹣a)2分解因式.【考点】因式分解﹣提公因式法.【分析】首先找出公因式进而提取公因式分解因式即可.【解答】解:5(a﹣b)3﹣10(b﹣a)2=5(a﹣b)3﹣10(a﹣b)2=5(a﹣b)2[(a﹣b)﹣2)]=5(a﹣b)2(a﹣b﹣2).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.13.下列分解因式是否正确?如果不正确,请给出正确结果.(1)﹣x2﹣y2=(x+y)(x﹣y);(2)9﹣25a2=(3+25a)(3+25b);(3)﹣4a2+9b2=(﹣2a+3b)(﹣2a﹣3b).【考点】因式分解﹣运用公式法.【专题】计算题.【分析】(1)错误,原式不能分解;(2)错误,利用平方差公式分解即可得到结果;(3)错误,利用平方差公式分解即可得到结果.【解答】解:(1)错误,正确解法为:﹣x2﹣y2=﹣(x2+y2),不能分解;(2)错误,正确解法为:9﹣25a2=(3+5a)(3﹣5a);(3)错误,﹣4a2+9b2=(﹣2a+3b)(2a+3b).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.把下列各式分解因式:(1)36﹣x2;(2)a2﹣;(3)﹣+y2;(4)25(a+b)2﹣4(a﹣b)2;(5)(x+2)2﹣9;(6)(x+a)2﹣(y+b)2.【考点】因式分解﹣运用公式法.【专题】计算题.【分析】原式各项利用平方差公式分解即可得到结果.【解答】解:(1)36﹣x2=(6+x)(6﹣x);(2)a2﹣b2=(a+b)(a﹣b);(3)﹣+y2=(y+)(y﹣);(4)25(a+b)2﹣4(a﹣b)2=(5a+5b+2a﹣2b)(5a+5b﹣2a+2b)=(7a+3b)(3a+7b);(5)(x+2)2﹣9=(x+5)(x﹣1);(6)(x+a)2﹣(y+b)2=(x+y+a+b)(x+a﹣y﹣b).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.15.在边长为16.4cm的正方形纸片的四角各剪去一边长为1.8cm的正方形,求余下的纸片的面积.【考点】平方差公式.【专题】计算题.【分析】由正方形面积减去四个小正方形面积求出余下的面积即可.【解答】解:根据题意得:16.42﹣4×1.82=(16.4+3.6)×(16.4﹣3.6)=20×12.8=256(cm2),则余下的纸片面积为256cm2.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.16.已知x2﹣y2=﹣1,x+y=,求x﹣y的值.【考点】因式分解﹣运用公式法.【专题】计算题.【分析】已知第一个等式左边利用平方差公式化简,将x+y的值代入计算即可求出x﹣y的值.【解答】解:∵x2﹣y2=(x+y)(x﹣y)=﹣1,x+y=,∴x﹣y=﹣2.【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.17.已知4m+n=90,2m﹣3n=10,求(m+2n)2﹣(3m﹣n)2的值.【考点】平方差公式.【专题】计算题.【分析】原式利用平方差公式分解,变形后将已知等式代入计算即可求出值.【解答】解:∵4m+n=90,2m﹣3n=10,∴(m+2n)2﹣(3m﹣n)2=[(m+2n)+(3m﹣n)][(m+2n)﹣(3m﹣n)]=(4m+n)(3n﹣2m)=﹣900.【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.。

人教版初中数学八年级上册第十四章《整式的乘法与因式分解》测试题(含答案)

人教版初中数学八年级上册第十四章《整式的乘法与因式分解》测试题(含答案)

第十四章《整式的乘法与因式分解》测试题一、单选题(每小题只有一个正确答案) 1.下列运算正确的是( ) A .b 4•b 4=2b 4 B .3x 2y ﹣2x 2y =1 C .(﹣3a )2=6a 2D .(﹣x 3)4=x 122.多项式8x m y n-1-12x 3m y n 的公因式是( ) A .x m y nB .x m y n-1C .4x m y nD .4x m y n-13.若2,4m n x x ==,则m n x +的值为( ) A .6B .8C .16D .644.若()213x y +=,()25x y -=,则代数式xy 的值是( ) A .9B .8C .6D .25.计算20192020(0.25)(4)-⨯-等于( ) A .1B .1-C .4D .4-6.在下列运算中,正确的是( ) A .(x ﹣y )2=x 2﹣y 2 B .(a+2)(a ﹣3)=a 2﹣6 C .(a+2b )2=a 2+4ab+4b 2D .(2x ﹣y )(2x+y )=2x 2﹣y 27.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A .2cm 2B .2acm 2C .4acm 2D .(a 2﹣1)cm 28.代数式9x 2+mx +4是个完全平方式,则m 的值为( ) A .±6B .±12C .±18D .±99.如果()2210a b ++-=,那么()2020a b +的值是( )A .-2020B .2020C .-1D .110.下列各式中,从左到右的变形是因式分解的是( ) A .2221211a a aa -+=-+B .()()22x y x y x y +-=-C .()()26551x x x x +=---D .()2222x y x y xy +=-+11.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ). A .b =3,c =-1 B .b =-6,c =2 C .b =-6,c =-4 D .b =-4,c =-612.若32x -=,32y +=,则x 2+y 2的值是( ) A .52B .3 C .3D .14二、填空题13.计算:234x x x =__________.14.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____. 15.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为_____.16.小丽在计算一个二项式的平方时,得到正确结果m 2﹣10mn +■,但最后一项不慎被墨水污染,这一项应是_______.三、解答题 17.计算:(1)432(-2x z)y ·842x y ÷(-15x 2y 2) (2)(32)(32)x y x y +---(3)2(4)(2)(5)x x x +-+- (4)(3ab+4)2-(3ab -4)218.因式分解:(1)x 2﹣5x ﹣6 (2)9a 2(x ﹣y )+4b 2(y ﹣x )(3)y 2﹣x 2+6x ﹣9 (4)(a 2+4b 2)2﹣16a 2b 219.先化简,再求值:(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2,其中3,y=2﹣20.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2. (1)直接写出a+b ,cd ,m 的值; (2)求a bm cd m+++的值.21.小王家买了一套新房,其结构如图所示(单位:m ).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米k 元,木地板的价格为每平方米2k 元,那么小王一共需要花多少钱?22.阅读理解.因为222221111()2()2a a a a a a a a +=+⋅+=++, ①因为222221111()2()2a a a a a a a a-=-⋅+=+- ②所以由①得:22211()2a a a a +=+- , 由②得:22211()2a a a a+=-+所以4224211()2a a a a+=+-试根据上面公式的变形解答下列问题:(1)已知12a a +=,则下列等式成立的是( ) ①2212a a +=; ②4412a a +=; ③10a a -=; ④21()2a a-=;A .①;B .①②;C .①②③;D .①②③④; (2)已知12a a+=-,求下列代数式的值:①221a a +; ②21()a a-;③441a a +.参考答案1.D 2.D 3.B 4.D 5.D 6.C 7.C 8.B 9.D 10.C 11.D 12.A 13.9x 14.12 15.2 16.25n 2 17.(1)-3215x 10y 6z 2;(2)x 2-4x+4-9y 2;(3)11x+26;(4)48ab. 18. 解:(1)x 2﹣5x ﹣6=(x ﹣6)(x +1); (2)9a 2(x ﹣y )+4b 2(y ﹣x ) =(x ﹣y )(9a 2﹣4b 2)=(x ﹣y )(3a +2b )(3a ﹣2b ); (3)y 2﹣x 2+6x ﹣9 =y 2﹣(x 2﹣6x +9) =y 2﹣(x ﹣3)2=(y +x ﹣3)(y ﹣x +3); (4)(a 2+4b 2)2﹣16a 2b 2=(a 2+4b 2+4ab )(a 2+4b 2﹣4ab ) =(a +2b )2(a ﹣2b )2.19.解:(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2=x 2﹣y 2+xy+2y 2﹣x 2+2xy ﹣y 2 =3xy ,当y=2=3×()×(2)=3. 20.解:(1)∵a 、b 互为相反数 ∴0a b += ∵c 、d 互为倒数 ∴1cd = ∵m 的绝对值为2 ∴2m =±; (2)①当2m =时2103a bm cd m+++=++= ②当2m =-时2101a bm cd m+++=-++=- 故原式的值为3或-1.21.解:(1)木地板的面积为2b (5a−3a )+3a (5b−2b−b ) =2b•2a +3a•2b =4ab +6ab=10ab (平方米);地砖的面积为5a•5b−10ab =25ab−10ab =15ab (平方米); (2)15ab•k +10ab•2k =15abk +20abk =35abk (元),答:小王一共需要花35abk 元钱.22.解:(1)12a a+= ∴2222211112()24a a a a a a a a +=+⨯+=++=() ∴2212a a+=同理:4412a a +=由2212a a +=两边同时减去2,得:21-0a a =()∴10a a-=故选C.(2)①原式=(a +1a)2-2=(-2)2-2=2 ②原式=a 2+21a-2=2-2=0 ③原式=( a 2+21a)2-2=(2)2-2=2。

人教版八年级数学上册第十四章《整式乘法与因式分解》测试带答案解析

人教版八年级数学上册第十四章《整式乘法与因式分解》测试带答案解析

人教版八年级数学上册第十四章《整式乘法与因式分解》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算3325a a 的结果是( ) A .610aB .910aC .37aD .67a2.下列运算正确的是( ) A .22a a a ⋅=B .824a a a ÷=C .()2242a b a b =D .()325a a =3.下列计算正确的是( ) A .623a a a ÷=B .()326a a =C .248a a a ⋅=D .532a a a -=4.下列计算结果正确的是( ) A .()336a a =B .632a a a ÷=C .()248ab ab =D .()2222a b a ab b +=++5.下列计算正确的是( ) A .25611a a a += B .()235326b b b -⋅= C .623623b a a ÷=D .()()22339b a a b a b +-=-6.已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( ) A .24B .443C .163D .4-7.已知()()2221x x x +--=,则2243x x -+的值为( ) A .13B .8C .-3D .58.若2022202020222022202320222021-=⨯⨯n ,则n 的值是( ) A .2023B .2022C .2021D .20209.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27.第二次输出的结果为9,…,第2022次输出的结果为( )A .1B .3C .9D .2710.下列等式从左到右的变形,其中属于因式分解的是( ) A .2221(1)--=-x x x B .22221(1)x y xy xy ++=+ C .2(3)(3)9x x x +-=-D .32822(41)a a a a -=-11.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( ) A .1个B .2个C .3个D .4个12.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记1nk k =∑=1+2+3+…+(n ﹣1)+n ,()3n k x k =+∑=(x +3)+(x +4)+…+(x +n );已知()3nk x x k =⎡+⎤⎣⎦∑=9x 2+mx ,则m 的值是( ) A .45B .63C .54D .不确定二、填空题13.分解因式:216x y xy -=______.14.因式分解:322242m m n mn -+=________. 15.因式分解:32312x xy -=_________.16.已知2223,15a b b c a b c -=-=++=,则ab bc ca ++的值等于________.三、解答题 17.分解因式: (1)22a ab a ++; (2)()()222m n m n +-+18.化简:()()()482x y x y xy xy xy +---÷.19.先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 20.先化简,再求值:22()()(2)34x y x y x y y y ⎡⎤+----÷⎣⎦,其中20201x y ==-,.21.已知有理数a ,b ,c 满足()222434|41|02aa cbc b +-+--+--=∣∣,试求313242n n n a b c +++-的值.22.先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==. 23.已知x +1x =3,求下列各式的值:(1)(x ﹣1x)2;(2)x 4+41x . 24.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =. 根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.25.如图,长为40,宽为x 的大长方形被分割为9小块,除阴影A ,B 两块外,其余7块是形状、大小完全相同的小长方形,其较短一边长为y .(1)分别用含x,y的代数式表示阴影A,B两块的周长,并计算阴影A,B两块的周长和.(2)分别用含x,y的代数式表示阴影A,B两块的面积,并计算阴影A,B的面积差.(3)当y取何值时,阴影A与阴影B的面积差不会随着x的变化而变化,并求出这个值.参考答案:1.A【分析】直接利用单项式乘以单项式运算法则计算得出答案. 【详解】解:6332510a a a =⋅, 故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键. 2.C【分析】根据同底数幂乘除法、积的乘方和幂的乘方法则进行计算,即可作出判断. 【详解】A :23a a a ⨯=,故A 错误,不符题意; B :826a a a ÷=,故B 错误,不符题意; C :()2242a b a b =,故C 正确,符合题意; D :()326a a =,故B 错误,不符题意; 故选:C.【点睛】此题考查了同底数幂乘除法、积的乘方和幂的乘方运算,熟练掌握运算法则是解本题的关键. 3.B【分析】根据同底数幂的除法法则对A 进行判断;根据幂的乘方法则对B 进行判断;根据同底数幂的乘法法则对C 进行判断;根据合并同类项对D 进行判断. 【详解】A. 624a a a ÷=,所以此项不正确; B. ()326a a =,所以此项正确;C. 246a a a ⋅=,所以此项不正确;D. 53a a -,不能合并,,所以此项不正确; 故选B .【点睛】本题考查了同底数幂的除法:am ÷an =am -n (m 、n 为正整数,m >n ).也考查了同底数幂的乘法、幂的乘方与积的乘方以及合并同类项. 4.D【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A .()339a a =,故此选项计算错误,不符合题意;B .633a a a ÷=,故此选项计算错误,不符合题意;C .()2428ab a b =,故此选项计算错误,不符合题意;D .()2222a b a ab b +=++,故此选项计算正确,符合题意; 故选:D .【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. 5.D【分析】根据合并同类项法则、同底数幂的乘除法、平方差公式计算即可求解. 【详解】A. 5611a a a +=,计算错误,本选项不符合题意;B. ()235326b b b -⋅=-,计算错误,本选项不符合题意;C. 6622362b b a a÷=,计算错误,本选项不符合题意;B. ()()22339b a a b a b +-=-,计算正确,本选项符合题意;故选:D .【点睛】本题考查整式的混合运算,解题的关键是熟练掌握合并同类项法则、同底数幂的乘除法、平方差公式计算法则. 6.B【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案.【详解】解:2(23)(2)(2)-++-m n m n m n 222241294m mn n m n =-++- 225125m mn n =-+()5212mn mn =+- 107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn , ∴220mn mn ++≥, ∴32mn ≥-, ∴23mn ≥-,∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键. 7.A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +--= ∴225x x -=∴222432(2)313x x x x -+=-+= 故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键. 8.D【分析】原式先提取公因式,再运用平方差公式进行计算即可. 【详解】解:2022202020222022- =202022022(20221)- =20202022(20221)(20221)+- =2020202220232021⨯⨯∵2022202020222022202320222021-=⨯⨯n ∴2020202220232021202320222021n ⨯⨯=⨯⨯ ∴202020222022n = ∴2020n =. 故选:D .【点睛】本题主要考查了整式的运算,熟练掌握平方差公式是解答本题的关键. 9.A【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【详解】解:第1次,181273⨯=,第2次,12793⨯=,第3次,1933⨯=,第4次,1313⨯=,第5次,123+=,第6次,1313⨯=,⋯,依此类推,从第3次开始以3,1循环,(20222)21010-÷=,∴第2022次输出的结果为1.故选:A .【点睛】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键. 10.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】解:2221(1)x x x -+=-,故A 不符合题意; 22221(1)x y xy xy ++=+,故B 符合题意;2(3)(3)9x x x +-=-是整式乘法,故C 不符合题意;32822(41)2(21)(21)a a a a a a a -=-=+-,故D 不符合题意;故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别. 11.D【分析】根据输入数据与输出结果的规则进行计算,判断①②③;只有三个数字时,当最后输入最大数时得到的结果取最大值,当最先输入最大数时得到的结果取最小值,由此通过计算判断④.【详解】解:根据题意,依次输入1,2,3,4时,1211-=-=, 1322-=-=,2422-=-=,故①正确;按照1,3,4,2的顺序输入时,1322-=-=, 2422-=-=,220-=,为最小值,故③正确; 按照1,3,2,4的顺序输入时,1322-=-=,220-=,0444-=-=,为最大值,故②正确;若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k , k 的最大值为10, 设b 为较大数字,当1a =时,2110a b b --=-=, 解得11b =,故此时任意输入后得到的最小数是:11128--=,设b 为较大数字,当2b a >>时,2210a b a b --=--=, 则210a b --=-,即8b a -= 故此时任意输入后得到的最小数是:2826b a --=-=,综上可知,k 的最小值是6,故④正确; 故选D .【点睛】此题考查绝对值有关的问题,解题的关键是要有试验观察和分情况讨论的能力. 12.B【分析】根据条件和新定义列出方程,化简即可得出答案.【详解】解:根据题意得:x (x +3)+x (x +4)+…+x (x +n )=x (9x +m ), ∴x (x +3+x +4+…+x +n )=x (9x +m ), ∴x [(n ﹣3+1)x +(31)(3)2n n -++]=x (9x +m ),∴n ﹣2=9,m =(31)(3)2n n -++,∴n =11,m =63. 故选:B .【点睛】本题考查了新定义,根据条件和新定义列出方程是解题的关键. 13.(16)xy x -【分析】利用提公因式法进行分解即可. 【详解】解:216(16)x y xy xy x -=-, 故答案为:(16)xy x -.【点睛】本题考查了因式分解-提公因式法,解题的关键是熟练掌握因式分解-提公因式法. 14.()22m m n -【分析】首先提取公因式2m ,再利用完全平方公式即可分解因式. 【详解】解:322242m m n mn -+()2222m m mn n =-+ ()22m m n =-故答案为:()22m m n -【点睛】本题考查了提公因式法和公式法分解因式,熟练掌握和运用分解因式的方法是解决本题的关键.15.()()322x x y x y +-【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y -=+-.故答案为:()()322x x y x y +-.【点睛】本题考查了因式分解,正确的计算是解题的关键.16.225- 【分析】利用完全平方公式求出(a −b ),(b −c ),(a −c )的平方和,然后代入数据计算即可求解.【详解】解:∵35a b b c -=-=, ∴65a c -=()()()2225425a b b c a c -+-+-= ∴()()222542225a b c ab bc ac ++-++=, ∵2221a b c ++=,∴()27125ab bc ac -++=, ∴225ab bc ca ++=-, 故答案为:225- 【点睛】本题考查了完全平方公式,解题的关键是分别把35a b -=,35b c -=,相加凑出,65a c -=三个式子两边平方后相加,化简求解. 17.(1)()2.a a b ++(2)()32.m m n +【分析】(1)提取公因式a 即可;(2)按照平方差公式进行因式分解即可.【详解】(1)解:22a ab a ++()2.a a b =++(2)()()222m n m n +-+()()22m n m n m n m n =++++--()32.m m n =+【点睛】本题考查的是多项式的因式分解,掌握“提公因式法与公式法分解因式”是解本题的关键.18.222x y -+【分析】根据整式的混合运算法则计算即可.【详解】解:原式()()2222224222x y xy xy x y x y =---÷=---=-+【点睛】本题考查整式的混合运算,熟练掌握该知识点是解题关键.19.12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++2212x x x =-++ 12x =+ 当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.20.2,2022x y -【分析】根据平方差公式,完全平方公式,先计算括号内的,然后根据多项式除以单项式进行计算,最后将20201x y ==-,代入即可求解.【详解】解:原式=()222224434x y x xy y y y --+--÷()2484xy y y =-÷2x y =-.当20201x y ==-,时,原式=2020-2×(-1)=2022.【点睛】本题考查了整式的化简求值,掌握平方差公式,完全平方公式,多项式除以单项式是解题的关键.21.34-【分析】根据非负数的性质求出a ,b ,c 的值,然后代入计算即可. 【详解】解:由题得:22043404102a cbc a b ⎧⎪+-=⎪--=⎨⎪⎪--=⎩, 解得:4141a b c =⎧⎪⎪=⎨⎪=-⎪⎩, 所以313242n n n a b c +++-()3242311414n n n +++⎛⎫=⨯-- ⎪⎝⎭31114144n +⎛⎫=⨯⨯- ⎪⎝⎭34=-. 【点睛】本题考查了非负数的性质,解三元一次方程,积的乘方法则的逆用等知识,利用代入法或加减法把解三元一次方程组的问题转化为解二元一次方程组的问题是解题的关键.22.x 2-2y ,0【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:()()()22x y x y xy xy x +-+-÷=x 2-y 2+y 2-2y=x 2-2y当x =1,y =12时,原式=12-2×12=0.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.23.(1)5(2)47【分析】(1)由21()x x +=22112x x x x +⋅⋅+、21()x x -=22112x x x x -⋅⋅+,进而得到21()x x+﹣4x •1x即可解答; (2)由21()x x -=2212x x -+可得221x x +=7,又2221()x x +=4412x x ++,进而得到441x x+=2221()x x +﹣2即可解答. (1)解:∵21()x x +=22112x x x x +⋅⋅+∴21()x x -=22112x x x x -⋅⋅+=2211124x x x x x x+⋅+-⋅=21()x x +﹣4x •1x=32﹣4=5. (2)解:∵21()x x -=2212x x -+,∴221x x +=21()x x -+2=5+2=7,∵2221()x x +=4412x x++,∴441x x +=2221()x x +﹣2=49﹣2=47. 【点睛】本题主要考查通过对完全平方公式的变形求值.熟练掌握完全平方公式并能灵活运用是解答本题的关键.24.(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +-++=得222)((2816)0x xy y y y -+++=+,22()(4)0x y y -++=,∴0x y -=,40y +=,∴4x y ==-,故答案为:-4,-4;(2)由22248180a b a b +--+=得:222428160a a b b -++-+=,222(1)(4)0a b -+-=,∴a -1=0,b -4=0,∴a =1,b =4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c =4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等.25.(1)阴影A 的周长为:21480x y -+,∴阴影B 的周长为:21680x y +-,则其周长和为:42x y +;(2)阴影A 的面积为:240120412x y xy y --+,阴影B 的面积为:2416016xy y y -+,阴影A ,B 的面积差为:2404084x y xy y +-- ; (3)当y =5时,阴影A 与阴影B 的面积差不会随着x 的变化而变化,这个值是100.【分析】(1)由图可知阴影A 的长为(404y -),宽为(3x y -),阴影B 的长为4y ,宽为()404x y --⎡⎤⎣⎦,从而可求解;(2)结合(1),利用长方形的面积公式进行求解即可;(3)根据题意,使含x 的项提公因式x ,再令另一个因式的系数为0,从而可求解.(1)解:(1)由题意得:阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的周长为:()()()240432404321480y x y y x y x y -+-=-+-=-+⎡⎤⎣⎦∵阴影B 的长为4y ,宽为()404404x y x y --=-+⎡⎤⎣⎦,∴阴影B 的周长为:()()240424042168044y y x y x y x y +-+=+-+=+-⎡⎤⎣⎦,∴其周长和为:()()214802168042x y x y x y -+++-=+;(2)∵阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的面积为:()()2404340120412y x y x y xy y --=--+. ∵阴影B 的长为4y ,宽为404x y -+,∴阴影B 的面积为:()24404416016y x y xy y y -+=-+, ∴阴影A ,B 的面积差为:()()22240120412416016404084x y xy y xy y y x y xy y --+--+=+--.(3)∵阴影A 与阴影B 的面积差不会随着x 的变化而变化,阴影A ,B 的面积差()22404084408404x y xy y y x y y =+--=-+-.∴当4080y -=,即5y =时,阴影A 与阴影B 的面积差不会随着x 的变化而变化.此时:阴影A ,B 的面积差()2408540545100x =-⨯+⨯-⨯=.【点睛】本题主要考查列代数式,代数式求值,与某个字母无关型问题,解答的关键是根据图表示出两个长方形的长与宽.。

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案一、选择题1.下列计算正确的是()A.(3a)2=6a2B.(a2)3=a5C.a6÷a2=a3D.a2⋅a=a32.若8x=21,2y=3,则23x−y的值是()A.7 B.18 C.24 D.633.计算(−2ab)(ab−3a2−1)的结果是()A.−2a2b2+6a3b B.−2a2b2−6a3b−2abC.−2a2b2+6a3b+2ab D.−2a2b2+6a3b−14.若(x−1)(x+4)=x2+ax+b,则a、b的值分别为().A.a=5,b=4 B.a=3,b=−4 C.a=3,b=4 D.a=55.下列变形中正确的是()A.(x+y)(−x−y)=x2−y2B.x2−4x−4=(x−2)2C.x4−25=(x2+5)(x2−5)D.(−2x+3y)2=4x2+12xy+9y26.下列分解因式正确的是()A.x2+2xy−y2=(x−y)2B.3ax2−6ax=3(ax2−2ax)C.m3−m=m(m−1)(m+1)D.a2−4=(a−2)27.图(1)是一个长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,小长方形的长为a,宽为b(a>b),然后按图(2)拼成一个正方形,通过计算,用拼接前后两个图形中阴影部分的面积可以验证的等式是()A.a2b2=(ab)2B.(a+b)2=(a−b)2+4abC.(a+b)2=a2+b2+2ab D.a2−b2=(a+b)(a−b)8.若x−y=−3,xy=5则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-30二、填空题9.若27×3x=39,则x的值等于10.计算:(√3−√2)(√3+√2)=.11.在实数范围内分解因式2x2+3x−1=.12.要使(y2−ky+2y)⋅(−y)的展开式中不含y2项,则k的值是.13.已知4y2−my+9是完全平方式,则m的值为.三、解答题14.计算:(2a−1)(a+2)−6a3b÷3ab.15.把下列多项式分解因式:(1)a4−8a2b2+16b4(2)x2(y2−1)+2x(y2−1)+(y2−1)16.已知a+b=5,ab=−6,求:(1)a2b+ab2的值;(2)a2+b2的值;(3)a-b的值.17.下面是某同学对多项式(x2−4x+2)(x2−4x+6)+4进行因式分解的过程解:设x2−4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2−4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的____(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解.18.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式;(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)若a+b+c=10,ab+ac+bc=35利用得到的结论,求a2+b2+c2的值.参考答案1.D2.A3.C4.B5.C6.C7.B8.A9.610.111.2(x −−3+√174)(x −−3−√174)12.213.±1214.解:原式=2a 2+4a −a −2−2a 2=3a −2.15.(1)解:a 4−8a 2b 2+16b 4=(a 2−4b 2)2=(a +2b)2(a −2b)2(2)解:x 2(y 2−1)+2x(y 2−1)+(y 2−1)=(x 2+2x +1)(y 2−1)=(x +1)2(y +1)(y −1)16.(1)解:∵a +b =5,ab =−6∴a 2b +ab 2=ab(a +b)=−30(2)解: a 2+b 2=(a +b)2−2ab=25+12=37(3)解: (a −b)2=a 2+b 2−2ab=37+12=49故a−b=±7 .17.(1)C(2)否;(x−2)4(3)解:设x2−2x+1=y原式=(y−1)(y+1)+1=y2−1+1=y2=(x2−2x+1)2=[(x−1)2]2=(x−1)4.18.(1)解:∵边长为(a+b+c)的正方形的面积为:(a+b+c)2,分部分来看的面积为a2+b2+c2+2ab+ 2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)解:∵(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)解:∵a+b+c=10∴a2+b2+c2=(a+b+c)2−2ab−2bc−2ac=102−2×35=30∴a2+b2+c2的值为30.。

初中数学整式乘法与因式分解500题(含解析)

初中数学整式乘法与因式分解500题(含解析)

一、整式的乘除(共 73 题)1.一种计算机每秒可做 4×108 次运算,它工作 3×103 秒运算的次数为( )A .12×1024B .1.2×1012C .12×1012D .12×1082.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3 中,结果等于 66 的是() A .①②③B .②③④C .②③D .③④3.下列运算正确的是( )A .6a-5a=1B .(a 2)3=a 5C .3a 2+2a 3=5a 5D .2a 2•3a 3=6a 54A .(a 2)3=a 5B5.下面是一名学生所做的 4 道练习题:①(-3)0=1;②a 3+a 3=a 6;③4m -4=;④(xy 2)3=x 3y 6,他做对的个数是()A .0.36.下列计算中,结果正确的是( )AC7.下列运算正确的是( )3+a 3=2a 6 C .a 3÷a 3=0D .3x 2•5x 3=15x 58.下列运算正确的是( )A . x 2•x 3=x 6B . x 2+x 2=2x 4C . (-2x )2=4x 2D . (-2x )2•(-3x )3=6x 59.下列运算正确的是()A . (x 2)3=x 5B . 3x 2+4x 2=7x 4C . (-x )9÷(-x )3=x 6D . -x (x 2-x+1)=-x 3-x 2-xA . a 2+2a 3=3a 5B .(2b 2)3=6b 6C . (3ab )2÷(ab )=3abD . 2a•3a 5=6a 610.下面运算正确的是( )A .(-2x 2)•x 3=4x 6B .x 2÷x=xC .(4x 2)3=4x 6D .3x 2-(2x )2=x 211.下列运算正确的是( )12.若 a 为仸意实数,则下列式子恒成立的是( )A .a+a=a 2B .a ×a=2aC .3a 3+2a 2=aD .2a ×3a 2=6a 313.下列各式正确的是( )A .a 4×a 5=a 20B .a 2×2a 2=2a 4C14.下列计算中正确的是()AC15.下列计算正确的是( )A4=a 5 D .-2x 2•3x =-6x 316.下列计算正确的是().2a 3+3a 3=5a 6 D .4a 3•2a 2=8a 517.下列运算丌正确的是( ). 2a 2•(-3a 3)=-6a 5 .b 5•b 5=b 2518.下列计算正确的是( )A . x 2+2x 2=3x 4B . a 3•(-2a 2)=-2a 5C . (-2x 2)3=-6x 6D . 3a •(-b )2=-3ab 219.下列计算正确的是( )A .(2x 3)•(3x )2=6x 6B . (-3x 4)•(-4x 3)=12x 7C.(3x4)•(5x3)=8x7 D.(-x)•(-2x)3•(-3x)2=-72x620.计算:3x2y•(-2xy)结果是()A.6x3y2 B.-6x3y2 C.-6x2y D.-6x2y2 21.下列计算正确的是()A.a+a=a2 B.a•a2=a3 C.(a2)3=a5 D.a(2a+1)=a3+1 22.一个长方体的长、宽、高分别 3a-4,2a,a,它的体积等于()A.3a3-4a2 B.a2 C.6a3-8a2 D.6a3-8a 23.2x2•(-3x3)= .24.(-2x2)•3x4= .25.(3x2y)(- x4y)= .26.2a3•(3a)3= .27.(-3x2y)•( xy2)= .28.-3x3•(-2x2y)= .29.3x2•(-2xy3)= .30.(-2a)(-3a)= .31.8b2(-a2b)= .32.8a3b3•(-2ab)3= .33.(-3a3)2•(-2a2)3= .34.(-8ab)()= .35.2x2•3xy= .36.3x4•2x3= .37.x2y•(-3xy3)2= .38.(2a2b)3c÷(3ab)3= .39.(-2a)3•b4÷12a3b2= .40.计算:()•3a b2=9ab5;-12a3bc÷()=4a2b;(4x2y-8x3)÷4x2= .41.若(a m+1b n+2)•(a2n-1b2m)=a5b3,则 m+n 的值为.42.若 n 为正整数,且 a2n=3,则(3a3n)2÷(27a4n)的值为.43.利用形如 a(b+c)=ab+ac 的分配性质,求(3x+2)(x-5)的积的第一步骤是()A.(3x+2)x+(3x+2)(-5)B.3x(x-5)+2(x-5)C.3x2-13x-10 D.3x2-17x-1044.下列多项式相乘的结果是 a2-3a-4 的是()A.(a-2)(a+2)B.(a+1)(a-4).(a+2)(a+2)45.下列多项式相乘结果为 a2-3a-18 的是()A.(a-2)(a+9)B.(a+2)(a-9)C.(a+3)(a-6)D.(a-3)(a+6)46.下面的计算结果为 3x2+13x-10 的是()A.(3x+2)(x+5)B.(3x-2)(x-5)C.(3x-2)(x+5)D.(x-2)(3x+5)47.下列计算正确的是()A.(-2a)•(3ab-2a2b)=-6a2b-4a3bB.(2ab2)•(-a2+2b2-1)=-4a3b4C.(abc)•(3a2b-2ab2)=3a3b2-2a2b3D.(ab)2•(3ab2-c)=3a3b4-a2b2c48.下列运算中,正确的是()A.2ac(5b2+3c)=10b2c+6ac2B.(a-b)2(a-b+1)=(a-b)3-(b-a)2C.(b+c-a)(x+y+1)=x(b+c-a)-y(a-b-c)-a+b-cD.(a-2b)(11b-2a)=(a-2b)(3a+b)-5(2b-a)249.(-2a3+3a2-4a)(-5a5)= .50.(x-2)(x+3)= .51.(x-2y)(2x+y)= .52.3x(5x-2)-5x(1+3x)= .53.(x-a)(x2+ax+a2)= .54.5x(x2-2x+4)+x2(x+1)= .55.若(x-1)(x+3)=x2+mx+n,那么 m,n 的值分别是()A.m=1,n=3 B.m=4,n=5 C.m=2,n=-3 D.m=-2,n=356.若(x+1)(2x-3)=2x2+mx+n,则 m= ,n= .57.若(x+4)(x-3)=x 2+mx-n ,则 m=,n= .58.已知(x+a )(x+b )=x 2-13x+36,则 a+b 的值是 . A .13 B .-13 C .36D .-3659.若(mx 3)•(2x k )=-8x 18,则适合此等式的 m=,k=.60.若(x+1)(2x-3)=2x 2+mx+n ,则 m=,n= .61.若(x-2)(x-n )=x 2-mx+6,则 m=,n=.62.若(x+p )不(x+2)的乘积中,丌含 x 的一次项,则 p 的值是.63.如果(x+a )(x+b )的结果中丌含 x 的一次项,那么 a 、b 满足( )A .a=bB64.计算(a+m )(a+ )的结果中丌含关于字母 a 的一次项,则 m 等于()65.如果(x+1)(x 2-5ax+a )的乘积中丌含 x 2 项,则 a 为.66.已知(5-3x+mx 2-6x 3 1-2x )的计算结果中丌含 x 3 的项,则 m 的值为.67.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等 式是()A . (a-b )2=a 2-2ab+b 2B . (a+b )2=a 2+2ab+b 2C . 2a (a+b )=2a 2+2abD . (a+b )(a-b )=a 2-b 268.如图,正方形卡片 A 类,B 类和长方形卡片 C 类若干张,如果要拼一个长 为(a+2b ),宽为(a+b )的大长方形,则需要 C 类卡片张.69.已知 m+n=2,mn=-2,则(1-m)(1-n)的值为()A.-3 B.-1 C.1 D.570.若 2x(x-1)-x(2x+3)=15,则 x= .71.已知 a2-a+5=0,则(a-3)(a+2)的值是.72.按下列程序计算,最后输出的答案是.73.下列运算正确的是()A.(am+bm+cm)÷n=a m÷n+bm÷n+cm÷n=B.(-a3b-14a2+7a)÷7a=-7a2b-2aC.(36x4y3-24x3y2+3x2y2)÷(-6x2y)=-6x2y+4x5y3- x4y3D.(6a m+2b n-4a m+1b n+1+2a m b n+2)÷(-2a m b n)=-3a2+2ab-b n+1二、乘法公式(共 150 题)74.下列计算正确的是()A.x4-x2=x2B.(x3)2=x5C.-6x5÷(-2x3)=3x2 D.(x+y)2=x2+y275.在下列各式中,不(a-b)2 一定相等的是()A.a2+2ab+b2 B.a2-b2 C.a2+b2 D.a2-2ab+b276.下列等式成立的是()A.(a2)3=a6 B.2a2-3a=-a C.a6÷a3=a2 D.(a+4)(a-4)=a2-477.下列计算正确的是()A.3a+2b=5ab B.(x-y)2=x2-y2 C.a10÷a5=a2 D.a4•a3=a7(a-b )2-c 2D . c 2-a+b 2只能是单项式 C . 只能是多项式 D . 以上都可以(a+b )(a-b )=a 2-b 2 B . (x+1)(x-1)=x 2-1 (-a+b )(-a-b )=a 2-b 2 (2x+1)(2x-1)=2x 2-1D .78.下列计算正确的是()A . 3a+2b=5abB . (a-1)2=a 2-2a+1C . a 6÷a 3=a 2D . (a 3)2=a 579.计算(-a-b )2 等于( )A .a 2+b 2B .a 2-b 2C .a 2+2ab+b 2D .a 2-2ab+b 280.若(x-y )2=0,则下列成立的等式是( )A .x 2+y 2=2xyB .x 2+y 2=-2xyC .x 2+y 2=0D .(x+y )2=(x-y )281.(a-b+c )(-a+b-c )等于( )A .-(a-b+c )2B .c 2-(a-b )2C .82.平方差公式(a+b )(a-b )=a 2-b 2 中字母 a 、b 表示()A .只能是数B .83.下列运用平方差公式计算,错误的是( )A . C .84.下列运算正确的是( )A .x 5+x 5=2x 10 . -(x )3(-x )5=x 8C . (-2x 2y )3=-6x 6y 3. (2x-3y )(-2x+3y )=4x 2-9y 285.下列运算正确的是()A . (x+y )(-x-y )=x 2-y 2 . (-3a 2)3=-9a 6C . (-a+b )2=a 2+2ab+b 2. 2009×2007=20082-1286.下列运算中正确的是()A . x 5+x 5=2x 10B . -(-x )3•(-x )5=-x 8C . (-2x 2y )3•4x -3=-24x 3y 3D . ( x-3y )(- x+3y )= x 2-9y 287.下列各式中计算正确的是()A . (a-b )2=a 2-b 2B . (a+2b )2=a 2+2ab+4b 2C . (a 2+1)2=a 4+2a+1D . (-m-n )2=m 2+2mn+n 288.(a+1)2-(a-1)2=.89.化简(a+b )2-(a-b )2 的结果是.90.(-4a-1)不(4a-1)的积等于( ) A .-1+16a 2B .-1-8a 2C .1-4a 2D .1-16a 291.运算结果为 2mn-m 2-n 2 的是( )A .(m-n )2B92.下列各式是完全平方式的是()A .x 2-x+.x 2+2x-193.下列多项式中是完全平方式的是( )A 2-12a+4 D .x 2y 2+2xy+y 294.小明计算一个二项式的平方时,得到正确结果 a 2-10ab +■,但最后一项丌 慎被污染了,这一项应是( ).25b 2D .100b 295.下列多项式乘法中,可以用平方差公式计算的是( ). ( a+b )(b- a ) . (x 2-y )(x+y 2)96.下列各式中,能用平方差公式计算的是( )①(7ab-3b )(7ab+3b );②73×94;③(-8+a )(a-8);④(-15-x )(x-15).A .①③B .②④C .③④D .①④A . (x+2)2=x 2+2x+4B . (-3-x )(3+x )=9-x 2C . (-3-x )(3+x )=-x 2-9+6xD . (2x-3y )2=4x 2+9y 2-12xy97.应用(a+b )(a-b )=a 2-b 2 的公式计算(x+2y-1)(x-2y+1),则下列变 形正确的是()A . [x-(2y+1)]2B . [x+(2y+1)]2C . [x-(2y-1)][x+(2y-1)]D . [(x-2y )+1][(x-2y )-1]98.下列各式中,计算错误的是( ) A .( x- y )( x+ y )= x 2- y 2 B . ( a+ b )( a- b )= a 2- b 2 C . (3x 2+5)(3x 2-5)=9x 4-25D .101×99=(100+1)(100-1)=10000-1=999999.对于仸意的整数 n ,能整除(n+3)(n-3)-(n+2)(n-2)的整数是( )A .4B100.如果两个数互为倒数,那么这两个数的和的平方不它们的差的平方的差是( )A .3.6101.若(x-2y )2=(x+2y )2+m ,则 m 等于()A D .-8xy102.下列各式的计算中,正确的是( ). (2a 2+b )2=4a 2+2a 2b+b 2 .(-a-b )2=(a-b )2103.下列各式是完全平方式的是( )A .a 2+4B .x 2+2xy-y 2C .a 2-ab+b 2D .4x 2-4xy+y 2104.下列计算中正确的是( )A . (m+n )2=m 2+n 2B .C . (4x+1)2=16x 2+8x+1D .105.下列各式中,计算结果正确的是()A . (x+y )(-x-y )=x 2-y 2B . (x 2-y 3)(x 2+y 3)=x 4-y 6C . (-x-3y )(-x+3y )=-x 2-9y 2D . (2x 2-y )(2x 2+y )=2x 4-y 2106.下列计算正确的()A . (-4x )(2x 2+3x-1)=-8x 3-12x 2-4xB . (x+y )(x 2+y 2)=x 3+y 3C . (-4a-1)(4a-1)=1-16a 2D . (x-2y )2=x 2+4y 2-2xy107.下列等式恒成立的是( )(2a-b )2=4a 2-2ab+b 2 (x-3)2=x 2-9108.下列代数式中是完全平方式的是( )①y 4-4y 2+4;②9m 2+16n 2-20mn ;③4x 2-4x+1;④6a 2+3a+1;⑤a 2+4ab+2b 2. A109.多项式有:①x 2+xy+y 2;②a 2-a+ ;③ m 2+m+1;④x 2-xy+ y 2;⑤m 2+2mn+4n 2;⑥ a 4b 2-a 2b+1.以上各式中,形如 a 2±2ab+b 2 的形式的多项式有( )A个 D .5 个110.下列各式丌是完全平方式的是( ).3x 2-2 x+1 D .4a 2-12ab-9b 2111.若 m ≠n ,下列等式中正确的是()①(m-n )2=(n-m )2;②(m-n )2=-(n-m )3;③(m+n )(m-n )=(-m-n )(-m+n );④(-m-n )2=-(m-n )2. A .1 个B .2 个C .3 个D .4 个112.下列计算中:①x (2x 2-x+1)=2x 3-x 2+1;②(a+b )2=a 2+b 2;③(x-4)2=x 2-4x+16;④ (5a-1)(-5a-1)=25a 2-1;⑤(-a-b )2=a 2+2ab+b 2,正确的个数有( )A .1 个B .2 个C .3 个D .4 个x 2-6y 2C . x 2-9y 2D . 2x 2-6y 2-2x 2B . 0C .A . a 8-b 8B .113.两个连续奇数的平方差是( )A .6 的倍数B .8 的倍数C .12 的倍数D .16 的倍数114.若等式(x-4)2=x 2-8x+m 2 成立,则 m 的值是( ) A .16B .4C .-4D .4 戒-4115.计算(x-)2 的结果是.116.不( - )2 的结果一样的是()A . (x+y )2-xyB .( + )2+xyC . (x-y )2D . (x+y )2-xy117.计算(x-3y )(x+3y )的结果是( )A .x 2-3y 2B .118.计算:1232-124×122=.119.计算:a 2-(a+1)(a-1)的结果是.120.(x-1)(x+1)(x 2+1)-(x 4+1)的值是( )A . -2 D .-1121.如果,,则 xy 的值是.122.计算(a 4+b 4)(a 2+b 2)(b-a )(a+b )的结果是( ) a 6-b 6 C .b 8-a 8D .b 6-a 6123.下列各式中,运算结果为 1-2xy 2+x 2y 4 的是( )A .(-1+xy 2)2B .(-1-xy 2)2C .(-1+x 2y 2)2D .(-1-x 2y 2)2124.(x+y )2-=(x-y )2.125.填空,使等式成立:x 2- x+ =(x+ )2126.若 4x 2+kx+25=(2x-5)2,那么 k 的值是.127.设(5a+3b )2=(5a-3b )2+A ,则 A=.128.若 x 2+ax+9=(x+3)2,则 a 的值为.129.如果 x 2+8x+m=(x+n )2,则 m 、n 的值为( ) A .m=16,n=4B .m=16,n=-4C .m=-16,n=-4D .m=-16,n=4130.要使 x 2-6x+a 成为形如(x-b )2 的完全平方式,则 a ,b 的值为( )A .a=9,b=9B .a=9,b=3C131.如果 ax 2+2x+ =(2x+ )2+m ,则 a ,m 的值分别是.132.如果( a-x )2= a 2+ ya+ ,则 x 、y 的值分别为.133.若 a 满足(383-83)2=3832-83×a ,则 a 值为.134.a 2+3ab+b 2 加上( )可得(a-b )2.A D .-7ab135.已知(x+a )(x-a )=x 2-16,则 a 的值是.136.4a 2+2a 要变为一个完全平方式,则需加上的常数是( ) C .- D .137.如果二次三项次 x 2-16x+m 2 是一个完全平方式,那么 m 的值是_______.138.如果 a 2+8ab+m 2 是一个完全平方式,则 m 的值是( )A .b 2B .2bC .16b 2D .±4b139.如果关于 x 的二次三项式 x 2-mx+16 是一个完全平方式,那么 m 的值是 ()A .8 戒-8B .8C .-8D .无法确定140.已知 x 2+kxy+64y 2 是一个完全平方式,则 k 的值是.141.若 9x 2+mxy+16y 2 是一个完全平方式,则 m 的值为( )A .24B .-12C .±12D .±24142.若 4a 2+2abk+16b 2 是完全平方式,那么 k 的值是( )A .16B .±16C143.当 m=()时,x 2+2(m-3)x+25 是完全平方式.144.如果 x 2-2(m+1)x+m 2+5 是一个完全平方式,则 m=.145.若要使 4x 2+mx+ 成为一个两数差的完全平方式,则 m 的值应为( )A .D .146.若 k-12xy+9x 2 是一个完全平方式,那么 k 应为( ) A .2y 2D .4y 2147.若 4x 2+pxy 3+ y 6 是完全平方式,则 p 等于.148.(x+b )2=x 2+ax+121,则 ab=.149.若改动 9a 2+12ab+b 2 中某一项,使它变成完全平方式,则改动的办法是 ()A . 只能改动第一项B . 只能改动第二项C . 只能改动第三项D . 可以改动三项中的仸一项150.老师布置了一道作业题:把多项式 25x4+1 增加一个单项式后,使之成为一个整式的平方式,以下是某学习小组给出的答案①-1,②-25x4,③10x2,④-10x2,⑤()2x8,其中正确的有()A.5 个B.4 个C.3 个D.2 个151.若二项式 x2+4 加上一个单项式后成为一个完全平方式,则这样的单项式共有个.152.当 x=-2 时,代数式-x2+2x-1 的值等于.153.若 x=2- ,则 x2-4x+8= .154.当 x=22005,y=(-2)2005 时,代数式 4x2-8xy+4y2 的值为.155.(a+b-1)(a-b+1)=()2-()2.156.4a2- =(+3b)(-3b).158.()+16x2=[()+1][()-1]159.(x- -3)(x+2y- )=[()-2y][()+2y] 160.(x-y)(x+y)(x2+y2)(x4+y4)…(x2n+y2n)= .161.已知 a-b=3,ab=2,则 a2+b2 的值为()A.13 B.7 C.5 D.11162.已知(a+b)2-2ab=5,则 a2+b2 的值为.163.已知 a2+b2=12,且 ab=-3,那么代数式(a+b)2 的值是.164.若 m2-n2=6,且 m-n=3,则 m+n= .165.若 a+b=0,ab=11,则 a2-ab+b2 的值为.166.已知 x+y=-5,xy=6,则 x2+y2 的值是.167.若 m+n=7,mn=12,则 m2-mn+n2 的值是.168.已知 a-b=3,a2-b2=9,则 a= ,b= .169.已知 x2+y2=13,xy=6,则 x+y 的值是()A.±5 B.±1 C.±D.1 戒170.已知 x2+y2=25,x+y=7,且 x>y,则 x-y 的值等于.171.已知(x+y)2=18,(x-y)2=6,则 x2+y2= ,xy= .172.若|x+y-5|+(xy-6)2=0,则 x2+y2 的值为.173.若 x(y-1)-y(x-1)=4,则-xy= .174.若 a-b=2,a-c=1,则(2a-b-c)2+(c-a)2 的值是.175.已知 a=2003,b=2002,则 a2-2ab+b2-5a+5b+6 的值为.176.若 n 满足(n-2006)2+(2007-n)2=1,则(2007-n)(n-2006)等于.177.已知(2009-a)(2008-a)=2007,那么(2009-a)2+(2008-a)2=. 178.已知a=x+20,b=x+19,c=x+21,那么代数式a2+b2+c2-ab-bc-ac的值是.179.如果 a-b=2,a-c= ,那么 a2+b2+c2-ab-ac-bc 等于.180.当 a(a-1)-(a2-b)=-2 时,则-ab 的值为.181.记 x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且 x+1=2128,则n= .182.如果x-=3,那么x2+= .183.若 a- =2,则 a2+ 的值为.184.已知,则= .185.若 x2+ =7,则 x+ = .186.如果 x+ =2,则= .187.若(x+ )2= ,试求(x- )2 的值为.188.已知 x- =1,则= .189.已知 a+b=3,a3+b3=9,则 ab 等于.190.a、b 是仸意实数,则下列各式的值一定为正数的是()A.|a+2| B.(a-b)2 C.a2+1 D.191.已知 a2-2a+1=0,则 a2007= .192.如果 1- + =0,那么 = .A . 一定为负数B . 丌可能为正数C . 一定为正数D . 可能为正数,负数戒 0193.若 a 2+2a+b 2-6b+10=0,则( )A .a=1,b=3B .a=-1,b=-3C .a=1,b=-3D .a=-1,b=3194.已知 x 2+y 2+4x-6y+13=0,那么 x y =.195.丌论 a 为何值,代数式 a 2-2a+1 的值总是( )A .>0B .≥0C .0D .<0196.已知 x 为仸意有理数,则多项式-1+x- x 2 的值为( )197.若 x=a 2-2a+2,则对于所有的 x 值,一定有( )AA .总丌小于 2D .可能为负数199.若 M=3x 2-8xy+9y 2-4x+6y+13(x ,y 是实数),则 M 的值一定是()AD .整数200.用简便方法计算:99×101×10 001= .201.用简便方法计算:20032-2003×8+16=.202.由 m (a+b+c )=ma+mb+mc ,可得:(a+b )(a 2-ab+b 2) =a 3-a 2b+ab 2+a 2b-ab 2+b 3=a 3+b 3,即(a+b )(a 2-ab+b 2)=a 3+b 3…① 我们把等式①叫做多项式乘法的立方和公式. 下列应用这个立方和公式迚行的变形丌正确的是()A . (x+4y )(x 2-4xy+16y 2)=x 3+64y 3B . (2x+y )(4x 2-2xy+y 2)=8x 3+y 3C . (a+1)(a 2+a+1)=a 3+1D . x 3+27=(x+3)(x 2-3x+9)203.为了美化城市,经统一规划,将一正方形草坪的南北方向增加 3m,东西方向缩短 3m,则改造后的长方形草坪面积不原来正方形草坪面积相比()A.增加 6m2 B.增加 9m2 C.减少 9m2 D.保持丌变204.某商品原价为 100 元,现有下列四种调价方案,其中 0<n<m<100,则调价后该商品价格最低的方案是()A.先涨价 m%,再降价 n% B.先涨价 n%,再降价 m%C.行涨价%,再降价% D.先涨价%,再降价% 205.图①是一个边长为(m+n)的正方形,小颖将图①中的阴影部分拼成图②的形状,由图①和图②能验证的式子是()AC206.如图所示,在边长为 a 的正方形中,剪去一个边长为 b 的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于 a、b 的恒等式为().(a+b)2=a2+2ab+b2.a2+ab=a(a+b)207.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.你根据图乙能得到的数学公式是()A.(a+b)(a-b)=a2-b2B.(a-b)2=a2-2ab+b2C.a(a+b)=a2+ab D.a(a-b)=a2-ab208.在边长为 a 的正方形中挖去一个边长为 b 的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b2 209.将边长分别为(a+b)和(a-b)的两个正方形摆放成如图所示的位置,则阴影部分的面积化简后的结果是.210.(m+n-p)(p-m-n)(m-p-n)4(p+n-m)2 等于()A.-(m+n-p)2(p+n-m)6B.(m+n-p)2(m-n-p)6 C.(-m+n+p)8D.-(m+n+p)8211.若 A=(2+1)(22+1)(24+1)(28+1),则 A-2003 的末位数字是()A.0 B.2 C.4 D.660C . 120D . 60212.一个非零的自然数若能表示为两个非零自然数的平方差,则称这个自然数 为“智慧数”,比如 28=82-62,故 28 是一个“智慧数”.下列各数中,丌是 “智慧数”的是()213.设 a >b >0,a 2+b 2-6ab=0,则的值等于 .214.已知 a-b=b-c= ,a 2+b 2+c 2=1,则 ab+bc+ca 的值等于.215.某校数学课外活动探究小组,在老师的引导下迚一步研究了完全平方公 式.结合实数的性质发现以下规律:对于仸意正数 a 、b ,都有 a+b≥2 成立.某 同学在做一个面积为 3 600cm 2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备 xcm .则 x 的值是( )A .120B .216.如图为杨辉三角表,它可以帮助我们按规律写出(a+b )n (其中 n 为正 整数)展开式的系数,请仔绅观察表中规律,填出(a+b )4 的展开式中所缺的 系数.(a+b )1=a+b ; (a+b )2=a 2+2ab+b 2; (a+b )3=a 3+3a 2b+3ab 2+b 3; (a+b )4=a 4+a 3b+ a 2b 2+ ab 3+b 4.217.三个连续自然数中,两个较大数的积不第三个数平方的差为 188,那么这三个自然数为( )A .60,61,62B .61,62,63C .62,63,64D .63,64,65218.设 n 为大于 1 的自然数,则下列四个式子的代数值一定丌是完全平方数的 是()A .3n 2-3n+3B .5n 2-5n-5C .9n 2-9n+9D .11n 2-11n-112 C . 3D . 4219.设 x 为正整数,若 x+1 是完全平方数,则它前面的一个完全平方数是( ) A .xB .C .D .220.如果自然数 a 是一个完全平方数,那么不 a 之差最小且比 a 大的一个完全 平方数是( )A .a+1B .a 2+1C .a 2+2a+1D .a+2+1221.如果多项式 p=a 2+2b 2+2a+4b+2008,则 p 的最小值是( )A .2005B .2006C .2007D .2008222.已知实数 x ,y 满足方程(x 2+2x+3)(3y 2+2y+1)= ,则 x+y=.223.如果对于丌<8 的自然数 n ,当 3n+1 是一个完全平方数时,n+1 能表示 成 k 个完全平方数的和,那么 k 的最小值为( )A .1B .三、因式分解(共 277 题)因式分解四个基本方法:提公因式法、公式法、十字相乘法、分组分解法 提公因式法224.分解因式:a 2+2a=.225.分解因式:ab-a=.226.分解因式:ax+ay=.227.分解因式:2mx-6my=.228.分解因式:3a 2-6a=.229.分解因式:15a 2b+5ab=.230.分解因式:x 3-2x 2y=.231.分解因式:-12a2b-16ab2= .232.分解因式:9x-3x3= .233.分解因式:-4x2y+6xy2-2xy= .234.分解因式:-6mn+18mnx+24mny= .235.分解因式:-4a3+16a2b-26ab2= .236.分解因式:-7ab-14a2bx+49ab2y= .237.分解因式:12x3y-18x2y2+24xy3= .238.分解因式:x3y-x2y2+2xy3= .239.分解因式:-4x2yz-12xy2z+4xyz= .240.分解因式:-6xy+18xym+24xym = .241.分解因式:6x3-18x2+3x= .242.分解因式:m(x-y)+n(y-x)= .243.分解因式:2x(x-3)-5(x-3)= .244.分解因式:(2x2+3x-1)(x+2)-(x+2)(x+1)= .245.分解因式:4b(x-y+z)+10b2(y-x-z)= .246.分解因式:2y(x-2)-x+2= .247.分解因式:(x+3y)2-(x+3y)= .248.分解因式:(a-b)2-(b-a)3= .249.分解因式:(1+a)mn-a-1= .250.分解因式:(a-b)2(x-y)-(b-a)(y-x)2= .251.分解因式:4a(x-y)2-6b(y-x)= .252.分解因式:16(x-y)2-24xy(y-x)= .253.分解因式:6ab(a+b)2-4a2b(a+b)= .254.分解因式:n(m-n)(p-q)-n(n-m)(p-q)= .255.分解因式:x2-4x+4+(2x-4)= .256.分解因式:m(m+n)3+m(m+n)2-m(m+n)(m-n)= .257.分解因式:-3a(1-x)-2b(x-1)+c(1-x)= .258.分解因式:x(x-y)-y(y-x)= .259.分解因式:xy(x-y)-y(y-x)2= .260.分解因式:a(x2+y2)+b(-x2-y2)=_ .261.分解因式:(a+b)(a+b-1)-a-b+1=_ .262.分解因式:21(a-b)3+35(b-a)2=_ .263.分解因式:3x3y4+12x2y= .264.分解因式:a n+a n+2+a2n= .265.分解因式:-31x m-155x m+2+93x m+3= .266.分解因式:3x m•y n+2+x m-1y n+1= .267.分解因式:x(a-b)2n+y(b-a)2n+1= .268.分解因式:mn2(x-y)3+m2n(x-y)4= .269.分解因式:a3(x-y)-3a2b(y-x)= .270.分解因式:-12xy2(x+y)+18x2y (x+y)= .271.分解因式:18(x-y)3-12y(y-x)2= .272.分解因式:a(m-n)3-b(n-m)3= .273.分解因式:x2y(x-y)2-2xy(y-x)3= .274.分解因式:3x(x-y)+2x(y-x)-y(x-y)= .275.分解因式:(x+y)2-3(x+y)= .276.分解因式:m2n(m-n)2-2mn(n-m)3= .277.分解因式:2(a-b)3-4(b-a)2= .278.分解因式:(a-b)2(a+b)+(a-b)(a+b)2= .279.分解因式:(x-y)2-(3x2-3xy+y2)= .280.分解因式:1+x+x(1+x)+x(1+x)2+…+x(1+x)1995= .A . 3x 2-9xy=x (3x-9y )B . x 3+2x 2+x=x (x 2+2x )C . -2x 3+2x 2-4x=-2x (x 2+x-2)D . x (x-y )2-y (y-x )2=(x-y )3281.分解因式 6a (a-b )2-8(a-b )3 时,应提取公因式是( )A .aB .6a (a-b )3C .8a (a-b )D .2(a-b )2282.在下列多项式中,没有公因式可提取的是( )A .3x-4yB .3x+4xyC .4x 2-3xyD .4x 2+3x 2y283.下列选项在用提取公因式法分解因式时,正确的是( )284.分解因式 a (a-b-c )+b (c-a+b )+c (b-a+c )的结果是( )A . (b+c-a )2B . (a-b-c )(a+b-c )C . -(a-b-c )2D . (a-b-c )2285.下列因式分解正确的是()AB C D286.下面各式的因式分解中,正确的是( )A .-7ab-14+49aby=7ab (1-2x+7y )B . -3x m y n +x m+1y n-1=-3x m y n-1(y+3x )C . 6(a-b )2-2(b-a )=2(a-b )(3a-3b+1)D .xy (x-y )-x (y-x )=x (x-y )(y-1)287.把下列各式因式分解,错误的有( )①a 2b+7ab-b=b (a 2+7a ); ②3x 2y-3xy+6y=3y (x 2-x+2); ③8xy z-6x 2y 2z=2xyz (4-3xyz ); ④-2a 2+4ab-6ac=-2a (a+2b-3c ). A .1 个B .2 个C .3 个D .4 个288.多项式 a 2n -a n 提取公因式后,另一个因式是( )A .a nB .a n -1C .a 2n -1D .a 2n-1-1289.若多项式-6ab+18abx+24aby 的一个因式是-6ab ,那么另一个因式是 ()A .-1-3x+4yB .1+3x-4yC .-1-3x-4yD .1-3x-4y290.下列各个分解因式中正确的是( )A .10ab 2c+6ac 2+2ac=2ac (5b 2+3c )B . (a-b )3-(b-a )2=(a-b )2(a-b+1)C . x (b+c-a )-y (a-b-c )-a+b-c=(b+c-a )(x+y-1)D .(a-2b )(3a+b )-5(2b-a )2=(a-2b )(11b-2a )291.若(x+y )3-xy (x+y )=(x+y )•A ,则 A 为( )A .x 2+y 2B292.m 2(a-b )+m (b-a )因式分解的结果是() A .(a-b )(m 2.m(b-a )(n+1293.若要把多项式-12xy 2(x+y )+18x 2y (x+y )因式分解,则应提取的公因式为.294.利用分解因式计算:1.38×29-17×1.38+88×1.38=.295.若(p-q )2-(q-p )3=(q-p )2•E,则 E 是.296.若 a ,b 互为相反数,则 a (x-2y )-b (2y-x )的值为.297.若 m 、n 互为相反数,则 m (a-3b )-n (3b-a )=.298.若 a 2+a=0,则 2a 2+2a+20130 的值为 .A . 4B . -4299.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a )(x+b ), 其中 a ,b 均为整数,则 a+3b=,ab= .300.已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a )(x+b ), 其中 a 、b 均为整数,则 a+3b=.301.已知 a+b=3,ab=2,则 a 2b+2a 2b 2+ab 2=.302.已知 x 2-xy=2,则 x (2x-2y )-4=.303.已知 m+n=1,mn=- ,则 m (m+n )(m-n )-m (m-n )2=.304.多项式 4x 3-2x 2-2x+k 能被 2x 整除,则常数项为.305.若(b+c )(c+a )(a+b )+abc 有因式 m (a 2+b 2+c 2)+l (ab+ab+bc ), 则 m=,l= .306.设 x 为满足 x 2002+20022001=x 2001+20022002 的整数,则 x=.公式法307.若多项式 x 2+mx+4 能用完全平方公式分解因式,则 m 的值可以是( ) C .±2D .±4308.下列多项式中,能用公式法分解因式的是( )A .x 2-xyB .x 2+xyC .x 2-y 2D .x 2+y 2309.下列各式中,能用平方差公式分解因式的是( )A .x 2+4y 2B .x 2-2y 2+1C .-x 2+4y 2D .-x 2-4y 2310.在有理数范围内,下列各多项式能用公式法迚行因式分解的是( )A .a 2-6aB .a 2-ab+b 2C .D .C . x 2-x+D . x 2-4y4-4a+a 2=(a-2)2 B . 1+4a-4a 2=(1-2a )2 1+x2=(1+x )2 D . x 2+xy+y 2=(x+y )2B . a 4+b 2-2a 2bC .A . ①②B . ②③311.下列因式分解中,结果正确的是()A . x 2-4=(x+2)(x-2)B . 1-(x+2)2=(x+1)(x+3)C . 2m 2n-8n 3=2n (m 2-4n 2)D .312.下列多项式中,丌能运用平方差公式因式分解的是( )A .-m 2+4B .-x 2-y 2C .x 2y 2-1D .(m-a )2-(m+a )2313.下列多项式中能用平方差公式分解因式的是( )A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9314.下列多项式中能用公式迚行因式分解的是( )A .x 2+4B .x 2+2x+4315.下列多项式因式分解正确的是( )A . C .316.下列多项式中,丌能运用公式分解因式的是( )A .m 4-25 D .x 2+2xy-y 2317.在多项式①x 2+2xy-y 2;②-x 2-y 2+2xy ;③x 2+xy+y 2;④4x 2+1+4x 中, 能用完全平方公式分解因式的有( ) C .①④ D .②④318.下列因式分解中,正确的有()①4a-a 3b 2=a (4-a 2b 2);②x 2y-2xy+xy=xy (x-2);③-a+ab-ac=-a (a-b-c ); ④9ab c-6a 2b=3abc (3-2a );⑤x 2y+xy 2=xy (x+y ) A .0 个B .1 个C .2 个D .5 个319.下列多项式丌能用平方差公式分解因式的是( )A .a 2-(-b )2B .(-a )2-(-b )2C .-a 2-(-b )2D .-a 2+b 24a 2-(a+b )2 C . a 2-8b 2D . x 2y 2-121-a 2+b 2B . -x 2-y 2A . a 2-2ab-b 2B .320.下列各式中丌能用完全平方公式分解的是( )A .-x 2-y 2+2xyB .x4+x2y2-2x3yC .m 2-m+1D .x 2-xy+y 2321.下列多项式中,能运用完全平方公式因式分解的是( )A .a 2+2ax+4x 2B .-a 2-4ax+4x 2C .-2x+1+4x 2D .x 2+4+4x322.下列多项式中,能直接用完全平方式分解因式的是( )A .x 2+2xy-y 2B .-x 2+2xy+y 2C .x 2+xy+y 2D .323.下列各式能用平方差公式因式分解的是( )A .A 2+B 2B .-A 2-B 2C .324.下列多项式,在有理数范围内丌能用平方差公式分解的是( )A .-x 2+y 2B .325.下列多项式丌能用完全平方公式分解因式的是()A .C .326.下列各式中,丌能用平方差公式分解因式的是()A . C .49x 2y 2-z 2D .16m 4-25n 2p 2327.下列多项式中,能用公式法迚行因式分解的是( )a 2-2ab+4b 2 C .-x 2+9D .x 2+xy+y 2328.下列各式中,能用平方差公式分解因式的有( )①x 2+y 2;②x 2-y 2;③-x 2+y 2;④-x 2-y 2;⑤1-a 2b 2. A .2 个B .3 个C .4 个D .5 个329.下列多项式丌能用平方差公式分解的是( )A . a 2b 2-1B .4-0.25m 2C .1+a 2D .-a 4+12 个C . 3 个D . 5 个B . y 2-2y+1C . -x 2-4y 2x 2-y 2B . x 2+y 2C .A . (-k-t 2)B . (k+t 2)330.下列多项式中丌能分解因式的是( )A .a 2b 2-abB .(x-y )2+(y-x )C .0.36x 2-6D .(-x )2+331.下列各式中能迚行因式分解的是( )A .a 2+b 2B .-a 2-b 2C .x 2-2xy+4y 2D .a 2+2a+1332.在多项式①+b 2;②-m 2+14mn+49n 2;③a 2-10a+25;④ab 2+2a 2b-1;⑤y 6-2y 3+1 中,丌能用完全平方公式分解因式的有( )A .①②⑤B .③④⑤C .①②④D .②④⑤333.下列多项式中能用平方差公式分解的有( )①-a 2-b 2;②2x 2-4y 2;③x 2-4y 2;④(-m )2-(-n )2;⑤-144a 2+121b 2;⑥-m 2+2n 2. A .1 个B .334.下列各式中,能用平方差公式分解因式的是() A .x 2+9y 2D .-4y 2+x 2335.-(x+y )(x-y )是()分解因式的结果.A . -x 2-y 2 D .-x 2+y 2336.不(k-t 2)之积等于 t 4-k 2 的因式为( )C .(k-t 2)D .(t 2-k )337.下列各式分解因式错误的是()A . 2x 2+2x=2x (x+1)B . x 2-4x+4=(x-2)2C . x 2-y 2=(x+y )(x-y )D . a +ab-ac=a (b-c )338.下列各式中能用完全平方公式分解的是( )①x 2-4x+4;②6x 2+3x+1;③4x 2-4x+1;④x 2+4xy+2y 2;⑤9x 2-20xy+16y 2A .①②B .①③C .②③D .①⑤339.一次课堂练习,小明做了如下 4 道因式分解题,你认为小明做得丌够完整 的一题是()A . x 2-2xy+y 2=(x-y )2B . x 2y-xy 2=xy (x-y )C . x 3-x=x (x 2-1)D . x 2-y 2=(x-y )(x+y )340.下列各式的因式分解中,正确的是()A . 3m 2-6m=m (3m-6)B . a 2b+ab+a=a (ab+b )C . -x 2+2xy-y 2=-(x-y )2D . x 2+y 2=(x+y )2341.在多项式①a 2-b 2+2ab ;②1-a+a 2;③ -x+x 2;④-4x 2+12xy-9y 2 中能用完全平方公式分解的有( )个. A .1B .2C342.下列因式分解中正确的是( )AC343.小明在抄分解因式的题目时,丌小心漏抄了 x 的指数,他只知道该数为丌 大于 10 的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是 x □-4y 2(“□”表示漏抄的指数),则这个指数可能的结果共有( )A .4 种 D .5 种344.分解因式:x 2-1=.345.分解因式:a 2-2ab+b 2=.346.分解因式:x 2-4x+4=.347.分解因式:9-x 2=.348.分解因式:x 2-4=.349.分解因式:a 2-4a+4=.350.分解因式:2a2-4a+2= .351.分解因式:x2-y2= .352.分解因式:y2+4y+4= .353.分解因式:(x-1)2-9= .354.分解因式:x2-4x+4= .355.分解因式:4a2-b2= .356.分解因式:-1+0.04m2= .357.分解因式:1-(a-b)2= .358.分解因式:4x2-(y-z)2= .359.分解因式:x4-16= .360.分解因式:a4-2a2b2+b4= .361.分解因式:(a+b)2-100= .362.分解因式:4x2-12xy+9y2= .363.分解因式:2xy-x2-y2= .364.分解因式:(m-n)2+(m-n)+= .365.分解因式:(m-n)2- (m-n)+ = .366.分解因式:(m-n)2-9n2(n-m)2= .367.分解因式:(4m+5)2-9= .368.分解因式:a3-4ab2= .369.分解因式:4a2-a2x2= .370.分解因式:x3-x= .371.分解因式:ab2-6ab+9a= .372.分解因式:ax2+2axy+ay2= .373.分解因式:ax3y+axy3-2ax2y2= .374.分解因式:-x3+2x2-x= .375.分解因式:3x3-12x2y+12xy2= .376.分解因式:x3-2x2+x= .377.分解因式:3x3-6x2y+3xy2= .378.分解因式:(x+2)(x+3)+x2-4= .379.分解因式:x9-x= .380.分解因式:x m+3-x m+1= .381.分解因式:9(x-y)2+12(x2-y2)+4(x+y)2= .382.分解因式:(x2+y2)2-8(x2+y2)+16= .十字相乘法384.49x2+ +y2=(-y)2,t2+7t+12= .385.若对于一切实数 x,等式 x2-px+q=(x+1)(x-2)均成立,则 p2-4q 的值是.386.分解因式:x2+x-6= ,x2-x-6= .387.分解因式:x2+5x-6= .388.分解因式:x2+x-12= .389.分解因式:x2+2x-15= .390.分解因式:x2-9x+14= .391.分解因式:x2-5x-14= .392.分解因式:x2+4x-21= .393.分解因式:x2-x-42= .394.若(x-3)•A=x2+2x-15,则 A= .395.分解因式:2x2-4x-6= .396.分解因式:-2x2+4x+6= .397.分解因式:x3-2x2-3x= .398.分解因式:4a2b+12ab+8b= .400.分解因式:2x2-7x+3= .401.分解因式:3x2-5x-2= .402.分解因式:3x2-7x+2= .403.分解因式:6x2+7x-5= .404.若 x+5 是二次三项式 x2-kx-15 的一个因式,那么这个二次三项式的另一个因式是.405.x2- -20=(x+4)().406.分解因式:(x-3)(x-5)-3= .407.分解因式:(x+2)(x-13)-16= .408.分解因式:(x-1)(x-2)-20= .409.分解因式:(a+3)(a-7)+25= .410.分解因式:x2-3x(x-3)-9= .411.已知 5x2-xy-6y2=0,则的值为.412.分解因式:2x2+5xy-12y2= .413.分解因式:x2+7xy-18y2= .414.分解因式:a2+2ab-3b2= .415.分解因式:18ax2-21axy+5ay2= .416.分解因式:2003x2-(20032-1)x-2003= .417.用十字相乘法分解因式:a2x2+7ax-8= .418.分解因式:m4+2m2-3= .419.分解因式:(x+y)2+5(x+y)-6= .420.分解因式:(x-y)2-4(x-y)+3= .421.分解因式:(a-b)2+6(b-a)+9= .422.分解因式:(x+y)2-3x-3y-4= .423.若p 是正整数,二次三项式x2-5x﹢p 在整数范围内分解因式为(x-a x-b)的形式,则 p 的所有可能的值.424.已知 a 为整数,且代数式 x2+ax+20 可以在整数范围内迚行分解因式,则符合条件的 a 有个.425.分解因式:2b2-2b+ = .426.分解因式:x8+x4+1= .427.分解因式:(x2+3x)2-2(x2+3x)-8= .428.分解因式:(a2+3a)2-2(a2+3a)-8= .429.分解因式:(x2-2x)2-11(x2-2x)+24= .430.分解因式:x(x-1)(x+1)(x+2)-24= .431.分解因式:(x-3)(x-1)(x-2)(x+4)+24= .432.分解因式:(x2+5x+2)(x2+5x+3)-12= .433.分解因式:(x4+x2-4)(x4+x2+3)+10= .434.分解因式:(x+1)4+(x+3)4-272= .435.将 x3-ax2-2ax+a2-1 分解因式得.436.在有理数范围内分解因式:(x+y)4+(x2-y2)2+(x-y)4= .437.分解因式:x4+2500= .438.分解因式:(1-7t-7t2-3t3)(1-2t-2t2-t3)-(t+1)6= .分组分解法439.分解因式:ab+b2-ac-bc=()-(ac+bc)= .440.分解因式:ax2+ax-b-bx=(ax2-bx)+()=()().441.分解因式:2ax+4bx-ay-2by=()+()=()().442.分解因式:x2-a2-2ab-b2=()-()=()().443.分解因式:ax-ay+a2+bx-by+ab= .444.分解因式:ab-3ac+2ay-bx+3cx-2xy=. 445.分解因式:(ax-by)2+(ay+bx)2= .446.分解因式:1-a2-b2+2ab= .447.分解因式:1-x2+2xy-y2= .448.分解因式:a2-b2+4a+2b+3= .449.分解因式:x2-4y2-9z2-12yz= .450.分解因式:a2-4b2+4bc-c2= .451.分解因式:-x3-2x2-x+4xy2= .452.分解因式:9-6a-6b+a2+2ab+b2= .453.分解因式:a2+4b2+9c2-4ab+6ac-12bc= .454.分解因式 x3+(1-a)x2-2ax+a2= .455.已知 p、q 满足等式|p+2|+(q-4)2=0,分解因式:(x2+y2)-(pxy+q)= .456.已知,且x≠y,则= .457.分解因式:a4b-a2b3+a3b2-ab4= .458.分解因式:(x+y-2xy)(x+y-2)+(xy-1)2= .459.分解因式:a2+2b2+3c2+3ab+4ac+5bc= .460.分解因式:x2y+xy2-x2-y2-3xy+2x+2y-1= .461.分解因式:(1-x2)(1-y2)-4xy= .462.分解因式:ax3+x+a+1= .463.分解因式:(x2-1)(x4+x2+1)-(x3+1)2= .464.分解因式:x5+x3-x2-1= .465.分解因式:x3+x2+2xy+y2+y3= .466.分解因式:32ac2+15cx2-48ax2-10c3= .467.分解因式:x2(y-z)+y2(z-x)+z2(x-y)= .468.分解因式:(x+y-2xy)(x+y-2)+(1-xy)2= .469.分解因式:x4+x3+6x2+5x+5= .470.分解因式:bc(b+c)+ca(c-a)-ab(a+b)= .471.分解因式 y2+xy-3x-y-6=472.分解因式:x2+5xy+x+3y+6y2= .473.分解因式:2x3+11x2+17x+6= .474.分解因式:x4+2x3-9x2-2x+8= .475.分解因式:2x2-xy-6y2+7x+7y+3= .476.分解因式:6x2+xy-15y2+4x-25y-10= .477.分解因式:(x2-1)(x+3)(x+5)+12= .478.分解因式:x3+6x2+5x-12= .479.分解因式:a4+2a3b+3a2b2+2ab3+b4= .480.分解因式:ab(a+b)2-(a+b)2+1= .481.分解因式:x4-5x2+4x= .482.分解因式:(x-1)3+(x-2)3+(3-2x)3= .483.分解因式:x3+(2a+1)x2+(a2+2a-1)x+(a2-1)= .因式分解的应用484.计算:(x2-2x+1-y2)÷(x+y-1)= .485.(a4-16b4)÷(a2+4b2)÷(2b-a)= .486.分解因式:①x3+(2a+1)x2+(a2+2a-1)x+(a2-1);②a4+b4+(a+b)4.487.将关于 x 的一元二次方程 x2+px+q=0 变形为 x2=-px-q,就可将 x2 表示为关于 x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”,已知 x2-x-1=0,可用“降次法”求得 x4-3x+2014 的值是.488.有理数的值等于_______.489.计算= .490.已知:,则abc= .。

《整式的乘法与因式分解》单元检测题(含答案)

《整式的乘法与因式分解》单元检测题(含答案)
D、原式=a4,错误,
故选A.
【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.
2.下列等式成立的是( )
A.3a2-2a2=1B.(2x+y)2=4x2+y2C.a2-4=(a-2)2D.2a2b·3a2b2=6a4b3
【答案】D
【解析】
【分析】
考点:因式分解-运用公式法.
12.如果实数x、y满足方程组 那么x2-y2的值为______.
【答案】﹣ .
【解析】
,
由②得x+y= ,
则x2﹣y2=(x+y)(x﹣y)= ,
故答案为 .
13.已知m﹣n=2,mn=﹣1,则(1+2m)(1﹣2n)的值为__.
【答案】9
【解析】
∵m−n=2,mn=−1,
【详解】A.原式=−m(a+1),故A错误;
B.原式=(a+1)(a−1),故B错误;
C.原式=(a−3)2,故C正确;
D.该多项式不能因式分解,故D错误,
故选:C
【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.
4.计算1.252 017× 的值是( )
A. B. C. 1D. -1
故选A.
【点睛】此题是因式分解的应用,主要考查了完全平方公式,提公因式,解本题的关键是用完全平方公式a2+2ab+b2=(a+b)2.
8.n是整数,式子 [1﹣(﹣1)n](n2﹣1)计算的结果()
A.是0
B.总是奇数
C.总是偶数
D.可能是奇数也可能是偶数
【答案】C
【解析】

《整式的乘法与因式分解》单元测试(带答案)

《整式的乘法与因式分解》单元测试(带答案)
[解析]
[分析]
先分别进行幂的乘方与积的乘方运算,然后再根据单项式乘除法的法则进行计算即可得.
[详解]原式=A6•A6B2÷A2B
=A12B2÷A2B
=A10B,
故答案 A10B.
[点睛]本题考查了单项式乘除混合运算,熟练掌握各运算的运算法则以及确定好运算顺序是解题的关键.
12.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米= 米,用科学记数法将16纳米表示为__________________米.
4.已知多项式2x2+Bx+C分解因式为2(x-3)(x+1),则B,C的值为().
A.B=3,C=-1B.B=-6,C=2
C.B=-6,C=-4D.B=-4,C=-6
[答案]D
[解析]
[分析]
利用整式的乘法计算出2(x-3)(x+1)的结果,与2x2+Bx+C对应找到一次项的系数和常数项即可解题.
考点:因式分解.
10.已知 则 的大小关系是()
A. B. C. D.
[答案]A
[解析]
[分析]
先把A,B,C化成以3为底数的幂的形式,再比较大小.
[详解]解:
故选A.
[点睛]此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.
二、填空题
11. =____________
[答案]
C.两数和的完全平方公式D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.

《整式的乘法与因式分解》单元检测题含答案

《整式的乘法与因式分解》单元检测题含答案
12.如果A,B,C满足A2+2B2+2C2-2A B-2B C-6C+9=0,则A B C等于( )
A. 9B. 27C. 54D. 81
[答案]B
[解析]
解:A2+2B2+2C2﹣2A B﹣2B C﹣6C+9=(A2﹣2A B+B2)+(B2﹣2B C+C2)+(C2﹣6C+9)=(A﹣B)2+(B﹣C)2+(C﹣3)2=0,∴(A﹣B)2=0,(B﹣C)2=0,(C﹣3)2=0,∴A=B,B=C,C=3,即A=B=C=3,∴A B C=27.故选B.
20.计算:﹣5A2(3A B2﹣6A3)
21.计算:(x﹣1)(x+3)﹣x(x﹣2)
22.化简:(2A+1)2﹣(2A+1)(﹣1+2A)
23.分解因式:25m2﹣n2
24.分解因式:6A2B﹣4A3B3﹣2A B
25 因式分解:x2﹣5x+4;
26.已知(A+B)2=7,(A-B)2=3.
(1)求A2+B2、A B的值;(2)求A4+B4的值.
B选项:(﹣A2)3=-A6,故是错误的;
C选项:A3和A4不能直接相加,故是错误的;
D选项:A2•(A3)4=A14,故是正解的;
故选D.
[点睛]主要考查了同底数幂乘法、积的乘方、幂的乘方和除法法则,正确记忆运算法则是解题关键.
4.在①-A5·(-A)2;②(-A6)÷(-A3);③(-A2)3·(A3)2;④[-(-A)2]5中计算结果为-A10的有( )
16.若多项式x2﹣(k+1)x+9 完全平方式,则k=______.

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)一、选择题(每小题3分,共30分)1.下列计算正确的是( )A.x+x²=x³B.x²・x³=x6C.(x³)²=x6D.x9÷x³=x³2.若12x m y2与13x3y n是同类项,则m,n的值为( )A.m=3,n=2B.m=2,n =3C.m=-3.n=2D.m=-2,n=33.下列因式分解不完全的是( )A.a²-2ab+b²=(a-b)²B.a³-a =a (a²-1)C.a²b-ab²=ab(a-b)D.a²-b²=(a+b)(a-b)4.已知(a +b)²=(a-b)²+M,则M为( )A.abB.2abC.-2abD.4ab5.下列多项式乘法中,能运用平方差公式的是()A.(a-b)(a-b)B.(a-b)(-a+b)C.(a+b)(-a+b)D.(a-b)(b-a)6.如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A.-3B.3C.0D.17.如图的图形面积由以下哪个公式表示( )A.a²-b²=a(a-b)+b(a-b)B.(a-b)²=a²-2ab+b²C.(a+b)²=a²+2ab+b²D.a²-b²=(a+b)(a-b)8.若△ABC的三边a,b,c满足a²+b²+c²-ab-bc-ca=0,则△ABC是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形9.下列计算:①3a+2b=5ab;②3x³×(-2x²)=-6x5;③4a³b÷(-2a²b)=-2a;④(-a²)³=a6;⑤(-a)³÷(-a)=-a².其中正确的有( )A.1个B.2个C.3个D.4 个10.已知x+y=6,xy=8,下列结论:①(x+y)²=36;②x²+y²=20;③x-y=2;④x²y²=12.其中正确的是( )A.①②③④B.①②④C.①②D.①③④二、填空题(每小题3分,共18分)11.x平方x²+y²+2x-6y+10=0,则x・y=_________12.当x______时,(x-3)0=1.13.若x²+2(m-3)x+16是一个完全平方式,那么m应为_________.14.若x-1x =1,则x²+1x2的值是__________.15.观察下列关于自然数的等式:①3²-4X1²=5;②5²-4X2²=9;③7²-4X3²=13.根据上述规律解决下列问题:(1)完成第四个等式:____________________;(2)写出你猜想的第n个等式_____________________(用含n的式子表示).16.已知a,b满足等式x=a²+b²+5,y=2(2b-a),则x,y的大小关系为______________.三、解答题(72分)17.(10分)计算下列各题.(1)-2a²bx(−12ab2)x(-abc);(2)(5x-3)(-5x-3)-(5x+3)²+(5x-3)².18.(12分)分解因式。

《整式的乘法与因式分解》单元测试卷(含答案)

《整式的乘法与因式分解》单元测试卷(含答案)

《整式的乘法与因式分解》单元测试卷(时间:120分钟满分:150分)一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×10174.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±15.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 06. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 667.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=38.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3二、填空题9.若x+=3,分式(x-)2=________.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.11.已知8×2m×16m=211,则m的值为____.12.若27m÷9÷3=321,则m=_____.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.16.计算(﹣A 2B )3=__.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.18.计算:(x+3)(x-5)-x(x-2).19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?参考答案一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B[答案]B[解析]大正方形的面积=(A -B )2,还可以表示为A 2-2A B +B 2,∴(A -B )2=A 2-2A B +B 2.故选B .2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B[答案]A[解析][分析]先将式子展开,再根据展开后的式子求m和n.[详解](x-A )(x+B )=x2+mx+n故选A[点睛]此题重点考察学生对整式乘法的理解,整式乘法的法则是解题的关键.3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×1017[答案]D[解析]试题分析:根据题意得:第⑧个式子为5555555552-4444444452=(555555555+444444445)×(555555555-444444445)=1.1111111×1017.故选D .考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±1[答案]B[解析]试题分析:根据同底数幂相乘除和幂的乘方,直接计算可得x m+1x m-1÷(x m) 2=1.故选:B点睛:此题主要考查了幂的运算性质,解题时直接应用幂的运算性质,再根据幂的混合运算的顺序计算即可.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.5.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 0[答案]B[解析][分析]先把27x×9y 进行转换再求值.[详解]故选B[点睛]此题重点考察学生对整式乘法的应用,根据规律化简是解题的关键.6. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 66[答案]B[解析]试题分析:归纳总结得到展开式中第三项系数即可.解:解:(A +B )2=A 2+2A B +B 2;(A +B )3=A 3+3A 2B +3A B 2+B 3;(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4;(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5;(A +B )6=A 6+6A 5B +15A 4B 2+20A 3B 3+15A 2B 4+6A B 5+B 6;(A +B )7=A 7+7A 6B +21A 5B 2+35A 4B 3+35A 3B 4+21A 2B 5+7A B 6+B 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(A +B )10的展开式第三项的系数为45.故选B .考点:完全平方公式.[此处有视频,请去附件查看]7.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=3 [答案]C[解析]试题解析:∵(x-5)(2x-n)=2x2+mx-15,∴2x2+(-n-10)x-5n=2x2+mx-15∴5n=-15,-n-10=m,解得:n=-3,m=7,故选C .[点睛]此题主要考查了因式分解法的应用,正确得出各项对应相等是解题关键.8.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3[答案]C[解析][分析]先用整式乘法将式子展开,再根据展开式中不含的要求求出k的值.[详解](y2-ky+2y)(-y)=要使展开式中不含的项,则故选C[点睛]此题重点考察学生对整式乘法的理解,因式分解是解题的关键.二、填空题9.若x+=3,分式(x-)2=________.[答案]5[解析]因为x+=3,(x-)2=x2-2+()2= x2-2+()2+4-4= x2+2+()2-4=(x-)2-4=9-4=5.故答案是:5.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.[答案]-32[解析][分析]先化简再把A =-2带入求值.[详解]:解:(B -A )(A +B )(A 2+B 2)-(A 4+B 4)= (B 2-A 2)(A 2+B 2)-(A 4+B 4)=(B 4-A 4) -(A 4+B 4)=-2A 4∵A =-2,∴原式=-2×(-2)4=-32.故答案为:-32.[点睛]此题重点考察学生对整式乘法的理解,会正确使用平方差公式是解题的关键.11.已知8×2m×16m=211,则m的值为____.[答案][解析][分析]先把式子左边化简成2n的形式,即可求得m的值.[详解]8×2m×16m=211故答案为[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.12.若27m÷9÷3=321,则m=_____.[答案]8[解析][分析]先把式子左边化简成3n的形式,即可求得m的值.[详解]27m÷9÷3=321故答案为8[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).[答案](A +B )2-4A B[解析][分析]根据图形先求出大正方形的面积,然后再减去四个长方形的面积.[详解]小正方形的边长为:(A -B ),∴面积为(A -B )2,小正方形的面积=大正方形的面积-4×长方形的面积=(A +B )2-4A B故答案为(A +B )2-4A B[点睛]此题重点考察学生对整式乘法中完全平方公式的理解,关键公式计算小正方形面积是解题的关键. 14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.[答案](B -2n)(A -m)[解析][分析]利用平移的方法先找出空地的长和宽,再计算面积即可.[详解]利用平移的方法可知:空地长为A -m,宽为B -2n,图中空地面积用含有A 、B 、m、n的代数式表示是(B -2n)(A -m)[点睛]解题的关键在于找到空地的长和宽,再利用长方形面积计算公式列出式子.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.[答案] (1). (1)-(x2-x);(2). (2)-(2xy2-3x2-2y2);(3). (3)-(A 3-2A 2+A -1);(4). (4)-(3x2y2+2x3-y3).[解析][分析]要使(1)(2)(3)(4)的最高次项系数变为正数,仔细观察每个最高次项系数都是负数,则直接在整个式子前加负号即可.[详解](1)-x2+x=-(x2-x);(2)3x2-2xy2+2y2=-(2xy2-3x2-2y2);(3)-A 3+2A 2-A +1=-(A 3-2A 2+A -1);(4)-3x2y2-2x3+y3=-(3x2y2+2x3-y3);故答案为(1)-(x2-x);(2)-(2xy2-3x2-2y2);(3)-(A 3-2A 2+A -1);(4)-(3x2y2+2x3-y3).[点睛]此题重点考察学生对多项式最高次数项的认识,抓住最高次项系数为正数是解题的关键.16.计算(﹣A 2B )3=__.[答案]−A 6B 3[解析][分析]根据积的乘方的运算方法:(A B )n=A n B n,求出(-A 2B )3的值是多少即可.[详解](-A 2B )3=(−)3⋅(A 2)3⋅B 3=−A 6B 3.故答案为:−A 6B 3.[点睛]本题考查了幂的乘方与积的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方的运算法则.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.[答案]224.[解析][分析]先把A =2,n=3带入x=3A n,y=-A 2n-1求出x和y,再带入A n x-A y计算即可.[详解]A n x-A y=A n×3A n-A ×(-A 2n−1)=3A 2n+A 2n=A 2n∵A =2,n=3,∴A 2n =×26=224.[点睛]此题重点考察学生对整式乘法的应用能力,熟练整式乘法法则是解题的关键.18.计算:(x+3)(x-5)-x(x-2).[答案]-15.[解析][分析]先利用整式乘法进行展开,再合并同类项进行计算.[详解]原式=x2-5x+3x-15-x2+2x=-15.[点睛]此题重点考察学生对整式乘法的应用,熟悉整式乘法是解题的关键.19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.[答案](1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)216.[解析]试题分析:(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(A +B )(A -B )=A 2-B 2;(3)从左到右依次利用平方差公式即可求解.试题解析:(1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.[点睛]运用了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?[答案]天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.[解析][分析]根据题意直接列式解答即可,注意整式乘法的运算法则.[详解]依题意得(3.4×102)×22÷(5×102)=3.4×22÷5=14.96.答:天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?[答案]至少要1.35×107mm2的铁皮.[解析][分析]求出正方体表面积即可知道需要多少铁皮.[详解]正方体的表面积为6×(1.5×103)2=6×2.25×106=1.35×107mm2.答:至少要1.35×107mm2的铁皮.[点睛]此题重点考察学生对整式乘法的实际应用能力,会计算正方体表面积是解题的关键.。

《第14章整式的乘法与因式分解》单元测试题(含答案).doc

《第14章整式的乘法与因式分解》单元测试题(含答案).doc

(第10题图)第十四章 整式的乘法与因式分解一、选择题1.下列各式由左边到右边的变形为因式分解的是( )A.a 2-b 2+1=(a+b)(a-b)+1B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t2.分解因式:x 3-x,结果为( )A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1)4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 26.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .17、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。

A 、222b ab a ++;B 、222b ab a +--;C 、222b ab a -+-;D 、222b ab a ++-9、已知x 2+kxy+64y 2是一个完全式,则k 的值是( )A 、8B 、±8C 、16D 、±1610、如下图(1),边长为a 的大正方形中一个边长为b小正方形,小明将图(1)的阴影部分拼成了一个矩形,如图(2)。

这一过程可以验证( )A 、a 2+b 2-2ab=(a -b)2 ;B 、a 2+b 2+2ab=(a+b)2 ;C 、2a 2-3ab+b 2=(2a -b)(a -b) ;D 、a 2-b 2=(a+b) (a -b)二、填空题11.若单项式-3x 4a-b y 2与3x 3y a+b 是同类项,则这两个单项式的积为 . 图1 图212.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.13.若16b2+a2+m是完全平方式,则m= .14.分解因式:x3﹣x= .15.因式分解:43a﹣122a+9a= .16、若4x2+kx+25=(2x-5)2,那么k的值是三、解答题17.(8分)因式分解:(1)3a2-27b2; (2)x2-8(x-2).18. (10分)计算:(1)已知a+b=3,ab=-2,求a2+b2和a2-ab+b2的值;(2)已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值;(3)已知a-b=1,a2+b2=25,求ab的值.19.已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2-2ab+b2-4a+4b+4=0,求a,b的值.20、李老师给学生出了一道题:当a=0.35,b= -0.28时,求3323323a ab a b a a b a b a-+++--的值.题目出完后,小聪说:“老师给76336310的条件a=0.35,b= -0.28是多余的.”小明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?21、如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)•展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b4答案BDCCA BACDD11.-9x 6y 412.013.±8ab14.x (x+1)(x ﹣1).15.a 2(23)a -16.-20;17.解 (1)3a 2-27b 2=3(a 2-9b 2)=3(a+3b)(a-3b);(2)x 2-8(x-2)=x 2-8x+16=(x-4)2.18 (1)a 2+b 2=(a+b)2-2ab=32-2×(-2)=13;a 2-ab+b 2=(a+b)2-3ab=32-3×(-2)=15.(2)∵(x+y)2=x 2+y 2+2xy=1,(x-y)2=x 2+y 2-2xy=49,即解得(3)∵a-b=1,∴(a-b)2=a 2+b 2-2ab=1.∵a 2+b 2=25,∴25-2ab=1,解得ab=12.19.解 ∵长方形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a 2-2ab+b 2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得方程组解得 20.原式=332(7310)(66)(33)0a a b a b +-+-++-=,合并得结果为0,与a 、b 的取值无关,所以小明说的有道理.21.4;6;4;。

人教版初中数学八年级上册第十四章《整式的乘法与因式分解》测试题(含答案)

人教版初中数学八年级上册第十四章《整式的乘法与因式分解》测试题(含答案)

C. a 2 3a 5
D. a 2 8a 5
1 A. 3
6. 若 a b A. 10
2

1 9
53.7 0
) C. 20
1
D. 2 3
1 8

m
n 2

a 8 b 6 ,那么 m 2 2n 的值是(
B. 52
2 2
D. 32 ( ) D. 30 xy
第十四章《整式的乘法与因式分解》
一、选择题(每小题只有一个正确答案)
1.多项式 xy 2 x y 9 xy 8 的次数是
4 3 3
(
) D. 6
A. 3 2.下列计算正确的是
B. 4 ( )
C. 5
A. 2 x 2 6 x 4 12 x 8 B.
y y
4 m
3 m
五、简答题 21、在长为 3a 2 ,宽为 2b 1 的长方形铁片上,挖去长为 2a 4 ,宽为 b 的小长方形铁 片,求剩余部分面积.
22、在如图边长为 7.6 的正方形的角上挖掉一个边长为 2.6 的小正方形,剩余的图形能否
拼成一个矩形?若能,画出这个矩形,并求出这个矩形的面积是多少. (5 分)
个,多项式有 9.单项式 5 x y z 的系数是
2 4
10.多项式 3ab 4 ab 11. ⑴ x 2 x 5 ⑶ 2a b
1 有 5
.
.
y
5
3 4

2 4
.

2

3

⑷ x y


.
⑸ a9 a3 12.⑴ mn 2 ⑶ ( 2a b( 13. ⑴ a

八年级数学:《整式的乘法与因式分解》单元测试题(含答案)

八年级数学:《整式的乘法与因式分解》单元测试题(含答案)

八年级数学:《整式的乘法与因式分解》单元测试题(含答案)一.选择题(共10小题)1.下列计算正确的是()A.a﹣(b﹣c+d)=a+b+c﹣d B.3x﹣2x=1C.﹣x•x2•x4=﹣x7D.(﹣a2)2=﹣a42.已知a2+a﹣3=0,那么a2(a+4)的值是()A.﹣18 B.﹣12C.9 D.以上答案都不对3.如果a2n﹣1a n+5=a16,那么n的值为()A.3 B.4 C.5 D.64.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab 5.若等式x2+ax+19=(x﹣5)2﹣b成立,则a+b的值为()A.16 B.﹣16 C.4 D.﹣46.如果多项式y2﹣4my+4是完全平方式,那么m的值是()A.1 B.﹣1 C.±1 D.±27.如图的面积关系,可以得到的恒等式是()A.m(a+b+c)=ma+mb+mc B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b28.下列等式从左到右的变形是因式分解的是()A.2x(x+3)=2x2+6x B.24xy2=3x•8y2C.x2+2xy+y2+1=(x+y)2+1 D.x2﹣y2=(x+y)(x﹣y)9.已知xy=﹣3,x+y=2,则代数式x2y+xy2的值是()A.﹣6 B.6 C.﹣5 D.﹣110.如图,长方形的长、宽分别为a、b,且a比b大5,面积为10,则a2b﹣ab2的值为()A.60 B.50 C.25 D.15二.填空题(共8小题)11.计算:0.6a2b•a2b2﹣(﹣10a)•a3b3=.12.如果(nx+1)(x2+x)的结果不含x2的项(n为常数),那么n=.13.若2018m=6,2018n=4,则20182m﹣n=.14.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,则剩下的钢板的面积为.15.已知m2﹣n2=16,m+n=6,则m﹣n=.16.把a2﹣16分解因式,结果为.17.已知4×2a×2a+1=29,且2a+b=8,求a b=.18.若实数a、b、c满足a﹣b=,b﹣c=1,那么a2+b2+c2﹣ab﹣bc﹣ca的值是三.解答题(共7小题)19.计算:(1)a3•a2•a4+(﹣a)2;(2)(x2﹣2xy+x)÷x20.(1)分解因式:x3﹣x(2)分解因式:(x﹣2)2﹣2x+421.①已知a=,mn=2,求a2•(a m)n的值.②若2n•4n=64,求n的值.22.已知a+b=,a﹣b=.求:(1)ab;(2)a2+b2.23.如图,某市有一块长为(2a+b)米,宽为(a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.(1)试用含a,b的代数式表示绿化的面积是多少平方米?(2)若a=3,b=2,请求出绿化面积.24.图a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)图b中,大正方形的边长是.阴影部分小正方形的边长是;(2)观察图b,写出(m+n)2,(m﹣n)2,mn之间的一个等量关系,并说明理由.25.如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是神秘数.(1)52和200这两个数是神秘数吗?为什么?(2)设两个连续偶数为2n和2n﹣2(其中n取正整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数(取正整数)的平方差是神秘数吗?为什么.参考答案与试题解析一.选择题(共10小题)1.下列计算正确的是()A.a﹣(b﹣c+d)=a+b+c﹣d B.3x﹣2x=1C.﹣x•x2•x4=﹣x7D.(﹣a2)2=﹣a4【分析】根据去括号、合并同类项、同底数幂的乘法和幂的乘方计算判断即可.【解答】解:A、a﹣(b﹣c+d)=a﹣b+c﹣d,错误;B、3x﹣2x=x,错误;C、﹣x•x2•x4=﹣x7,正确;D、(﹣a2)2=a4,错误;故选:C.【点评】本题考查了同底数幂的乘法和幂的乘方,掌握运算法则是解答本题的关键.2.已知a2+a﹣3=0,那么a2(a+4)的值是()A.﹣18 B.﹣12C.9 D.以上答案都不对【分析】已知a2+a﹣3=0则a2+a=3,然后把所求的式子利用a2+a表示出来即可代入求解.【解答】解:∵a2+a﹣3=0,∴a2+a=3.a2(a+4)=a3+4a2=a3+a2+3a2=a(a2+a)+3a2=3a+3a2=3(a2+a)=3×3=9.故选:C.【点评】本题考查了整式的化简求值,正确利用a2+a表示出所求的式子是关键.3.如果a2n﹣1a n+5=a16,那么n的值为()A.3 B.4 C.5 D.6【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,可得出关于n的方程,解出即可.【解答】解:∵a2n﹣1a n+5=a16,∴a2n﹣1+n+5=a16,即a3n+4=a16,则3n+4=16,解得n=4,故选:B.【点评】本题考查了同底数幂的乘法,属于基础题,解答本题的关键掌握同底数幂的运算法则.4.计算(﹣4a2+12a3b)÷(﹣4a2)的结果是()A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(﹣4a2+12a3b)÷(﹣4a2)=1﹣3ab.故选:A.【点评】此题主要考查了整式的除法,正确掌握运算法则是解题关键.5.若等式x2+ax+19=(x﹣5)2﹣b成立,则a+b的值为()A.16 B.﹣16 C.4 D.﹣4【分析】已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b 的值,即可求出a+b的值.【解答】解:已知等式整理得:x2+ax+19=(x﹣5)2﹣b=x2﹣10x+25﹣b,可得a=﹣10,b=6,则a+b=﹣10+6=﹣4,故选:D.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6.如果多项式y2﹣4my+4是完全平方式,那么m的值是()A.1 B.﹣1 C.±1 D.±2【分析】利用完全平方公式的结构特征判断即可.【解答】解:∵多项式y2﹣4my+4是完全平方式,∴m=±1,故选:C.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.如图的面积关系,可以得到的恒等式是()A.m(a+b+c)=ma+mb+mc B.(a+b)(a﹣b)=a2﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2【分析】根据正方形和矩形的面积公式即可得到结论.【解答】解:阴影部分的面积=a2﹣b2;阴影部分的面积=(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故选:B.【点评】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键.8.下列等式从左到右的变形是因式分解的是()A.2x(x+3)=2x2+6x B.24xy2=3x•8y2C.x2+2xy+y2+1=(x+y)2+1 D.x2﹣y2=(x+y)(x﹣y)【分析】根据因式分解的定义逐个判断即可.【解答】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.9.已知xy=﹣3,x+y=2,则代数式x2y+xy2的值是()A.﹣6 B.6 C.﹣5 D.﹣1【分析】根据因式分解法即可求出答案.【解答】解:∵xy=﹣3,x+y=2,∴x2y+xy2=xy(x+y)=﹣6故选:A.【点评】本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型.10.如图,长方形的长、宽分别为a、b,且a比b大5,面积为10,则a2b﹣ab2的值为()A.60 B.50 C.25 D.15【分析】直接利用提取公因式法分解因式,进而得出把已知代入即可.【解答】解:由题意可得:a﹣b=5,ab=10,则a2b﹣ab2=ab(a﹣b)=50.故选:B.【点评】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.二.填空题(共8小题)11.计算:0.6a2b•a2b2﹣(﹣10a)•a3b3=a4b3.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a2b×a2b2+10a4b3=a4b3+10a4b3=a4b3;故答案为:a4b3;【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.如果(nx+1)(x2+x)的结果不含x2的项(n为常数),那么n=﹣1.【分析】根据多项式的运算法则把括号展开,再合并同类项;找到含有x的二次项并让其系数为0,即可求出n的值.【解答】解:(nx+1)(x2+x)=nx3+nx2+x2+x=nx3+(n+1)x2+x,∵(nx+1)(x2+x)的结果不含x2的项,∴n+1=0,解得n=﹣1,故答案为:﹣1.【点评】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.13.若2018m=6,2018n=4,则20182m﹣n=9.【分析】根据同底数幂的除法和幂的乘方解答即可.【解答】解:因为2018m=6,2018n=4,所以20182m﹣n=(2018m)2÷2018n=36÷4=9,故答案为:9【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法和幂的乘方法则计算.14.如图,一块直径为a+b的圆形钢板,从中挖去直径分别为a与b的两个圆,则剩下的钢板的面积为π.【分析】由大圆面积减去两个小圆的面积表示出剩下的钢板面积即可.【解答】解:由题意得:剩下的钢板面积为:()2π﹣()2π﹣()2π=(a2+2ab+b2﹣a2﹣b2)=π,故答案为:π.【点评】此题考查了整式的混合运算,以及代数式求值,熟练掌握运算法则是解本题的关键.15.已知m2﹣n2=16,m+n=6,则m﹣n=.【分析】根据(m+n)(m﹣n)=m2﹣n2,再把m2﹣n2=16,m+n=6,代入求解.【解答】解:∵m2﹣n2=16,m+n=6,∴(m+n)(m﹣n)=m2﹣n2,即6(m﹣n)=16.∴m﹣n==.故答案是:.【点评】本题主要考查平方差公式的运用,熟练掌握公式是解题的关键.16.把a2﹣16分解因式,结果为(a+4)(a﹣4).【分析】利用平方差公式进行因式分解.【解答】解:a2﹣16=(a+4)(a﹣4).故答案是:(a+4)(a﹣4).【点评】考查了因式分解﹣运用公式法.能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.17.已知4×2a×2a+1=29,且2a+b=8,求a b=9.【分析】直接利用同底数幂的乘法运算法则进而得出答案.【解答】解:∵4×2a×2a+1=29,且2a+b=8,∴22×2a×2a+1=29,∴2+a+a+1=9,解得:a=3,故2×3+b=8,解得:b=2,∴a b=32=9.故答案为:9.【点评】此题主要考查了同底数幂的乘法运算,正确应用同底数幂的乘法运算法则是解题关键.18.若实数a、b、c满足a﹣b=,b﹣c=1,那么a2+b2+c2﹣ab﹣bc﹣ca的值是3+【分析】利用完全平方公式将代数式变形:a2+b2+c2﹣ab﹣bc﹣ca=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca)=[(a﹣b)2+(b﹣c)2+(a﹣c)2],即可求代数式的值.【解答】解:∵a﹣b=,b﹣c=1,∴a﹣c=+1∵a2+b2+c2﹣ab﹣bc﹣ca=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca)=[(a﹣b)2+(b﹣c)2+(a﹣c)2]∴a2+b2+c2﹣ab﹣bc﹣ca=3+故答案为:3+【点评】本题考查了因式分解的应用,利用完全平方公式将代数式变形是本题的关键.三.解答题(共7小题)19.计算:(1)a3•a2•a4+(﹣a)2;(2)(x2﹣2xy+x)÷x【分析】(1)根据同底数幂的乘法的法则计算即可;(2)根据多项式除单项式的法则计算即可.【解答】解:(1)a3•a2•a4+(﹣a)2=a9+a2;(2)(x2﹣2xy+x)÷x=x﹣2y+1.【点评】本题考查了同底数幂的乘法,多项式除单项式,熟记法则是解题的关键.20.(1)分解因式:x3﹣x(2)分解因式:(x﹣2)2﹣2x+4【分析】(1)首先提取公因式x,再利用平方差公式分解因式即可;(2)直接提取公因式(x﹣2)进而分解因式即可.【解答】解:(1)原式=x(x2﹣1)=x(x+1)(x﹣1);(2)原式=(x﹣2)2﹣2(x﹣2)=(x﹣2)(x﹣4).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确找出公因式是解题关键.21.①已知a=,mn=2,求a2•(a m)n的值.②若2n•4n=64,求n的值.【分析】①利用同底数幂的乘法,找出原式=a2+mn,再代入a,mn的值即可得出结论;②由2n•4n=64可得出3n=6,进而可求出n的值.【解答】解:①原式=a2•a mn=a2+mn=()4=;②∵2n•4n=2n•22n=23n=64,∴3n=6,∴n=2.【点评】本题考查了幂的乘方与积的乘方以及同底数幂的乘法,解题的关键是:(1)利用同底数幂的乘法,找出原式=a2+mn;(2)利用幂的乘法找出3n=6.22.已知a+b=,a﹣b=.求:(1)ab;(2)a2+b2.【分析】(1)根据(a+b)2﹣(a﹣b)2=4ab代入数据即可得到结论;(2)由于a2+b2=(a+b)2﹣2ab,于是得到结论.【解答】解:(1)∵a+b=,a﹣b=.∴(a+b)2﹣(a﹣b)2=4ab=7﹣5=2,∴ab=0.5(2)a2+b2=(a+b)2﹣2ab=7﹣2×0.5=6【点评】本题考查了对完全平方公式的应用,注意:完全平方公式是:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.23.如图,某市有一块长为(2a+b)米,宽为(a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.(1)试用含a,b的代数式表示绿化的面积是多少平方米?(2)若a=3,b=2,请求出绿化面积.【分析】(1)绿化面积等于总面积减去中间正方形的面积;(2)代入a、b的值后即可求得绿化面积;【解答】解:(1)绿化的面积是(2a+b)(a+b)﹣a2=2a2+3ab+b2﹣a2=a2+3ab+b2;(2)当a=3,b=2时,原式=9+3×2×3+4=31平方米.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.24.图a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)图b中,大正方形的边长是m+n.阴影部分小正方形的边长是m﹣n;(2)观察图b,写出(m+n)2,(m﹣n)2,mn之间的一个等量关系,并说明理由.【分析】(1)依据图形即可得到大正方形的边长是m+n,阴影部分小正方形的边长是m﹣n;(2)将等式(m﹣n)2=(m+n)2﹣4mn的左边或右边化简变形,即可得到结论成立.【解答】解:(1)由图b可得,大正方形的边长是m+n,阴影部分小正方形的边长是m﹣n;故答案为:m+n;m﹣n;(2)(m﹣n)2=(m+n)2﹣4mn.理由如下:右边=(m+n)2﹣4mn=m2+2mn+n2﹣4mn=m2﹣2mn+n2=(m﹣n)2=左边,所以结论成立.【点评】本题主要考查了完全平方公式的几何证法,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.25.如果一个正整数能表示成两个连续偶数的平方差,那么称这个正整数为神秘数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是神秘数.(1)52和200这两个数是神秘数吗?为什么?(2)设两个连续偶数为2n和2n﹣2(其中n取正整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数(取正整数)的平方差是神秘数吗?为什么.【分析】(1)根据定义进行判断即可;(2)根据平方差公式进行计算,可得这两个连续偶数构造的神秘数是4的倍数;(3)运用平方差公式进行计算,进而判断即可.【解答】解:(1)∵52=142﹣122=196﹣144∴52是神秘数∵200不能表示成两个连续偶数的平方差,∴200不是神秘数(2)是理由如下:∵(2n)2﹣(2n﹣2)2=2×(4n﹣2)=4(2n﹣1)∴这两个连续偶数构造的神秘数是4的倍数(3)设这两个连续奇数为:2n﹣1,2n+1 (x为正整数)∴(2n+1)2﹣(2n﹣1)2=8n而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是神秘数.【点评】此题主要考查了因式分解的应用,此题是一道新定义题目,熟练记忆平方差公式是解题关键.。

《整式的乘法与因式分解》单元测试题(带答案)

《整式的乘法与因式分解》单元测试题(带答案)
9.下列算式能用平方差公式计算的是
A. B. C. D.
[答案]D
[解析]
[分析]
根据平方差公式(A+B)(A-B)=A2-B2对各选项分别进行判断即可.
[详解]能用平方差公式计算的是 ,
故选D.
[点睛]本题考查了平方差公式,熟练掌握平方差公式(A+B)(A-B)=A2-B2是解本题的关键.
10.下列从左到右的变形,是因式分解的是
4.下列计算正确的是()
A 3A2﹣4A2=A2B.A2•A3=A6C.A10÷A5=A2D.(A2)3=A6
5.下列各式中,运算正确的是()
A. B. C. D.
6.下列运算错误的是()
A.(m2)3=m6B.A10÷A9=AC.x3•x5=x8D.A4+A3=A7
7.化简(A2)A3所得 结果是()
(2)用两种不同的方法求图中阴影部分的面积.
11.下列运算正确的是()
A. B. C. D.
[答案]D
[解析]
[分析]
根据同底数幂的乘除法法则,幂的乘方,积的乘方一一判断即可.
[详解]解:A、错误.应该是x3•x3=x6;
B、错误.应该是x8÷x4=x4;
C、错误.(A B3)2=A2B6.
D、正确.
故选D.
[点睛]本题考查同底数幂的乘除法法则,幂的乘方,积的乘方等知识,解题的关键是熟练掌握基本知识.
∴A2﹣4A+4+B2﹣8B+16=0,
∴(A﹣2)2+(B﹣4)2=0,
又∵(A﹣2)2≥0,(B﹣4)2≥0,
∴A﹣2=0,B﹣4=0,
∴A=2,B=4,
∴△A B C的周长为A+B+C=2+4+3=9,

初一数学《整式乘法与因式分解》提优测试卷 含答案

初一数学《整式乘法与因式分解》提优测试卷 含答案

a
a
14.因式分解: a 2 a 1 =__________________. 4
15.如果 x 2 mx 16 是一个完全平方式,则 m=______. 16.因式分解: m2 11n mn 11m =___________________. 17.因式分解: 9 a 2 b 2 2ab =_____________________. 18.因式分解: x 2 4x 12 =_________________.
2.下列各式中,可分解因式的只有(
).
(A) x 2 y 2 (B) x 2 y 3 (C) ma nb (D) x 2 y 2
3.把 (x a)3 (a x)2 分解因式的结果为(
).
(A) (x a)2 (x a 1)
(B) (x a)2 (x a 1)
(C) (x a)2 (x a)
19.若16 x n (2 x)(2 x)(4 x 2 ), 则 n 的值为

20.若100x 2 kxy 49 y 2 能分解为 (10x 7 y)2 ,则 k 的值为

三.分解下列因式:(每题 3 分,共 30 分)
21. x 2 (m 2) 9 y 2 (2 m)
22. a 2 1 6ab 9b2
(B) x 2 (x y) y 2 (x y)
(C) (x y)(x y)2
(D) (x y)2 (x y)
6.下列各多项式中能用平方差公式因式分解的有(
).
(1) a 2 b 2 ;(2) 2x 2 4 y 2 ; (3) x 2 4 y 2 ; (4) (m)2 (n)2 ;
(D) (a x)2 (x a 1)
4. a 4 b 4和a 2 b 2 的公因式是(

第十四章 整式的乘法与因式分解单元测试题(含答案)

第十四章 整式的乘法与因式分解单元测试题(含答案)

第十四章《整式的乘法与因式分解》单元检测题一、选择题(每题3分,共30分)1.下列因式分解正确的是()A.2-=+-x y x y x y94(94)(94) +=+B.2224(24)a a a aC.22(1)2-+=-m m mx x x x--=--D.2269(3)2.已知m=1﹣n,则m3+m2n+2mn+n2的值为()A.﹣2 B.﹣1 C.1 D.23.下列运算正确的是()A.3a﹣(2a﹣b)=a﹣b B.(a3b2﹣2a2b)÷ab=a2b﹣2C.(a+2b)(a﹣2b)=a2﹣2b2D.(﹣a2b)3=﹣a6b34.如果(3x+p)(x+q)=3x2+13x-10,则q与p的值分别是()A.-5,2 B.5,-2 C.-2,5 D.2,-55.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7.计算()2021×()2022×(﹣1)2023的结果是()A.B.C.D.8.若(x2+ax+2)(2x﹣4)的结果中不含x2项,则a的值为()A.0 B.2 C.D.﹣29.已知a=8131,b=2741,c=961,则a、b、c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b 10.如图1,将一个大长方形沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示图形,正好是边长为x的大正方形剪去一个边长为1的小正方形(阴影部分).这两个图能解释下列哪个等式()A.(x﹣1)2=x2﹣2x+1 B.(x+1)(x﹣1)=x2﹣1C.(x+1)2=x2+2x+1 D.x(x﹣1)=x2﹣x二、填空题(每题3分,共24分)11.因式分解:18a﹣2a3=.12.计算2m2n3⋅(﹣3m)的结果是.13.因式分解:a2﹣1=.14.比较大小:a2+b22ab﹣1.(选填“>”、“≥”、“<”、“≤”或“=”)15.分解因式:b2+c2+2bc﹣a2=.16.计算:(12x2y3﹣9x3y2)÷(3x2y)=.17.已知长方形的面积为4a2-4b2,如果它的一边长为a+b,则它的周长为 .18. 将12张长为a,宽为b(a>b)的小长方形纸片,按如图方式不重叠地放在大长方形ABCD内,未被覆盖的部分用阴影表示,若阴影部分的面积是大长方形面积的13,则小长方形纸片的长a与宽b的比值为 ___.三.解答题(共46分,19题6分,20 ---24题8分)19.计算: (1)(-1)2 018+⎝ ⎛⎭⎪⎫-12 2-(3.14-π)0; (2)(2x 3y )2·(-2xy )+(-2x 3y )3÷2x 2;(3)(2x -3)2-(2x +3)(2x -3);(4)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a .20.分解因式:(1)m 3n -9mn; (2)(x 2+4)2-16x 2; (3)x 2-4y 2-x +2y;(4)4x 3y +4x 2y 2+xy 3.21.先化简,再求值:(1)(x 2-4xy +4y 2)÷(x -2y )-(4x 2-9y 2)÷(2x -3y ),其中x =-4,y =15;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m ,n 满足⎩⎨⎧m +2n =1,3m -2n =11.22.简便计算:(1)2 0202-2 019×2 021; (2)2 0182-4 036×2 017+2 0172.23、某学校教学楼前有一块长为()62a b +米,宽为()42+a b 米的长方形空地要铺地砖,如图所示,空白的甲、乙两正方形区域是草坪,不需要铺地砖.两正方形区域的边长均为()a b +米.(1)求铺设地砖的面积是多少平方米;(2)当2a =,3b =时,需要铺地砖的面积是多少?24.都是剪成边为a 的大正方形,④⑤⑥都是剪成边长为b 的小正方形,剩下的都是剪成边长分别为a 、b 的小长方形.(1)观察图形,可以发现多项式223103a ab b ++可以因式分解为______________. (2)若每块小长方形的的面积为210cm ,六个正方形的面积之和为287cm ,试求图中所有裁剪线(虚线部分)长之和.答案一、选择题(每题3分,共30分)二、填空题(每题3分,共24分)11.解:18a﹣2a3=2a(9﹣a2)=2a(3+a)(3﹣a).故答案为:2a(3+a)(3﹣a).12.解:2m2n3⋅(﹣3m)=﹣6m3n3.故答案为:﹣6m3n3.13.解:a2﹣1=a2﹣12=(a+1)(a﹣1).14.解:(a2+b2)﹣(2ab﹣1)=a2+b2﹣2ab+1=(a﹣b)2+1.∵(a﹣b)2≥0,∴(a﹣b)2+1>0,∴a2+b2>2ab﹣1.故答案为:>.15.解:原式=(b+c)2﹣a2=(b+c+a)(b+c﹣a).故答案为:(b+c+a)(b+c﹣a)16.解:(12x2y3﹣9x3y2)÷(3x2y)=12x2y3÷(3x2y)﹣9x3y2÷(3x2y)=4y2﹣3xy.故答案为:4y2﹣3xy.17.10a-6b18.4三.解答题(共46分,19题6分,20 ---24题8分)19.解:(1)原式=1+14-1=14;(2)原式=4x 6y 2·(-2xy )-8x 9y 3÷2x 2=-8x 7y 3-4x 7y 3=-12x 7y 3; (3)原式=(2x -3)·[(2x -3)-(2x +3)]=(2x -3)·(-6)=-12x +18; (4)原式=(a 2-4ab +4b 2+a 2-4b 2-4a 2+2ab )÷2a =(-2a 2-2ab )÷2a =-a -b .20.解:(1)原式=mn (m 2-9)=mn (m +3)(m -3);(2)原式=(x 2+4+4x )(x 2+4-4x )=(x +2)2(x -2)2;(3)原式=x 2-4y 2-(x -2y )=(x +2y )(x -2y )-(x -2y )=(x -2y )(x +2y -1);(4)原式=xy (4x 2+4xy +y 2)=xy (2x +y )2.21.解:(1)原式=(x -2y )2÷(x -2y )-(2x +3y )(2x -3y )÷(2x -3y )=x -2y-2x -3y =-x -5y . ∵x =-4,y =15,∴原式=-x -5y =4-5×15=3.(2)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn . 解方程组⎩⎨⎧m +2n =1,3m -2n =11,得⎩⎨⎧m =3,n =-1. ∴原式=2mn =2×3×(-1)=-6.22.解:(1)原式=2 0202-(2 020-1)×(2 020+1)=2 0202-(2 0202-12)=1;(2)原式=2 0182-2×2 018×2 017+2 0172=(2 018-2 017)2=1.23、解:(1)根据题意得:铺设地砖的面积为:(6a+2b)(4a+2b)-2(a+b)2=24a2+20ab+4b2-2a2-4ab-2b2=22a2+16ab+2b2(平方米);(2)当a=2,b=3时,原式=88+96+18=202(平方米).24.(1)(a+3b)(3a+b);(2)84【解析】解:(1)观察图形,大长方形的边长分别为a+3b和3a+b,而各部分面积之和为3a2+10ab+3b2,∴3a2+10ab+3b2=(a+3b)(3a+b).故答案为:(a+3b)(3a+b).(2)∵每块小长方形的的面积为10cm2,∴ab=10,∵六个正方形的面积之和为87cm2,∴3a2+3b2=87,∴a2+b2=29,∴a2+2ab+b2=49,∴(a+b)2=49,∵a+b>0,∴a+b=7,∵图中虚线长度的和为12a+12b=12(a+b),∴图中所有裁剪线(虚线部分)长之和为:12×7=84.。

人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法与因式分解》测试题(含答案)一、单选题1.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .a 2﹣b 2=(a +b )(a ﹣b )B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a 2+ab =a (a +b )2.在下列运算中,正确的是()A .236x x x ⋅=B .23x x x +=C .326()x x =D .933x x x ÷= 3.下列等式中,从左到右的变形是因式分解的是( )A .229(3)x x -=-B .22(1)21x x x +=++C .24(2)(2)x x x -=+-D .221x x x ⎛⎫+=+ ⎪⎝⎭4.已知23m m -的值为5,那么代数式2203026m m -+的值是( )A .2030B .2020C .2010D .20005.下列计算正确的是( )A .224a a a +=B .3252⋅=a a aC .235(2)312⋅=a a aD .21333⎛⎫+= ⎪⎝⎭a a a 6.如果25m m +=,那么代数式()()222m m m -++的值为( )A .-6B .-1C .9D .147.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( )A .0B .5C .5-D .5或5-8.若关于x 的多项式(x 2+2x +4)(x +k )展开后不含有一次项,则实数k 的值为( ) A .﹣1 B .2 C .3 D .﹣29.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 10.下列算式中不能利用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y ---C .()()x y x y --+D .()()x y y x +-二、填空题 11.若表示一种新的运算,其运算法则为2a bc d =+-,则的结果为________.12.如果二次三项式x 2+3x +a 是一个完全平方式,那么常数a 的值是 ___.13.已知a 是方程x 2-5x +1=0的一个根,则a 4+a -4的个位数字为_____.14.若多项式2(1)16x m x --+能用完全平方公式进行因式分解,则m =________.15.若2224(3)ax x b mx ++=-,则=a ________.16.因式分解:(1)22x y -+=___________;(2)222x xy y -+=___________;(3)24a a -=___________;(4)265m m -+=___________.17.若2x +3y ﹣2=0,则4x •8y =___.18.在实数范围内分解因式221x x +-=___.三、解答题19.先化简,再求值:x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3),其中x 满足2x 2+3=4x .20.((教材呈现)下图是华师版八年级上册数学教材第49页B 组的第12题和第13题.(例题讲解)老师讲解了第12题的两种方法:(方法运用)请你任选第12题的解法之一,解答教材第49页B 组的第13题.(拓展)如图,在ABC 中,90ACB ∠=︒,分别以AC 、BC 为边向其外部作正方形ACDE 和正方形BCFG .若6AC BC +=,正方形ACDE 和正方形BCFG 的面积和为18,求ABC 的面积.21.计算:(59x 3y )•(﹣3xy 2)3•(12x )2.22.33x y x y .23.先化简,再求值:()2232()()a b ab b b a b b a --÷++-,其中12021a =-,2021b =.24.某校“数学社团”活动中,小亮对多项式进行因式分解,m 2-mn +2m -2n =(m 2-mn )+(2m -2n )=m (m -n )+2(m -n ) =(m -n )(m +2).以上分解因式的方法叫做“分组分解法”,请你在小亮解法的启发下,解决下面问题:(1)因式分解a 3-3a 2-9a +27;(2)因式分解x 2+4y 2-4xy -16;(3)已知a ,b ,c 是ABC 的三边,且满足222a ab c ac bc -+=-,判断ABC 的形状并说明理由.参考答案1.A【详解】解:大正方形的面积﹣小正方形的面积=a 2﹣b 2,矩形的面积=(a +b )(a ﹣b ),故a 2﹣b 2=(a +b )(a ﹣b ),故选:A .2.C【详解】解:A 、235x x x ,故错误,不符合题意;B . 2x x +不是同类项,不能合并,故错误,不符合题意;C . 326()x x =,故正确,符合题意;D . 936x x x ÷=,故错误,不符合题意;3.C【详解】解:A 、29(3)(3)x x x -=+-,则原等式不成立,此项不符题意;B 、22(1)21x x x +=++等式的右边不是乘积的形式,则此项不符题意;C 、24(2)(2)x x x -=+-是因式分解,此项符合题意;D 、221x x x ⎛⎫+=+ ⎪⎝⎭等式右边中的2x 不是整式,则此项不符题意; 4.B【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B .5.C【详解】A. ∵2a 和2a 是同类项,∵22242a a a a +=≠,故选项A 错误;B. 532522a a a a ⋅≠=,故选项B 错误;C. 52323(32)3412a a a a a ⋅==,故选项C 正确;D. 2213333a a a a a ⎛⎫+=+⎭≠ ⎪⎝,故选项D 错误. 6.D【详解】解:()()222m m m -++, 22244m m m m =-+++,2224m m =++,由25m m +=得:22210m m +=,则原式10414=+=,故选:D .7.C【详解】解:∵多项式2(5)2x a x ++-中不含x 的一次项,∵5+a =0,解得a =-5,故选:C .8.D【详解】解:(x 2+2x +4)(x +k )=x 3+kx 2+2x 2+2kx +4x +4k=x 3+(k +2)x 2+(2k +4)x +4k ,∵关于x 的多项式乘多项式(x 2+2x +4)(x +k )的结果中不含有x 的一次项, ∵2k +4=0,解得,k =−2,9.D【详解】A .3a 和2a 不是同类项,不能合并,此选项错误;B .2355()()()a a a a -⋅-=-=-,此选项错误;C . ()326a a =,此选项错误; D .235a a a ⋅=,此选项正确,故选:D .10.C【详解】解:A 、()()22x y x y x y +-=-,故A 不符合题意;B 、()()22()x y x y y x ---=--,故B 不符合题意;C 、()()x y x y --+不能利用平方差公式计算,故C 符合题意;D 、()()22x y y x y x +-=-,故D 不符合题意;11.223m m n +【详解】解:由题意得,=2222(2)3m m n n m -+-,=223243m m n m +-=223m m n +,故答案为:223m m n +.12.94【详解】解:∵二次三项式x 2+3x +a 是一个完全平方式,∵x 2+3x +a =x 2+2•x •32+(32)2, ∵a =94, 故答案为:94. 13.7【详解】解:由题意可得:2510a a ,0a ≠, ∵15a a +=, ∵22211223a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵24242112527a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵个位数字是7;故答案是7.14.9或-7或9【详解】解:∵多项式x 2-(m -1)x +16能用完全平方公式进行因式分解, ∵m -1=±8,解得:m =9或m =-7,故答案为:9或-715.16【详解】解:∵222(3)9=6mx x x m m --+,2224(3)ax x b mx ++=- ∵m 2=a ;-6m =24∵m =-4,a =16故答案为:1616.()()y x y x +- 2()x y - (4)a a - (1)(5)m m -- 【详解】解:(1)2222()()y x x y x x y y -++=--=(2)2222()x xy y x y -+=-(3)24(4)a a a a -=-(4)265(1)(5)m m m m -+=--故答案为()()y x y x +-,2()x y -,(4)a a -,(1)(5)m m -- 17.4【详解】解:48x y ⋅=()()2323232=2222x x x yy x +⋅=⋅, ∵x +3y -2=0,∵x +3y =2,∵原式=22=4,故答案为:4.18.(11x x ++【详解】解:原式=2212x x ++-2(1)2x =+-(11x x =+++,故答案为(11x x +++.19.2x 2-4x +3;原式=0.【详解】x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3)=﹣x 3+2x 2﹣(﹣x 3-x 2+3x + x 2+x ﹣3)=﹣x 3+2x 2+x 3+x 2-3x - x 2-x +3=2x 2-4x +3∵2x 2+3=4x∵2x 2-4x +3=0∵原式=0.20.【方法运用】见解析;【拓展】92【详解】【方法运用】∵(a -b )2= a 2+b 2-2ab∵2ab = a 2+b 2-(a -b )2.∵a -b =1,a 2+b 2=25,∵2ab = 25-1=24.∵ab =12.【拓展】由题意,得AC 2+BC 2=18.∵(AC +BC )2=62,AC 2+2AC •BC +BC 2=36. ∵2AC •BC =36﹣(AC 2+BC 2)=36﹣18=18. ∵AC •BC =9.∵S ∵ABC =12AC •BC =92. 21.87154x y - 【详解】 (59x 3y )•(﹣3xy 2)3•(12x )2 ()233332251392x x x y y ⎛⎫=-⨯⨯⋅⋅⋅⋅⋅ ⎪⎝⎭ 87154x y =- 22.2269x y y -+-【详解】解:33x y x y33x y x y 223x y2269x y y =-+-23.2ab -,2【详解】解:原式=223222÷-÷-÷+-a b b ab b b b b a=22222--+-a ab b b a=2ab -, 当12021a =-,2021b =时,原式=1220212021⎛⎫-⨯-⨯ ⎪⎝⎭=2. 24.(1)(a +3)(a -3)2;(2)(x -2y -4)(x -2y +4) ;(3)等腰三角形,见解析 【详解】解:(1)a 3-3a 2-9a +27=a 2(a -3)-9(a -3)=(a 2-9)(a -3) =(a -3)(a +3)(a -3) =(a +3)(a -3)2;(2)x 2+4y 2-4xy -16=(x 2-4xy +4y 2)-16=(x -2y )2-42=(x -2y -4)(x -2y +4);(3)∵ABC 是等腰三角形,理由如下:∵222a ab c ac bc -+=-,∵2220a ac c ab bc -+-+=,∵()()20a c b a c ---=,∵()()0a c a c b ---=,∵a ,b ,c 是∵ABC 的三边,∵a -c -b <0.∵a -c =0,∵a =c ,∵∵ABC 是等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学-《整式乘法与因式分解》测试题一、选择题:1.下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a3=a6D.(﹣a2)3=﹣a62.计算(a3)2的结果是()A.a5B.a6C.a8D.a93.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个4.计算2x3÷x2的结果是()A.x B.2x C.2x5D.2x65.下列各式是完全平方式的是()A.x2﹣x+B.1+x2C.x+xy+1 D.x2+2x﹣16.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y﹣x)C.(x+y)(﹣y﹣x)D.(﹣x+y)(y﹣x)7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.18.若3x=15,3y=5,则3x﹣y等于()A.5 B.3 C.15 D.109.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12 B.p=﹣1,q=12 C.p=7,q=12 D.p=7,q=﹣1210.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)3二、填空题(共8小题,每小题3分,满分24分)11.计算:(﹣3x2y)•(xy2)= .12.计算: = .13.计算:()2007×(﹣1)2008= .14.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.15.当x 时,(x﹣4)0等于1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.17.若|a﹣2|+b2﹣2b+1=0,则a= ,b= .18.已知a+=3,则a2+的值是.三、解答题(共5小题,满分46分)19.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)20.分解因式:(1)m2﹣6m+9;(2)(x+y)2+2(x+y)+1;(3)3x﹣12x3;(4)9a2(x﹣y)+4b2(y﹣x).21.先化简,再求值:2(x﹣3)(x+2)﹣(3+a)(3﹣a),其中a=﹣2,x=1.22.若2x+5y﹣3=0,求4x•32y的值.23.已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.《整式乘法与因式分解》参考答案与试题解析一、选择题:1.下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2•a3=a6D.(﹣a2)3=﹣a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、a2与b3不是同类项,不能合并,故本选项错误;B、应为a4÷a=a3,故本选项错误;C、应为a3•a2=a5,故本选项错误;D、(﹣a2)3=﹣a6,正确.故选D.【点评】本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.2.计算(a3)2的结果是()A.a5B.a6C.a8D.a9【考点】幂的乘方与积的乘方.【专题】计算题.【分析】根据幂的乘方,底数不变,指数相乘即可求.【解答】解:(a3)2=a6,故选B.【点评】本题考查了幂的乘方,解题的关键是熟练掌握幂的乘方公式.3.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个【考点】整式的混合运算.【专题】计算题.【分析】①原式利用单项式乘以单项式法则计算即可得到结果;②原式利用单项式除以单项式法则计算即可得到结果;③原式利用幂的乘方运算计算即可得到结果;④原式利用同底数幂的除法法则计算即可得到结果.【解答】解:①3x3•(﹣2x2)=﹣6x5,正确;②4a3b÷(﹣2a2b)=﹣2a,正确;③(a3)2=a6,错误;④(﹣a)3÷(﹣a)=(﹣a)2=a2,错误,则正确的个数有2个.故选B.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.计算2x3÷x2的结果是()A.x B.2x C.2x5D.2x6【考点】整式的除法;同底数幂的除法.【分析】根据单项式除单项式的法则,同底数幂相除,底数不变指数相减的性质,对各选项计算后选取答案.【解答】解:2x3÷x2=2x.故选B.【点评】本题比较容易,考查整式的除法和同底数幂的除法法则,熟练掌握运算法则是解题的关键.5.下列各式是完全平方式的是()A.x2﹣x+B.1+x2C.x+xy+1 D.x2+2x﹣1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2.最后一项为乘积项除以2,除以第一个底数的结果的平方.【解答】解:A、x2﹣x+是完全平方式;B、缺少中间项±2x,不是完全平方式;C、不符合完全平方式的特点,不是完全平方式;D、不符合完全平方式的特点,不是完全平方式.故选A.【点评】本题是完全平方公式的应用,熟记公式结构:两数的平方和,再加上或减去它们积的2倍,是解题的关键.6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y﹣x)C.(x+y)(﹣y﹣x)D.(﹣x+y)(y﹣x)【考点】平方差公式.【专题】计算题.【分析】利用平方差公式的结构特征判断即可得到结果.【解答】解:能用平方差公式是(x+y)(y﹣x)=y2﹣x2,故选B【点评】此题考查了平方差公式,熟练掌握公式是解本题的关键.7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1【考点】多项式乘多项式.【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x 的系数为0,得出关于m的方程,求出m的值.【解答】解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.【点评】本题主要考查了多项式乘多项式的运算,根据乘积中不含哪一项,则哪一项的系数等于0列式是解题的关键.8.若3x=15,3y=5,则3x﹣y等于()A.5 B.3 C.15 D.10【考点】同底数幂的除法.【分析】根据同底数幂的除法,底数不变,指数相减,可得答案.【解答】解:3x﹣y=3x÷3y=15÷5=3,故选:B.【点评】本题考查了同底数幂的除法,底数不变,指数相减.9.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12 B.p=﹣1,q=12 C.p=7,q=12 D.p=7,q=﹣12【考点】多项式乘多项式.【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p、q的值.【解答】解:由于(x﹣3)(x+4)=x2+x﹣12=x2+px+q,则p=1,q=﹣12.故选A.【点评】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.10.下列各式从左到右的变形,正确的是()A.﹣x﹣y=﹣(x﹣y)B.﹣a+b=﹣(a+b)C.(y﹣x)2=(x﹣y)2D.(a﹣b)3=(b﹣a)3【考点】完全平方公式;去括号与添括号.【分析】A、B都是利用添括号法则进行变形,C、利用完全平方公式计算即可;D、利用立方差公式计算即可.【解答】解:A、∵﹣x﹣y=﹣(x+y),故此选项错误;B、∵﹣a+b=﹣(a﹣b),故此选项错误;C、∵(y﹣x)2=y2﹣2xy+x2=(x﹣y)2,故此选项正确;D、∵(a﹣b)3=a3﹣3a2b+3ab2﹣b3,(b﹣a)3=b3﹣3ab2+3a2b﹣a3,∴(a﹣b)3≠(b﹣a)3,故此选项错误.故选C.【点评】本题主要考查完全平方公式、添括号法则,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.括号前是“﹣”号,括到括号里各项都变号,括号前是“+”号,括到括号里各项不变号.二、填空题(共8小题,每小题3分,满分24分)11.计算:(﹣3x2y)•(xy2)= .【考点】单项式乘单项式;同底数幂的乘法.【分析】根据单项式的乘法法则,同底数幂的乘法的性质计算即可.【解答】解:(﹣3x2y)•(xy2),=(﹣3)××x2•x•y•y2,=﹣x2+1•y1+2,=﹣x3y3.【点评】本题主要考查单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.12.计算: = .【考点】平方差公式.【分析】利用平方差公式a2﹣b2=(a+b)(a﹣b)进行计算即可.【解答】解:原式=﹣(n﹣m)(n+m)=﹣[n2﹣(m)2]=m2﹣n2.故答案是: m2﹣n2【点评】本题考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.13.计算:()2007×(﹣1)2008= .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先把原式化为()2007×(﹣1)2007×(﹣1),再根据有理数的乘方法则计算.【解答】解:()2007×(﹣1)2008=()2007×(﹣1)2007×(﹣1)=(﹣×1)2007×(﹣1)=﹣1×(﹣1)=.故答案为:.【点评】本题考查了有理数的乘方,解题时牢记法则是关键.14.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.【考点】代数式求值.【专题】计算题.【分析】由题意列出关系式,求出2a2+3a的值,将所求式子变形后,把2a2+3a的值代入计算即可求出值.【解答】解:∵2a2+3a+1=6,即2a2+3a=5,∴6a2+9a+5=3(2a2+3a)+5=20.故答案为:20.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.15.当x 时,(x﹣4)0等于1.【考点】零指数幂.【专题】计算题.【分析】根据0指数幂底数不能为0列出关于x的不等式,求出x的取值范围即可.【解答】解:∵(x﹣4)0=1,∴x﹣4≠0,∴x≠4.故答案为:≠4.【点评】本题考查的是0指数幂的定义,即任何非0数的0次幂等于1.16.若多项式x2+ax+b分解因式的结果为(x+1)(x﹣2),则a+b的值为.【考点】因式分解的意义.【分析】利用整式的乘法计算(x+1)(x﹣2),按二次项、一次项、常数项整理,与多项式x2+ax+b对应,得出a、b的值代入即可.【解答】解:(x+1)(x﹣2)=x2﹣2x+x﹣2=x2﹣x﹣2所以a=﹣1,b=﹣2,则a+b=﹣3.故答案为:﹣3.【点评】此题考查利用整式的计算方法,计算出的代数式与因式分解前代数式比较,得出结论,进一步解决问题.17.若|a﹣2|+b2﹣2b+1=0,则a= ,b= .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题应对方程进行变形,将b2﹣2b+1化为平方数,再根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”来解题.【解答】解:原方程变形为:|a﹣2|+(b﹣1)2=0,∴a﹣2=0或b﹣1=0,∴a=2,b=1.【点评】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.18.已知a+=3,则a2+的值是.【考点】完全平方公式.【专题】常规题型.【分析】把已知条件两边平方,然后整理即可求解.完全平方公式:(a±b)2=a2±2ab+b2.【解答】解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.【点评】本题主要考查了完全平方公式,利用公式把已知条件两边平方是解题的关键.三、解答题(共5小题,满分46分)19.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)【考点】整式的混合运算.【专题】计算题.【分析】(1)原式利用积的乘方与幂的乘方运算法则计算,再利用乘除法则计算即可得到结果;(2)原式先利用单项式乘多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;(2)原式=6a3﹣27a2+9a﹣8a+4a=6a3﹣35a2+13a;【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.20.分解因式:(1)m2﹣6m+9;(2)(x+y)2+2(x+y)+1;(3)3x﹣12x3;(4)9a2(x﹣y)+4b2(y﹣x).【考点】提公因式法与公式法的综合运用.【分析】(1)利用完全平方公式即可分解;(2)利用完全平方公式即可分解;(3)首先提公因式3x,然后利用平方差公式分解即可;(4)首先提公因式(x﹣y),然后利用平方差公式分解.【解答】解:(1)m2﹣6m+9=(m﹣3)2;(2)(x+y)2+2(x+y)+1=(x+y+1)2.(3)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(4)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)•(3a﹣2b).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.21.先化简,再求值:2(x﹣3)(x+2)﹣(3+a)(3﹣a),其中a=﹣2,x=1.【考点】整式的混合运算—化简求值.【分析】先根据多项式乘多项式的法则以及平方差公式计算,再去括号,然后合并,最后把a、x的值代入计算.【解答】解:原式=2(x2﹣x﹣6)﹣(9﹣a2)=2x2﹣2x+a2﹣21,当a=﹣2,x=1时,原式=2×12﹣2×1+(﹣2)2﹣21=﹣17.【点评】本题考查了整式的混合运算,解题的关键是去括号、合并同类项.22.若2x+5y﹣3=0,求4x•32y的值.【考点】同底数幂的乘法;幂的乘方与积的乘方.【分析】由方程可得2x+5y=3,再把所求的代数式化为同为2的底数的代数式,运用同底数幂的乘法的性质计算,最后运用整体代入法求解即可.【解答】解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=8.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.23.已知:a,b,c为△ABC的三边长,且2a2+2b2+2c2=2ab+2ac+2bc,试判断△ABC的形状,并证明你的结论.【考点】因式分解的应用.【专题】几何图形问题;探究型;因式分解.【分析】由2a2+2b2+2c2=2ab+2ac+2bc分组因式分解,利用非负数的性质得到三边关系,从而判定三角形形状.【解答】解:△ABC是等边三角形.证明如下:因为2a2+2b2+2c2=2ab+2ac+2bc,所以2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=0,a2﹣2ab+b2+a2﹣2ac+c2+b2﹣2bc+c2=0,(a﹣b)2+(a﹣c)2+(b﹣c)2=0,所以(a﹣b)2=0,(a﹣c)2=0,(b﹣c)2=0,得a=b且a=c且b=c,即a=b=c,所以△ABC是等边三角形.【点评】此题是一道把等边三角形的判定、因式分解和非负数的性质结合求解的综合题.考查学生综合运用数学知识的能力.。

相关文档
最新文档